1
|
Duque-Afonso J, Lin CH, Han K, Wei MC, Feng J, Kurzer JH, Schneidawind C, Wong SHK, Bassik MC, Cleary ML. E2A-PBX1 Remodels Oncogenic Signaling Networks in B-cell Precursor Acute Lymphoid Leukemia. Cancer Res 2016; 76:6937-6949. [PMID: 27758892 DOI: 10.1158/0008-5472.can-16-1899] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/28/2016] [Accepted: 09/29/2016] [Indexed: 02/07/2023]
Abstract
There is limited understanding of how signaling pathways are altered by oncogenic fusion transcription factors that drive leukemogenesis. To address this, we interrogated activated signaling pathways in a comparative analysis of mouse and human leukemias expressing the fusion protein E2A-PBX1, which is present in 5%-7% of pediatric and 50% of pre-B-cell receptor (preBCR+) acute lymphocytic leukemia (ALL). In this study, we describe remodeling of signaling networks by E2A-PBX1 in pre-B-ALL, which results in hyperactivation of the key oncogenic effector enzyme PLCγ2. Depletion of PLCγ2 reduced proliferation of mouse and human ALLs, including E2A-PBX1 leukemias, and increased disease-free survival after secondary transplantation. Mechanistically, E2A-PBX1 bound promoter regulatory regions and activated the transcription of its key target genes ZAP70, SYK, and LCK, which encode kinases upstream of PLCγ2. Depletion of the respective upstream kinases decreased cell proliferation and phosphorylated levels of PLCγ2 (pPLCγ2). Pairwise silencing of ZAP70, SYK, or LCK showed additive effects on cell growth inhibition, providing a rationale for combination therapy with inhibitors of these kinases. Accordingly, inhibitors such as the SRC family kinase (SFK) inhibitor dasatinib reduced pPLCγ2 and inhibited proliferation of human and mouse preBCR+/E2A-PBX1+ leukemias in vitro and in vivo Furthermore, combining small-molecule inhibition of SYK, LCK, and SFK showed synergistic interactions and preclinical efficacy in the same setting. Our results show how the oncogenic fusion protein E2A-PBX1 perturbs signaling pathways upstream of PLCγ2 and renders leukemias amenable to targeted therapeutic inhibition. Cancer Res; 76(23); 6937-49. ©2016 AACR.
Collapse
Affiliation(s)
- Jesús Duque-Afonso
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Chiou-Hong Lin
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Kyuho Han
- Department of Genetics, Stanford University School of Medicine, Stanford, California
| | - Michael C Wei
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Jue Feng
- Department of Pathology, Stanford University School of Medicine, Stanford, California.,Department of Pathology and Department of Medicine, New York University Langone Medical Center, New York, New York
| | - Jason H Kurzer
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Corina Schneidawind
- Department of Pathology, Stanford University School of Medicine, Stanford, California.,Department of Hematology and Oncology, University Hospital Tuebingen, Tuebingen, Germany
| | - Stephen Hon-Kit Wong
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Michael C Bassik
- Department of Genetics, Stanford University School of Medicine, Stanford, California
| | - Michael L Cleary
- Department of Pathology, Stanford University School of Medicine, Stanford, California.
| |
Collapse
|
2
|
Lemmens I, Lievens S, Tavernier J. MAPPIT, a mammalian two-hybrid method for in-cell detection of protein-protein interactions. Methods Mol Biol 2015; 1278:447-55. [PMID: 25859968 DOI: 10.1007/978-1-4939-2425-7_29] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
MAPPIT (MAmmalian Protein-Protein Interaction Trap) is a two-hybrid technology that facilitates the detection and analysis of interactions between proteins in living mammalian cells. The system is based on type 1 cytokine receptor signaling. The bait protein of interest is fused to a chimeric signaling-deficient cytokine receptor, the signaling competence of which is restored upon recruitment of a prey protein that is coupled to a functional cytokine receptor domain. MAPPIT exhibits an excellent signal-to-noise ratio, detects a wide variety of protein-protein interactions (PPIs) including transient and indirect interactions, and has been shown to be highly complementary to other two-hybrid methods with respect to the interactions it can detect. Variants of the method were developed to allow large-scale PPI screening, mapping of protein interaction interfaces, PPI inhibitor screening and drug profiling. This chapter describes a basic 4-day MAPPIT protocol for the analysis of interaction between two designated proteins.
Collapse
Affiliation(s)
- Irma Lemmens
- Department of Medical Protein Research, VIB, A. Baertsoenkaai 3, 9000, Ghent, Belgium
| | | | | |
Collapse
|
3
|
MAPPIT: a protein interaction toolbox built on insights in cytokine receptor signaling. Cytokine Growth Factor Rev 2011; 22:321-9. [PMID: 22119007 DOI: 10.1016/j.cytogfr.2011.11.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
MAPPIT (mammalian protein-protein interaction trap) is a two-hybrid interaction mapping technique based on functional complementation of a type I cytokine receptor signaling pathway. Over the last decade, the technology has been extended into a platform of complementary assays for the detection of interactions among proteins and between chemical compounds and proteins, and for the identification of small molecules that interfere with protein-protein interactions. Additionally, several screening approaches have been developed to broaden the utility of the platform. In this review we provide an overview of the different components of the MAPPIT toolbox and highlight a number of applications in interactomics, drug screening and compound target profiling.
Collapse
|
4
|
Wauman J, De Ceuninck L, Vanderroost N, Lievens S, Tavernier J. RNF41 (Nrdp1) controls type 1 cytokine receptor degradation and ectodomain shedding. J Cell Sci 2011; 124:921-32. [PMID: 21378310 PMCID: PMC3115735 DOI: 10.1242/jcs.078055] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cytokines, such as interferons, erythropoietin, leptin and most interleukins, signal through type 1 cytokine receptors and activate the canonical JAK–STAT pathway. Aberrant cytokine signalling underlies numerous pathologies and adequate, temporary receptor activation is therefore under tight control. Negative-feedback mechanisms are very well studied, but cellular sensitivity also depends on the number of receptors exposed at the cell surface. This is determined by the equilibrium between receptor synthesis and transport to the plasma membrane, internalisation and recycling, degradation and ectodomain shedding, but the molecular basis of how cells establish steady state receptor levels is poorly understood. Here, we report that ring finger protein 41 (RNF41, also known as E3 ubiquitin-protein ligase Nrdp1) interacts with JAK2-associated cytokine receptor complexes and modulates their cell surface exposure and signalling. Moreover, ectopic expression of RNF41 affected turnover of leptin, leukaemia inhibitory factor and interleukin-6 receptor in a dual way: it blocked intracellular cathepsin-L-dependent receptor cleavage and concomitantly enhanced receptor shedding by metalloproteases of the ADAM family. Receptor degradation and shedding are thus interconnected phenomena with a single protein, RNF41, determining the balance.
Collapse
Affiliation(s)
- Joris Wauman
- Department of Medical Protein Research, Flanders Interuniversity Institute for Biotechnology (VIB), Ghent University, Albert Baertsoenkaai 3, B-9000 Ghent, Belgium
| | | | | | | | | |
Collapse
|
5
|
|
6
|
Nelson ME, Steensma DP. JAK2 V617F in myeloid disorders: What do we know now, and where are we headed? Leuk Lymphoma 2009; 47:177-94. [PMID: 16321848 DOI: 10.1080/10428190500301348] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Activating tyrosine kinase (TK) mutations disrupt cellular proliferation and survival pathways and are increasingly recognized as a fundamental cause of human cancers. Until very recently, the only TK mutations widely observed in myeloid neoplasia were the BCR/ABL1 fusions characteristic of chronic myeloid leukemia and some acute leukemias, and FLT3 activating mutations in a minority of acute myeloid leukemias. Several rare TK mutations are found in various atypical myeloproliferative disorders, but big pieces of the pathobiological puzzle were glaringly missing. In the first half of 2005, one gap was filled in: 7 studies identified the same acquired amino acid substitution (V617F) in the Janus kinase 2 (JAK2) TK in large numbers of patients with diverse clonal myeloid disorders. Most affected patients suffer from the classic BCR/ABL1-negative myeloproliferative disorders (MPD), especially polycythemia vera (74% of n = 506), but a subset of people with essential thrombocythemia (36% of n = 339) or myelofibrosis with myeloid metaplasia (44% of n = 127) bear the identical mutation, as do a few individuals with myelodysplastic syndromes or an atypical myeloid disorder (7% of n = 556). This long-sought common mutation in BCR/ABL1-negative MPD raises many provocative biological and clinical questions, and demands re-evaluation of prevailing diagnostic algorithms for erythrocytosis and thrombocytosis. JAK2 V617F may provide novel molecular targets for drug therapy, and suggests other places to seek cooperating mutations or mutations associated with similar phenotypes. The story of this exciting finding will unfold rapidly in the years ahead, and ongoing developments will be important for all hematologists to understand.
Collapse
Affiliation(s)
- Maria E Nelson
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | |
Collapse
|
7
|
Lievens S, Vanderroost N, Van der Heyden J, Gesellchen V, Vidal M, Tavernier J. Array MAPPIT: high-throughput interactome analysis in mammalian cells. J Proteome Res 2009; 8:877-86. [PMID: 19159283 DOI: 10.1021/pr8005167] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Physical interactions between proteins play a key role in probably every cellular process. Efforts to chart the protein interaction networks are ongoing in a number of model organisms using a diversity of approaches. The resulting genome-wide interaction maps will provide a scaffold for further detailed functional analysis. We developed MAPPIT, a mammalian two-hybrid approach that allows identification and analysis of mammalian protein-protein interactions in their native environment. Here, we introduce an efficient MAPPIT assay that permits high-throughput screening of arrayed collections of proteins and complements a previously published cDNA library screening approach. We validated both methods in screens for interaction partners of the Cullin-based E3 ubiquitin ligase subunits SKP1 and Elongin C. In addition to a number of known interactors, novel SKP1 and Elongin C binding proteins were identified. The array assay is an important addition to the MAPPIT suite of technologies that is expected to significantly increase its utility as a toolbox to screen for novel interactors of proteins or small molecules.
Collapse
Affiliation(s)
- Sam Lievens
- Department of Medical Protein Research, VIB, A. Baertsoenkaai 3, 9000 Ghent, Belgium
| | | | | | | | | | | |
Collapse
|
8
|
Ulrichts P, Lemmens I, Lavens D, Beyaert R, Tavernier J. MAPPIT (mammalian protein-protein interaction trap) analysis of early steps in toll-like receptor signalling. Methods Mol Biol 2009; 517:133-44. [PMID: 19378012 DOI: 10.1007/978-1-59745-541-1_9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The mammalian protein-protein interaction trap (MAPPIT) is a two-hybrid technique founded on type I cytokine signal transduction. Thereby, bait and prey proteins are linked to signalling deficient cytokine receptor chimeras. Interaction of bait and prey and ligand stimulation restores functional JAK (Janus kinase)-STAT (signal transducers and activators of transcription) signalling, which ultimately leads to the transcription of a reporter or marker gene under the control of the STAT3-responsive rPAP1 promoter. In the subsequent protocol, we describe the use of MAPPIT to study early events in Toll-like receptor (TLR) signalling. We here demonstrate a "signalling interaction cascade" from TLR4 to IRAK-1.
Collapse
Affiliation(s)
- Peter Ulrichts
- Department of Medical Protein Research, Ghent University - VIB, Ghent, Belgium
| | | | | | | | | |
Collapse
|
9
|
Abstract
MAPPIT (mammalian protein–protein interaction trap) is a cytokine receptor-based two-hybrid method that operates in intact mammalian cells. A bait is fused C-terminally to a STAT (signal transducer and activator of transcription) recruitment-deficient receptor, whereas the prey is linked to functional STAT-binding sites. When bait and prey interact a ligand-dependent complementation of the STAT recruitment deficiency occurs, leading to activation of a STAT-responsive reporter. MAPPIT is very well suited to study protein interactions involving activated cytokine receptors as the technique allows modification of the bait protein in a physiologically optimal environment.
Collapse
|
10
|
Pattyn E, Lavens D, Van der Heyden J, Verhee A, Lievens S, Lemmens I, Hallenberger S, Jochmans D, Tavernier J. MAPPIT (MAmmalian Protein–Protein Interaction Trap) as a tool to study HIV reverse transcriptase dimerization in intact human cells. J Virol Methods 2008; 153:7-15. [DOI: 10.1016/j.jviromet.2008.06.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Revised: 06/17/2008] [Accepted: 06/19/2008] [Indexed: 10/21/2022]
|
11
|
Abstract
Interactive proteomics addresses the physical associations among proteins and establishes global, disease-, and pathway-specific protein interaction networks. The inherent chemical and structural diversity of proteins, their different expression levels, and their distinct subcellular localizations pose unique challenges for the exploration of these networks, necessitating the use of a variety of innovative and ingenious approaches. Consequently, recent years have seen exciting developments in protein interaction mapping and the establishment of very large interaction networks, especially in model organisms. In the near future, attention will shift to the establishment of interaction networks in humans and their application in drug discovery and understanding of diseases. In this review, we present an impressive toolbox of different technologies that we expect to be crucial for interactive proteomics in the coming years.
Collapse
|
12
|
Piessevaux J, De Ceuninck L, Catteeuw D, Peelman F, Tavernier J. Elongin B/C recruitment regulates substrate binding by CIS. J Biol Chem 2008; 283:21334-46. [PMID: 18508766 DOI: 10.1074/jbc.m803742200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
SOCS proteins play a major role in the regulation of cytokine signaling. They are recruited to activated receptors and can suppress signaling by different mechanisms including targeting of the receptor complex for proteasomal degradation. The activity of SOCS proteins is regulated at different levels including transcriptional control and posttranslational modification. We describe here a novel regulatory mechanism for CIS, one of the members of this protein family. A CIS mutant deficient in recruitment of the Elongin B/C complex completely failed to suppress STAT5 activation. This deficiency was not caused by altered turnover of CIS but by loss of cytokine receptor interaction. Intriguingly, no such effect was seen for binding to MyD88. The interaction between CIS and the Elongin B/C complex, which depends on the levels of uncomplexed Elongin B/C, was easily disrupted. This regulatory mechanism may be unique for CIS, as similar mutations in SOCS1, -2, -3, -6, and -7 had no functional impact. Our findings indicate that the SOCS box not only plays a role in the formation of E3 ligase complexes but, at least for CIS, can also regulate the binding modus of SOCS box-containing proteins.
Collapse
Affiliation(s)
- Julie Piessevaux
- Department of Medical Protein Research, Flanders Institute for Biotechnology (VIB), Ghent University, A. Baertsoenkaai 3, Ghent, Belgium
| | | | | | | | | |
Collapse
|
13
|
Wauman J, De Smet AS, Catteeuw D, Belsham D, Tavernier J. Insulin receptor substrate 4 couples the leptin receptor to multiple signaling pathways. Mol Endocrinol 2007; 22:965-77. [PMID: 18165436 DOI: 10.1210/me.2007-0414] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Leptin is an adipokine that regulates food intake and energy expenditure by activating its hypothalamic leptin receptor (LR). Members of the insulin receptor substrate (IRS) family serve as adaptor proteins in the signaling pathways of several cytokines and hormones and a role for IRS2 in central leptin physiology is well established. Using mammalian protein-protein interaction trap (MAPPIT), a cytokine receptor-based two-hybrid method, in the N38 hypothalamic cell line, we here demonstrate that also IRS4 interacts with the LR. This recruitment is leptin dependent and requires phosphorylation of the Y1077 motif of the LR. Domain mapping of IRS4 revealed the critical role of the pleckstrin homology domain for full interaction. In line with its function as an adaptor protein, IRS4 interacted with the regulatory p85 subunit of the phosphatidylinositol 3-kinase, phospholipase Cgamma, and the suppressor of cytokine signaling (SOCS) family members SOCS2, SOCS6, and SOCS7 and thus can modulate LR signaling.
Collapse
Affiliation(s)
- Joris Wauman
- Department of Medical Protein Research, University of Ghent, A. Baertsoenkaai 3, 9000 Ghent, Belgium
| | | | | | | | | |
Collapse
|
14
|
Uyttendaele I, Lemmens I, Verhee A, De Smet AS, Vandekerckhove J, Lavens D, Peelman F, Tavernier J. Mammalian protein-protein interaction trap (MAPPIT) analysis of STAT5, CIS, and SOCS2 interactions with the growth hormone receptor. Mol Endocrinol 2007; 21:2821-31. [PMID: 17666591 DOI: 10.1210/me.2006-0541] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Binding of GH to its receptor induces rapid phosphorylation of conserved tyrosine motifs that function as recruitment sites for downstream signaling molecules. Using mammalian protein-protein interaction trap (MAPPIT), a mammalian two-hybrid method, we mapped the binding sites in the GH receptor for signal transducer and activator of transcription 5 (STAT5) a and b and for the negative regulators of cytokine signaling cytokine-inducible Src-homology 2 (SH2)-containing protein (CIS) and suppressor of cytokine signaling 2 (SOCS2). Y534, Y566, and Y627 are the major recruitment sites for STAT5. A non-overlapping recruitment pattern is observed for SOCS2 and CIS with positions Y487 and Y595 as major binding sites, ruling out SOCS-mediated inhibition of STAT5 activation by competition for shared binding sites. More detailed analysis revealed that CIS binding to the Y595, but not to the Y487 motif, depends on both its SH2 domain and the C-terminal part of its SOCS box, with a critical role for the CIS Y253 residue. This functional divergence of the two CIS/SOCS2 recruitment sites is also observed upon substitution of the Y+1 residue by leucine, turning the Y487, but not the Y595 motif into a functional STAT5 recruitment site.
Collapse
Affiliation(s)
- Isabel Uyttendaele
- Flanders Interuniversity Institute for Biotechnology, Department of Medical Protein Research, Ghent University, Faculty of Medicine and Health Sciences, A. Baertsoenkaai 3, B-9000 Ghent, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Lavens D, Ulrichts P, Catteeuw D, Gevaert K, Vandekerckhove J, Peelman F, Eyckerman S, Tavernier J. The C-terminus of CIS defines its interaction pattern. Biochem J 2007; 401:257-67. [PMID: 16961462 PMCID: PMC1698688 DOI: 10.1042/bj20060242] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Proteins of the SOCS (suppressors of cytokine signalling) family are characterized by a conserved modular structure with pre-SH2 (Src homology 2), SH2 and SOCS-box domains. Several members, including CIS (cytokine-inducible SH2 protein), SOCS1 and SOCS3, are induced rapidly upon cytokine receptor activation and function in a negative-feedback loop, attenuating signalling at the receptor level. We used a recently developed mammalian two-hybrid system [MAPPIT (mammalian protein-protein interaction trap)] to analyse SOCS protein-interaction patterns in intact cells, allowing direct comparison with biological function. We find that, besides the SH2 domain, the C-terminal part of the CIS SOCS-box is required for functional interaction with the cytokine receptor motifs examined, but not with the N-terminal death domain of the TLR (Toll-like receptor) adaptor MyD88. Mutagenesis revealed that one single tyrosine residue at position 253 is a critical binding determinant. In contrast, substrate binding by the highly related SOCS2 protein, and also by SOCS1 and SOCS3, does not require their SOCS-box.
Collapse
Affiliation(s)
- Delphine Lavens
- Flanders Interuniversity Institute for Biotechnology, Department of Medical Protein Research (VIB09), Faculty of Medicine and Health Sciences, Ghent University, Baertsoenkaai 3, 9000 Ghent, Belgium
| | - Peter Ulrichts
- Flanders Interuniversity Institute for Biotechnology, Department of Medical Protein Research (VIB09), Faculty of Medicine and Health Sciences, Ghent University, Baertsoenkaai 3, 9000 Ghent, Belgium
| | - Dominiek Catteeuw
- Flanders Interuniversity Institute for Biotechnology, Department of Medical Protein Research (VIB09), Faculty of Medicine and Health Sciences, Ghent University, Baertsoenkaai 3, 9000 Ghent, Belgium
| | - Kris Gevaert
- Flanders Interuniversity Institute for Biotechnology, Department of Medical Protein Research (VIB09), Faculty of Medicine and Health Sciences, Ghent University, Baertsoenkaai 3, 9000 Ghent, Belgium
| | - Joël Vandekerckhove
- Flanders Interuniversity Institute for Biotechnology, Department of Medical Protein Research (VIB09), Faculty of Medicine and Health Sciences, Ghent University, Baertsoenkaai 3, 9000 Ghent, Belgium
| | - Frank Peelman
- Flanders Interuniversity Institute for Biotechnology, Department of Medical Protein Research (VIB09), Faculty of Medicine and Health Sciences, Ghent University, Baertsoenkaai 3, 9000 Ghent, Belgium
| | - Sven Eyckerman
- Flanders Interuniversity Institute for Biotechnology, Department of Medical Protein Research (VIB09), Faculty of Medicine and Health Sciences, Ghent University, Baertsoenkaai 3, 9000 Ghent, Belgium
| | - Jan Tavernier
- Flanders Interuniversity Institute for Biotechnology, Department of Medical Protein Research (VIB09), Faculty of Medicine and Health Sciences, Ghent University, Baertsoenkaai 3, 9000 Ghent, Belgium
- To whom correspondence should be addressed (email )
| |
Collapse
|
16
|
Piessevaux J, Lavens D, Montoye T, Wauman J, Catteeuw D, Vandekerckhove J, Belsham D, Peelman F, Tavernier J. Functional Cross-modulation between SOCS Proteins Can Stimulate Cytokine Signaling. J Biol Chem 2006; 281:32953-66. [PMID: 16956890 DOI: 10.1074/jbc.m600776200] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SOCS (suppressors of cytokine signaling) proteins are negative regulators of cytokine signaling that function primarily at the receptor level. Remarkably, in vitro and in vivo observations revealed both inhibitory and stimulatory effects of SOCS2 on growth hormone signaling, suggesting an additional regulatory level. In this study, we examined the possibility of direct cross-modulation between SOCS proteins and found that SOCS2 could interfere with the inhibitory actions of other SOCS proteins in growth hormone, interferon, and leptin signaling. This SOCS2 effect was SOCS box-dependent, required recruitment of the elongin BC complex, and coincided with degradation of target SOCS proteins. Detailed mammalian protein-protein interaction trap (MAPPIT) analysis indicated that SOCS2 can interact with all members of the SOCS family. SOCS2 may thus function as a molecular bridge between a ubiquitin-protein isopeptide ligase complex and SOCS proteins, targeting them for proteasomal turnover. We furthermore extended these observations to SOCS6 and SOCS7. Our findings point to a unique regulatory role for SOCS2, SOCS6, and SOCS7 within the SOCS family and provide an explanation for the unexpected phenotypes observed in SOCS2 and SOCS6 transgenic mice.
Collapse
Affiliation(s)
- Julie Piessevaux
- Flanders Interuniversity Institute for Biotechnology, Department of Medical Protein Research, Faculty of Medicine and Health Sciences, Ghent University, B-9000 Ghent, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Steensma DP, McClure RF, Karp JE, Tefferi A, Lasho TL, Powell HL, DeWald GW, Kaufmann SH. JAK2 V617F is a rare finding in de novo acute myeloid leukemia, but STAT3 activation is common and remains unexplained. Leukemia 2006; 20:971-8. [PMID: 16598306 DOI: 10.1038/sj.leu.2404206] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Signal transducer and activator of transcription (STAT) proteins are phosphorylated and activated by Janus kinases (JAKs). Recently, several groups identified a recurrent somatic point mutation constitutively activating the hematopoietic growth factor receptor-associated JAK2 tyrosine kinase in diverse chronic myeloid disorders - most commonly classic myeloproliferative disorders (MPD), especially polycythemia vera. We hypothesized that the JAK2 V617F mutation might also be present in samples from patients with acute myeloid leukemia (AML), especially erythroleukemia (AML-M6) or megakaryoblastic leukemia (AML-M7), where it might mimic erythropoietin or thrombopoietin signaling. First, we documented STAT3 activation by immunoblotting in AML-M6 and other AML subtypes. Immunoperoxidase staining confirmed phosphorylated STAT3 in malignant myeloblasts (21% of cases, including all AML-M3 samples tested). We then analyzed genomic DNA from 162 AML, 30 B-cell lymphoma, and 10 chronic lymphocytic leukemia (CLL) samples for JAK2 mutations, and assayed a subset for SOCS1 and FLT3 mutations. Janus kinase2 V617F was present in 13/162 AML samples (8%): 10/13 transformed MPD, and three apparent de novo AML (one of 12 AML-M6, one of 24 AML-M7, and one AML-M2 - all mixed clonality). FLT3 mutations were present in 5/32 (16%), while SOCS1 mutations were totally absent. Lymphoproliferative disorder samples were both JAK2 and SOCS1 wild type. Thus, while JAK2 V617F is uncommon in de novo AML and probably does not occur in lymphoid malignancy, unexplained STAT3 activation is common in AML. Janus kinase2 extrinsic regulators and other proteins in the JAK-STAT pathway should be interrogated to explain frequent STAT activation in AML.
Collapse
Affiliation(s)
- D P Steensma
- Mayo Clinic College of Medicine, Rochester, MN, USA.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Lavens D, Montoye T, Piessevaux J, Zabeau L, Vandekerckhove J, Gevaert K, Becker W, Eyckerman S, Tavernier J. A complex interaction pattern of CIS and SOCS2 with the leptin receptor. J Cell Sci 2006; 119:2214-24. [PMID: 16684815 DOI: 10.1242/jcs.02947] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hypothalamic leptin receptor signalling plays a central role in weight regulation by controlling fat storage and energy expenditure. In addition, leptin also has direct effects on peripheral cell types involved in regulation of diverse body functions including immune response, bone formation and reproduction. Previous studies have demonstrated the important role of SOCS3 (suppressor of cytokine signalling 3) in leptin physiology. Here, we show that CIS (cytokine-inducible SH2 protein) and SOCS2 can also interact with the leptin receptor. Using MAPPIT (mammalian protein-protein interaction trap), a cytokine receptor-based two-hybrid method operating in intact cells, we show specific binding of CIS with the conserved Y985 and Y1077 motifs in the cytosolic domain of the leptin receptor. SOCS2 only interacts with the Y1077 motif, but with higher binding affinity and can interfere with CIS and STAT5a prey recruitment at this site. Furthermore, although SOCS2 does not associate with Y985 of the leptin receptor, we find that SOCS2 can block interaction of CIS with this position. This unexpected interference can be explained by the direct binding of SOCS2 on the CIS SOCS box, whereby elongin B/C recruitment is crucial to suppress CIS activity.
Collapse
Affiliation(s)
- Delphine Lavens
- Department of Medical Protein Research, Faculty of Medicine and Health Sciences, Flanders Interuniversity Institute for Biotechnology, VIB09, Ghent University, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Montoye T, Piessevaux J, Lavens D, Wauman J, Catteeuw D, Vandekerckhove J, Lemmens I, Tavernier J. Analysis of leptin signalling in hematopoietic cells using an adapted MAPPIT strategy. FEBS Lett 2006; 580:3301-7. [PMID: 16698021 DOI: 10.1016/j.febslet.2006.04.094] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Revised: 04/10/2006] [Accepted: 04/19/2006] [Indexed: 11/23/2022]
Abstract
The adipocyte-secreted hormone leptin participates in the regulation of hematopoiesis and enhances proliferation of hematopoietic cells. We used an adaptation of the MAPPIT mammalian two-hybrid method to study leptin signalling in a hematopoietic setting. We confirmed the known interactions of suppressor of cytokine signalling 3 (SOCS3) and STAT5 with the Y985 and Y1077 motifs of the leptin receptor, respectively. We also provide evidence for novel interactions at the Y1077 motif, including phospholipase C gamma and several members of the SOCS protein family, further underscoring the important role of the Y1077 motif in leptin signalling.
Collapse
Affiliation(s)
- T Montoye
- Flanders Interuniversity Institute for Biotechnology, Department of Medical Protein Research, Faculty of Medicine and Health Sciences, Ghent University, A. Baertsoenkaai 3, B-9000 Ghent, Belgium
| | | | | | | | | | | | | | | |
Collapse
|