1
|
Fiorenza S, Lim SY, Laszlo GS, Kimble EL, Phi TD, Lunn-Halbert MC, Kirchmeier DR, Huo J, Kiem HP, Turtle CJ, Walter RB. Targeting the membrane-proximal C2-set domain of CD33 for improved CAR T cell therapy. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200854. [PMID: 39224504 PMCID: PMC11367471 DOI: 10.1016/j.omton.2024.200854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/02/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
Current CD33-targeted immunotherapies typically recognize the membrane-distal V-set domain of CD33. Here, we show that decreasing the distance between T cell and leukemia cell membrane increases the efficacy of CD33 chimeric antigen receptor (CAR) T cells. We therefore generated and optimized second-generation CAR constructs containing single-chain variable fragments from antibodies raised against the membrane-proximal C2-set domain, which bind CD33 regardless of whether the V-set domain is present (CD33PAN antibodies). CD33PAN CAR T cells resulted in efficient tumor clearance and improved survival of immunodeficient mice bearing human AML cell xenografts and, in an AML model with limited CD33 expression, forced escape of CD33neg leukemia. Compared to CD33V-set CAR T cells, CD33PAN CAR T cells showed greater in vitro and in vivo efficacy against several human AML cell lines with differing levels of CD33 without increased expression of exhaustion markers. CD33PAN moieties were detected at a higher frequency on human leukemic stem cells, and CD33PAN CAR T cells had greater in vitro efficacy against primary human AML cells. Together, our studies demonstrate improved efficacy with CAR T cells binding CD33 close to the cell membrane, providing the rationale to investigate CD33PAN CAR T cells further toward possible clinical application.
Collapse
Affiliation(s)
- Salvatore Fiorenza
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2050, Australia
| | - Sheryl Y.T. Lim
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - George S. Laszlo
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Erik L. Kimble
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Department of Medicine, Division of Hematology and Oncology, University of Washington, Seattle, WA 98195, USA
| | - Tinh-Doan Phi
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Margaret C. Lunn-Halbert
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Delaney R. Kirchmeier
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Jenny Huo
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Hans-Peter Kiem
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Cameron J. Turtle
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2050, Australia
| | - Roland B. Walter
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2050, Australia
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
2
|
Guo H, Zhou C, Zheng M, Zhang J, Wu H, He Q, Ding L, Yang B. Insights into the role of derailed endocytic trafficking pathway in cancer: From the perspective of cancer hallmarks. Pharmacol Res 2024; 201:107084. [PMID: 38295915 DOI: 10.1016/j.phrs.2024.107084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/12/2024] [Accepted: 01/25/2024] [Indexed: 02/06/2024]
Abstract
The endocytic trafficking pathway is a highly organized cellular program responsible for the regulation of membrane components and uptake of extracellular substances. Molecules internalized into the cell through endocytosis will be sorted for degradation or recycled back to membrane, which is determined by a series of sorting events. Many receptors, enzymes, and transporters on the membrane are strictly regulated by endocytic trafficking process, and thus the endocytic pathway has a profound effect on cellular homeostasis. However, the endocytic trafficking process is typically dysregulated in cancers, which leads to the aberrant retention of receptor tyrosine kinases and immunosuppressive molecules on cell membrane, the loss of adhesion protein, as well as excessive uptake of nutrients. Therefore, hijacking endocytic trafficking pathway is an important approach for tumor cells to obtain advantages of proliferation and invasion, and to evade immune attack. Here, we summarize how dysregulated endocytic trafficking process triggers tumorigenesis and progression from the perspective of several typical cancer hallmarks. The impact of endocytic trafficking pathway to cancer therapy efficacy is also discussed.
Collapse
Affiliation(s)
- Hongjie Guo
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chen Zhou
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Mingming Zheng
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jie Zhang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Honghai Wu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310018, China; Cancer Center of Zhejiang University, Hangzhou 310058, China
| | - Ling Ding
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Nanhu Brain-computer Interface Institute, Hangzhou 311100, China.
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; School of Medicine, Hangzhou City University, Hangzhou 310015, China; The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310018, China.
| |
Collapse
|
3
|
Chen EC, Garcia JS. Immunotherapy for Acute Myeloid Leukemia: Current Trends, Challenges, and Strategies. Acta Haematol 2023; 147:198-218. [PMID: 37673048 DOI: 10.1159/000533990] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/03/2023] [Indexed: 09/08/2023]
Abstract
BACKGROUND In the past decade, there have been significant breakthroughs in immunotherapies for B-cell lymphoid malignancies and multiple myeloma, but progress has been much less for acute myeloid leukemia (AML). Nevertheless, challenge begets innovation and several therapeutic strategies are under investigation. SUMMARY In this review, we review the state of the art in AML immunotherapy including CD33- and CD123-targeted agents, immune checkpoint inhibition, and adoptive cell therapy strategies. We also share conceptual frameworks for approaching the growing catalog of investigational AML immunotherapies and propose future directions for the field. KEY MESSAGES Immunotherapies for AML face significant challenges but novel strategies are in development.
Collapse
Affiliation(s)
- Evan C Chen
- Department of Medical Oncology, Division of Leukemia, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Jacqueline S Garcia
- Department of Medical Oncology, Division of Leukemia, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Wu H, Ding X, Chen Y, Cai Y, Yang Z, Jin J. Constructed Tumor-Targeted and MMP-2 Biocleavable Antibody Conjugated Silica Nanoparticles for Efficient Cancer Therapy. ACS OMEGA 2023; 8:12752-12760. [PMID: 37065049 PMCID: PMC10099448 DOI: 10.1021/acsomega.2c07949] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/17/2023] [Indexed: 06/19/2023]
Abstract
Antibody-drug conjugates (ADC) are an inevitable trend in the development of modern "precision medicine". The goal of this work is to produce enzyme-responsive antibody nanoparticle-loaded medication (FMSN-Dox-H2-AE01) based on the EGFR antibody (AE01) and human serum albumin (HSA) shelled mesoporous silica nanoparticles. HSA and antibodies on the surface of the particlescan not only enhance the biocompatibility of the particle and avoid early drug leakage but also allow selective biodegradation triggered by matrix metalloproteinase-2 (MMP-2), which are overexpressed enzymes in some tumor tissues. The cytotoxicity test confirmed favorable safety and efficacy of the ADC. The mortality rate of cancer cells is about 85-90%. Moreover, the antibody nanoparticle-loaded drug showed distinguishing controlled release efficiency toward cancer cells induced by different levels of MMP-2 and pH. This enzyme-responsive FMSN-Dox-H2-AE01 offers a promising option for cancer therapy.
Collapse
Affiliation(s)
- Hao Wu
- School
of Life Sciences and Health Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi 214000, People’s Republic
of China
| | - Xuefeng Ding
- School
of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214000, People’s Republic of China
| | - Yun Chen
- School
of Life Sciences and Health Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi 214000, People’s Republic
of China
| | - Yanfei Cai
- School
of Life Sciences and Health Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi 214000, People’s Republic
of China
| | - Zhaoqi Yang
- School
of Life Sciences and Health Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi 214000, People’s Republic
of China
| | - Jian Jin
- School
of Life Sciences and Health Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi 214000, People’s Republic
of China
| |
Collapse
|
5
|
CD33 isoforms in microglia and Alzheimer's disease: Friend and foe. Mol Aspects Med 2023; 90:101111. [PMID: 35940942 DOI: 10.1016/j.mam.2022.101111] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/18/2022] [Accepted: 07/27/2022] [Indexed: 02/08/2023]
Abstract
Alzheimer's disease (AD) is the most common form of neurodegenerative disease and is considered the main cause of dementia worldwide. Genome-wide association studies combined with integrated analysis of functional datasets support a critical role for microglia in AD pathogenesis, identifying them as important potential therapeutic targets. The ability of immunomodulatory receptors on microglia to control the response to pathogenic amyloid-β aggregates has gained significant interest. Siglec-3, also known as CD33, is one of these immunomodulatory receptors expressed on microglia that has been identified as an AD susceptibility factor. Here, we review recent advances made in understanding the multifaceted roles that CD33 plays in microglia with emphasis on two human-specific CD33 isoforms that differentially correlate with AD susceptibility. We also describe several different therapeutic approaches for targeting CD33 that have been advanced for the purpose of skewing microglial cell responses.
Collapse
|
6
|
Inase A, Maimaitili Y, Kimbara S, Mizutani Y, Miyata Y, Ohata S, Matsumoto H, Kitao A, Sakai R, Kawaguchi K, Higashime A, Nagao S, Kurata K, Goto H, Kawamoto S, Yakushijin K, Minami H, Matsuoka H. GSK3 inhibitor enhances gemtuzumab ozogamicin-induced apoptosis in primary human leukemia cells by overcoming multiple mechanisms of resistance. EJHAEM 2023; 4:153-164. [PMID: 36819180 PMCID: PMC9928658 DOI: 10.1002/jha2.600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/23/2022] [Accepted: 10/03/2022] [Indexed: 12/15/2022]
Abstract
In acute myeloid leukemia (AML), the heterogeneity of genetic and epigenetic characteristics makes treatment difficult. The prognosis for AML is therefore poor, and there is an urgent need for new treatments for this condition. Gemtuzumab ozogamicin (GO), the first antibody-drug conjugate (ADC), targets the CD33 antigen expressed in over 90% of AML cases. GO therefore has the potential to counter the heterogeneity of AML patients. However, a major clinical problem is that drug resistance to GO diminishes its effect over time. Here, we report that the inhibition of glycogen synthase kinase 3 (GSK3) alone overcomes several forms of GO resistance at concentrations without antileukemic effects. The GSK3 inhibitors tested significantly enhanced the cytotoxic effect of GO in AML cell lines. We elucidated four mechanisms of enhancement: (1) increased expression of CD33, the target antigen of GO; (2) activation of a lysosomal function essential for hydrolysis of the GO linker; (3) reduced expression of MDR1 that eliminates calicheamicin, the payload of GO; and (4) reduced expression of the anti-apoptotic factor Bcl-2. A similar combination effect was observed against patient-derived primary AML cells. Combining GO with GSK3 inhibitors may be efficacious in treating heterogeneous AML.
Collapse
Affiliation(s)
- Aki Inase
- Division of Bioresource Research and DevelopmentDepartment of Social/Community Medicine and Health ScienceKobe University Graduate School of MedicineKobeJapan
- Division of Medical Oncology and HematologyDepartment of MedicineKobe University Graduate School of MedicineKobeJapan
| | - Yimamu Maimaitili
- Division of Medical Oncology and HematologyDepartment of MedicineKobe University Graduate School of MedicineKobeJapan
| | - Shiro Kimbara
- Division of Medical Oncology and HematologyDepartment of MedicineKobe University Graduate School of MedicineKobeJapan
| | - Yu Mizutani
- Division of Medical Oncology and HematologyDepartment of MedicineKobe University Graduate School of MedicineKobeJapan
| | - Yoshiharu Miyata
- Division of Bioresource Research and DevelopmentDepartment of Social/Community Medicine and Health ScienceKobe University Graduate School of MedicineKobeJapan
- Division of Medical Oncology and HematologyDepartment of MedicineKobe University Graduate School of MedicineKobeJapan
| | - Shinya Ohata
- Division of Medical Oncology and HematologyDepartment of MedicineKobe University Graduate School of MedicineKobeJapan
| | | | - Akihito Kitao
- Division of Medical Oncology and HematologyDepartment of MedicineKobe University Graduate School of MedicineKobeJapan
| | - Rina Sakai
- Division of Medical Oncology and HematologyDepartment of MedicineKobe University Graduate School of MedicineKobeJapan
| | - Koji Kawaguchi
- Division of Medical Oncology and HematologyDepartment of MedicineKobe University Graduate School of MedicineKobeJapan
- Department of Medical Oncology/HematologyKonan Medical CenterKobeJapan
| | - Ako Higashime
- Division of Medical Oncology and HematologyDepartment of MedicineKobe University Graduate School of MedicineKobeJapan
| | - Shigeki Nagao
- Division of Medical Oncology and HematologyDepartment of MedicineKobe University Graduate School of MedicineKobeJapan
| | - Keiji Kurata
- Division of Medical Oncology and HematologyDepartment of MedicineKobe University Graduate School of MedicineKobeJapan
| | - Hideaki Goto
- Division of Medical Oncology and HematologyDepartment of MedicineKobe University Graduate School of MedicineKobeJapan
- Department of Hematology and OncologyKita‐harima Medical CenterOnoJapan
| | | | - Kimikazu Yakushijin
- Division of Medical Oncology and HematologyDepartment of MedicineKobe University Graduate School of MedicineKobeJapan
| | - Hironobu Minami
- Division of Medical Oncology and HematologyDepartment of MedicineKobe University Graduate School of MedicineKobeJapan
- Cancer Center, Kobe University HospitalKobeJapan
| | - Hiroshi Matsuoka
- Division of Bioresource Research and DevelopmentDepartment of Social/Community Medicine and Health ScienceKobe University Graduate School of MedicineKobeJapan
- Division of Medical Oncology and HematologyDepartment of MedicineKobe University Graduate School of MedicineKobeJapan
| |
Collapse
|
7
|
Kubicka E, Lum LG, Huang M, Thakur A. Bispecific antibody-targeted T-cell therapy for acute myeloid leukemia. Front Immunol 2022; 13:899468. [PMID: 36389764 PMCID: PMC9663847 DOI: 10.3389/fimmu.2022.899468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 10/03/2022] [Indexed: 11/21/2022] Open
Abstract
The management of relapsed or refractory acute myeloid leukemia (AML) continues to be therapeutically challenging. Non-toxic immunotherapy approaches are needed to provide long-term anti-leukemic effects. The goal of this study was to determine whether activated T cells (ATCs) armed with bispecific antibodies (BiAbs) could target and lyse leukemic and leukemic stem cells (LSCs). Anti-CD3 × anti-CD123 BiAb (CD123Bi) and anti-CD3 × anti-CD33GO (gemtuzumab ozogamicin [GO]) BiAb (CD33GOBi) were used to arm ATCs to produce bispecific antibody armed activated T cells (designated CD123 BATs or CD33GO BATs) to target AML cell lines, peripheral blood mononuclear cells from AML patients, and in vivo treatment of AML in xenogeneic NSG mice engrafted with leukemic cells. BATs exhibited high levels of specific cytotoxicity directed at AML cell lines at low 1:1 or 1:2 effector-to-target (E:T) ratios and secrete Th1 cytokines upon target engagement. In vivo study in AML-engrafted NSG mice showed significantly prolonged survival in mice treated with CD33GO BATs (p < 0.0001) or CD123 BATs (p < 0.0089) compared to ATC-treated control mice. Patient samples containing leukemic blasts and LSCs when treated with CD33GO BATs or CD123 BATs for 18 h showed a significant reduction (50%-100%; p < 0.005) in blasts and 75%-100% reduction in LSCs (p < 0.005) in most cases compared to unarmed ATCs. This approach may provide a potent and non-toxic strategy to target AML blasts and LSCs and enhance chemo-responsiveness in older patients who are likely to develop recurrent diseases.
Collapse
|
8
|
Furuya G, Katoh H, Atsumi S, Hashimoto I, Komura D, Hatanaka R, Senga S, Hayashi S, Akita S, Matsumura H, Miura A, Mita H, Nakakido M, Nagatoishi S, Sugiyama A, Suzuki R, Konishi H, Yamamoto A, Abe H, Hiraoka N, Aoki K, Kato Y, Seto Y, Yoshimura C, Miyadera K, Tsumoto K, Ushiku T, Ishikawa S. Nucleic acid-triggered tumoral immunity propagates pH-selective therapeutic antibodies through tumor-driven epitope spreading. Cancer Sci 2022; 114:321-338. [PMID: 36136061 PMCID: PMC9807517 DOI: 10.1111/cas.15596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 01/07/2023] Open
Abstract
Important roles of humoral tumor immunity are often pointed out; however, precise profiles of dominant antigens and developmental mechanisms remain elusive. We systematically investigated the humoral antigens of dominant intratumor immunoglobulin clones found in human cancers. We found that approximately half of the corresponding antigens were restricted to strongly and densely negatively charged polymers, resulting in simultaneous reactivities of the antibodies to both densely sulfated glycosaminoglycans (dsGAGs) and nucleic acids (NAs). These anti-dsGAG/NA antibodies matured and expanded via intratumoral immunological driving force of innate immunity via NAs. These human cancer-derived antibodies exhibited acidic pH-selective affinity across both antigens and showed specific reactivity to diverse spectrums of human tumor cells. The antibody-drug conjugate exerted therapeutic effects against multiple cancers in vivo by targeting cell surface dsGAG antigens. This study reveals that intratumoral immunological reactions propagate tumor-oriented immunoglobulin clones and demonstrates a new therapeutic modality for the universal treatment of human malignancies.
Collapse
Affiliation(s)
- Genta Furuya
- Department of Preventive medicine, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Hiroto Katoh
- Department of Preventive medicine, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Shinichiro Atsumi
- Department of Preventive medicine, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Itaru Hashimoto
- Department of Preventive medicine, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Daisuke Komura
- Department of Preventive medicine, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Ryo Hatanaka
- Discovery and Preclinical Research DivisionTaiho Pharmaceutical Co., Ltd.IbarakiJapan
| | - Shogo Senga
- Discovery and Preclinical Research DivisionTaiho Pharmaceutical Co., Ltd.IbarakiJapan
| | - Shuto Hayashi
- Department of Preventive medicine, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Shoji Akita
- Discovery and Preclinical Research DivisionTaiho Pharmaceutical Co., Ltd.IbarakiJapan
| | - Hirofumi Matsumura
- Discovery and Preclinical Research DivisionTaiho Pharmaceutical Co., Ltd.IbarakiJapan
| | - Akihiro Miura
- Discovery and Preclinical Research DivisionTaiho Pharmaceutical Co., Ltd.IbarakiJapan
| | - Hideaki Mita
- Department of Preventive medicine, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Makoto Nakakido
- Laboratory of Medical Proteomics, Institute of Medical ScienceThe University of TokyoTokyoJapan
| | - Satoru Nagatoishi
- Laboratory of Medical Proteomics, Institute of Medical ScienceThe University of TokyoTokyoJapan
| | - Akira Sugiyama
- Laboratory of Systems Biology and MedicineResearch Center for Advanced Science and Technology, The University of TokyoTokyoJapan
| | - Ryohei Suzuki
- Department of Preventive medicine, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Hiroki Konishi
- Department of Preventive medicine, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Asami Yamamoto
- Department of Preventive medicine, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Hiroyuki Abe
- Department of Pathology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Nobuyoshi Hiraoka
- Department of Analytical PathologyNational Cancer Center Research InstituteTokyoJapan
| | - Kazunori Aoki
- Division of Molecular and Cellular MedicineNational Cancer Center Research InstituteTokyoJapan
| | - Yasumasa Kato
- Department of Oral Function and Molecular BiologyOhu University School of DentistryFukushimaJapan
| | - Yasuyuki Seto
- Department of Gastrointestinal SurgeryGraduate School of Medicine, The University of TokyoTokyoJapan
| | - Chihoko Yoshimura
- Discovery and Preclinical Research DivisionTaiho Pharmaceutical Co., Ltd.IbarakiJapan
| | - Kazutaka Miyadera
- Discovery and Preclinical Research DivisionTaiho Pharmaceutical Co., Ltd.IbarakiJapan
| | - Kouhei Tsumoto
- Laboratory of Medical Proteomics, Institute of Medical ScienceThe University of TokyoTokyoJapan
| | - Tetsuo Ushiku
- Department of Pathology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Shumpei Ishikawa
- Department of Preventive medicine, Graduate School of MedicineThe University of TokyoTokyoJapan
| |
Collapse
|
9
|
Chen Y, Liu Q, Xing H, Rao Q, Wang M, Mi Y, Wei H, Wang J. Acute myeloid leukemia fusion genes can be found in CD33-negative cells. Int J Lab Hematol 2022; 44:1111-1114. [PMID: 35915999 DOI: 10.1111/ijlh.13942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/07/2022] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Targeted therapies and immunotherapies are emerging strategies for the treatment of leukemia. CD33 is a common and important therapeutic target for cellular immunotherapy or antibody immunotherapy. Drugs on targeting CD33 are also emerging. However, acute myeloid leukemia (AML) relapse still occurs after treatment with targeted CD33, for which the mechanism is unknown. METHODS We used fluorescence in situ hybridization and real-time polymerase chain reaction to detect the expression of fusion genes in different populations of cells from AML patients. RESULT Fusion gene can be express in CD33 negative cell proportions in newly diagnosed and relapsed AML patients. CONCLUSION There are fusion genes in CD33-negative cells that are might not be cleared by CD33 targeting therapy. And this might be the source of relapse.
Collapse
Affiliation(s)
- Yuan Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin, China
| | - Qian Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin, China
| | - Haiyan Xing
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin, China
| | - Qing Rao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin, China
| | - Min Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin, China
| | - Yingchang Mi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin, China
| | - Hui Wei
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin, China
| | - Jianxiang Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin, China
| |
Collapse
|
10
|
Laszlo GS, Orozco JJ, Kehret AR, Lunn MC, Huo J, Hamlin DK, Wilbur DS, Dexter SL, Comstock ML, O’Steen S, Sandmaier BM, Green DJ, Walter RB. Development of [ 211At]astatine-based anti-CD123 radioimmunotherapy for acute leukemias and other CD123+ malignancies. Leukemia 2022; 36:1485-1491. [PMID: 35474099 PMCID: PMC9177726 DOI: 10.1038/s41375-022-01580-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 11/09/2022]
Abstract
Radioimmunotherapy (RIT) has long been pursued to improve outcomes in acute leukemia and higher-risk myelodysplastic syndrome (MDS). Of increasing interest are alpha-particle-emitting radionuclides such as astatine-211 (211At) as they deliver large amounts of radiation over just a few cell diameters, enabling efficient and selective target cell kill. Here, we developed 211At-based RIT targeting CD123, an antigen widely displayed on acute leukemia and MDS cells including underlying neoplastic stem cells. We generated and characterized new murine monoclonal antibodies (mAbs) specific for human CD123 and selected four, all of which were internalized by CD123+ target cells, for further characterization. All mAbs could be conjugated to a boron cage, isothiocyanatophenethyl-ureido-closo-decaborate(2-) (B10), and labeled with 211At. CD123+ cell targeting studies in immunodeficient mice demonstrated specific uptake of 211At-labeled anti-CD123 mAbs in human CD123+ MOLM-13 cell tumors in the flank. In mice injected intravenously with MOLM-13 cells or a CD123NULL MOLM-13 subline, a single dose of up to 40 µCi of 211At delivered via anti-CD123 mAb decreased tumor burdens and substantially prolonged survival dose dependently in mice bearing CD123+ but not CD123- leukemia xenografts, demonstrating potent and target-specific in vivo anti-leukemia efficacy. These data support the further development of 211At-CD123 RIT toward clinical application.
Collapse
Affiliation(s)
- George S. Laszlo
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Johnnie J. Orozco
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA,Department of Medicine, Division of Medical Oncology, University of Washington, Seattle, WA
| | - Allie R. Kehret
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Margaret C. Lunn
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jenny Huo
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Donald K. Hamlin
- Department of Radiation Oncology, University of Washington, Seattle, WA
| | - D. Scott Wilbur
- Department of Radiation Oncology, University of Washington, Seattle, WA
| | - Shannon L. Dexter
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Melissa L. Comstock
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Shyril O’Steen
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Brenda M. Sandmaier
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA,Department of Medicine, Division of Medical Oncology, University of Washington, Seattle, WA
| | - Damian J. Green
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA,Department of Medicine, Division of Medical Oncology, University of Washington, Seattle, WA
| | - Roland B. Walter
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA,Department of Medicine, Division of Hematology, University of Washington, Seattle, WA,Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA,Department of Epidemiology, University of Washington, Seattle, WA
| |
Collapse
|
11
|
Sartor C, Arpinati M, Chirumbolo G, Dozza L, Cristiano G, Nanni J, Marconi G, Robustelli V, Vigliotta I, Parisi S, Terragna C, Testoni N, Paolini S, Martinelli G, Curti A, Cavo M, Papayannidis C. Baseline CD22 fluorescent intensity correlates with patient outcome after Inotuzumab Ozogamicin treatment. Hematol Oncol 2022; 40:734-742. [PMID: 35618655 DOI: 10.1002/hon.3029] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/16/2022] [Accepted: 05/21/2022] [Indexed: 11/07/2022]
Abstract
Antigen-directed target therapy for B-cell acute lymphoblastic leukemia (B-ALL) is now the standard of care for relapsed/refractory (R/R) disease. A comprehensive determination of the target itself is mandatory to aid physician's choice. We determined baseline CD22 expression percentage and fluorescent intensity (FI) on lymphoblasts of 30 patients with R/R B-ALL treated with anti-CD22 immunoconjugate drug Inotuzumab Ozogamicin (INO) and analyzed the impact of both parameters on patient outcome.Most patients (24/30, 80%) had a high leukemic blast CD22-positivity defined as ≥90%. We did not observe a benefit in terms of CR, OS and DoR for patients with CD22 ≥90% vs CD22<90%.Concerning CD22-FI quartile analysis we appreciated a trend for superior response rates in higher quartiles (Q2 -Q4 ) compared to Q1 and a significant benefit in terms of OS and DoR for patients with higher CD22-FI.INO demonstrates to be effective also in patients with lower CD22 expression, but therapeutical benefits are more evident in patients with higher CD22-FI. The evaluation of both CD22 percentage and CD22-FI of the leukemic blast may help physicians in therapeutic choices for R/R B-ALL patients when multiple treatment options are available, although no CD22 expression threshold can currently be identified below which INO should be considered not effective. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Chiara Sartor
- Istituto di Ematologia "Seràgnoli", Dipartimento di Medicina Specialistica, Università degli Studi di Bologna, Diagnostica e Sperimentale, Bologna, Italy
| | - Mario Arpinati
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Gabriella Chirumbolo
- Istituto di Ematologia "Seràgnoli", Dipartimento di Medicina Specialistica, Università degli Studi di Bologna, Diagnostica e Sperimentale, Bologna, Italy
| | - Luca Dozza
- Istituto di Ematologia "Seràgnoli", Dipartimento di Medicina Specialistica, Università degli Studi di Bologna, Diagnostica e Sperimentale, Bologna, Italy
| | - Gianluca Cristiano
- Istituto di Ematologia "Seràgnoli", Dipartimento di Medicina Specialistica, Università degli Studi di Bologna, Diagnostica e Sperimentale, Bologna, Italy
| | - Jacopo Nanni
- Istituto di Ematologia "Seràgnoli", Dipartimento di Medicina Specialistica, Università degli Studi di Bologna, Diagnostica e Sperimentale, Bologna, Italy
| | - Giovanni Marconi
- Istituto di Ematologia "Seràgnoli", Dipartimento di Medicina Specialistica, Università degli Studi di Bologna, Diagnostica e Sperimentale, Bologna, Italy.,Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014, Meldola (FC), Bologna, Italy
| | - Valentina Robustelli
- Istituto di Ematologia "Seràgnoli", Dipartimento di Medicina Specialistica, Università degli Studi di Bologna, Diagnostica e Sperimentale, Bologna, Italy
| | - Ilaria Vigliotta
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Sarah Parisi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Carolina Terragna
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Nicoletta Testoni
- Istituto di Ematologia "Seràgnoli", Dipartimento di Medicina Specialistica, Università degli Studi di Bologna, Diagnostica e Sperimentale, Bologna, Italy.,IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Stefania Paolini
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Giovanni Martinelli
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014, Meldola (FC), Bologna, Italy
| | - Antonio Curti
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Michele Cavo
- Istituto di Ematologia "Seràgnoli", Dipartimento di Medicina Specialistica, Università degli Studi di Bologna, Diagnostica e Sperimentale, Bologna, Italy.,IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Cristina Papayannidis
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Bologna, Italy
| |
Collapse
|
12
|
Sirin S, Nigdelioglu Dolanbay S, Aslim B. The relationship of early- and late-onset Alzheimer’s disease genes with COVID-19. J Neural Transm (Vienna) 2022; 129:847-859. [PMID: 35429259 PMCID: PMC9012910 DOI: 10.1007/s00702-022-02499-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/02/2022] [Indexed: 12/13/2022]
Abstract
Individuals with Alzheimer’s disease and other neurodegenerative diseases have been exposed to excess risk by the COVID-19 pandemic. COVID-19’s main manifestations include high body temperature, dry cough, and exhaustion. Nevertheless, some affected individuals may have an atypical presentation at diagnosis but suffer neurological signs and symptoms as the first disease manifestation. These findings collectively show the neurotropic nature of SARS-CoV-2 virus and its ability to involve the central nervous system. In addition, Alzheimer’s disease and COVID-19 has a number of common risk factors and comorbid conditions including age, sex, hypertension, diabetes, and the expression of APOE ε4. Until now, a plethora of studies have examined the COVID-19 disease but only a few studies has yet examined the relationship of COVID-19 and Alzheimer’s disease as risk factors of each other. This review emphasizes the recently published evidence on the role of the genes of early- or late-onset Alzheimer’s disease in the susceptibility of individuals currently suffering or recovered from COVID-19 to Alzheimer’s disease or in the susceptibility of individuals at risk of or with Alzheimer’s disease to COVID-19 or increased COVID-19 severity and mortality. Furthermore, the present review also draws attention to other uninvestigated early- and late-onset Alzheimer’s disease genes to elucidate the relationship between this multifactorial disease and COVID-19.
Collapse
|
13
|
Hermans SJ, Nero TL, Morton CJ, Gooi JH, Crespi GAN, Hancock NC, Gao C, Ishii K, Markulić J, Parker MW. Structural biology of cell surface receptors implicated in Alzheimer’s disease. Biophys Rev 2021; 14:233-255. [DOI: 10.1007/s12551-021-00903-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/02/2021] [Indexed: 02/06/2023] Open
|
14
|
Increasing phagocytosis of microglia by targeting CD33 with liposomes displaying glycan ligands. J Control Release 2021; 338:680-693. [PMID: 34517042 DOI: 10.1016/j.jconrel.2021.09.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 11/23/2022]
Abstract
CD33 is an immunomodulatory receptor expressed by microglia and genetically linked to Alzheimer's disease (AD) susceptibility. While antibodies targeting CD33 have entered clinical trials to treat neurodegeneration, it is unknown whether the glycan-binding properties of CD33 can be exploited to modulate microglia. Here, we use liposomes that multivalently display glycan ligands of CD33 (CD33L liposomes) to engage CD33. We find that CD33L liposomes increase phagocytosis of cultured monocytic cells and microglia in a CD33-dependent manner. Enhanced phagocytosis strongly correlates with loss of CD33 from the cell surface and internalization of liposomes. Increased phagocytosis by treatment with CD33L liposomes is dependent on a key intracellular signaling motif on CD33 as well as the glycan-binding ability of CD33. These effects are specific to trans engagement of CD33 by CD33L liposomes, as cis engagement through insertion of lipid-linked CD33L into cells produces the opposite effect on phagocytosis. Moreover, intracerebroventricular injection of CD33L liposomes into transgenic mice expressing human CD33 in the microglial cell lineage enhances phagocytosis of microglia in a CD33-dependent manner. These results demonstrate that multivalent engagement of CD33 with glycan ligands can modulate microglial cell function.
Collapse
|
15
|
Gottardi M, Simonetti G, Sperotto A, Nappi D, Ghelli Luserna di Rorà A, Padella A, Norata M, Giannini MB, Musuraca G, Lanza F, Cerchione C, Martinelli G. Therapeutic Targeting of Acute Myeloid Leukemia by Gemtuzumab Ozogamicin. Cancers (Basel) 2021; 13:cancers13184566. [PMID: 34572794 PMCID: PMC8469571 DOI: 10.3390/cancers13184566] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 11/16/2022] Open
Abstract
Acute myeloid leukemia (AML) is a complex hematological malignancy characterized by genetic and clinical heterogeneity and high mortality. Despite the recent introduction of novel pharmaceutical agents in hemato-oncology, few advancements have been made in AML for decades. In the last years, the therapeutic options have rapidly changed, with the approval of innovative compounds that provide new opportunities, together with new challenges for clinicians: among them, on 1 September, 2017 the Food and Drug Administration granted approval for Gemtuzumab Ozogamicin (GO) in combination with daunorubicin and cytarabine for the treatment of adult patients affected by newly diagnosed CD33+ AML. Benefits of GO-based regimens were also reported in the pre- and post-transplantation settings. Moreover, several biomarkers of GO response have been suggested, including expression of CD33 and multidrug resistance genes, cytogenetic and molecular profiles, minimal residual disease and stemness signatures. Among them, elevated CD33 expression on blast cells and non-adverse cytogenetic or molecular risk represent largely validated predictors of good response.
Collapse
Affiliation(s)
- Michele Gottardi
- Onco Hematology, Department of Oncology, Veneto Institute of Oncology IOV, IRCCS, 31033 Padua, Italy
| | - Giorgia Simonetti
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014 Meldola (FC), Italy
| | - Alessandra Sperotto
- Hematology and Transplant Center Unit, Dipartimento di Area Medica (DAME), Udine University Hospital, 33100 Udine, Italy
| | - Davide Nappi
- Department of Hematology and Cell Bone Marrow Transplantation (CBMT), Ospedale di Bolzano, 39100 Bolzano, Italy
| | - Andrea Ghelli Luserna di Rorà
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014 Meldola (FC), Italy
| | - Antonella Padella
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014 Meldola (FC), Italy
| | - Marianna Norata
- Hematology Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014 Meldola (FC), Italy
| | - Maria Benedetta Giannini
- Hematology Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014 Meldola (FC), Italy
| | - Gerardo Musuraca
- Hematology Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014 Meldola (FC), Italy
| | - Francesco Lanza
- Hematology Unit & Romagna Transplant Network, Ravenna Hospital, 48121 Ravenna, Italy
| | - Claudio Cerchione
- Hematology Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014 Meldola (FC), Italy
| | - Giovanni Martinelli
- Scientific Directorate, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014 Meldola (FC), Italy
| |
Collapse
|
16
|
Hammood M, Craig AW, Leyton JV. Impact of Endocytosis Mechanisms for the Receptors Targeted by the Currently Approved Antibody-Drug Conjugates (ADCs)-A Necessity for Future ADC Research and Development. Pharmaceuticals (Basel) 2021; 14:ph14070674. [PMID: 34358100 PMCID: PMC8308841 DOI: 10.3390/ph14070674] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 12/17/2022] Open
Abstract
Biologically-based therapies increasingly rely on the endocytic cycle of internalization and exocytosis of target receptors for cancer therapies. However, receptor trafficking pathways (endosomal sorting (recycling, lysosome localization) and lateral membrane movement) are often dysfunctional in cancer. Antibody-drug conjugates (ADCs) have revitalized the concept of targeted chemotherapy by coupling inhibitory antibodies to cytotoxic payloads. Significant advances in ADC technology and format, and target biology have hastened the FDA approval of nine ADCs (four since 2019). Although the links between aberrant endocytic machinery and cancer are emerging, the impact of dysregulated internalization processes of ADC targets and response rates or resistance have not been well studied. This is despite the reliance on ADC uptake and trafficking to lysosomes for linker cleavage and payload release. In this review, we describe what is known about all the target antigens for the currently approved ADCs. Specifically, internalization efficiency and relevant intracellular sorting activities are described for each receptor under normal processes, and when complexed to an ADC. In addition, we discuss aberrant endocytic processes that have been directly linked to preclinical ADC resistance mechanisms. The implications of endocytosis in regard to therapeutic effectiveness in the clinic are also described. Unexpectedly, information on endocytosis is scarce (absent for two receptors). Moreover, much of what is known about endocytosis is not in the context of receptor-ADC/antibody complexes. This review provides a deeper understanding of the pertinent principles of receptor endocytosis for the currently approved ADCs.
Collapse
Affiliation(s)
- Manar Hammood
- Departément de Medécine Nucléaire et Radiobiologie, Faculté de Medécine et des Sciences de la Santé, Centre Hospitalier Universitaire de Sherbrooke (CHUS), Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
| | - Andrew W. Craig
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada;
| | - Jeffrey V. Leyton
- Departément de Medécine Nucléaire et Radiobiologie, Faculté de Medécine et des Sciences de la Santé, Centre Hospitalier Universitaire de Sherbrooke (CHUS), Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
- Centre d’Imagerie Moleculaire, Centre de Recherche, CHUS, Sherbrooke, QC J1H 5N4, Canada
- Correspondence: ; Tel.: +1-819-346-1110
| |
Collapse
|
17
|
CD33 Expression and Gentuzumab Ozogamicin in Acute Myeloid Leukemia: Two Sides of the Same Coin. Cancers (Basel) 2021; 13:cancers13133214. [PMID: 34203180 PMCID: PMC8268215 DOI: 10.3390/cancers13133214] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/17/2021] [Accepted: 06/23/2021] [Indexed: 01/10/2023] Open
Abstract
Simple Summary Roughly 85–90% of adult and pediatric acute myeloid leukemia (AML) are CD33-positive. Gemtuzumab ozogamicin (GO), a humanized murine IgG4 anti-CD33 antibody, is the first target therapy approved in AML therapeutic scenario. This review focuses on current biological information and clinical data from several studies investigating the use of GO in patients with AML. Over the years, flow cytometry, cytogenetics, molecular techniques, and genotyping studies of CD33 SNPs have provided a comprehensive analysis of promising biomarkers for GO responses and have potentially helped to identify subgroups of patients that may benefit from GO addition to standard chemotherapies. Increased understanding of molecular mutations, altered intracellular pathways, and their potential relationship with CD33 expression may open new therapeutic landscapes based on combinatorial regimens in an AML scenario. Abstract Acute myeloid leukemia (AML), the most frequent acute leukemia in adults, has been historically treated with infusional cytarabine (ara-c) + daunorubicin (3 + 7) for at least 40 years. The first “target therapy” to be introduced was the monoclonal anti-CD33 gemtuzumab ozogamicin (GO) in 2004. Unfortunately, in 2010 it was voluntarily withdrawn from the market both for safety reasons related to potential liver toxicity and veno-occlusive disease (VOD) and because clinical studies failed to confirm the clinical benefit during induction and maintenance. Seven years later, GO was re-approved based on new data, including insights into its mechanism of action on its target receptor CD33 expressed on myeloid cells. The present review focuses on current biological information and clinical data from several studies investigating GO. Cytogenetic, molecular, and immunophenotypic data are now able to predict the potential positive advantages of GO, with the exception of high-risk AML patients who do not seem to benefit. GO can be considered a ‘repurposed drug’ that could be beneficial for some patients with AML, mostly in combination with new drugs already approved or currently in testing.
Collapse
|
18
|
Isidori A, Cerchione C, Daver N, DiNardo C, Garcia-Manero G, Konopleva M, Jabbour E, Ravandi F, Kadia T, Burguera ADLF, Romano A, Loscocco F, Visani G, Martinelli G, Kantarjian H, Curti A. Immunotherapy in Acute Myeloid Leukemia: Where We Stand. Front Oncol 2021; 11:656218. [PMID: 34041025 PMCID: PMC8143531 DOI: 10.3389/fonc.2021.656218] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/14/2021] [Indexed: 12/12/2022] Open
Abstract
In the past few years, our improved knowledge of acute myeloid leukemia (AML) pathogenesis has led to the accelerated discovery of new drugs and the development of innovative therapeutic approaches. The role of the immune system in AML development, growth and recurrence has gained increasing interest. A better understanding of immunological escape and systemic tolerance induced by AML blasts has been achieved. The extraordinary successes of immune therapies that harness the power of T cells in solid tumors and certain hematological malignancies have provided new stimuli in this area of research. Accordingly, major efforts have been made to develop immune therapies for the treatment of AML patients. The persistence of leukemia stem cells, representing the most relevant cause of relapse, even after allogeneic stem cell transplant (allo-SCT), remains a major hurdle in the path to cure for AML patients. Several clinical trials with immune-based therapies are currently ongoing in the frontline, relapsed/refractory, post-allo-SCT and minimal residual disease/maintenance setting, with the aim to improve survival of AML patients. This review summarizes the available data with immune-based therapeutic modalities such as monoclonal antibodies (naked and conjugated), T cell engagers, adoptive T-cell therapy, adoptive-NK therapy, checkpoint blockade via PD-1/PD-L1, CTLA4, TIM3 and macrophage checkpoint blockade via the CD47/SIRPa axis, and leukemia vaccines. Combining clinical results with biological immunological findings, possibly coupled with the discovery of biomarkers predictive for response, will hopefully allow us to determine the best approaches to immunotherapy in AML.
Collapse
Affiliation(s)
| | - Claudio Cerchione
- Hematology Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Naval Daver
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX, United States
| | - Courtney DiNardo
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX, United States
| | | | - Marina Konopleva
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX, United States
| | - Elias Jabbour
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX, United States
| | - Farhad Ravandi
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX, United States
| | - Tapan Kadia
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX, United States
| | | | - Alessandra Romano
- Dipartimento di Chirurgia e Specialità Medico-Chirurgiche, Sezione di Ematologia, Università degli Studi di Catania, Catania, Italy
| | | | - Giuseppe Visani
- Haematology and Stem Cell Transplant Center, AORMN, Pesaro, Italy
| | - Giovanni Martinelli
- Hematology Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Hagop Kantarjian
- Hematology Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Antonio Curti
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
| |
Collapse
|
19
|
Godwin CD, Laszlo GS, Fiorenza S, Garling EE, Phi TD, Bates OM, Correnti CE, Hoffstrom BG, Lunn MC, Humbert O, Kiem HP, Turtle CJ, Walter RB. Targeting the membrane-proximal C2-set domain of CD33 for improved CD33-directed immunotherapy. Leukemia 2021; 35:2496-2507. [PMID: 33589747 PMCID: PMC8364569 DOI: 10.1038/s41375-021-01160-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 01/11/2021] [Accepted: 01/26/2021] [Indexed: 11/10/2022]
Abstract
There is increasing interest in targeting CD33 in malignant and non-malignant disorders. In acute myeloid leukemia, longer survival with the CD33 antibody-drug conjugate gemtuzumab ozogamicin (GO) validates this strategy. Still, GO benefits only some patients, prompting efforts to develop more potent CD33-directed therapeutics. As one limitation, CD33 antibodies typically recognize the membrane-distal V-set domain. Using various artificial CD33 proteins, in which this domain was differentially positioned within the extracellular portion of the molecule, we tested whether targeting membrane-proximal targeting epitopes enhances the effector functions of CD33 antibody-based therapeutics. Consistent with this idea, a CD33V-set/CD3 bispecific antibody (BsAb) and CD33V-set-directed chimeric antigen receptor (CAR)-modified T cells elicited substantially greater cytotoxicity against cells expressing a CD33 variant lacking the entire C2-set domain than cells expressing full-length CD33, whereas cytotoxic effects induced by GO were independent of the position of the V-set domain. We therefore raised murine and human antibodies against the C2-set domain of human CD33 and identified antibodies that bound CD33 regardless of the presence/absence of the V-set domain (“CD33PAN antibodies”). These antibodies internalized when bound to CD33 and, as CD33PAN/CD3 BsAb, had potent cytolytic effects against CD33+ cells. Together, our data provide rationale for further development of CD33PAN antibody-based therapeutics.
Collapse
Affiliation(s)
- Colin D Godwin
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Department of Medicine, Division of Hematology, University of Washington, Seattle, WA, USA
| | - George S Laszlo
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Salvatore Fiorenza
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Eliotte E Garling
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Tinh-Doan Phi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Olivia M Bates
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Colin E Correnti
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Benjamin G Hoffstrom
- Antibody Technology Resource, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Margaret C Lunn
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Olivier Humbert
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Hans-Peter Kiem
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Department of Medicine, Division of Medical Oncology, University of Washington, Seattle, WA, USA.,Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA, USA
| | - Cameron J Turtle
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Department of Medicine, Division of Medical Oncology, University of Washington, Seattle, WA, USA
| | - Roland B Walter
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA. .,Department of Medicine, Division of Hematology, University of Washington, Seattle, WA, USA. .,Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA, USA. .,Department of Epidemiology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
20
|
Ackun-Farmmer MA, Alatise KL, Cross G, Benoit DSW. Ligand Density Controls C-Type Lectin-Like Molecule-1 Receptor-Specific Uptake of Polymer Nanoparticles. ADVANCED BIOSYSTEMS 2020; 4:e2000172. [PMID: 33073549 PMCID: PMC7959326 DOI: 10.1002/adbi.202000172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/01/2020] [Indexed: 01/13/2023]
Abstract
The newest generation of drug delivery systems (DDSs) exploits ligands to mediate specific targeting of cells and/or tissues. However, studies investigating the link between ligand density and nanoparticle (NP) uptake are limited to a small number of ligand-receptor systems. C-type lectin-like molecule-1 (CLL1) is uniquely expressed on myeloid cells, which enables the development of receptors specifically targeting treat various diseases. This study aims to investigate how NPs with different CLL1 targeting peptide density impact cellular uptake. To this end, poly(styrene-alt-maleic anhydride)-b-poly(styrene) NPs are functionalized with cyclized CLL1 binding peptides (cCBP) ranging from 240 ± 12 to 31 000 ± 940 peptides per NP. Unexpectedly, the percentage of cells with internalized NPs is decreased for all cCBP-NP designs regardless of ligand density compared to unmodified NPs. Internalization through CLL1 receptor-mediated processes is further investigated without confounding the effects of NP size and surface charge. Interestingly, high density cCBP-NPs (>7000 cCBP per NP) uptake is dominated by CLL1 receptor-mediated processes while low density cCBP-NPs (≈200 cCBP per NP) and untargeted NP occurred through non-specific clathrin and caveolin-mediated endocytosis. Altogether, these studies show that ligand density and uptake mechanism should be carefully investigated for specific ligand-receptor systems for the design of targeted DDSs to achieve effective drug delivery.
Collapse
Affiliation(s)
- Marian A Ackun-Farmmer
- University of Rochester, Department of Biomedical Engineering, Rochester, NY, USA
- University of Rochester Medical Center, Department of Orthopaedics and Center for Musculoskeletal Research, Rochester, NY, USA
| | - Kharimat L Alatise
- University of Rochester, Department of Biomedical Engineering, Rochester, NY, USA
| | - Griffin Cross
- Washington University in St. Louis, Biomedical/Medical Engineering, St. Louis, MO, USA
| | - Danielle S W Benoit
- University of Rochester, Department of Biomedical Engineering, Rochester, NY, USA
- University of Rochester Medical Center, Department of Orthopaedics and Center for Musculoskeletal Research, Rochester, NY, USA
- University of Rochester, Materials Science Program, Rochester, NY, USA
- University of Rochester, Department of Chemical Engineering, Rochester, NY, USA
| |
Collapse
|
21
|
Goldenson BH, Goodman AM, Ball ED. Gemtuzumab ozogamicin for the treatment of acute myeloid leukemia in adults. Expert Opin Biol Ther 2020; 21:849-862. [PMID: 32990476 DOI: 10.1080/14712598.2021.1825678] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Treatment of acute myeloid leukemia (AML) has changed dramatically in the past ten years with the approval of targeted agents, the first of which was the anti-CD33 antibody-drug conjugate gemtuzumab ozogamicin (GO). Despite withdrawal from the market after accelerated approval, GO was reapproved and now has a well-established role in treating select AML patients. CD33 has proven to be an important target for drug development in AML as evidenced by the improvement in survival with GO treatment. AREAS COVERED The review summarizes the development of GO, its mechanism of action, initial studies and approval, withdrawal from the market, and subsequent reapproval after the results of several large randomized studies became available. We also provide an overview of its current role in the treatment landscape of AML. EXPERT OPINION Multiple phase 3 trials with GO have established a significant benefit with GO in induction therapy for favorable risk AML. Additional studies support the use of GO in relapsed/refractory AML and APL. Despite the withdrawal of GO from the market after initial approval, GO has proven to improve survival of select AML patients when added to induction chemotherapy and in relapsed disease.
Collapse
Affiliation(s)
- Benjamin H Goldenson
- Department of Medicine, Division of Hematology/Oncology, University of California, San Diego, La Jolla, California, USA
| | - Aaron M Goodman
- Department of Medicine, Division of Blood and Marrow Transplantation, University of California, San Diego, La Jolla, California, USA
| | - Edward D Ball
- Department of Medicine, Division of Blood and Marrow Transplantation, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
22
|
Maakaron JE, Rogosheske J, Long M, Bachanova V, Mims AS. CD33-Targeted Therapies: Beating the Disease or Beaten to Death? J Clin Pharmacol 2020; 61:7-17. [PMID: 32875599 DOI: 10.1002/jcph.1730] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/06/2020] [Indexed: 11/07/2022]
Abstract
CD33 is a transmembrane protein that is found on cells of myeloid lineage. It is also intensely expressed on acute myeloid leukemia (AML) progenitor cells but not on normal stem cells. It internalizes on binding and dimerization, making it a specific and ideal target for AML therapeutics and drug delivery. Several targeted therapies have been tested and many are still currently in development. Gemtuzumab ozogamicin was the first and only CD33-directed antibody-drug conjugate to be US Food and Drug Administration approved for AML. Other targeted agents have not achieved such success. Promising new strategies include cellular therapy mechanisms and linker molecules. This is an exciting target that requires a considerable amount of precision to yield clinical benefit.
Collapse
|
23
|
Fenwarth L, Fournier E, Cheok M, Boyer T, Gonzales F, Castaigne S, Boissel N, Lambert J, Dombret H, Preudhomme C, Duployez N. Biomarkers of Gemtuzumab Ozogamicin Response for Acute Myeloid Leukemia Treatment. Int J Mol Sci 2020; 21:E5626. [PMID: 32781546 PMCID: PMC7460695 DOI: 10.3390/ijms21165626] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 08/03/2020] [Indexed: 11/27/2022] Open
Abstract
Gemtuzumab ozogamicin (GO, Mylotarg®) consists of a humanized CD33-targeted antibody-drug conjugated to a calicheamicin derivative. Growing evidence of GO efficacy in acute myeloid leukemia (AML), demonstrated by improved outcomes in CD33-positive AML patients across phase I to III clinical trials, led to the Food and Drug Administration (FDA) approval on 1 September 2017 in CD33-positive AML patients aged 2 years and older. Discrepancies in GO recipients outcome have raised significant efforts to characterize biomarkers predictive of GO response and have refined the subset of patients that may strongly benefit from GO. Among them, CD33 expression levels, favorable cytogenetics (t(8;21), inv(16)/t(16;16), t(15;17)) and molecular alterations, such as NPM1, FLT3-internal tandem duplications and other signaling mutations, represent well-known candidates. Additionally, in depth analyses including minimal residual disease monitoring, stemness expression (LSC17 score), mutations or single nucleotide polymorphisms in GO pathway genes (CD33, ABCB1) and molecular-derived scores, such as the recently set up CD33_PGx6_Score, represent promising markers to enhance GO response prediction and improve patient management.
Collapse
Affiliation(s)
- Laurène Fenwarth
- UMR 9020–UMR-S 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, Institut de Recherche contre le Cancer de Lille, University Lille, CNRS, Inserm, CHU Lille, F-59000 Lille, France; (E.F.); (M.C.); (F.G.); (C.P.); (N.D.)
| | - Elise Fournier
- UMR 9020–UMR-S 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, Institut de Recherche contre le Cancer de Lille, University Lille, CNRS, Inserm, CHU Lille, F-59000 Lille, France; (E.F.); (M.C.); (F.G.); (C.P.); (N.D.)
| | - Meyling Cheok
- UMR 9020–UMR-S 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, Institut de Recherche contre le Cancer de Lille, University Lille, CNRS, Inserm, CHU Lille, F-59000 Lille, France; (E.F.); (M.C.); (F.G.); (C.P.); (N.D.)
| | - Thomas Boyer
- Laboratory of Hematology, CHU Amiens, F-80054 Amiens, France;
| | - Fanny Gonzales
- UMR 9020–UMR-S 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, Institut de Recherche contre le Cancer de Lille, University Lille, CNRS, Inserm, CHU Lille, F-59000 Lille, France; (E.F.); (M.C.); (F.G.); (C.P.); (N.D.)
| | - Sylvie Castaigne
- Department of Hematology, CH Versailles, F-78157 Le Chesnay, France; (S.C.); (J.L.)
| | - Nicolas Boissel
- Adolescent and Young Adult Hematology Unit, Hôpital Saint-Louis, AP-HP, Université de Paris, F-75010 Paris, France;
| | - Juliette Lambert
- Department of Hematology, CH Versailles, F-78157 Le Chesnay, France; (S.C.); (J.L.)
| | - Hervé Dombret
- Department of Hematology, Hôpital Saint-Louis, AP-HP, Université de Paris, F-75010 Paris, France;
| | - Claude Preudhomme
- UMR 9020–UMR-S 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, Institut de Recherche contre le Cancer de Lille, University Lille, CNRS, Inserm, CHU Lille, F-59000 Lille, France; (E.F.); (M.C.); (F.G.); (C.P.); (N.D.)
| | - Nicolas Duployez
- UMR 9020–UMR-S 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, Institut de Recherche contre le Cancer de Lille, University Lille, CNRS, Inserm, CHU Lille, F-59000 Lille, France; (E.F.); (M.C.); (F.G.); (C.P.); (N.D.)
| |
Collapse
|
24
|
Antibody-Drug Conjugates and Targeted Treatment Strategies for Hepatocellular Carcinoma: A Drug-Delivery Perspective. Molecules 2020; 25:molecules25122861. [PMID: 32575828 PMCID: PMC7356544 DOI: 10.3390/molecules25122861] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 12/12/2022] Open
Abstract
Increased understanding of cancer biology, pharmacology and drug delivery has provided a new framework for drug discovery and product development that relies on the unique expression of specific macromolecules (i.e., antigens) on the surface of tumour cells. This has enabled the development of anti-cancer treatments that combine the selectivity of antibodies with the efficacy of highly potent chemotherapeutic small molecules, called antibody-drug conjugates (ADCs). ADCs are composed of a cytotoxic drug covalently linked to an antibody which then selectively binds to a highly expressed antigen on a cancer cell; the conjugate is then internalized by the cell where it releases the potent cytotoxic drug and efficiently kills the tumour cell. There are, however, many challenges in the development of ADCs, mainly around optimizing the therapeutic/safety benefits. These challenges are discussed in this review; they include issues with the plasma stability and half-life of the ADC, its transport from blood into and distribution throughout the tumour compartment, cancer cell antigen expression and the ADC binding affinity to the target antigen, the cell internalization process, cleaving of the cytotoxic drug from the ADC, and the cytotoxic effect of the drug on the target cells. Finally, we present a summary of some of the experimental ADC strategies used in the treatment of hepatocellular carcinoma, from the recent literature.
Collapse
|
25
|
Ha SH, Kwak CH, Park JY, Abekura F, Lee YC, Kim JS, Chung TW, Kim CH. 3'-sialyllactose targets cell surface protein, SIGLEC-3, and induces megakaryocyte differentiation and apoptosis by lipid raft-dependent endocytosis. Glycoconj J 2020; 37:187-200. [PMID: 31900723 DOI: 10.1007/s10719-019-09902-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 11/11/2019] [Accepted: 11/26/2019] [Indexed: 12/27/2022]
Abstract
3'-sialyllactose is one of the abundant components in human milk oligosaccharides (HMOs) that protect infants from various viral infections in early stages of immune system development. 3SL is a combination of lactose and sialic acid. Most sialic acids are widely expressed in animal cells and they bind to siglec proteins. In this study, we demonstrate that 3SL specifically binds to CD33. It induces megakaryocyte differentiation and subsequent apoptosis by targeting cell surface protein siglec-3 (CD33) in human chronic myeloid leukemia K562 cells. The 3SL-bound CD33 was internalized to the cytosol via caveolae-dependent endocytosis. At the molecular level, 3SL-bound CD33 recruits the suppressor of cytokine signaling 3 (SOCS3) and SH2 domain-containing protein tyrosine phosphatase 1 (SHP1). SOCS3 is degraded with CD33 by proteasome degradation, while SHP-1 activates extracellular signal-regulated kinase (ERK) to induce megakaryocytic differentiation and subsequent apoptosis. The present study, therefore, suggests that 3SL is a potential anti-leukemia agent affecting differentiation and apoptosis.
Collapse
Affiliation(s)
- Sun-Hyung Ha
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, 300 Chunchun-Dong, Jangan-Gu, Suwon City, Kyunggi-Do, 440-746, South Korea
| | - Choong-Hwan Kwak
- School of Korean Medicine, Healthy Aging Korean Medical Research Center, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea
| | - Jun-Young Park
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, 300 Chunchun-Dong, Jangan-Gu, Suwon City, Kyunggi-Do, 440-746, South Korea
| | - Fukushi Abekura
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, 300 Chunchun-Dong, Jangan-Gu, Suwon City, Kyunggi-Do, 440-746, South Korea
| | - Young-Choon Lee
- Faculty of Medicinal Biotechnology, Dong-A University, Busan, Republic of Korea
| | - Jong-Suk Kim
- Department of Biochemistry, Institute for Medical Sciences, Chonbuk National University Medical School, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, South Korea
| | - Tae-Wook Chung
- School of Korean Medicine, Healthy Aging Korean Medical Research Center, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea.
| | - Cheorl-Ho Kim
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, 300 Chunchun-Dong, Jangan-Gu, Suwon City, Kyunggi-Do, 440-746, South Korea.
| |
Collapse
|
26
|
Gbadamosi M, Meshinchi S, Lamba JK. Gemtuzumab ozogamicin for treatment of newly diagnosed CD33-positive acute myeloid leukemia. Future Oncol 2018; 14:3199-3213. [PMID: 30039981 PMCID: PMC6331698 DOI: 10.2217/fon-2018-0325] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 06/25/2018] [Indexed: 12/17/2022] Open
Abstract
In September 2017, the US FDA announced re-approval of gemtuzumab ozogamicin (GO), a CD33-targeting immunoconjugate, for treatment of newly diagnosed and relapsed/refractory acute myeloid leukemia (AML). This is a very significant step toward defining new treatment regimens in AML, as the treatment has essentially stayed unchanged with the '7 + 3 induction regimen' (7 days cytarabine and 3 days of anthracycline) since 1973. GO is the first antibody-drug conjugate to receive FDA approval for treating cancer. This review article discusses the challenges faced and lessons learned during the journey of GO for AML treatment. Selected trials that have made significant contribution in our understanding of the most efficacious and safe use of GO for treating AML patients as well as factors influencing GO response are highlighted in this article.
Collapse
MESH Headings
- Age Factors
- Aminoglycosides/administration & dosage
- Aminoglycosides/adverse effects
- Aminoglycosides/therapeutic use
- Antibodies, Monoclonal, Humanized/administration & dosage
- Antibodies, Monoclonal, Humanized/adverse effects
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antineoplastic Agents, Immunological/administration & dosage
- Antineoplastic Agents, Immunological/adverse effects
- Antineoplastic Agents, Immunological/therapeutic use
- Biomarkers, Tumor
- Drug Discovery
- France
- Gemtuzumab
- Humans
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Molecular Targeted Therapy
- Randomized Controlled Trials as Topic
- Sialic Acid Binding Ig-like Lectin 3/antagonists & inhibitors
- Sialic Acid Binding Ig-like Lectin 3/genetics
- Sialic Acid Binding Ig-like Lectin 3/metabolism
- Treatment Outcome
- United States
Collapse
Affiliation(s)
- Mohammed Gbadamosi
- Department of Pharmacotherapy & Translational Research, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jatinder K Lamba
- Department of Pharmacotherapy & Translational Research, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
27
|
Abdollahpour-Alitappeh M, Lotfinia M, Gharibi T, Mardaneh J, Farhadihosseinabadi B, Larki P, Faghfourian B, Sepehr KS, Abbaszadeh-Goudarzi K, Abbaszadeh-Goudarzi G, Johari B, Zali MR, Bagheri N. Antibody-drug conjugates (ADCs) for cancer therapy: Strategies, challenges, and successes. J Cell Physiol 2018; 234:5628-5642. [PMID: 30478951 DOI: 10.1002/jcp.27419] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/20/2018] [Indexed: 12/21/2022]
Abstract
Targeted delivery of therapeutic molecules into cancer cells is considered as a promising strategy to tackle cancer. Antibody-drug conjugates (ADCs), in which a monoclonal antibody (mAb) is conjugated to biologically active drugs through chemical linkers, have emerged as a promising class of anticancer treatment agents, being one of the fastest growing fields in cancer therapy. The failure of early ADCs led researchers to explore strategies to develop more effective and improved ADCs with lower levels of unconjugated mAbs and more-stable linkers between the drug and the antibody, which show improved pharmacokinetic properties, therapeutic indexes, and safety profiles. Such improvements resulted in the US Food and Drug Administration approvals of brentuximab vedotin, trastuzumab emtansine, and, more recently, inotuzumab ozogamicin. In addition, recent clinical outcomes have sparked additional interest, which leads to the dramatically increased number of ADCs in clinical development. The present review explores ADCs, their main characteristics, and new research developments, as well as discusses strategies for the selection of the most appropriate target antigens, mAbs, cytotoxic drugs, linkers, and conjugation chemistries.
Collapse
Affiliation(s)
- Meghdad Abdollahpour-Alitappeh
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL), Baqiyatallah University of Medical Sciences, Tehran, Iran.,Department of Nursing, School of Nursing, Larestan University of Medical Sciences, Larestan, Iran
| | - Majid Lotfinia
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tohid Gharibi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jalal Mardaneh
- Department of Microbiology, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Behrouz Farhadihosseinabadi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pegah Larki
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Babak Faghfourian
- Department of Cardiology, School of Medicine, Hamedan University of Medical Sciences, Hamedan, Iran
| | - Koushan Sineh Sepehr
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | | | - Ghasem Abbaszadeh-Goudarzi
- Department of Medical Biotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.,Cancer Prevention Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Behrooz Johari
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Zanjan University of Medical Science, Zanjan, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nader Bagheri
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
28
|
Shallis RM, Chokr N, Stahl M, Pine AB, Zeidan AM. Immunosuppressive therapy in myelodysplastic syndromes: a borrowed therapy in search of the right place. Expert Rev Hematol 2018; 11:715-726. [PMID: 30024293 DOI: 10.1080/17474086.2018.1503049] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Myelodysplastic syndromes (MDS) encompass a heterogenous collection of clonal hematopoietic stem cell disorders defined by dysregulated hematopoiesis, peripheral cytopenias, and a risk of leukemic progression. Increasing data support the role of innate and adaptive immune pathways in the pathogenesis and disease course of MDS. The role of immunosuppressive therapy has an established role in the treatment of other hematologic diseases, such as aplastic anemia whose pathogenesis is postulated to reflect that of MDS with regards to many aspects of immune activation. Areas covered: This paper discusses the current understanding of immune dysregulation as it pertains to MDS, the clinical experience with immunosuppressive therapy in the management of MDS, as well as future prospects which will likely improve therapeutic options and outcomes for patients with MDS. Expert commentary: Though limited by paucity of high quality data, immunomodulatory and immunosuppressive therapies for the treatment of MDS have shown meaningful clinical activity in selected patients. Continued clarification of the immune pathways that are dysregulated in MDS and establishing predictors for clinical benefit of immunosuppressive therapy are vital to improve the use and outcomes with these therapies.
Collapse
Affiliation(s)
- Rory M Shallis
- a Division of Hematology/Medical Oncology, Department of Medicine , Yale University School of Medicine , New Haven , USA
| | - Nora Chokr
- a Division of Hematology/Medical Oncology, Department of Medicine , Yale University School of Medicine , New Haven , USA
| | - Maximilian Stahl
- a Division of Hematology/Medical Oncology, Department of Medicine , Yale University School of Medicine , New Haven , USA
| | - Alexander B Pine
- a Division of Hematology/Medical Oncology, Department of Medicine , Yale University School of Medicine , New Haven , USA
| | - Amer M Zeidan
- a Division of Hematology/Medical Oncology, Department of Medicine , Yale University School of Medicine , New Haven , USA.,b Cancer Outcomes, Public Policy, and Effectiveness Research (COPPER) Center , Yale University , New Haven , USA
| |
Collapse
|
29
|
Laszlo GS, Beddoe ME, Godwin CD, Bates OM, Gudgeon CJ, Harrington KH, Walter RB. Relationship between CD33 expression, splicing polymorphism, and in vitro cytotoxicity of gemtuzumab ozogamicin and the CD33/CD3 BiTE® AMG 330. Haematologica 2018; 104:e59-e62. [PMID: 30115657 DOI: 10.3324/haematol.2018.202069] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- George S Laszlo
- Clinical Research Division, Fred Hutchinson Cancer Research Center
| | - Mary E Beddoe
- Clinical Research Division, Fred Hutchinson Cancer Research Center
| | | | - Olivia M Bates
- Clinical Research Division, Fred Hutchinson Cancer Research Center
| | | | | | - Roland B Walter
- Hematology/Oncology Fellowship Program .,Department of Medicine, Division of Hematology.,Department of Epidemiology, University of Washington, Seattle, WA, USA
| |
Collapse
|
30
|
Li Z, Wang M, Yao X, Li H, Li S, Liu L, Yu D, Li X, Fang J, Huang C. Development of novel anti-CD19 antibody-drug conjugates for B-cell lymphoma treatment. Int Immunopharmacol 2018; 62:299-308. [PMID: 30048860 DOI: 10.1016/j.intimp.2018.06.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 06/08/2018] [Accepted: 06/25/2018] [Indexed: 02/07/2023]
Abstract
B-cell lymphoma remains one of the most refractory tumors, and as such the development of novel treatment approaches, such as antibody-drug conjugates (ADCs), is required. To improve the stability and homogeneity of the ADCs, a humanized anti-CD19 monoclonal antibody (RC58) was developed in the present study. RC58 was based on the CD19 antigen as a potential molecular target of human B-cell lymphomas. RC58 has high CD19-binding affinity and can be internalized in CD19-positive cells through endocytosis. Furthermore, three types of RC58-based ADCs (ADC-1, ADC-2, and ADC-3) were generated using three kinds of Maleimide-PEG-based linkers with two different cytotoxins. The anti-tumor activities of the ADCs were confirmed by in vitro and in vivo experiments. The stability of the ADCs was also evaluated by incubation in human plasma for 10 days. In vitro experiments showed that the three ADCs had distinct inhibitory effects on several B-lymphoma cell lines. Meanwhile, a close correlation between efficacy and drug concentration was found in a nude mouse xenograft model of human B-cell lymphoma, after treatment with RC58-based ADCs. Our results suggest that ADC-1, with high efficiency, could be used as a potential therapeutic agent for human B-cell malignancies.
Collapse
Affiliation(s)
| | - Mingxue Wang
- Mabplex International Ltd., Yantai 264006, Shandong, China
| | - Xuejing Yao
- RemeGen, Ltd., Yantai 264006, Shandong, China
| | - Huanzhao Li
- Mabplex International Ltd., Yantai 264006, Shandong, China
| | - Shenjun Li
- RemeGen, Ltd., Yantai 264006, Shandong, China
| | - Lina Liu
- Mabplex International Ltd., Yantai 264006, Shandong, China
| | - Deling Yu
- Mabplex International Ltd., Yantai 264006, Shandong, China
| | - Xue Li
- Mabplex International Ltd., Yantai 264006, Shandong, China
| | - Jianmin Fang
- RemeGen, Ltd., Yantai 264006, Shandong, China; Mabplex International Ltd., Yantai 264006, Shandong, China; School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | | |
Collapse
|
31
|
Figueroa I, Leipold D, Leong S, Zheng B, Triguero-Carrasco M, Fourie-O'Donohue A, Kozak KR, Xu K, Schutten M, Wang H, Polson AG, Kamath AV. Prediction of non-linear pharmacokinetics in humans of an antibody-drug conjugate (ADC) when evaluation of higher doses in animals is limited by tolerability: Case study with an anti-CD33 ADC. MAbs 2018; 10:738-750. [PMID: 29757698 PMCID: PMC6150628 DOI: 10.1080/19420862.2018.1465160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/03/2018] [Accepted: 04/09/2018] [Indexed: 11/01/2022] Open
Abstract
For antibody-drug conjugates (ADCs) that carry a cytotoxic drug, doses that can be administered in preclinical studies are typically limited by tolerability, leading to a narrow dose range that can be tested. For molecules with non-linear pharmacokinetics (PK), this limited dose range may be insufficient to fully characterize the PK of the ADC and limits translation to humans. Mathematical PK models are frequently used for molecule selection during preclinical drug development and for translational predictions to guide clinical study design. Here, we present a practical approach that uses limited PK and receptor occupancy (RO) data of the corresponding unconjugated antibody to predict ADC PK when conjugation does not alter the non-specific clearance or the antibody-target interaction. We used a 2-compartment model incorporating non-specific and specific (target mediated) clearances, where the latter is a function of RO, to describe the PK of anti-CD33 ADC with dose-limiting neutropenia in cynomolgus monkeys. We tested our model by comparing PK predictions based on the unconjugated antibody to observed ADC PK data that was not utilized for model development. Prospective prediction of human PK was performed by incorporating in vitro binding affinity differences between species for varying levels of CD33 target expression. Additionally, this approach was used to predict human PK of other previously tested anti-CD33 molecules with published clinical data. The findings showed that, for a cytotoxic ADC with non-linear PK and limited preclinical PK data, incorporating RO in the PK model and using data from the corresponding unconjugated antibody at higher doses allowed the identification of parameters to characterize monkey PK and enabled human PK predictions.
Collapse
Affiliation(s)
| | - Doug Leipold
- Preclinical Translational Pharmacokinetics Department
| | | | | | | | | | | | | | - Melissa Schutten
- Safety Assessment Department Genentech Inc., South San Francisco, CA, USA
| | - Hong Wang
- Safety Assessment Department Genentech Inc., South San Francisco, CA, USA
| | | | | |
Collapse
|
32
|
Schürch CM. Therapeutic Antibodies for Myeloid Neoplasms-Current Developments and Future Directions. Front Oncol 2018; 8:152. [PMID: 29868474 PMCID: PMC5968093 DOI: 10.3389/fonc.2018.00152] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 04/24/2018] [Indexed: 12/12/2022] Open
Abstract
Therapeutic monoclonal antibodies (mAbs) such as antibody-drug conjugates, ligand-receptor antagonists, immune checkpoint inhibitors and bispecific T cell engagers have shown impressive efficacy in the treatment of multiple human cancers. Numerous therapeutic mAbs that have been developed for myeloid neoplasms, including acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS), are currently investigated in clinical trials. Because AML and MDS originate from malignantly transformed hematopoietic stem/progenitor cells-the so-called leukemic stem cells (LSCs) that are highly resistant to most standard drugs-these malignancies frequently relapse and have a high disease-specific mortality. Therefore, combining standard chemotherapy with antileukemic mAbs that specifically target malignant blasts and particularly LSCs or utilizing mAbs that reinforce antileukemic host immunity holds great promise for improving patient outcomes. This review provides an overview of therapeutic mAbs for AML and MDS. Antibody targets, the molecular mechanisms of action, the efficacy in preclinical leukemia models, and the results of clinical trials are discussed. New developments and future studies of therapeutic mAbs in myeloid neoplasms will advance our understanding of the immunobiology of these diseases and enhance current therapeutic strategies.
Collapse
Affiliation(s)
- Christian M. Schürch
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
33
|
Nasiri H, Valedkarimi Z, Aghebati‐Maleki L, Majidi J. Antibody‐drug conjugates: Promising and efficient tools for targeted cancer therapy. J Cell Physiol 2018; 233:6441-6457. [DOI: 10.1002/jcp.26435] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 01/05/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Hadi Nasiri
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
- Department of ImmunologyFaculty of MedicineTabriz University of Medical SciencesTabrizIran
- Student Research CommitteeTabriz University of Medical SciencesTabrizIran
| | - Zahra Valedkarimi
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
- Department of ImmunologyFaculty of MedicineTabriz University of Medical SciencesTabrizIran
- Student Research CommitteeTabriz University of Medical SciencesTabrizIran
| | - Leili Aghebati‐Maleki
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
- Department of ImmunologyFaculty of MedicineTabriz University of Medical SciencesTabrizIran
| | - Jafar Majidi
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
- Department of ImmunologyFaculty of MedicineTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
34
|
Simultaneous multiple interaction T-cell engaging (SMITE) bispecific antibodies overcome bispecific T-cell engager (BiTE) resistance via CD28 co-stimulation. Leukemia 2018; 32:1239-1243. [PMID: 29588544 PMCID: PMC5943151 DOI: 10.1038/s41375-018-0014-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 12/05/2017] [Accepted: 12/18/2017] [Indexed: 12/18/2022]
|
35
|
Yang X, Wang J. Precision therapy for acute myeloid leukemia. J Hematol Oncol 2018; 11:3. [PMID: 29301553 PMCID: PMC5755341 DOI: 10.1186/s13045-017-0543-7] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 12/19/2017] [Indexed: 01/21/2023] Open
Abstract
Acute myeloid leukemia (AML) is a molecularly and clinically heterogeneous disease. Despite advances in understanding the pathogenesis of AML, the standard therapy remained nearly unchanged over the past three decades. With the poor survival for older patients and high relapse rate, multiple studies are ongoing to address this important issue. Novel therapies for AML, including the refinements of conventional cytotoxic chemotherapies and genetic and epigenetic targeted drugs, as well as immunotherapies, have been developed in recent years. Here, we present a mechanism-based review of some promising new drugs with clinical efficacy, focus on targeted drugs that are most potential to pave the road to success, and put forward the major challenges in promoting the precision therapy for AML.
Collapse
Affiliation(s)
- Xue Yang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Jianxiang Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.
| |
Collapse
|
36
|
Laszlo GS, Harrington KH, Gudgeon CJ, Beddoe ME, Fitzgibbon MP, Ries RE, Lamba JK, McIntosh MW, Meshinchi S, Walter RB. Expression and functional characterization of CD33 transcript variants in human acute myeloid leukemia. Oncotarget 2017; 7:43281-43294. [PMID: 27248327 PMCID: PMC5190023 DOI: 10.18632/oncotarget.9674] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 05/17/2016] [Indexed: 12/04/2022] Open
Abstract
With the demonstration of improved survival of some acute myeloid leukemia (AML) patients with the CD33 antibody-drug conjugate, gemtuzumab ozogamicin (GO), CD33 has been validated as a target for antigen-specific immunotherapy. Since previous studies identified a CD33 splice variant missing exon 2 (CD33∆E2) and, consequently, the immune-dominant membrane-distal V-set domain, we investigated the expression and functional characteristics of CD33 transcript variants in AML. In primary AML specimens, we not only found full-length CD33 (CD33FL) and CD33∆E2 but also corresponding variants containing an alternate exon 7 predicted to encode a CD33 protein lacking most of the intracellular domain (CD33E7a and, not previously described, CD33∆E2,E7a) in almost all cases. In acute leukemia cell sublines engineered to express individual CD33 splice variants, all splice variants had endocytic properties. CD33FL and CD33E7a mediated similar degrees of GO cytotoxicity, whereas CD33∆E2 and CD33∆E2,E7a could not serve as target for GO. Co-expression of CD33∆E2 did not interfere with CD33FL endocytosis and did not impact CD33FL-mediated GO cytotoxicity. Together, our findings document a greater-than-previously thought complexity of CD33 expression in human AML. They identify CD33 variants that lack exon 2 and are not recognized by current CD33-directed therapeutics as potential target for future unconjugated or conjugated antibodies.
Collapse
Affiliation(s)
- George S Laszlo
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Kimberly H Harrington
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Chelsea J Gudgeon
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Mary E Beddoe
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Matthew P Fitzgibbon
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Rhonda E Ries
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jatinder K Lamba
- Department of Pharmacotherapy and Translational Research College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Martin W McIntosh
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Children's Oncology Group, Arcadia, CA, USA.,Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Roland B Walter
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Department of Medicine, Division of Hematology, University of Washington, Seattle, WA, USA.,Department of Epidemiology, University of Washington, Seattle, WA, USA
| |
Collapse
|
37
|
Tvito A, Rowe JM. Inotuzumab ozogamicin for the treatment of acute lymphoblastic leukemia. Expert Opin Biol Ther 2017; 17:1557-1564. [DOI: 10.1080/14712598.2017.1387244] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Ariella Tvito
- Department of Hematology, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Jacob M. Rowe
- Department of Hematology, Shaare Zedek Medical Center, Jerusalem, Israel
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, Haifa, Israel
- Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
38
|
Abstract
Lectins recognize a diverse array of carbohydrate structures and perform numerous essential biological functions. Here we focus on only two families of lectins, the Siglecs and C-type lectins. Triggering of intracellular signaling cascades following ligand recognition by these receptors can have profound effects on the induction and modulation of immunity. In this chapter, we provide a brief overview of each family and then focus on selected examples that highlight how these lectins can influence myeloid cell functioning in health and disease. Receptors that are discussed include Sn (Siglec-1), CD33 (Siglec-3), and Siglec-5, -7, -8, -9, -10, -11, -14, -15, -E, -F, and -G as well as Dectin-1, MICL, Dectin-2, Mincle/MCL, and the macrophage mannose receptor.
Collapse
|
39
|
Ronson A, Tvito A, Rowe JM. Treatment of Relapsed/Refractory Acute Lymphoblastic Leukemia in Adults. Curr Oncol Rep 2017; 18:39. [PMID: 27207612 DOI: 10.1007/s11912-016-0519-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Patients with relapsed and refractory acute lymphoblastic leukemia (ALL) have a dismal prognosis with less than 10 % of patients surviving 5 years. Most such patients cannot be rescued with currently available therapies, whatever the initial treatment they receive. Therefore, there is an urgent need for novel treatment options. Fortunately, over the past several years, an improved understanding of the biology of the disease has allowed the identification of rational molecular targets for therapeutic endeavors and the emergence of novel therapies has sparked great interest. This review will discuss the current treatment landscape for adult patients with relapsed and/or refractory ALL.
Collapse
Affiliation(s)
- Aharon Ronson
- Department of Hematology, Shaare Zedek Medical Center, 12 Shmuel Bayit Street, Jerusalem, 91031, Israel
| | - Ariella Tvito
- Department of Hematology, Shaare Zedek Medical Center, 12 Shmuel Bayit Street, Jerusalem, 91031, Israel
| | - Jacob M Rowe
- Department of Hematology, Shaare Zedek Medical Center, 12 Shmuel Bayit Street, Jerusalem, 91031, Israel. .,Technion, Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
40
|
Kalim M, Chen J, Wang S, Lin C, Ullah S, Liang K, Ding Q, Chen S, Zhan J. Intracellular trafficking of new anticancer therapeutics: antibody-drug conjugates. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:2265-2276. [PMID: 28814834 PMCID: PMC5546728 DOI: 10.2147/dddt.s135571] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Antibody-drug conjugate (ADC) is a milestone in targeted cancer therapy that comprises of monoclonal antibodies chemically linked to cytotoxic drugs. Internalization of ADC takes place via clathrin-mediated endocytosis, caveolae-mediated endocytosis, and pinocytosis. Conjugation strategies, endocytosis and intracellular trafficking optimization, linkers, and drugs chemistry present a great challenge for researchers to eradicate tumor cells successfully. This inventiveness of endocytosis and intracellular trafficking has given considerable momentum recently to develop specific antibodies and ADCs to treat cancer cells. It is significantly advantageous to emphasize the endocytosis and intracellular trafficking pathways efficiently and to design potent engineered conjugates and biological entities to boost efficient therapies enormously for cancer treatment. Current studies illustrate endocytosis and intracellular trafficking of ADC, protein, and linker strategies in unloading and also concisely evaluate practically applicable ADCs.
Collapse
Affiliation(s)
- Muhammad Kalim
- Department of Biochemistry and Genetics, School of Medicine
| | - Jie Chen
- Department of Biochemistry and Genetics, School of Medicine
| | - Shenghao Wang
- Department of Biochemistry and Genetics, School of Medicine
| | - Caiyao Lin
- Department of Biochemistry and Genetics, School of Medicine
| | - Saif Ullah
- Department of Biochemistry and Genetics, School of Medicine
| | - Keying Liang
- Department of Biochemistry and Genetics, School of Medicine
| | - Qian Ding
- Department of Biochemistry and Genetics, School of Medicine
| | - Shuqing Chen
- Department of Pharmaceutical Analysis, College of Pharmaceutical Science, Zhejiang University, Hangzhou, People's Republic of China
| | - Jinbiao Zhan
- Department of Biochemistry and Genetics, School of Medicine
| |
Collapse
|
41
|
Leveraging Siglec-8 endocytic mechanisms to kill human eosinophils and malignant mast cells. J Allergy Clin Immunol 2017; 141:1774-1785.e7. [PMID: 28734845 DOI: 10.1016/j.jaci.2017.06.028] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 06/01/2017] [Accepted: 06/12/2017] [Indexed: 01/06/2023]
Abstract
BACKGROUND Sialic acid-binding immunoglobulin-like lectin (Siglec)-8 is a cell-surface protein expressed selectively on human eosinophils, mast cells, and basophils, making it an ideal target for the treatment of diseases involving these cell types. However, the effective delivery of therapeutic agents to these cells requires an understanding of the dynamics of Siglec-8 surface expression. OBJECTIVES We sought to determine whether Siglec-8 is endocytosed in human eosinophils and malignant mast cells, identify mechanisms underlying its endocytosis, and demonstrate whether a toxin can be targeted to Siglec-8-bearing cells to kill these cells. METHODS Siglec-8 surface dynamics were examined by flow cytometry using peripheral blood eosinophils, mast cell lines, and Siglec-8-transduced cells in the presence of inhibitors targeting components of endocytic pathways. Siglec-8 intracellular trafficking was followed by confocal microscopy. The ribosome-inhibiting protein saporin was conjugated to a Siglec-8-specific antibody to examine the targeting of an agent to these cells through Siglec-8 endocytosis. RESULTS Siglec-8 endocytosis required actin rearrangement, tyrosine kinase and protein kinase C activities, and both clathrin and lipid rafts. Internalized Siglec-8 localized to the lysosomal compartment. Maximal endocytosis in Siglec-8-transduced HEK293T cells required an intact immunoreceptor tyrosine-based inhibitory motif. Siglec-8 was also shuttled to the surface via a distinct pathway. Sialidase treatment of eosinophils revealed that Siglec-8 is partially masked by sialylated cis ligands. Targeting saporin to Siglec-8 consistently caused extensive cell death in eosinophils and the human mast cell leukemia cell line HMC-1.2. CONCLUSIONS Therapeutic payloads can be targeted selectively to eosinophils and malignant mast cells by exploiting this Siglec-8 endocytic pathway.
Collapse
|
42
|
Lamba JK, Chauhan L, Shin M, Loken MR, Pollard JA, Wang YC, Ries RE, Aplenc R, Hirsch BA, Raimondi SC, Walter RB, Bernstein ID, Gamis AS, Alonzo TA, Meshinchi S. CD33 Splicing Polymorphism Determines Gemtuzumab Ozogamicin Response in De Novo Acute Myeloid Leukemia: Report From Randomized Phase III Children's Oncology Group Trial AAML0531. J Clin Oncol 2017. [PMID: 28644774 DOI: 10.1200/jco.2016.71.2513] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Purpose Gemtuzumab ozogamicin (GO), a CD33-targeted immunoconjugate, is a re-emerging therapy for acute myeloid leukemia (AML). CD33 single nucleotide polymorphism rs12459419 C>T in the splice enhancer region regulates the expression of an alternatively spliced CD33 isoform lacking exon2 (D2-CD33), thus eliminating the CD33 IgV domain, which is the antibody-binding site for GO, as well as diagnostic immunophenotypic panels. We aimed to determine the impact of the genotype of this splicing polymorphism in patients with AML treated with GO-containing chemotherapy. Patients and Methods CD33 splicing single nucleotide polymorphism was evaluated in newly diagnosed patients with AML randomly assigned to receive standard five-course chemotherapy alone (No-GO arm, n = 408) or chemotherapy with the addition of two doses of GO once during induction and once during intensification (GO arm, n = 408) as per the Children's Oncology Group AAML0531 trial. Results The rs12459419 genotype was CC in 415 patients (51%), CT in 316 patients (39%), and TT in 85 patients (10%), with a minor allele frequency of 30%. The T allele was significantly associated with higher levels of D2-CD33 transcript ( P < 1.0E-6) and with lower diagnostic leukemic cell surface CD33 intensity ( P < 1.0E-6). Patients with the CC genotype had significantly lower relapse risk in the GO arm than in the No-GO arm (26% v 49%; P < .001). However, in patients with the CT or TT genotype, exposure to GO did not influence relapse risk (39% v 40%; P = .85). Disease-free survival was higher in patients with the CC genotype in the GO arm than in the No-GO arm (65% v 46%, respectively; P = .004), but this benefit of GO addition was not seen in patients with the CT or TT genotype. Conclusion Our results suggest that patients with the CC genotype for rs12459419 have a substantial response to GO, making this a potential biomarker for the selection of patients with a likelihood of significant response to GO.
Collapse
Affiliation(s)
- Jatinder K Lamba
- Jatinder K. Lamba, Lata Chauhan, and Miyoung Shin, University of Florida, Gainesville, FL; Michael R. Loken, Hematologics Inc; Rhonda E. Ries, Irwin D. Bernstein, and Soheil Meshinchi, Fred Hutchinson Cancer Research Center; Roland B. Walter and Soheil Meshinchi, University of Washington, Seattle, WA; Jessica A. Pollard, Maine Medical Center, Portland, ME; Jessica A. Pollard, Tufts University, Boston, MA; Yi-Cheng Wang, Children's Oncology Group, Monrovia; Todd A. Alonzo, University of Southern California, Los Angeles, CA; Richard Aplenc, Children's Hospital of Philadelphia, Philadelphia, PA; Betsy A. Hirsch, University of Minnesota, Minneapolis, MN; Susana C. Raimondi, St Jude Children's Research Hospital, Memphis, TN; and Alan S. Gamis, Children's Mercy Hospitals and Clinics, Kansas City, MO
| | - Lata Chauhan
- Jatinder K. Lamba, Lata Chauhan, and Miyoung Shin, University of Florida, Gainesville, FL; Michael R. Loken, Hematologics Inc; Rhonda E. Ries, Irwin D. Bernstein, and Soheil Meshinchi, Fred Hutchinson Cancer Research Center; Roland B. Walter and Soheil Meshinchi, University of Washington, Seattle, WA; Jessica A. Pollard, Maine Medical Center, Portland, ME; Jessica A. Pollard, Tufts University, Boston, MA; Yi-Cheng Wang, Children's Oncology Group, Monrovia; Todd A. Alonzo, University of Southern California, Los Angeles, CA; Richard Aplenc, Children's Hospital of Philadelphia, Philadelphia, PA; Betsy A. Hirsch, University of Minnesota, Minneapolis, MN; Susana C. Raimondi, St Jude Children's Research Hospital, Memphis, TN; and Alan S. Gamis, Children's Mercy Hospitals and Clinics, Kansas City, MO
| | - Miyoung Shin
- Jatinder K. Lamba, Lata Chauhan, and Miyoung Shin, University of Florida, Gainesville, FL; Michael R. Loken, Hematologics Inc; Rhonda E. Ries, Irwin D. Bernstein, and Soheil Meshinchi, Fred Hutchinson Cancer Research Center; Roland B. Walter and Soheil Meshinchi, University of Washington, Seattle, WA; Jessica A. Pollard, Maine Medical Center, Portland, ME; Jessica A. Pollard, Tufts University, Boston, MA; Yi-Cheng Wang, Children's Oncology Group, Monrovia; Todd A. Alonzo, University of Southern California, Los Angeles, CA; Richard Aplenc, Children's Hospital of Philadelphia, Philadelphia, PA; Betsy A. Hirsch, University of Minnesota, Minneapolis, MN; Susana C. Raimondi, St Jude Children's Research Hospital, Memphis, TN; and Alan S. Gamis, Children's Mercy Hospitals and Clinics, Kansas City, MO
| | - Michael R Loken
- Jatinder K. Lamba, Lata Chauhan, and Miyoung Shin, University of Florida, Gainesville, FL; Michael R. Loken, Hematologics Inc; Rhonda E. Ries, Irwin D. Bernstein, and Soheil Meshinchi, Fred Hutchinson Cancer Research Center; Roland B. Walter and Soheil Meshinchi, University of Washington, Seattle, WA; Jessica A. Pollard, Maine Medical Center, Portland, ME; Jessica A. Pollard, Tufts University, Boston, MA; Yi-Cheng Wang, Children's Oncology Group, Monrovia; Todd A. Alonzo, University of Southern California, Los Angeles, CA; Richard Aplenc, Children's Hospital of Philadelphia, Philadelphia, PA; Betsy A. Hirsch, University of Minnesota, Minneapolis, MN; Susana C. Raimondi, St Jude Children's Research Hospital, Memphis, TN; and Alan S. Gamis, Children's Mercy Hospitals and Clinics, Kansas City, MO
| | - Jessica A Pollard
- Jatinder K. Lamba, Lata Chauhan, and Miyoung Shin, University of Florida, Gainesville, FL; Michael R. Loken, Hematologics Inc; Rhonda E. Ries, Irwin D. Bernstein, and Soheil Meshinchi, Fred Hutchinson Cancer Research Center; Roland B. Walter and Soheil Meshinchi, University of Washington, Seattle, WA; Jessica A. Pollard, Maine Medical Center, Portland, ME; Jessica A. Pollard, Tufts University, Boston, MA; Yi-Cheng Wang, Children's Oncology Group, Monrovia; Todd A. Alonzo, University of Southern California, Los Angeles, CA; Richard Aplenc, Children's Hospital of Philadelphia, Philadelphia, PA; Betsy A. Hirsch, University of Minnesota, Minneapolis, MN; Susana C. Raimondi, St Jude Children's Research Hospital, Memphis, TN; and Alan S. Gamis, Children's Mercy Hospitals and Clinics, Kansas City, MO
| | - Yi-Cheng Wang
- Jatinder K. Lamba, Lata Chauhan, and Miyoung Shin, University of Florida, Gainesville, FL; Michael R. Loken, Hematologics Inc; Rhonda E. Ries, Irwin D. Bernstein, and Soheil Meshinchi, Fred Hutchinson Cancer Research Center; Roland B. Walter and Soheil Meshinchi, University of Washington, Seattle, WA; Jessica A. Pollard, Maine Medical Center, Portland, ME; Jessica A. Pollard, Tufts University, Boston, MA; Yi-Cheng Wang, Children's Oncology Group, Monrovia; Todd A. Alonzo, University of Southern California, Los Angeles, CA; Richard Aplenc, Children's Hospital of Philadelphia, Philadelphia, PA; Betsy A. Hirsch, University of Minnesota, Minneapolis, MN; Susana C. Raimondi, St Jude Children's Research Hospital, Memphis, TN; and Alan S. Gamis, Children's Mercy Hospitals and Clinics, Kansas City, MO
| | - Rhonda E Ries
- Jatinder K. Lamba, Lata Chauhan, and Miyoung Shin, University of Florida, Gainesville, FL; Michael R. Loken, Hematologics Inc; Rhonda E. Ries, Irwin D. Bernstein, and Soheil Meshinchi, Fred Hutchinson Cancer Research Center; Roland B. Walter and Soheil Meshinchi, University of Washington, Seattle, WA; Jessica A. Pollard, Maine Medical Center, Portland, ME; Jessica A. Pollard, Tufts University, Boston, MA; Yi-Cheng Wang, Children's Oncology Group, Monrovia; Todd A. Alonzo, University of Southern California, Los Angeles, CA; Richard Aplenc, Children's Hospital of Philadelphia, Philadelphia, PA; Betsy A. Hirsch, University of Minnesota, Minneapolis, MN; Susana C. Raimondi, St Jude Children's Research Hospital, Memphis, TN; and Alan S. Gamis, Children's Mercy Hospitals and Clinics, Kansas City, MO
| | - Richard Aplenc
- Jatinder K. Lamba, Lata Chauhan, and Miyoung Shin, University of Florida, Gainesville, FL; Michael R. Loken, Hematologics Inc; Rhonda E. Ries, Irwin D. Bernstein, and Soheil Meshinchi, Fred Hutchinson Cancer Research Center; Roland B. Walter and Soheil Meshinchi, University of Washington, Seattle, WA; Jessica A. Pollard, Maine Medical Center, Portland, ME; Jessica A. Pollard, Tufts University, Boston, MA; Yi-Cheng Wang, Children's Oncology Group, Monrovia; Todd A. Alonzo, University of Southern California, Los Angeles, CA; Richard Aplenc, Children's Hospital of Philadelphia, Philadelphia, PA; Betsy A. Hirsch, University of Minnesota, Minneapolis, MN; Susana C. Raimondi, St Jude Children's Research Hospital, Memphis, TN; and Alan S. Gamis, Children's Mercy Hospitals and Clinics, Kansas City, MO
| | - Betsy A Hirsch
- Jatinder K. Lamba, Lata Chauhan, and Miyoung Shin, University of Florida, Gainesville, FL; Michael R. Loken, Hematologics Inc; Rhonda E. Ries, Irwin D. Bernstein, and Soheil Meshinchi, Fred Hutchinson Cancer Research Center; Roland B. Walter and Soheil Meshinchi, University of Washington, Seattle, WA; Jessica A. Pollard, Maine Medical Center, Portland, ME; Jessica A. Pollard, Tufts University, Boston, MA; Yi-Cheng Wang, Children's Oncology Group, Monrovia; Todd A. Alonzo, University of Southern California, Los Angeles, CA; Richard Aplenc, Children's Hospital of Philadelphia, Philadelphia, PA; Betsy A. Hirsch, University of Minnesota, Minneapolis, MN; Susana C. Raimondi, St Jude Children's Research Hospital, Memphis, TN; and Alan S. Gamis, Children's Mercy Hospitals and Clinics, Kansas City, MO
| | - Susana C Raimondi
- Jatinder K. Lamba, Lata Chauhan, and Miyoung Shin, University of Florida, Gainesville, FL; Michael R. Loken, Hematologics Inc; Rhonda E. Ries, Irwin D. Bernstein, and Soheil Meshinchi, Fred Hutchinson Cancer Research Center; Roland B. Walter and Soheil Meshinchi, University of Washington, Seattle, WA; Jessica A. Pollard, Maine Medical Center, Portland, ME; Jessica A. Pollard, Tufts University, Boston, MA; Yi-Cheng Wang, Children's Oncology Group, Monrovia; Todd A. Alonzo, University of Southern California, Los Angeles, CA; Richard Aplenc, Children's Hospital of Philadelphia, Philadelphia, PA; Betsy A. Hirsch, University of Minnesota, Minneapolis, MN; Susana C. Raimondi, St Jude Children's Research Hospital, Memphis, TN; and Alan S. Gamis, Children's Mercy Hospitals and Clinics, Kansas City, MO
| | - Roland B Walter
- Jatinder K. Lamba, Lata Chauhan, and Miyoung Shin, University of Florida, Gainesville, FL; Michael R. Loken, Hematologics Inc; Rhonda E. Ries, Irwin D. Bernstein, and Soheil Meshinchi, Fred Hutchinson Cancer Research Center; Roland B. Walter and Soheil Meshinchi, University of Washington, Seattle, WA; Jessica A. Pollard, Maine Medical Center, Portland, ME; Jessica A. Pollard, Tufts University, Boston, MA; Yi-Cheng Wang, Children's Oncology Group, Monrovia; Todd A. Alonzo, University of Southern California, Los Angeles, CA; Richard Aplenc, Children's Hospital of Philadelphia, Philadelphia, PA; Betsy A. Hirsch, University of Minnesota, Minneapolis, MN; Susana C. Raimondi, St Jude Children's Research Hospital, Memphis, TN; and Alan S. Gamis, Children's Mercy Hospitals and Clinics, Kansas City, MO
| | - Irwin D Bernstein
- Jatinder K. Lamba, Lata Chauhan, and Miyoung Shin, University of Florida, Gainesville, FL; Michael R. Loken, Hematologics Inc; Rhonda E. Ries, Irwin D. Bernstein, and Soheil Meshinchi, Fred Hutchinson Cancer Research Center; Roland B. Walter and Soheil Meshinchi, University of Washington, Seattle, WA; Jessica A. Pollard, Maine Medical Center, Portland, ME; Jessica A. Pollard, Tufts University, Boston, MA; Yi-Cheng Wang, Children's Oncology Group, Monrovia; Todd A. Alonzo, University of Southern California, Los Angeles, CA; Richard Aplenc, Children's Hospital of Philadelphia, Philadelphia, PA; Betsy A. Hirsch, University of Minnesota, Minneapolis, MN; Susana C. Raimondi, St Jude Children's Research Hospital, Memphis, TN; and Alan S. Gamis, Children's Mercy Hospitals and Clinics, Kansas City, MO
| | - Alan S Gamis
- Jatinder K. Lamba, Lata Chauhan, and Miyoung Shin, University of Florida, Gainesville, FL; Michael R. Loken, Hematologics Inc; Rhonda E. Ries, Irwin D. Bernstein, and Soheil Meshinchi, Fred Hutchinson Cancer Research Center; Roland B. Walter and Soheil Meshinchi, University of Washington, Seattle, WA; Jessica A. Pollard, Maine Medical Center, Portland, ME; Jessica A. Pollard, Tufts University, Boston, MA; Yi-Cheng Wang, Children's Oncology Group, Monrovia; Todd A. Alonzo, University of Southern California, Los Angeles, CA; Richard Aplenc, Children's Hospital of Philadelphia, Philadelphia, PA; Betsy A. Hirsch, University of Minnesota, Minneapolis, MN; Susana C. Raimondi, St Jude Children's Research Hospital, Memphis, TN; and Alan S. Gamis, Children's Mercy Hospitals and Clinics, Kansas City, MO
| | - Todd A Alonzo
- Jatinder K. Lamba, Lata Chauhan, and Miyoung Shin, University of Florida, Gainesville, FL; Michael R. Loken, Hematologics Inc; Rhonda E. Ries, Irwin D. Bernstein, and Soheil Meshinchi, Fred Hutchinson Cancer Research Center; Roland B. Walter and Soheil Meshinchi, University of Washington, Seattle, WA; Jessica A. Pollard, Maine Medical Center, Portland, ME; Jessica A. Pollard, Tufts University, Boston, MA; Yi-Cheng Wang, Children's Oncology Group, Monrovia; Todd A. Alonzo, University of Southern California, Los Angeles, CA; Richard Aplenc, Children's Hospital of Philadelphia, Philadelphia, PA; Betsy A. Hirsch, University of Minnesota, Minneapolis, MN; Susana C. Raimondi, St Jude Children's Research Hospital, Memphis, TN; and Alan S. Gamis, Children's Mercy Hospitals and Clinics, Kansas City, MO
| | - Soheil Meshinchi
- Jatinder K. Lamba, Lata Chauhan, and Miyoung Shin, University of Florida, Gainesville, FL; Michael R. Loken, Hematologics Inc; Rhonda E. Ries, Irwin D. Bernstein, and Soheil Meshinchi, Fred Hutchinson Cancer Research Center; Roland B. Walter and Soheil Meshinchi, University of Washington, Seattle, WA; Jessica A. Pollard, Maine Medical Center, Portland, ME; Jessica A. Pollard, Tufts University, Boston, MA; Yi-Cheng Wang, Children's Oncology Group, Monrovia; Todd A. Alonzo, University of Southern California, Los Angeles, CA; Richard Aplenc, Children's Hospital of Philadelphia, Philadelphia, PA; Betsy A. Hirsch, University of Minnesota, Minneapolis, MN; Susana C. Raimondi, St Jude Children's Research Hospital, Memphis, TN; and Alan S. Gamis, Children's Mercy Hospitals and Clinics, Kansas City, MO
| |
Collapse
|
43
|
Gemtuzumab ozogamicin in acute myeloid leukemia. Leukemia 2017; 31:1855-1868. [PMID: 28607471 DOI: 10.1038/leu.2017.187] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 05/26/2017] [Accepted: 05/31/2017] [Indexed: 12/13/2022]
Abstract
CD33 is variably expressed on leukemia blasts in almost all patients with acute myeloid leukemia (AML) and possibly leukemia stem cells in some. Efforts to target CD33 therapeutically have focused on gemtuzumab ozogamicin (GO; Mylotarg), an antibody-drug conjugate delivering a DNA-damaging calicheamicin derivative. GO is most effective in acute promyelocytic leukemia but induces remissions in other AML types and received accelerated approval in the US in 2000. However, because a large follow-up study showed no survival improvement and increased early deaths the drug manufacturer voluntarily withdrew the US New Drug Application in 2010. More recently, a meta-analysis of data from several trials reported better survival in adults with favorable- and intermediate-risk cytogenetics but not adverse-risk AML randomized to receive GO along with intensive induction chemotherapy. As a result, GO is being re-evaluated by regulatory agencies. Responses to GO are diverse and predictive biological response markers are needed. Besides cytogenetic risk, ATP-binding cassette transporter activity and possibly CD33 display on AML blasts may predict response, but established clinical assays and prospective validation are lacking. Single-nucleotide polymorphisms in CD33 may also be predictive, most notably rs12459419 where the minor T-allele leads to decreased display of full-length CD33 and preferential translation of a splice variant not recognized by GO. Data from retrospective analyses suggest only patients with the rs12459419 CC genotype may benefit from GO therapy but confirmation is needed. Most important may be markers for AML cell sensitivity to calicheamicin, which varies over 100 000-fold, but useful assays are unavailable. Novel CD33-targeted drugs may overcome some of GO's limitations but it is currently unknown whether such drugs will be more effective in patients benefitting from GO and/or improve outcomes in patients not benefitting from GO, and what the supportive care requirements will be to enable their safe use.
Collapse
|
44
|
Khan N, Hills RK, Virgo P, Couzens S, Clark N, Gilkes A, Richardson P, Knapper S, Grimwade D, Russell NH, Burnett AK, Freeman SD. Expression of CD33 is a predictive factor for effect of gemtuzumab ozogamicin at different doses in adult acute myeloid leukaemia. Leukemia 2017; 31:1059-1068. [PMID: 27795558 PMCID: PMC5419583 DOI: 10.1038/leu.2016.309] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/05/2016] [Accepted: 10/04/2016] [Indexed: 12/28/2022]
Abstract
It remains unclear in adult acute myeloid leukaemia (AML) whether leukaemic expression of CD33, the target antigen for gemtuzumab ozogamicin (GO), adds prognostic information on GO effectiveness at different doses. CD33 expression quantified in 1583 patients recruited to UK-NCRI-AML17 (younger adults) and UK-NCRI-AML16 (older adults) trials was correlated with clinical outcomes and benefit from GO including a dose randomisation. CD33 expression associated with genetic subgroups, including lower levels in both adverse karyotype and core-binding factor (CBF)-AML, but was not independently prognostic. When comparing GO versus no GO (n=393, CBF-AMLs excluded) by stratified subgroup-adjusted analysis, patients with lowest quartile (Q1) %CD33-positivity had no benefit from GO (relapse risk, HR 2.41 (1.27-4.56), P=0.009 for trend; overall survival, HR 1.52 (0.92-2.52)). However, from the dose randomisation (NCRI-AML17, n=464, CBF-AMLs included), 6 mg/m2 GO only had a relapse benefit without increased early mortality in CD33-low (Q1) patients (relapse risk HR 0.64 (0.36-1.12) versus 1.70 (0.99-2.92) for CD33-high, P=0.007 for trend). Thus CD33 expression is a predictive factor for GO effect in adult AML; although GO does not appear to benefit the non-CBF AML patients with lowest CD33 expression a higher GO dose may be more effective for CD33-low but not CD33-high younger adults.
Collapse
MESH Headings
- Adolescent
- Adult
- Age Factors
- Aminoglycosides/administration & dosage
- Aminoglycosides/pharmacology
- Antibodies, Monoclonal, Humanized/administration & dosage
- Antibodies, Monoclonal, Humanized/pharmacology
- Biomarkers/analysis
- Dose-Response Relationship, Drug
- Female
- Gemtuzumab
- Humans
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/mortality
- Male
- Middle Aged
- Predictive Value of Tests
- Prognosis
- Recurrence
- Sialic Acid Binding Ig-like Lectin 3/analysis
- Survival Rate
- Treatment Outcome
- Young Adult
Collapse
Affiliation(s)
- Naeem Khan
- Department of Clinical Immunology, Institute of Immunology and Immunotherapy, University of Birmingham, Edgbaston Birmingham B15 2TT UK
| | - Robert K Hills
- Institute of Cancer and Genetics, Cardiff University School of Medicine, University Hospital Wales, Heath Park, Cardiff
| | - Paul Virgo
- Department of Immunology, North Bristol NHS Trust, UK
| | - Stephen Couzens
- Institute of Cancer and Genetics, Cardiff University School of Medicine, University Hospital Wales, Heath Park, Cardiff
| | - Nithiya Clark
- Department of Clinical Immunology, Institute of Immunology and Immunotherapy, University of Birmingham, Edgbaston Birmingham B15 2TT UK
| | - Amanda Gilkes
- Institute of Cancer and Genetics, Cardiff University School of Medicine, University Hospital Wales, Heath Park, Cardiff
| | - Peter Richardson
- Department of Clinical Immunology, Institute of Immunology and Immunotherapy, University of Birmingham, Edgbaston Birmingham B15 2TT UK
| | - Steven Knapper
- Institute of Cancer and Genetics, Cardiff University School of Medicine, University Hospital Wales, Heath Park, Cardiff
| | - David Grimwade
- Department of Medical and Molecular Genetics, King’s College London School of Medicine, Guy’s & St. Thomas’ NHS Foundation Trust, London UK
| | - Nigel H Russell
- Department of Haematology, Nottingham University Hospital NHS Trust, Nottingham
| | - Alan K Burnett
- Institute of Cancer and Genetics, Cardiff University School of Medicine, University Hospital Wales, Heath Park, Cardiff
| | - Sylvie D Freeman
- Department of Clinical Immunology, Institute of Immunology and Immunotherapy, University of Birmingham, Edgbaston Birmingham B15 2TT UK
| |
Collapse
|
45
|
Ponce LP, Fenn NC, Moritz N, Krupka C, Kozik JH, Lauber K, Subklewe M, Hopfner KP. SIRPα-antibody fusion proteins stimulate phagocytosis and promote elimination of acute myeloid leukemia cells. Oncotarget 2017; 8:11284-11301. [PMID: 28061465 PMCID: PMC5355265 DOI: 10.18632/oncotarget.14500] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 12/12/2016] [Indexed: 01/13/2023] Open
Abstract
CD47, expressed on a variety of tumor cells, confers immune resistance by delivering an inhibitory "don't eat me" signal to phagocytic cells via its myeloid-specific receptor SIRPα. Recent studies have shown that blocking the CD47-SIRPα axis with CD47-directed antibodies or antibody-derivatives enhances phagocytosis and increases antitumor immune effects. However, CD47 expression on healthy cells creates an antigen sink and potential sites of toxicity, limiting the efficacy of CD47-directed therapies. In this study, we first characterized CD47 expression in Acute Myeloid Leukemia (AML) patients (n = 213) and found that CD47 is highly expressed on both AML bulk and stem cells irrespective of the disease state. Furthermore, to inhibit the CD47-SIRPα signaling pathway at the tumor site, we developed a so-called local inhibitory checkpoint monoclonal antibody (licMAB) by grafting the endogenous SIRPα domain to the N-terminus of the light chain of an antibody targeting CD33, a surface antigen expressed in AML. LicMABs selectively bind CD33-expressing cells even in the presence of a large CD33-negative CD47-positive antigen sink, stimulate phagocytosis of AML cells and eliminate AML cell lines and primary, patient-derived AML cells. Our findings qualify licMABs as a promising therapeutic approach to confine the benefit of disrupting the CD47-SIRPα axis to tumor antigen-expressing cells.
Collapse
Affiliation(s)
- Laia Pascual Ponce
- Gene Center Munich, Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
- Graduate School of Quantitative Biosciences Munich, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Nadja C. Fenn
- Gene Center Munich, Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Nadine Moritz
- Gene Center Munich, Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Christina Krupka
- Department of Internal Medicine III, Klinikum der Universität München, Ludwig-Maximilians-Universität München, Munich, Germany
- Gene Center and Clinical Co-operation Group Immunotherapy at the Helmholtz Zentrum München, Munich, Germany
| | - Jan-Hendrik Kozik
- Gene Center Munich, Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Kirsten Lauber
- Department of Radiation Oncology, Klinikum der Universität München, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Marion Subklewe
- Department of Internal Medicine III, Klinikum der Universität München, Ludwig-Maximilians-Universität München, Munich, Germany
- Gene Center and Clinical Co-operation Group Immunotherapy at the Helmholtz Zentrum München, Munich, Germany
| | - Karl-Peter Hopfner
- Gene Center Munich, Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
- Graduate School of Quantitative Biosciences Munich, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
46
|
|
47
|
Wu Y, Ren D, Chen GY. Siglec-E Negatively Regulates the Activation of TLR4 by Controlling Its Endocytosis. THE JOURNAL OF IMMUNOLOGY 2016; 197:3336-3347. [PMID: 27619995 DOI: 10.4049/jimmunol.1600772] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 08/22/2016] [Indexed: 12/17/2022]
Abstract
TLR4 signaling is critical for providing effective immune protection, but it must be tightly controlled to avoid inflammation-induced pathology. Previously, we reported extensive and direct interactions between TLR and Siglec families of pattern recognition receptors. In this study, we examined the biological significance of this interaction during infection. We show that Siglec-E is required for Escherichia coli-induced endocytosis of TLR4. Siglec-E-deficient dendritic cells infected with E. coli fail to internalize TLR4. This leads to sustained TLR4 on the cell surface and activation of NF-κB and MAPK p38, resulting in high levels of TNF-α and IL-6 compared with wild-type dendritic cells. In contrast to the signaling events occurring at the plasma membrane, as a result of the inability to internalize TLR4, Siglec-E-deficient dendritic cells were also defective for TRIF-mediated IFN-β production in response to E. coli infection. Furthermore, we found that accumulation of ubiquitinated TLR4 and binding of E3 ubiquitin ligase Triad3A to TLR4 was increased significantly in bone marrow-derived dendritic cells from wild-type mice, but not from Siglec-E-deficient mice, after E. coli infection. This represents a newly discovered mechanism that regulates the signaling of TLR4 during E. coli infection.
Collapse
Affiliation(s)
- Yin Wu
- Children's Foundation Research Institute, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38103
| | - Dongren Ren
- Children's Foundation Research Institute, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38103
| | - Guo-Yun Chen
- Children's Foundation Research Institute, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38103
| |
Collapse
|
48
|
Reusch U, Harrington KH, Gudgeon CJ, Fucek I, Ellwanger K, Weichel M, Knackmuss SHJ, Zhukovsky EA, Fox JA, Kunkel LA, Guenot J, Walter RB. Characterization of CD33/CD3 Tetravalent Bispecific Tandem Diabodies (TandAbs) for the Treatment of Acute Myeloid Leukemia. Clin Cancer Res 2016; 22:5829-5838. [PMID: 27189165 DOI: 10.1158/1078-0432.ccr-16-0350] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 04/28/2016] [Accepted: 04/29/2016] [Indexed: 11/16/2022]
Abstract
PURPOSE Randomized studies with gemtuzumab ozogamicin have validated CD33 as a target for antigen-specific immunotherapy of acute myelogenous leukemia (AML). Here, we investigated the potential of CD33/CD3-directed tandem diabodies (TandAbs) as novel treatment approach for AML. These tetravalent bispecific antibodies provide two binding sites for each antigen to maintain the avidity of a bivalent antibody and have a molecular weight exceeding the renal clearance threshold, thus offering a longer half-life compared to smaller antibody constructs. EXPERIMENTAL DESIGN We constructed a series of TandAbs composed of anti-CD33 and anti-CD3 variable domains of diverse binding affinities and profiled their functional properties in CD33+ human leukemia cell lines, xenograft models, and AML patient samples. RESULTS Our studies demonstrated that several CD33/CD3 TandAbs could induce potent, dose-dependent cytolysis of CD33+ AML cell lines. This effect was modulated by the effector-to-target cell ratio and strictly required the presence of T cells. Activation and proliferation of T cells and maximal AML cell cytolysis correlated with high avidity to both CD33 and CD3. High-avidity TandAbs were broadly active in primary specimens from patients with newly diagnosed or relapsed/refractory AML in vitro, with cytotoxic properties independent of CD33 receptor density and cytogenetic risk. Tumor growth delay and inhibition were observed in both prophylactic and established HL-60 xenograft models in immunodeficient mice. CONCLUSIONS Our data show high efficacy of CD33/CD3 TandAbs in various preclinical models of human AML. Together, these findings support further study of CD33/CD3 TandAbs as novel immunotherapeutics for patients with AML. Clin Cancer Res; 22(23); 5829-38. ©2016 AACR.
Collapse
Affiliation(s)
- Uwe Reusch
- Affimed GmbH, Biomunex Pharmaceuticals, Paris, France
| | - Kimberly H Harrington
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Chelsea J Gudgeon
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Ivica Fucek
- Affimed GmbH, Biomunex Pharmaceuticals, Paris, France
| | | | | | | | - Eugene A Zhukovsky
- Affimed GmbH, Biomunex Pharmaceuticals, Paris, France.,Biomunex Pharmaceuticals, 96 bis Boulevard Raspail, 75006 Paris, France
| | - Judith A Fox
- Amphivena Therapeutics, Inc., South San Francisco, California
| | - Lori A Kunkel
- Amphivena Therapeutics, Inc., South San Francisco, California
| | | | - Roland B Walter
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.,Division of Hematology/Department of Medicine, University of Washington, Seattle, Washington.,Department of Epidemiology, University of Washington, Seattle, Washington
| |
Collapse
|
49
|
Kell J. The addition of gemtuzumab ozogamicin to chemotherapy in adult patients with acute myeloid leukemia. Expert Rev Anticancer Ther 2016; 16:377-82. [PMID: 26942450 DOI: 10.1586/14737140.2016.1162099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The treatment of acute myeloid leukaemia has remained largely unchanged for the last 30 years since the advent of combination chemotherapy with cytarabine arabinoside and daunorubicin with remission rates around 70% but with long term survival still only around 40% in young adults. Doses of chemotherapy have been pushed to the limit of toxicity. Gemtuzumab ozogamicin allows additional chemotherapy to be delivered to the leukaemic cells without significantly adding to toxicity since the active agent is coupled to a monoclonal anti-CD33 antibody. It was approved by the FDA in 2000 for the treatment of elderly patients with relapsed CD33 positive AML at a dose of 9mg/m(2) on two days two weeks apart. Almost at once, questions were raised about its safety, with a particular liver signal, and it was voluntarily withdrawn from practice in 2010. Many groups have been examining the role of gemtuzumab ozogamicin in combination with chemotherapy, usually at lower doses than originally recommended, with varying degrees of success and toxicity and gemtuzumab ozogamicin is now entering a period of rehabilitation. Currently it is only commercially available in Japan although it is currently also available in the UK Bloodwise AML18 study.
Collapse
Affiliation(s)
- Jonathan Kell
- a Department of Haematology , University Hospital of Wales , Cardiff , UK
| |
Collapse
|
50
|
Mitupatum T, Aree K, Kittisenachai S, Roytrakul S, Puthong S, Kangsadalampai S, Rojpibulstit P. mRNA Expression of Bax, Bcl-2, p53, Cathepsin B, Caspase-3 and Caspase-9 in the HepG2 Cell Line Following Induction by a Novel Monoclonal Ab Hep88 mAb: Cross-Talk for Paraptosis and Apoptosis. Asian Pac J Cancer Prev 2016; 17:703-12. [DOI: 10.7314/apjcp.2016.17.2.703] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|