1
|
Wang Y, Zhao H, He Y, Zhang P, Zeng C, Du T, Shen Q, Chen Y, Zhao S. IKZF4 acts as a novel tumor suppressor in non-small cell lung cancer by suppressing Notch signaling pathway. Cell Signal 2023; 107:110679. [PMID: 37044192 DOI: 10.1016/j.cellsig.2023.110679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/24/2023] [Accepted: 04/08/2023] [Indexed: 04/14/2023]
Abstract
Non-small cell lung cancer (NSCLC) is the predominant cause of cancer-related mortality globally, although many clinical efforts have been developed to improve the outcomes. The Ikaros zing-finger family transcription factors (IKZFs) have been proved to play pivotal roles in lymphopoiesis and myeloma progression, but their roles in solid tumors development remain unclear. We performed integrative bioinformatical analysis to determine the dysregulation expression of IKZFs in multiple tumors and the correlation between IKZF4 and NSCLC tumor environment. We showed that IKZFs were dysregulated in multiple tumors and IKZF4 was significantly decreased in NSCLC tissues and cell lines due to promoter hypermethylation. We found that low IKZF4 expression obviously correlated with patients' poor clinical outcome. We revealed that IKZF4 overexpression inhibited NSCLC cell growth, migration and xenograft tumor growth, supporting the inhibitory role of IKZF4 in NSCLC tumorigenesis. Additionally, integrative bioinformatical analysis showed that IKZF4 was involved in NSCLC tumor microenvironment. Mechanically, RNA-seq results showed that IKZF4 forced-expression remarkably suppressed Notch signaling pathway in NSCLC, which was validated by qRT-PCR and immunoblot assays. Moreover, we screened several potential agonists for IKZF4.
Collapse
Affiliation(s)
- Yanbo Wang
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Academy of Medical Science, Zhengzhou University, Zhengzhou 450052, China
| | - Hanqing Zhao
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yaomei He
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Zhang
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Academy of Medical Science, Zhengzhou University, Zhengzhou 450052, China
| | - Cheng Zeng
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Tongxuan Du
- Institute of Biomedical Engineering, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Qiushuo Shen
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Institute of Biomedical Engineering, Kunming Medical University, Kunming, Yunnan 650500, China.
| | - Yongbin Chen
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Song Zhao
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
2
|
Shahin T, Mayr D, Shoeb MR, Kuehn HS, Hoeger B, Giuliani S, Gawriyski LM, Petronczki ÖY, Hadjadj J, Bal SK, Zoghi S, Haimel M, Jimenez Heredia R, Boutboul D, Triebwasser MP, Rialland-Battisti F, Costedoat Chalumeau N, Quartier P, Tangye SG, Fleisher TA, Rezaei N, Romberg N, Latour S, Varjosalo M, Halbritter F, Rieux-Laucat F, Castanon I, Rosenzweig SD, Boztug K. Identification of germline monoallelic mutations in IKZF2 in patients with immune dysregulation. Blood Adv 2022; 6:2444-2451. [PMID: 34920454 PMCID: PMC9006292 DOI: 10.1182/bloodadvances.2021006367] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/06/2021] [Indexed: 11/20/2022] Open
Abstract
Helios, encoded by IKZF2, is a member of the Ikaros family of transcription factors with pivotal roles in T-follicular helper, NK- and T-regulatory cell physiology. Somatic IKZF2 mutations are frequently found in lymphoid malignancies. Although germline mutations in IKZF1 and IKZF3 encoding Ikaros and Aiolos have recently been identified in patients with phenotypically similar immunodeficiency syndromes, the effect of germline mutations in IKZF2 on human hematopoiesis and immunity remains enigmatic. We identified germline IKZF2 mutations (one nonsense (p.R291X)- and 4 distinct missense variants) in six patients with systemic lupus erythematosus, immune thrombocytopenia or EBV-associated hemophagocytic lymphohistiocytosis. Patients exhibited hypogammaglobulinemia, decreased number of T-follicular helper and NK cells. Single-cell RNA sequencing of PBMCs from the patient carrying the R291X variant revealed upregulation of proinflammatory genes associated with T-cell receptor activation and T-cell exhaustion. Functional assays revealed the inability of HeliosR291X to homodimerize and bind target DNA as dimers. Moreover, proteomic analysis by proximity-dependent Biotin Identification revealed aberrant interaction of 3/5 Helios mutants with core components of the NuRD complex conveying HELIOS-mediated epigenetic and transcriptional dysregulation.
Collapse
Affiliation(s)
- Tala Shahin
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- St. Anna Children’s Cancer Research Institute, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Daniel Mayr
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- St. Anna Children’s Cancer Research Institute, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | | | - Hye Sun Kuehn
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Birgit Hoeger
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- St. Anna Children’s Cancer Research Institute, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Sarah Giuliani
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- St. Anna Children’s Cancer Research Institute, Vienna, Austria
| | - Lisa M. Gawriyski
- Proteomics Unit, Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Özlem Yüce Petronczki
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- St. Anna Children’s Cancer Research Institute, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Jérôme Hadjadj
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM Unité Mixte de Recherche (UMR) 1163, Institut Imagine, Université de Paris, Paris, France
| | - Sevgi Köstel Bal
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- St. Anna Children’s Cancer Research Institute, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Samaneh Zoghi
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- St. Anna Children’s Cancer Research Institute, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity, Universal Scientific Education and Research Network, Tehran, Iran
| | - Matthias Haimel
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- St. Anna Children’s Cancer Research Institute, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Raul Jimenez Heredia
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- St. Anna Children’s Cancer Research Institute, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - David Boutboul
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, INSERM UMR 1163, Institut Imagine, Université de Paris, Paris, France
| | - Michael P. Triebwasser
- Division of Immunology and Allergy, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Fanny Rialland-Battisti
- Pediatric Onco-Hematology Department, Centre Hospitalier Universitaire de Nantes, Nantes, France
| | - Nathalie Costedoat Chalumeau
- Internal Medicine, Cochin Hospital, Assistance Publique–Hôpitaux de Paris (AP-HP) Centre, Université de Paris, Paris, France
| | - Pierre Quartier
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM Unité Mixte de Recherche (UMR) 1163, Institut Imagine, Université de Paris, Paris, France
- Department of Paediatric Immuno-Haematology and Rheumatology, Reference Center for Rheumatic, AutoImmune and Systemic Diseases in Children, Hôpital Necker-Enfants Malades, Assistance Publique–Hôpitaux de Paris (AP-HP), Paris, France
| | - Stuart G. Tangye
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia; and
| | - Thomas A. Fleisher
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity, Universal Scientific Education and Research Network, Tehran, Iran
| | - Neil Romberg
- Division of Immunology and Allergy, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Sylvain Latour
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, INSERM UMR 1163, Institut Imagine, Université de Paris, Paris, France
| | - Markku Varjosalo
- Proteomics Unit, Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | | | - Frédéric Rieux-Laucat
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM Unité Mixte de Recherche (UMR) 1163, Institut Imagine, Université de Paris, Paris, France
| | - Irinka Castanon
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- St. Anna Children’s Cancer Research Institute, Vienna, Austria
| | - Sergio D. Rosenzweig
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Kaan Boztug
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- St. Anna Children’s Cancer Research Institute, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
- St. Anna Children's Hospital, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
Kloetgen A, Thandapani P, Ntziachristos P, Ghebrechristos Y, Nomikou S, Lazaris C, Chen X, Hu H, Bakogianni S, Wang J, Fu Y, Boccalatte F, Zhong H, Paietta E, Trimarchi T, Zhu Y, Van Vlierberghe P, Inghirami GG, Lionnet T, Aifantis I, Tsirigos A. Three-dimensional chromatin landscapes in T cell acute lymphoblastic leukemia. Nat Genet 2020; 52:388-400. [PMID: 32203470 PMCID: PMC7138649 DOI: 10.1038/s41588-020-0602-9] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 02/25/2020] [Indexed: 01/04/2023]
Abstract
Differences in three-dimensional (3D) chromatin architecture can influence the integrity of topologically associating domains (TADs) and rewire specific enhancer-promoter interactions, impacting gene expression and leading to human disease. Here we investigate the 3D chromatin architecture in T cell acute lymphoblastic leukemia (T-ALL) by using primary human leukemia specimens and examine the dynamic responses of this architecture to pharmacological agents. Systematic integration of matched in situ Hi-C, RNA-seq and CTCF ChIP-seq datasets revealed widespread differences in intra-TAD chromatin interactions and TAD boundary insulation in T-ALL. Our studies identify and focus on a TAD 'fusion' event associated with absence of CTCF-mediated insulation, enabling direct interactions between the MYC promoter and a distal super-enhancer. Moreover, our data also demonstrate that small-molecule inhibitors targeting either oncogenic signal transduction or epigenetic regulation can alter specific 3D interactions found in leukemia. Overall, our study highlights the impact, complexity and dynamic nature of 3D chromatin architecture in human acute leukemia.
Collapse
Affiliation(s)
- Andreas Kloetgen
- Department of Pathology, New York University School of Medicine, New York, NY, USA.,Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Palaniraja Thandapani
- Department of Pathology, New York University School of Medicine, New York, NY, USA.,Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Panagiotis Ntziachristos
- Department of Pathology, New York University School of Medicine, New York, NY, USA.,Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA.,Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Yohana Ghebrechristos
- Department of Pathology, New York University School of Medicine, New York, NY, USA.,Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Sofia Nomikou
- Department of Pathology, New York University School of Medicine, New York, NY, USA.,Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Charalampos Lazaris
- Department of Pathology, New York University School of Medicine, New York, NY, USA.,Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Xufeng Chen
- Department of Pathology, New York University School of Medicine, New York, NY, USA.,Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Hai Hu
- Department of Pathology, New York University School of Medicine, New York, NY, USA.,Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Sofia Bakogianni
- Department of Pathology, New York University School of Medicine, New York, NY, USA.,Department of Microbiology, New York University School of Medicine, Alexandria Center for Life Sciences, New York, NY, USA
| | - Jingjing Wang
- Department of Pathology, New York University School of Medicine, New York, NY, USA.,Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Yi Fu
- Department of Cell Biology, Institute for Systems Genetics, New York University, New York, NY, USA
| | - Francesco Boccalatte
- Department of Pathology, New York University School of Medicine, New York, NY, USA.,Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Hua Zhong
- Division of Biostatistics, Department of Population Health, New York University School of Medicine, New York, NY, USA
| | | | - Thomas Trimarchi
- Department of Pathology, New York University School of Medicine, New York, NY, USA.,Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA.,BridgeBio Pharma, Palo Alto, CA, USA
| | - Yixing Zhu
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Giorgio G Inghirami
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Timothee Lionnet
- Department of Cell Biology, Institute for Systems Genetics, New York University, New York, NY, USA
| | - Iannis Aifantis
- Department of Pathology, New York University School of Medicine, New York, NY, USA. .,Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA.
| | - Aristotelis Tsirigos
- Department of Pathology, New York University School of Medicine, New York, NY, USA. .,Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA. .,Applied Bioinformatics Laboratories, Office of Science and Research, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
4
|
Thornton AM, Shevach EM. Helios: still behind the clouds. Immunology 2019; 158:161-170. [PMID: 31517385 DOI: 10.1111/imm.13115] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/27/2019] [Accepted: 09/04/2019] [Indexed: 01/08/2023] Open
Abstract
Regulatory T (Treg) cells are a subset of CD4+ T cells that are critical for the maintenance of self-tolerance. The forkhead box transcription factor Foxp3 is a master regulator for the Treg phenotype and function and its expression is essential in Treg cells, as the loss of Foxp3 results in lethal autoimmunity. Two major subsets of Treg cells have been described in vivo; thymus-derived Treg (tTreg) cells that develop in the thymus and peripherally induced Treg (pTreg) cells that are derived from conventional CD4+ Foxp3- T cells and are converted in peripheral tissues to cells that express Foxp3 and acquire suppressive ability. The transcription factor Helios, a member of the Ikaros transcription factor family, is expressed in 60-70% of Treg cells in both mouse and man, and is believed to be a marker of tTreg cells. In this review, we discuss the role and function of Helios in Treg cells, the controversy surrounding the use of Helios as a marker of tTreg cells, and how Helios controls specific aspects of the Treg cell program.
Collapse
Affiliation(s)
- Angela M Thornton
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ethan M Shevach
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
5
|
Park SM, Cho H, Thornton AM, Barlowe TS, Chou T, Chhangawala S, Fairchild L, Taggart J, Chow A, Schurer A, Gruet A, Witkin MD, Kim JH, Shevach EM, Krivtsov A, Armstrong SA, Leslie C, Kharas MG. IKZF2 Drives Leukemia Stem Cell Self-Renewal and Inhibits Myeloid Differentiation. Cell Stem Cell 2019; 24:153-165.e7. [PMID: 30472158 PMCID: PMC6602096 DOI: 10.1016/j.stem.2018.10.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 08/06/2018] [Accepted: 10/10/2018] [Indexed: 01/08/2023]
Abstract
Leukemias exhibit a dysregulated developmental program mediated through both genetic and epigenetic mechanisms. Although IKZF2 is expressed in hematopoietic stem cells (HSCs), we found that it is dispensable for mouse and human HSC function. In contrast to its role as a tumor suppressor in hypodiploid B-acute lymphoblastic leukemia, we found that IKZF2 is required for myeloid leukemia. IKZF2 is highly expressed in leukemic stem cells (LSCs), and its deficiency results in defective LSC function. IKZF2 depletion in acute myeloid leukemia (AML) cells reduced colony formation, increased differentiation and apoptosis, and delayed leukemogenesis. Gene expression, chromatin accessibility, and direct IKZF2 binding in MLL-AF9 LSCs demonstrate that IKZF2 regulates a HOXA9 self-renewal gene expression program and inhibits a C/EBP-driven differentiation program. Ectopic HOXA9 expression and CEBPE depletion rescued the effects of IKZF2 depletion. Thus, our study shows that IKZF2 regulates the AML LSC program and provides a rationale to therapeutically target IKZF2 in myeloid leukemia.
Collapse
MESH Headings
- Animals
- Cell Differentiation
- Cell Self Renewal
- Chromatin/genetics
- Chromatin/metabolism
- DNA-Binding Proteins/physiology
- Female
- Gene Expression Regulation, Leukemic
- Hematopoiesis
- Leukemia, Experimental/genetics
- Leukemia, Experimental/metabolism
- Leukemia, Experimental/pathology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Transcription Factors/physiology
Collapse
Affiliation(s)
- Sun-Mi Park
- Molecular Pharmacology Program and Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hyunwoo Cho
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Angela M Thornton
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Trevor S Barlowe
- Molecular Pharmacology Program and Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Timothy Chou
- Molecular Pharmacology Program and Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sagar Chhangawala
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lauren Fairchild
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - James Taggart
- Molecular Pharmacology Program and Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Arthur Chow
- Molecular Pharmacology Program and Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alexandria Schurer
- Molecular Pharmacology Program and Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Antoine Gruet
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Matthew D Witkin
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jun Hyun Kim
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ethan M Shevach
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Andrei Krivtsov
- Department of Pediatric Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Scott A Armstrong
- Department of Pediatric Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Christina Leslie
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael G Kharas
- Molecular Pharmacology Program and Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
6
|
Iqbal J, Amador C, McKeithan TW, Chan WC. Molecular and Genomic Landscape of Peripheral T-Cell Lymphoma. Cancer Treat Res 2019; 176:31-68. [PMID: 30596212 DOI: 10.1007/978-3-319-99716-2_2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Peripheral T-cell lymphoma (PTCL) is an uncommon group of lymphoma covering a diverse spectrum of entities. Little was known regarding the molecular and genomic landscapes of these diseases until recently but the knowledge is still quite spotty with many rarer types of PTCL remain largely unexplored. In this chapter, the recent findings from gene expression profiling (GEP) studies, including profiling data on microRNA, where available, will be presented with emphasis on the implication on molecular diagnosis, prognostication, and the identification of new entities (PTCL-GATA3 and PTCL-TBX21) in the PTCL-NOS group. Recent studies using next-generation sequencing have unraveled the mutational landscape in a number of PTCL entities leading to a marked improvement in the understanding of their pathogenesis and biology. While many mutations are shared among PTCL entities, the frequency varies and certain mutations are quite unique to a specific entity. For example, TET2 is often mutated but this is particularly frequent (70-80%) in angioimmunoblastic T-cell lymphoma (AITL) and IDH2 R172 mutations appear to be unique for AITL. In general, chromatin modifiers and molecular components in the CD28/T-cell receptor signaling pathways are frequently mutated. The major findings will be summarized in this chapter correlating with GEP data and clinical features where appropriate. The mutational landscape of cutaneous T-cell lymphoma, specifically on mycosis fungoides and Sezary syndrome, will also be discussed.
Collapse
Affiliation(s)
- Javeed Iqbal
- Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, US
| | - Catalina Amador
- Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, US
| | - Timothy W McKeithan
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, USA
| | - Wing C Chan
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, USA.
| |
Collapse
|
7
|
Li Y, Liu Y, Liu C, Liu F, Dou D, Zheng W, Liu W, Liu F. Role of a non-canonical splice variant of the Helios gene in the differentiation of acute lymphoblastic leukemic T cells. Oncol Lett 2018; 15:6957-6966. [PMID: 29725423 DOI: 10.3892/ol.2018.8214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 02/21/2018] [Indexed: 11/05/2022] Open
Abstract
T-cell acute lymphoblastic leukemia is a hematopoietic malignant disease, which arises from a genetic defect in the T-cell maturation signaling pathway. As a result, it is necessary to identify the molecules that impact T-cell development and control lymphoid-lineage malignancy. The present study utilized Jurkat T lymphoblastic cells as a well-established approach for the investigation into the function of the non-canonical alternative splice variant of Helios for the in vitro study of T-cell differentiation and leukemogenesis. In the present study, the Jurkat T-cell lines with stable overexpression of the wild-type (Helios-1) or the non-canonical short isoform (Helios-Δ326-1431), were established. RNA microarray, reverse transcription-quantitative polymerase chain reaction and flow cytometry were used to assess changes in the gene expression profiles and to monitor the cell surface markers during T-cell differentiation. Multiple genes associated with T-cell differentiation and leukemogenesis were identified as being either activated or suppressed. In addition, the results indicated that the stable overexpression of the Helios isoforms stimulated the differentiation pathway of the T-lineage lymphoblastic cells. Therefore, these results suggest that full-length Helios-1 has a tumor suppressor-like and immunomodulatory role, in contrast to the oncogenic function of the non-canonical short isoform Helios-Δ326-1431.
Collapse
Affiliation(s)
- Yinghui Li
- Department of Immunology, School of Medicine, Nankai University, Tianjin 300071, P.R. China
| | - Yanhua Liu
- Department of Immunology, School of Medicine, Nankai University, Tianjin 300071, P.R. China
| | - Can Liu
- Department of Immunology, School of Medicine, Nankai University, Tianjin 300071, P.R. China
| | - Fengyong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Daolei Dou
- Department of Experimental Facility, State Key Laboratory of Medical Chemical Biology, Tianjin 300071, P.R. China
| | - Wenjie Zheng
- Technical Center for Safety of Industrial Products, Tianjin Entry-Exit Inspection and Quarantine Bureau, Tianjin 300308, P.R. China
| | - Wei Liu
- Technical Center for Safety of Industrial Products, Tianjin Entry-Exit Inspection and Quarantine Bureau, Tianjin 300308, P.R. China
| | - Feifei Liu
- Department of Immunology, School of Medicine, Nankai University, Tianjin 300071, P.R. China
| |
Collapse
|
8
|
Abstract
Adult T‐cell leukemia/lymphoma (ATL) is a peripheral T‐cell neoplasm with a dismal prognosis. It is caused by human T‐cell leukemia virus type‐1 (HTLV‐1) retrovirus. A long latency period from HTLV‐1 infection to ATL onset suggests that not only HTLV‐1 proteins, such as Tax and HBZ, but also additional genetic and/or epigenetic events are required for ATL development. Although many studies have demonstrated the biological functions of viral genes, alterations of cellular genes associated with ATL have not been fully investigated. Recently, a large‐scale integrated genetic analysis revealed the entire landscape of somatic aberrations in ATL. This neoplasm is characterized by frequent gain‐of‐function alterations in components of the T‐cell receptor/NF‐κB signaling pathway, including activating mutations in the PLCG1,PRKCB,CARD11 and VAV1 genes, and CTLA4‐CD28 and ICOS‐CD28 fusions. Importantly, molecules associated with immune surveillance, such as HLA‐A/B,CD58 and FAS, are affected recurrently. Among them, one notable lesion occurs as frequent structural variations that truncate the PD‐L1 3′‐untranslated region, leading to its overexpression. Other genetic targets include transcription factors (IRF4,IKZF2, and GATA3) and chemokine receptors (CCR4,CCR7 and GPR183), which are functionally relevant in normal T cells. A substantial proportion of ATL cases show widespread accumulation of repressive epigenetic changes, such as trimethylation of histone H3 lysine 27 and DNA hypermethylation of CpG islands, which coordinately modulate multiple pathways, including Cys2‐His2 zinc finger genes involved in silencing retroelements. Here we review the current understanding of the genetic/epigenetic aberrations in ATL, focusing on their relevance in its molecular pathogenesis.
Collapse
Affiliation(s)
- Yasunori Kogure
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Keisuke Kataoka
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
9
|
Martín-Ibáñez R, Pardo M, Giralt A, Miguez A, Guardia I, Marion-Poll L, Herranz C, Esgleas M, Garcia-Díaz Barriga G, Edel MJ, Vicario-Abejón C, Alberch J, Girault JA, Chan S, Kastner P, Canals JM. Helios expression coordinates the development of a subset of striatopallidal medium spiny neurons. Development 2017; 144:1566-1577. [PMID: 28289129 PMCID: PMC5399659 DOI: 10.1242/dev.138248] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 03/03/2017] [Indexed: 12/25/2022]
Abstract
Here, we unravel the mechanism of action of the Ikaros family zinc finger protein Helios (He) during the development of striatal medium spiny neurons (MSNs). He regulates the second wave of striatal neurogenesis involved in the generation of striatopallidal neurons, which express dopamine 2 receptor and enkephalin. To exert this effect, He is expressed in neural progenitor cells (NPCs) keeping them in the G1/G0 phase of the cell cycle. Thus, a lack of He results in an increase of S-phase entry and S-phase length of NPCs, which in turn impairs striatal neurogenesis and produces an accumulation of the number of cycling NPCs in the germinal zone (GZ), which end up dying at postnatal stages. Therefore, He−/− mice show a reduction in the number of dorso-medial striatal MSNs in the adult that produces deficits in motor skills acquisition. In addition, overexpression of He in NPCs induces misexpression of DARPP-32 when transplanted in mouse striatum. These findings demonstrate that He is involved in the correct development of a subset of striatopallidal MSNs and reveal new cellular mechanisms for neuronal development. Summary: The transcription factor Helios regulates G1-S transition to promote neuronal differentiation of a striatopallidal neuronal subpopulation involved in motor skill acquisition.
Collapse
Affiliation(s)
- Raquel Martín-Ibáñez
- Stem Cells and Regenerative Medicine Laboratory, Production and Validation Center of Advanced Therapies (Creatio), Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain.,Neuroscience Institute, University of Barcelona, 08036 Barcelona, Spain.,August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain.,Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Spain.,Research and Development Unit, Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
| | - Mónica Pardo
- Stem Cells and Regenerative Medicine Laboratory, Production and Validation Center of Advanced Therapies (Creatio), Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain.,Neuroscience Institute, University of Barcelona, 08036 Barcelona, Spain.,August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain.,Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Spain
| | - Albert Giralt
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain.,Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Spain.,Pathophysiology of Neurodegenerative Diseases Laboratory, Production and Validation Center of Advanced Therapies (Creatio), Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
| | - Andrés Miguez
- Stem Cells and Regenerative Medicine Laboratory, Production and Validation Center of Advanced Therapies (Creatio), Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain.,Neuroscience Institute, University of Barcelona, 08036 Barcelona, Spain.,August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain.,Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Spain
| | - Inés Guardia
- Stem Cells and Regenerative Medicine Laboratory, Production and Validation Center of Advanced Therapies (Creatio), Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain.,Neuroscience Institute, University of Barcelona, 08036 Barcelona, Spain.,August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain.,Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Spain
| | - Lucile Marion-Poll
- Inserm UMR-S839; Université Pierre et Marie Curie (UPMC, Paris 6), Sorbonne Universités; Institut du Fer à Moulin, 75005 Paris, France
| | - Cristina Herranz
- Stem Cells and Regenerative Medicine Laboratory, Production and Validation Center of Advanced Therapies (Creatio), Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain.,Neuroscience Institute, University of Barcelona, 08036 Barcelona, Spain.,August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain.,Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Spain.,Research and Development Unit, Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
| | - Miriam Esgleas
- Stem Cells and Regenerative Medicine Laboratory, Production and Validation Center of Advanced Therapies (Creatio), Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain.,August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain.,Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Spain
| | - Gerardo Garcia-Díaz Barriga
- Neuroscience Institute, University of Barcelona, 08036 Barcelona, Spain.,August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain.,Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Spain.,Pathophysiology of Neurodegenerative Diseases Laboratory, Production and Validation Center of Advanced Therapies (Creatio), Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
| | - Michael J Edel
- Control of Pluripotency Laboratory, Department of Biomedical Sciences, Faculty of Medicine and Health Science, University of Barcelona, 08036 Barcelona, Spain.,Victor Chang Cardiac Research Institute, Sydney, New South Wales, 2010 Australia.,School of Medicine and Pharmacology, Anatomy, Physiology and Human Biology, CCTRM, University of Western Australia, Western Australia, 6009 Australia
| | - Carlos Vicario-Abejón
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Spain.,Departamento de Neurobiología Molecular, Celular y del Desarrollo, Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), 28002 Madrid, Spain
| | - Jordi Alberch
- Neuroscience Institute, University of Barcelona, 08036 Barcelona, Spain.,August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain.,Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Spain
| | - Jean-Antoine Girault
- Inserm UMR-S839; Université Pierre et Marie Curie (UPMC, Paris 6), Sorbonne Universités; Institut du Fer à Moulin, 75005 Paris, France
| | - Susan Chan
- Stem Cells and Regenerative Medicine Laboratory, Production and Validation Center of Advanced Therapies (Creatio), Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain.,Neuroscience Institute, University of Barcelona, 08036 Barcelona, Spain
| | - Philippe Kastner
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Inserm U964, Centre National de la Recherche Scientifique (CNRS) UMR 7104, 67400 Illkirch-Graffenstaden, France.,Faculté de Médecine, Université de Strasbourg, 67081 Strasbourg, France
| | - Josep M Canals
- Stem Cells and Regenerative Medicine Laboratory, Production and Validation Center of Advanced Therapies (Creatio), Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain .,Neuroscience Institute, University of Barcelona, 08036 Barcelona, Spain.,August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain.,Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Spain.,Research and Development Unit, Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
| |
Collapse
|
10
|
Mitchell JL, Yankee TM. Variations in mRNA and protein levels of Ikaros family members in pediatric T cell acute lymphoblastic leukemia. ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:363. [PMID: 27826566 DOI: 10.21037/atm.2016.09.29] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Pediatric T cell acute lymphoblastic leukemia (T-ALL) is a highly heterogeneous disease in which the cells share phenotypic characteristics with normal human thymocytes. The Ikaros family of transcription factors includes five members that are required for normal T cell development and are implicated in leukemogenesis. The goal of this work was to correlate the pattern of expression of Ikaros family members with the phenotype of the T-ALL cells. METHODS We obtained twenty-four samples from pediatric T-ALL patients and used multi-parameter flow cytometry to characterize each sample, comparing the phenotype of the leukemic cells with normal human thymocytes. Then, we defined the expression levels of each Ikaros family member to determine whether the mRNA levels or splicing or protein levels were similar to the normal patterns seen during human T cell development. RESULTS Multi-parameter analysis of the phenotype of T-ALL cells revealed that each patient's cells were unique and could not be readily correlated with stages of T cell development. Similarly, the pattern of Ikaros expression varied among patients. In most patients, Ikaros mRNA was the dominant family member expressed, but some patients' cells contained mostly Helios, Aiolos, or Eos mRNA. Despite that most patients had elevated mRNA levels of Ikaros family members and unique patterns of mRNA splicing, most patients had significantly reduced protein levels of Ikaros and Aiolos. CONCLUSIONS Our analysis of the cell phenotype and Ikaros expression levels in T-ALL cells revealed the extent of heterogeneity among patients. While it is rarely possible to trace leukemic cells to their developmental origin, we found distinct patterns of Ikaros family mRNA levels in groups of patients. Further, mRNA and protein levels of Ikaros and Aiolos did not correlate, indicating that mRNA and protein levels are regulated via distinct mechanisms.
Collapse
Affiliation(s)
- Julie L Mitchell
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA;; US Military HIV Research Program, Silver Spring, MD 20910, USA
| | - Thomas M Yankee
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
11
|
Zhao S, Liu W, Li Y, Liu P, Li S, Dou D, Wang Y, Yang R, Xiang R, Liu F. Alternative Splice Variants Modulates Dominant-Negative Function of Helios in T-Cell Leukemia. PLoS One 2016; 11:e0163328. [PMID: 27681508 PMCID: PMC5040427 DOI: 10.1371/journal.pone.0163328] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 09/06/2016] [Indexed: 12/21/2022] Open
Abstract
The molecular defects which lead to multistep incidences of human T-cell leukemia have yet to be identified. The DNA-binding protein Helios (known as IKZF2), a member of the Ikaros family of Krüppel-like zinc-finger proteins, functions pivotally in T-cell differentiation and activation. In this study, we identify three novel short Helios splice variants which are T-cell leukemic specific, and demonstrate their dominant-negative function. We then test the cellular localization of distinct Helios isoforms, as well as their capability to form heterodimer with Ikaros, and the association with complexes comprising histone deacetylase (HDAC). In addition, the ectopic expression of T-cell leukemic Helios isoforms interferes with T-cell proliferation and apoptosis. The gene expression profiling and pathway analysis indicated the enrichment of signaling pathways essential for gene expression, translation, cell cycle checkpoint, and response to DNA damage stimulus. These data indicate the molecular function of Helios to be involved in the leukemogenesis and phenotype of T-cell leukemia, and also reveal Helios deregulation as a novel marker for T-cell leukemia.
Collapse
Affiliation(s)
- Shaorong Zhao
- Department of Immunology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Wei Liu
- Tianjin Entry-Exit Inspection and Quarantine Bureau, Tianjin 300308, China
| | - Yinghui Li
- Department of Immunology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Pengjiang Liu
- Department of Hematology, First-Central Hospital, Tianjin 300060, China
| | - Shufang Li
- Department of Immunology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Daolei Dou
- State Key Laboratory of Medical Chemical Biology, Tianjin 300070, China
| | - Yue Wang
- Department of Immunology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Rongcun Yang
- Department of Immunology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Rong Xiang
- Department of Immunology, School of Medicine, Nankai University, Tianjin 300071, China
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Tianjin 300071, China
- * E-mail: (FL); (RX)
| | - Feifei Liu
- Department of Immunology, School of Medicine, Nankai University, Tianjin 300071, China
- * E-mail: (FL); (RX)
| |
Collapse
|
12
|
Mitchell JL, Seng A, Yankee TM. Expression patterns of Ikaros family members during positive selection and lineage commitment of human thymocytes. Immunology 2016; 149:400-412. [PMID: 27502439 DOI: 10.1111/imm.12657] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 07/19/2016] [Accepted: 08/03/2016] [Indexed: 12/12/2022] Open
Abstract
The Ikaros family of transcription factors is essential for normal T-cell development, but their expression pattern in human thymocytes remains poorly defined. Our goal is to determine how protein levels of Ikaros, Helios and Aiolos change as human thymocytes progress through the positive selection and lineage commitment stages. To accomplish this goal, we used multi-parameter flow cytometry to define the populations in which positive selection and lineage commitment are most likely to occur. After human thymocytes express CD3 and receive positive selection signals, the cells down-regulate expression of CD4 to become transitional single-positive (TSP) CD8+ thymocytes. At this stage, there was a transient increase in the Ikaros, Helios and Aiolos protein levels. After the TSP CD8+ developmental stage, some thymocytes re-express CD4 and become CD3hi double-positive thymocytes before down-regulating CD8 to become mature single-positive CD4+ thymocytes. Except for regulatory T cells, Helios protein levels declined and Aiolos protein levels transiently increased during CD4+ T-cell maturation. For thymocytes progressing toward the CD8+ T-cell lineage, TSP CD8+ thymocytes increase their expression of CD3 and maintain high levels of Aiolos protein as the cells complete their maturation. In summary, we defined the TSP CD8+ developmental stage in human T-cell development and propose that this stage is where CD4/CD8 lineage commitment occurs. Ikaros, Helios and Aiolos each undergo a transient increase in protein levels at the TSP stage before diverging in their expression patterns at later stages.
Collapse
Affiliation(s)
- Julie L Mitchell
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Amara Seng
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Thomas M Yankee
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
13
|
Affiliation(s)
- Claire Chougnet
- Division of Immunobiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center and the University of Cincinnati, Cincinnati, OH 45229, USA
| | - David Hildeman
- Division of Immunobiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center and the University of Cincinnati, Cincinnati, OH 45229, USA
| |
Collapse
|
14
|
Kataoka K, Nagata Y, Kitanaka A, Shiraishi Y, Shimamura T, Yasunaga JI, Totoki Y, Chiba K, Sato-Otsubo A, Nagae G, Ishii R, Muto S, Kotani S, Watatani Y, Takeda J, Sanada M, Tanaka H, Suzuki H, Sato Y, Shiozawa Y, Yoshizato T, Yoshida K, Makishima H, Iwanaga M, Ma G, Nosaka K, Hishizawa M, Itonaga H, Imaizumi Y, Munakata W, Ogasawara H, Sato T, Sasai K, Muramoto K, Penova M, Kawaguchi T, Nakamura H, Hama N, Shide K, Kubuki Y, Hidaka T, Kameda T, Nakamaki T, Ishiyama K, Miyawaki S, Yoon SS, Tobinai K, Miyazaki Y, Takaori-Kondo A, Matsuda F, Takeuchi K, Nureki O, Aburatani H, Watanabe T, Shibata T, Matsuoka M, Miyano S, Shimoda K, Ogawa S. Integrated molecular analysis of adult T cell leukemia/lymphoma. Nat Genet 2015; 47:1304-15. [PMID: 26437031 DOI: 10.1038/ng.3415] [Citation(s) in RCA: 593] [Impact Index Per Article: 65.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 09/09/2015] [Indexed: 12/11/2022]
Abstract
Adult T cell leukemia/lymphoma (ATL) is a peripheral T cell neoplasm of largely unknown genetic basis, associated with human T cell leukemia virus type-1 (HTLV-1) infection. Here we describe an integrated molecular study in which we performed whole-genome, exome, transcriptome and targeted resequencing, as well as array-based copy number and methylation analyses, in a total of 426 ATL cases. The identified alterations overlap significantly with the HTLV-1 Tax interactome and are highly enriched for T cell receptor-NF-κB signaling, T cell trafficking and other T cell-related pathways as well as immunosurveillance. Other notable features include a predominance of activating mutations (in PLCG1, PRKCB, CARD11, VAV1, IRF4, FYN, CCR4 and CCR7) and gene fusions (CTLA4-CD28 and ICOS-CD28). We also discovered frequent intragenic deletions involving IKZF2, CARD11 and TP73 and mutations in GATA3, HNRNPA2B1, GPR183, CSNK2A1, CSNK2B and CSNK1A1. Our findings not only provide unique insights into key molecules in T cell signaling but will also guide the development of new diagnostics and therapeutics in this intractable tumor.
Collapse
Affiliation(s)
- Keisuke Kataoka
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasunobu Nagata
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akira Kitanaka
- Department of Gastroenterology and Hematology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Yuichi Shiraishi
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Teppei Shimamura
- Division of Systems Biology, Center for Neurological Disease and Cancer, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Jun-Ichirou Yasunaga
- Laboratory of Virus Control, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Yasushi Totoki
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Kenichi Chiba
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Aiko Sato-Otsubo
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Genta Nagae
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Ryohei Ishii
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Satsuki Muto
- Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Shinichi Kotani
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yosaku Watatani
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - June Takeda
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masashi Sanada
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Advanced Diagnosis, Clinical Research Center, Nagoya Medical Center, Nagoya, Japan
| | - Hiroko Tanaka
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hiromichi Suzuki
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yusuke Sato
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yusuke Shiozawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tetsuichi Yoshizato
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kenichi Yoshida
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hideki Makishima
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masako Iwanaga
- Department of Frontier Life Science, Nagasaki University Graduate School of Biomedical Science, Nagasaki, Japan
| | - Guangyong Ma
- Laboratory of Virus Control, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Kisato Nosaka
- Department of Hematology, Kumamoto University School of Medicine, Kumamoto, Japan
| | - Masakatsu Hishizawa
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hidehiro Itonaga
- Department of Hematology, Sasebo City General Hospital, Sasebo, Japan
| | - Yoshitaka Imaizumi
- Department of Hematology, Atomic Bomb Disease and Hibakusya Medicine Unit, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Wataru Munakata
- Department of Hematology, National Cancer Center Hospital, Tokyo, Japan
| | | | | | - Ken Sasai
- KAN Research Institute, Inc., Kobe, Japan
| | | | - Marina Penova
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takahisa Kawaguchi
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiromi Nakamura
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Natsuko Hama
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Kotaro Shide
- Department of Gastroenterology and Hematology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Yoko Kubuki
- Department of Gastroenterology and Hematology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Tomonori Hidaka
- Department of Gastroenterology and Hematology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Takuro Kameda
- Department of Gastroenterology and Hematology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Tsuyoshi Nakamaki
- Division of Hematology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Ken Ishiyama
- Department of Hematology and Oncology, Kanazawa University Hospital, Kanazawa, Japan
| | - Shuichi Miyawaki
- Division of Hematology, Department of Internal Medicine, Tokyo Metropolitan Ohtsuka Hospital, Tokyo, Japan
| | - Sung-Soo Yoon
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Kensei Tobinai
- Department of Hematology, National Cancer Center Hospital, Tokyo, Japan
| | - Yasushi Miyazaki
- Department of Hematology, Atomic Bomb Disease and Hibakusya Medicine Unit, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Akifumi Takaori-Kondo
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Fumihiko Matsuda
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kengo Takeuchi
- Pathology Project for Molecular Targets, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Aburatani
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Toshiki Watanabe
- Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Tatsuhiro Shibata
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan.,Laboratory of Molecular Medicine, Human Genome Center, The institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Masao Matsuoka
- Laboratory of Virus Control, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Satoru Miyano
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kazuya Shimoda
- Department of Gastroenterology and Hematology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
15
|
Pinheiro D, Chang YM, Bryant H, Szladovits B, Dalessandri T, Davison LJ, Yallop E, Mills E, Leo C, Lara A, Stell A, Polton G, Garden OA. Dissecting the regulatory microenvironment of a large animal model of non-Hodgkin lymphoma: evidence of a negative prognostic impact of FOXP3+ T cells in canine B cell lymphoma. PLoS One 2014; 9:e105027. [PMID: 25119018 PMCID: PMC4132014 DOI: 10.1371/journal.pone.0105027] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 07/19/2014] [Indexed: 02/06/2023] Open
Abstract
The cancer microenvironment plays a pivotal role in oncogenesis, containing a number of regulatory cells that attenuate the anti-neoplastic immune response. While the negative prognostic impact of regulatory T cells (Tregs) in the context of most solid tissue tumors is well established, their role in lymphoid malignancies remains unclear. T cells expressing FOXP3 and Helios were documented in the fine needle aspirates of affected lymph nodes of dogs with spontaneous multicentric B cell lymphoma (BCL), proposed to be a model for human non-Hodgkin lymphoma. Multivariable analysis revealed that the frequency of lymph node FOXP3+ T cells was an independent negative prognostic factor, impacting both progression-free survival (hazard ratio 1.10; p = 0.01) and overall survival (hazard ratio 1.61; p = 0.01) when comparing dogs showing higher than the median FOXP3 expression with those showing the median value of FOXP3 expression or less. Taken together, these data suggest the existence of a population of Tregs operational in canine multicentric BCL that resembles thymic Tregs, which we speculate are co-opted by the tumor from the periphery. We suggest that canine multicentric BCL represents a robust large animal model of human diffuse large BCL, showing clinical, cytological and immunophenotypic similarities with the disease in man, allowing comparative studies of immunoregulatory mechanisms.
Collapse
Affiliation(s)
- Dammy Pinheiro
- Department of Clinical Sciences and Services, Immune Regulation Laboratory, The Royal Veterinary College, London, United Kingdom
| | - Yu-Mei Chang
- Research Office, The Royal Veterinary College, London, United Kingdom
| | - Hannah Bryant
- Department of Clinical Sciences and Services, Immune Regulation Laboratory, The Royal Veterinary College, London, United Kingdom
| | - Balazs Szladovits
- Department of Pathology and Pathogen Biology, The Royal Veterinary College, Hatfield, Hertfordshire, United Kingdom
| | - Tim Dalessandri
- Department of Clinical Sciences and Services, Immune Regulation Laboratory, The Royal Veterinary College, London, United Kingdom
| | - Lucy J. Davison
- Henry Wellcome Building, Centre for Cellular and Molecular Physiology, University of Oxford, Oxford, United Kingdom
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Elizabeth Yallop
- Clinical Investigation Centre, The Royal Veterinary College, Hatfield, Hertfordshire, United Kingdom
| | - Emily Mills
- Clinical Investigation Centre, The Royal Veterinary College, Hatfield, Hertfordshire, United Kingdom
| | - Chiara Leo
- Department of Clinical Sciences and Services, Queen Mother Hospital for Animals, The Royal Veterinary College, Hatfield, Hertfordshire, United Kingdom
| | - Ana Lara
- Department of Clinical Sciences and Services, Queen Mother Hospital for Animals, The Royal Veterinary College, Hatfield, Hertfordshire, United Kingdom
| | - Anneliese Stell
- Department of Clinical Sciences and Services, Queen Mother Hospital for Animals, The Royal Veterinary College, Hatfield, Hertfordshire, United Kingdom
| | - Gerry Polton
- Oncology Service, North Downs Specialist Referrals, Bletchingley, Surrey, United Kingdom
| | - Oliver A. Garden
- Department of Clinical Sciences and Services, Immune Regulation Laboratory, The Royal Veterinary College, London, United Kingdom
- Department of Clinical Sciences and Services, Queen Mother Hospital for Animals, The Royal Veterinary College, Hatfield, Hertfordshire, United Kingdom
- * E-mail:
| |
Collapse
|
16
|
Ross EM, Bourges D, Hogan TV, Gleeson PA, van Driel IR. Helios defines T cells being driven to tolerance in the periphery and thymus. Eur J Immunol 2014; 44:2048-58. [PMID: 24740292 DOI: 10.1002/eji.201343999] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 03/04/2014] [Accepted: 04/11/2014] [Indexed: 01/04/2023]
Abstract
The expression of the Ikaros transcription factor family member, Helios, has been shown to be associated with T-cell tolerance in both the thymus and the periphery. To better understand the importance of Helios in tolerance pathways, we have examined the expression of Helios in TCR-transgenic T cells specific for the gastric H(+) /K(+) ATPase, the autoantigen target in autoimmune gastritis. Analysis of H(+) /K(+) ATPase-specific T cells in mice with different patterns of H(+) /K(+) ATPase expression revealed that, in addition to the expression of Helios in CD4(+) Foxp3(+) regulatory T (Treg) cells, Helios is expressed by a large proportion of CD4(+) Foxp3(-) T cells in both the thymus and the paragastric lymph node (PgLN), which drains the stomach. In the thymus, Helios was expressed by H(+) /K(+) ATPase-specific thymocytes that were undergoing negative selection. In the periphery, Helios was expressed in H(+) /K(+) ATPase-specific CD4(+) T cells following H(+) /K(+) ATPase presentation and was more highly expressed when T-cell activation occurred in the absence of inflammation. Analysis of purified H(+) /K(+) ATPase-specific CD4(+) Foxp3(-) Helios(+) T cells demonstrated that they were functionally anergic. These results demonstrate that Helios is expressed by thymic and peripheral T cells that are being driven to tolerance in response to a genuine autoantigen.
Collapse
Affiliation(s)
- Ellen M Ross
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Australia
| | | | | | | | | |
Collapse
|
17
|
Peters C, Oberg HH, Kabelitz D, Wesch D. Phenotype and regulation of immunosuppressive Vδ2-expressing γδ T cells. Cell Mol Life Sci 2013; 71:1943-60. [PMID: 24091816 PMCID: PMC3997799 DOI: 10.1007/s00018-013-1467-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 08/09/2013] [Accepted: 08/29/2013] [Indexed: 02/06/2023]
Abstract
The proliferation and interleukin-2 production of CD4(+)CD25(-) αβ T cells were inhibited in a cell-contact manner by Vδ2 γδ T cells. The transcription factor Helios was constitutively expressed in about one-third of circulating γδ T cells and was upregulated by CD28-signaling. Our data suggest that Helios could serve as a marker for differential activation status rather than for regulatory T cells (Treg). Our findings also indicate that the interaction of CD86 on activated Vδ2 T cells and cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) on activated αβ T cells mediated the suppression because the suppressive effect was abolished by blocking the CD86:CTLA-4 interaction. Pre-treatment of Vδ2 T cells with Toll-like receptor 2 ligands enhanced phosphorylation of MAPKs, Akt, and NF-κB and partially abrogated the suppressive capacity, whereas on co-cultured responder T cells inhibitory molecules were downregulated and Akt and NF-κB phosphorylation was restored. Our results suggest that the regulation of αβ T cell proliferation by activated Vδ2 T cells might contribute to fine-tuning of αβ T cell responses.
Collapse
Affiliation(s)
- Christian Peters
- Institute of Immunology, Christian-Albrechts University of Kiel, Arnold-Heller Strasse 3, Haus 17, 24105, Kiel, Germany,
| | | | | | | |
Collapse
|
18
|
Asanuma S, Yamagishi M, Kawanami K, Nakano K, Sato-Otsubo A, Muto S, Sanada M, Yamochi T, Kobayashi S, Utsunomiya A, Iwanaga M, Yamaguchi K, Uchimaru K, Ogawa S, Watanabe T. Adult T-cell leukemia cells are characterized by abnormalities of Helios expression that promote T cell growth. Cancer Sci 2013; 104:1097-106. [PMID: 23600753 DOI: 10.1111/cas.12181] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 04/11/2013] [Accepted: 04/15/2013] [Indexed: 12/14/2022] Open
Abstract
Molecular abnormalities involved in the multistep leukemogenesis of adult T-cell leukemia (ATL) remain to be clarified. Based on our integrated database, we focused on the expression patterns and levels of Ikaros family genes, Ikaros, Helios, and Aiolos, in ATL patients and HTLV-1 carriers. The results revealed profound deregulation of Helios expression, a pivotal regulator in the control of T-cell differentiation and activation. The majority of ATL samples (32/37 cases) showed abnormal splicing of Helios expression, and four cases did not express Helios. In addition, novel genomic loss in Helios locus was observed in 17/168 cases. We identified four ATL-specific short Helios isoforms and revealed their dominant-negative function. Ectopic expression of ATL-type Helios isoform as well as knockdown of normal Helios or Ikaros promoted T-cell growth. Global mRNA profiling and pathway analysis showed activation of several signaling pathways important for lymphocyte proliferation and survival. These data provide new insights into the molecular involvement of Helios function in the leukemogenesis and phenotype of ATL cells, indicating that Helios deregulation is one of the novel molecular hallmarks of ATL.
Collapse
Affiliation(s)
- Satomi Asanuma
- Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Clambey ET, Collins B, Young MH, Eberlein J, David A, Kappler JW, Marrack P. The Ikaros transcription factor regulates responsiveness to IL-12 and expression of IL-2 receptor alpha in mature, activated CD8 T cells. PLoS One 2013; 8:e57435. [PMID: 23483882 PMCID: PMC3585008 DOI: 10.1371/journal.pone.0057435] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 01/21/2013] [Indexed: 11/23/2022] Open
Abstract
The Ikaros family of transcription factors is critical for normal T cell development while limiting malignant transformation. Mature CD8 T cells express multiple Ikaros family members, yet little is known about their function in this context. To test the functions of this gene family, we used retroviral transduction to express a naturally occurring, dominant negative (DN) isoform of Ikaros in activated CD8 T cells. Notably, expression of DN Ikaros profoundly enhanced the competitive advantage of activated CD8 T cells cultured in IL-12, such that by 6 days of culture, DN Ikaros-transduced cells were 100-fold more abundant than control cells. Expression of a DN isoform of Helios, a related Ikaros-family transcription factor, conferred a similar advantage to transduced cells in IL-12. While DN Ikaros-transduced cells had higher expression of the IL-2 receptor alpha chain, DN Ikaros-transduced cells achieved their competitive advantage through an IL-2 independent mechanism. Finally, the competitive advantage of DN Ikaros-transduced cells was manifested in vivo, following adoptive transfer of transduced cells. These data identify the Ikaros family of transcription factors as regulators of cytokine responsiveness in activated CD8 T cells, and suggest a role for this family in influencing effector and memory CD8 T cell differentiation.
Collapse
Affiliation(s)
- Eric T Clambey
- Integrated Department of Immunology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.
| | | | | | | | | | | | | |
Collapse
|
20
|
Daley SR, Hu DY, Goodnow CC. Helios marks strongly autoreactive CD4+ T cells in two major waves of thymic deletion distinguished by induction of PD-1 or NF-κB. ACTA ACUST UNITED AC 2013; 210:269-85. [PMID: 23337809 PMCID: PMC3570102 DOI: 10.1084/jem.20121458] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Expression of the transcription factor Helios identifies thymocyte divergence during positive and negative selection. Acquisition of self-tolerance in the thymus requires T cells to discriminate strong versus weak T cell receptor binding by self-peptide–MHC complexes. We find this discrimination is reported by expression of the transcription factor Helios, which is induced during negative selection but decreases during positive selection. Helios and the proapoptotic protein Bim were coinduced in 55% of nascent CCR7− CD4+ CD69+ thymocytes. These were short-lived cells that up-regulated PD-1 and down-regulated CD4 and CD8 during Bim-dependent apoptosis. Helios and Bim were also coinduced at the subsequent CCR7+ CD4+ CD69+ CD8− stage, and this second wave of Bim-dependent negative selection involved 20% of nascent cells. Unlike CCR7− counterparts, Helios+ CCR7+ CD4+ cells mount a concurrent Card11- and c-Rel–dependent activation response that opposes Bim-mediated apoptosis. This “hollow” activation response consists of many NF-κB target genes but lacks key growth mediators like IL-2 and Myc, and the thymocytes were not induced to proliferate. These findings identify Helios as the first marker known to diverge during positive and negative selection of thymocytes and reveal the extent, stage, and molecular nature of two distinct waves of clonal deletion in the normal thymus.
Collapse
Affiliation(s)
- Stephen R Daley
- Department of Immunology, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | | | | |
Collapse
|
21
|
Genome-wide identification of Ikaros targets elucidates its contribution to mouse B-cell lineage specification and pre-B-cell differentiation. Blood 2013; 121:1769-82. [PMID: 23303821 DOI: 10.1182/blood-2012-08-450114] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Ikaros family DNA-binding proteins are critical regulators of B-cell development. Because the current knowledge of Ikaros targets in B-cell progenitors is limited, we have identified genes that are bound and regulated by Ikaros in pre-B cells. To elucidate the role of Ikaros in B-cell lineage specification and differentiation, we analyzed the differential expression of Ikaros targets during the progression of multipotent to lymphoid-restricted progenitors, B- and T-cell lineage specification, and progression along the B-cell lineage. Ikaros targets accounted for one-half of all genes up-regulated during B-cell lineage specification in vivo, explaining the essential role of Ikaros in this process. Expression of the Ikaros paralogs Ikzf1 and Ikzf3 increases incrementally during B-cell progenitor differentiation, and, remarkably, inducible Ikaros expression in cycling pre-B cells was sufficient to drive transcriptional changes resembling the differentiation of cycling to resting pre-Bcells in vivo. The data suggest that Ikaros transcription factor dosage drives the progression of progenitors along a predetermined lineage by regulating multiple targets in key pathways, including pre-B–cell receptor signaling, cell cycle progression, and lymphocyte receptor rearrangement.Our approachmay be of general use to map the contribution of transcription factors to cell lineage commitment and differentiation.
Collapse
|
22
|
HELIOS-BCL11B fusion gene involvement in a t(2;14)(q34;q32) in an adult T-cell leukemia patient. Cancer Genet 2012; 205:356-64. [PMID: 22867996 DOI: 10.1016/j.cancergen.2012.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 04/10/2012] [Accepted: 04/14/2012] [Indexed: 11/21/2022]
Abstract
To provide fundamental insights into the leukemogenesis of adult T-cell leukemia/lymphoma (ATLL), we performed a molecular analysis of the chromosomal abnormalities in one ATLL case with a novel reciprocal translocation: t(2;14)(q34;q32). Using fluorescence in situ hybridization with cosmid probes derived from the 14q32 region, we characterized the rearranged 14q32 allele. Molecular cloning of the breakpoint revealed that the reciprocal translocation fused the 5' proximal region of the B-cell lymphoma 11B (BCL11B) gene segment (on 14q32) to the third intron of the HELIOS gene (on 2q34). Reverse transcription-polymerase chain reaction analysis of the leukemia cells revealed that a substantial level of the HELIOS-BCL11B fusion mRNA was expressed relative to the level of wild-type (WT)-BCL11B derived from the intact allele. In contrast, an aberrant HELIOS isoform was detected at a low level of expression compared to the expression of normal HELIOS isoforms. Functional analysis of the HELIOS-BCL11B fusion protein revealed reduced transcriptional suppression activity compared to that of the WT-BCL11B due to the loss of the N-terminal friend of GATA-repression motif, which functions as a metastasis-associated protein 2 binding site. We also found abnormal subnuclear localization of the ectopically expressed fusion protein compared to the localization of WT-BCL11B to subnuclear speckles in HEK293T cells. Our results suggest that dysfunction of the BCL11B gene plays an important role in the development of ATLL.
Collapse
|
23
|
Martín-Ibáñez R, Crespo E, Esgleas M, Urban N, Wang B, Waclaw R, Georgopoulos K, Martínez S, Campbell K, Vicario-Abejón C, Alberch J, Chan S, Kastner P, Rubenstein JL, Canals JM. Helios transcription factor expression depends on Gsx2 and Dlx1&2 function in developing striatal matrix neurons. Stem Cells Dev 2012; 21:2239-51. [PMID: 22142223 DOI: 10.1089/scd.2011.0607] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Development of the nervous system is finely regulated by consecutive expression of cell-specific transcription factors. Here we show that Helios, a member of the Ikaros transcription factor family, is expressed in ectodermal and neuroectodermal-derived tissues. During embryonic development, Helios is expressed by several brain structures including the lateral ganglionic eminence (LGE, the striatal anlage); the cingulated, insular and retrosplenial cortex; the hippocampus; and the accessory olfactory bulb. Moreover, Helios is also expressed by Purkinje neurons during postnatal cerebellar development. Within the LGE, Helios expression follows a dynamic spatio-temporal pattern starting at embryonic stages (E14.5), peaking at E18.5, and completely disappearing during postnatal development. Helios is expressed by a small population of nestin-positive neural progenitor cells located in the subventricular zone as well as by a larger population of immature neurons distributed throughout the mantle zone. In the later, Helios is preferentially expressed in the matrix compartment, where it colocalizes with Bcl11b and Foxp1, well-known markers of striatal projection neurons. In addition, we observed that Helios expression is not detected in Dlx1/2 and Gsx2 null mutants, while its expression is maintained in Ascl1 mutants. These findings allow us to introduce a new transcription factor in the cascade of events that take part of striatal development postulating the existence of at least 4 different neural progenitors in the LGE. An Ascl1-independent but Gsx2- & Dlx1/2-dependent precursor will express Helios defining a new lineage for a subset of matrix striatal neurons.
Collapse
Affiliation(s)
- Raquel Martín-Ibáñez
- Department of Cell Biology, Immunology and Neuroscience, and Cell Therapy Program, Faculty of Medicine, Institut d'Investigacions Biomèdiques August Pi i Sunyer-IDIBAPS, University of Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Helios expression is a marker of T cell activation and proliferation. PLoS One 2011; 6:e24226. [PMID: 21918685 PMCID: PMC3168881 DOI: 10.1371/journal.pone.0024226] [Citation(s) in RCA: 294] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 08/08/2011] [Indexed: 02/06/2023] Open
Abstract
Foxp3+ T-regulatory cells (Tregs) normally serve to attenuate immune responses and are key to maintenance of immune homeostasis. Over the past decade, Treg cells have become a major focus of research for many groups, and various functional subsets have been characterized. Recently, the Ikaros family member, Helios, was reported as a marker to discriminate naturally occurring, thymic-derived Tregs from those peripherally induced from naïve CD4+ T cells. We investigated Helios expression in murine and human T cells under resting or activating conditions, using well-characterized molecules of naïve/effector/memory phenotypes, as well as a set of Treg-associated markers. We found that Helios-negative T cells are enriched for naïve T cell phenotypes and vice versa. Moreover, Helios can be induced during T cell activation and proliferation, but regresses in the same cells under resting conditions. We demonstrated comparable findings using human and murine CD4+Foxp3+ Tregs, as well as in CD4+ and CD8+ T cells. Since Helios expression is associated with T cell activation and cellular division, regardless of the cell subset involved, it does not appear suitable as a marker to distinguish natural and induced Treg cells.
Collapse
|
25
|
John LB, Ward AC. The Ikaros gene family: transcriptional regulators of hematopoiesis and immunity. Mol Immunol 2011; 48:1272-8. [PMID: 21477865 DOI: 10.1016/j.molimm.2011.03.006] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 03/07/2011] [Accepted: 03/08/2011] [Indexed: 01/10/2023]
Abstract
The Ikaros family of proteins - comprising Ikaros, Aiolos, Helios, Eos and Pegasus - are zinc finger transcription factors. These proteins participate in a complex network of interactions with gene regulatory elements, other family members and a raft of other transcriptional regulators to control gene expression including via chromatin remodelling. In this way, Ikaros family members regulate important cell-fate decisions during hematopoiesis, particularly in the development of the adaptive immune system. Mutation of several family members results in hematological malignancies,especially those of a lymphoid nature. This review describes the key roles of Ikaros proteins in development and disease, their mechanisms of action and gene targets, as well as explaining their evolutionary origins and role in the emergence of adaptive immunity.
Collapse
Affiliation(s)
- Liza B John
- School of Medicine, Deakin University, Waurn Ponds, Victoria 3217, Australia
| | | |
Collapse
|
26
|
Getnet D, Grosso JF, Goldberg MV, Harris TJ, Yen HR, Bruno TC, Durham NM, Hipkiss EL, Pyle KJ, Wada S, Pan F, Pardoll DM, Drake CG. A role for the transcription factor Helios in human CD4(+)CD25(+) regulatory T cells. Mol Immunol 2010; 47:1595-600. [PMID: 20226531 DOI: 10.1016/j.molimm.2010.02.001] [Citation(s) in RCA: 171] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 01/28/2010] [Accepted: 02/06/2010] [Indexed: 12/31/2022]
Abstract
Relative upregulation of the Ikaros family transcription factor Helios in natural regulatory T cells (Tregs) has been reported by several groups. However, a role for Helios in regulatory T cells has not yet been described. Here, we show that Helios is upregulated in CD4(+)CD25(+) regulatory T cells. Chromatin-immunoprecipitation (ChIP) experiments indicated that Helios binds to the FoxP3 promoter. These data were further corroborated by experiments showing that knocking-down Helios with siRNA oligonucleotides results in down-regulation of FoxP3. Functionally, we found that suppression of Helios message in CD4(+)CD25(+) T cells significantly attenuates their suppressive function. Taken together, these data suggest that Helios may play an important role in regulatory T cell function and support the concept that Helios may be a novel target to manipulate Treg activity in a clinical setting.
Collapse
Affiliation(s)
- Derese Getnet
- Department of Oncology, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21231, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Martín-Ibáñez R, Crespo E, Urbán N, Sergent-Tanguy S, Herranz C, Jaumot M, Valiente M, Long JE, Pineda JR, Andreu C, Rubenstein JLR, Marín O, Georgopoulos K, Mengod G, Fariñas I, Bachs O, Alberch J, Canals JM. Ikaros-1 couples cell cycle arrest of late striatal precursors with neurogenesis of enkephalinergic neurons. J Comp Neurol 2010; 518:329-51. [PMID: 19950118 DOI: 10.1002/cne.22215] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
During central nervous system development, several transcription factors regulate the differentiation of progenitor cells to postmitotic neurons. Here we describe a novel role for Ikaros-1 in the generation of late-born striatal neurons. Our results show that Ikaros-1 is expressed in the boundary of the striatal germinal zone (GZ)/mantle zone (MZ), where it induces cell cycle arrest of neural progenitors by up-regulation of the cyclin-dependent kinase inhibitor (CDKi) p21(Cip1/Waf1). This effect is coupled with the neuronal differentiation of late precursors, which in turn is critical for the second wave of striatal neurogenesis that gives rise to matrix neurons. Consistently, Ikaros(-/-) mice had fewer striatal projecting neurons and, in particular, enkephalin (ENK)-positive neurons. In addition, overexpression of Ikaros-1 in primary striatal cultures increases the number of calbindin- and ENK-positive neurons. Our results also show that Ikaros-1 acts downstream of the Dlx family of transcription factors, insofar as its expression is lost in Dlx1/2 double knockout mice. However, we demonstrate that Ikaros-1 and Ebf-1 independently regulate the final determination of the two populations of striatal projection neurons of the matrix compartment, ENK- and substance P-positive neurons. In conclusion, our findings identify Ikaros-1 as a modulator of cell cycle exit of neural progenitors that gives rise to the neurogenesis of ENK-positive striatal neurons.
Collapse
Affiliation(s)
- Raquel Martín-Ibáñez
- Departament de Biologia Cellular, Immunologia i Neurociències, Facultat de Medicina, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Cai Q, Dierich A, Oulad-Abdelghani M, Chan S, Kastner P. Helios deficiency has minimal impact on T cell development and function. THE JOURNAL OF IMMUNOLOGY 2009; 183:2303-11. [PMID: 19620299 DOI: 10.4049/jimmunol.0901407] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Helios is a member of the Ikaros family of zinc finger transcription factors. It is expressed mainly in T cells, where it associates with Ikaros-containing complexes and has been proposed to act as a rate-limiting factor for Ikaros function. Overexpression of wild-type or dominant-negative Helios isoforms profoundly alters alphabeta T cell differentiation and activation, and endogenous Helios is expressed at strikingly high levels in regulatory T cells. Helios has also been implicated as a tumor suppressor in human T cell acute lymphoblastic leukemias. These studies suggest a central role for Helios in T cell development and homeostasis, but whether this protein is physiologically required in T cells is unclear. We report herein that inactivation of the Helios gene by homologous recombination does not impair the differentiation and effector cell function of alphabeta and gammadelta T cells, NKT cells, and regulatory T cells. These results suggest that Helios is not essential for T cells, and that its function can be compensated for by other members of the Ikaros family.
Collapse
Affiliation(s)
- Qi Cai
- Department of Cancer Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM Unité 964, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104, Illkirch, France
| | | | | | | | | |
Collapse
|
29
|
John LB, Yoong S, Ward AC. Evolution of the Ikaros gene family: implications for the origins of adaptive immunity. THE JOURNAL OF IMMUNOLOGY 2009; 182:4792-9. [PMID: 19342657 DOI: 10.4049/jimmunol.0802372] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Members of the Ikaros family of transcription factors are important for immune system development. Analysis of Ikaros-related genes from a range of species suggests the Ikaros family derived from a primordial gene, possibly related to the present-day protostome Hunchback genes. This duplicated before the divergence of urochordates to produce two distinct lineages: one that generated the Ikaros factor-like (IFL) 2 genes of urochordates/lower vertebrates and the Pegasus genes of higher vertebrates, and one that generated the IFL1 genes of urochordates/lower vertebrates, the IKFL1 and IKFL2 genes of agnathans and the remaining four Ikaros members of higher vertebrates. Expansion of the IFL1 lineage most likely occurred via the two intervening rounds of whole genome duplication. A proposed third whole genome duplication in teleost fish produced a further increase in complexity of the gene family with additional Pegasus and Eos members. These findings question the use of IFL sequences as evidence for the existence of adaptive immunity in early chordates and vertebrates. Instead, this study is consistent with a later emergence of adaptive immunity coincident with the appearance of the definitive lymphoid markers Ikaros, Aiolos, and Helios.
Collapse
Affiliation(s)
- Liza B John
- Center for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria, Australia.
| | | | | |
Collapse
|
30
|
Identification of two major types of age-associated CD8 clonal expansions with highly divergent properties. Proc Natl Acad Sci U S A 2008; 105:12997-3002. [PMID: 18728183 DOI: 10.1073/pnas.0805465105] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
CD8 memory T cells are tightly regulated in young, healthy individuals but are often perturbed in aged animals by the appearance of large CD8 T cell clones. These clones are associated with impaired immunity in the aged. The molecular basis of this phenomenon remains unclear. Here, it is shown that the issue is confused by the fact that the clones are heterogeneous. Some clones bear high, and others, low levels of integrin alpha(4) (itgalpha4). These subtypes differ by multiple criteria. They appear in mice of different ages, concentrate in different tissues, and have different stabilities in vivo and responses to stimulation in vitro. itgalpha4(high), but not itgalpha4(low), CD8 clonal expansions have several characteristics consistent with a chronically stimulated phenotype. These properties include lowered levels of CD8, decreased expression of some cytokine receptors, and elevated expression of various inhibitory receptors, including the programmed death-1 (PD1) receptor and the killer cell lectin-like receptor G1 (KLRG1). The characteristics of itgalpha4(high) clonal expansions suggest that they may arise from age-dependent alterations in antigen expression and tolerance. These data redefine CD8 clonal expansions into at least two distinct entities and indicate that there are multiple mechanisms that drive age-related alterations of CD8 T cell homeostasis.
Collapse
|
31
|
Fujiwara SI, Yamashita Y, Nakamura N, Choi YL, Ueno T, Watanabe H, Kurashina K, Soda M, Enomoto M, Hatanaka H, Takada S, Abe M, Ozawa K, Mano H. High-resolution analysis of chromosome copy number alterations in angioimmunoblastic T-cell lymphoma and peripheral T-cell lymphoma, unspecified, with single nucleotide polymorphism-typing microarrays. Leukemia 2008; 22:1891-8. [PMID: 18633432 DOI: 10.1038/leu.2008.191] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Angioimmunoblastic T-cell lymphoma (AILT) and peripheral T-cell lymphoma, unspecified (PTCL-u) are relatively frequent subtypes of T- or natural killer cell lymphoma. To characterize the structural anomalies of chromosomes associated with these disorders, we here determined chromosome copy number alterations (CNAs) and loss of heterozygosity (LOH) at >55,000 single nucleotide polymorphism loci for clinical specimens of AILT (n=40) or PTCL-u (n=33). Recurrent copy number gain common to both conditions was detected on chromosomes 8, 9 and 19, whereas common LOH was most frequent for a region of chromosome 2. AILT- or PTCL-u-specific CNAs or LOH were also identified at 21 regions, some spanning only a few hundred base pairs. We also identified prognosis-related CNAs or LOH by several approaches, including Cox's proportional hazard analysis. Among the genes that mapped to such loci, a poor prognosis was linked to overexpression of CARMA1 at 7p22 and of MYCBP2 at 13q22, with both genes being localized within regions of frequent copy number gain. For a frequent LOH region at 2q34, we also identified IKAROS family zinc-finger 2 cDNAs encoding truncated proteins. Our data indicate that AILT and PTCL-u consist of heterogeneous subgroups with distinct transforming genetic alterations.
Collapse
Affiliation(s)
- S-i Fujiwara
- Division of Functional Genomics, Jichi Medical University, Tochigi, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|