1
|
Garrigós MM, Oliveira FA, Nucci MP, Mamani JB, Dias OFM, Rego GNA, Junqueira MS, Costa CJS, Silva LRR, Alves AH, Valle NME, Marti L, Gamarra LF. Bioluminescence Imaging and ICP-MS Associated with SPION as a Tool for Hematopoietic Stem and Progenitor Cells Homing and Engraftment Evaluation. Pharmaceutics 2023; 15:pharmaceutics15030828. [PMID: 36986690 PMCID: PMC10057125 DOI: 10.3390/pharmaceutics15030828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/21/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Bone marrow transplantation is a treatment for a variety of hematological and non-hematological diseases. For the transplant success, it is mandatory to have a thriving engraftment of transplanted cells, which directly depends on their homing. The present study proposes an alternative method to evaluate the homing and engraftment of hematopoietic stem cells using bioluminescence imaging and inductively coupled plasma mass spectrometry (ICP-MS) associated with superparamagnetic iron oxide nanoparticles. We have identified an enriched population of hematopoietic stem cells in the bone marrow following the administration of Fluorouracil (5-FU). Lately, the cell labeling with nanoparticles displayed the greatest internalization status when treated with 30 µg Fe/mL. The quantification by ICP-MS evaluate the stem cells homing by identifying 3.95 ± 0.37 µg Fe/mL in the control and 6.61 ± 0.84 µg Fe/mL in the bone marrow of transplanted animals. In addition, 2.14 ± 0.66 mg Fe/g in the spleen of the control group and 2.17 ± 0.59 mg Fe/g in the spleen of the experimental group was also measured. Moreover, the bioluminescence imaging provided the follow up on the hematopoietic stem cells behavior by monitoring their distribution by the bioluminescence signal. Lastly, the blood count enabled the monitoring of animal hematopoietic reconstitution and ensured the transplantation effectiveness.
Collapse
Affiliation(s)
| | | | - Mariana P. Nucci
- Hospital Israelita Albert Einstein, São Paulo 05652-000, SP, Brazil
- LIM44—Hospital das Clínicas da Faculdade Medicina da Universidade de São Paulo, São Paulo 05403-000, SP, Brazil
| | - Javier B. Mamani
- Hospital Israelita Albert Einstein, São Paulo 05652-000, SP, Brazil
| | | | | | - Mara S. Junqueira
- Center for Translational Research in Oncology, Cancer Institute of the State of Sao Paulo—ICESP, São Paulo 01246-000, SP, Brazil
| | | | | | - Arielly H. Alves
- Hospital Israelita Albert Einstein, São Paulo 05652-000, SP, Brazil
| | | | - Luciana Marti
- Hospital Israelita Albert Einstein, São Paulo 05652-000, SP, Brazil
| | - Lionel F. Gamarra
- Hospital Israelita Albert Einstein, São Paulo 05652-000, SP, Brazil
- Correspondence: ; Tel.: +55-11-2151-0243
| |
Collapse
|
2
|
Guo W, Qiao T, Li T. The role of stem cells in small-cell lung cancer: evidence from chemoresistance to immunotherapy. Semin Cancer Biol 2022; 87:160-169. [PMID: 36371027 DOI: 10.1016/j.semcancer.2022.11.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 11/11/2022]
Abstract
Small cell lung cancer (SCLC) is the most aggressive subtype of lung cancer, accounting for approximately 15% among all lung cancers. Despite the ability of chemotherapy, the first-line treatment for SCLC, to rapidly shrink tumors, nearly all patients experience recurrence and metastasis within a few months. Cancer stem cells (CSCs) are a small population of tumor cells responsible for tumorigenesis, metastasis, and recurrence after treatment, which play a crucial role in chemoresistance by promoting DNA repair and expression of drug resistance-associated proteins. Thus, targeting CSCs has been successful in certain malignancies. Tumor therapy has entered the era of immunotherapy and numerous preclinical trials have demonstrated the effectiveness of immunotherapeutic approaches targeting CSCs, such as tumor vaccines and chimeric antigen receptor (CAR) T cell, and the feasibility of combining them with chemotherapy. Therefore, a deeper understanding of the interaction between CSCs and immune system is essential to facilitate the advances of new immunotherapies approaches targeting CSCs as well as combination with standard drugs such as chemotherapy. This narrative review summarizes the mechanisms of chemoresistance of CSCs in SCLC and the latest advances in targeted therapies. Thereafter, we discuss the effects of CSCs on tumor immune microenvironment in SCLC and corresponding immunotherapeutic approaches. Eventually, we propose that the combination of immunotherapy targeting CSCs with standard drugs is a promising direction for SCLC therapies.
Collapse
Affiliation(s)
- Wenwen Guo
- Department of Pathology, Xianyang Central Hospital, Xianyang 712000, China
| | - Tianyun Qiao
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
3
|
Toward the dissection of hematopoietic stem cell fates and their determinants. Curr Opin Genet Dev 2022; 75:101945. [PMID: 35753209 DOI: 10.1016/j.gde.2022.101945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/22/2022] [Accepted: 05/25/2022] [Indexed: 11/20/2022]
Abstract
Hematopoietic stem cell (HSC) functions have long been difficult to study under physiological conditions. Recently, genetic in vivo approaches have been developed for lineage tracing of differentiating progeny emerging from HSC over time (output), and for high-resolution, endogenous barcoding to uncover the lineages that HSC contribute to (fate). Such fate measurements have in principle led to the recognition of three major fate groups of HSC: multilineage, myelo-erythroid-restricted, and inactive, that is, no or no known progeny, in addition to a minor group of megakaryocyte-restricted HSC. The most recent RNA-barcoding experiments have begun to directly link fate measurements with transcriptome reading in HSC clones and single HSC, which yielded insights into transcriptional signatures associated with fate patterns. Here, we discuss these findings in light of the structure of the hematopoietic differentiation hierarchy, and we provide an outlook on strategies to dissect molecular determinants of HSC fates.
Collapse
|
4
|
Krenn PW, Montanez E, Costell M, Fässler R. Integrins, anchors and signal transducers of hematopoietic stem cells during development and in adulthood. Curr Top Dev Biol 2022; 149:203-261. [PMID: 35606057 DOI: 10.1016/bs.ctdb.2022.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Hematopoietic stem cells (HSCs), the apex of the hierarchically organized blood cell production system, are generated in the yolk sac, aorta-gonad-mesonephros region and placenta of the developing embryo. To maintain life-long hematopoiesis, HSCs emigrate from their site of origin and seed in distinct microenvironments, called niches, of fetal liver and bone marrow where they receive supportive signals for self-renewal, expansion and production of hematopoietic progenitor cells (HPCs), which in turn orchestrate the production of the hematopoietic effector cells. The interactions of hematopoietic stem and progenitor cells (HSPCs) with niche components are to a large part mediated by the integrin superfamily of adhesion molecules. Here, we summarize the current knowledge regarding the functional properties of integrins and their activators, Talin-1 and Kindlin-3, for HSPC generation, function and fate decisions during development and in adulthood. In addition, we discuss integrin-mediated mechanosensing for HSC-niche interactions, ex vivo protocols aimed at expanding HSCs for therapeutic use, and recent approaches targeting the integrin-mediated adhesion in leukemia-inducing HSCs in their protecting, malignant niches.
Collapse
Affiliation(s)
- Peter W Krenn
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany; Department of Biosciences and Medical Biology, Cancer Cluster Salzburg, Paris-Lodron University of Salzburg, Salzburg, Austria.
| | - Eloi Montanez
- Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona and Bellvitge Biomedical Research Institute, L'Hospitalet del Llobregat, Barcelona, Spain
| | - Mercedes Costell
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universitat de València, Burjassot, Spain; Institut Universitari de Biotecnologia i Biomedicina, Universitat de València, Burjassot, Spain
| | - Reinhard Fässler
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
5
|
|
6
|
Di Marcantonio D, Sykes SM. Flow Cytometric Analysis of Mitochondrial Reactive Oxygen Species in Murine Hematopoietic Stem and Progenitor Cells and MLL-AF9 Driven Leukemia. J Vis Exp 2019:10.3791/59593. [PMID: 31545325 PMCID: PMC7239511 DOI: 10.3791/59593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
We present a flow cytometric approach for analyzing mitochondrial ROS in various live bone marrow (BM)-derived stem and progenitor cell populations from healthy mice as well as mice with AML driven by MLL-AF9. Specifically, we describe a two-step cell staining process, whereby healthy or leukemia BM cells are first stained with a fluorogenic dye that detects mitochondrial superoxides, followed by staining with fluorochrome-linked monoclonal antibodies that are used to distinguish various healthy and malignant hematopoietic progenitor populations. We also provide a strategy for acquiring and analyzing the samples by flow cytometry. The entire protocol can be carried out in a timeframe as short as 3-4 h. We also highlight the key variables to consider as well as the advantages and limitations of monitoring ROS production in the mitochondrial compartment of live hematopoietic and leukemia stem and progenitor subpopulations using fluorogenic dyes by flow cytometry. Furthermore, we present data that mitochondrial ROS abundance varies among distinct healthy HSPC sub-populations and leukemia progenitors and discuss the possible applications of this technique in hematologic research.
Collapse
Affiliation(s)
| | - Stephen M Sykes
- Blood Cell Development and Function Program, Fox Chase Cancer Center;
| |
Collapse
|
7
|
Aranyossy T, Thielecke L, Glauche I, Fehse B, Cornils K. Genetic Barcodes Facilitate Competitive Clonal Analyses In Vivo. Hum Gene Ther 2018; 28:926-937. [PMID: 28847169 DOI: 10.1089/hum.2017.124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Monitoring the fate of individual cell clones is an important task to better understand normal tissue regeneration, for example after hematopoietic stem cell (HSC) transplantation, but also cancerogenesis. Based on their integration into the host cell's genome, retroviral vectors are commonly used to stably mark target cells and their progeny. The development of genetic barcoding techniques has opened new possibilities to determine clonal composition and dynamics in great detail. A modular genetic barcode was recently introduced consisting of 32 variable positions (BC32) with a customized backbone, and its advantages were demonstrated with regard to barcode calling and quantification. The study presented applied the BC32 system in a complex in vivo situation, namely to analyze clonal reconstitution dynamics for HSC grafts consisting of up to three cell populations with distinguishable barcodes using different alpha- and lentiviral vectors. In a competitive transplantation setup, it was possible to follow the differently marked cell populations within individual animals. This enabled the clonal contribution of the different BC32 constructs during reconstitution and long-term hematopoiesis in the peripheral blood and the spatial distribution in bone marrow and spleen to be identified. Thus, it was demonstrated that the system allows the output of individually marked cells to be tracked in vivo and their influence on clonal dynamics to be analyzed. Successful application of the BC32 system in a complex, competitive in vivo situation provided proof-of-principle that its high complexity and the large Hamming distance between individual barcodes, combined with the easy customization, facilitate efficient and precise quantification, even without prior knowledge of individual barcode sequences. Importantly, simultaneous high-sensitivity analyses of different cell populations in single animals may significantly reduce numbers of animals required to investigate specific scientific questions in accordance with RRR principles. It is concluded that this BC32 system will be excellently suited for various research applications in regenerative medicine and cancer biology.
Collapse
Affiliation(s)
- Tim Aranyossy
- 1 Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf , Hamburg, Germany
| | - Lars Thielecke
- 2 Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Ingmar Glauche
- 2 Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Boris Fehse
- 1 Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf , Hamburg, Germany
| | - Kerstin Cornils
- 1 Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf , Hamburg, Germany .,3 Department of Pediatric Hematology and Oncology, Division Pediatric Stem Cell Transplantation and Immunology, University Medical Center Hamburg-Eppendorf , Hamburg, Germany .,4 Research Institute Children's Cancer Center Hamburg, Hamburg, Germany
| |
Collapse
|
8
|
Ge Y, Fuchs E. Stretching the limits: from homeostasis to stem cell plasticity in wound healing and cancer. Nat Rev Genet 2018; 19:311-325. [PMID: 29479084 PMCID: PMC6301069 DOI: 10.1038/nrg.2018.9] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Stem cells (SCs) govern tissue homeostasis and wound repair. They reside within niches, the special microenvironments within tissues that control SC lineage outputs. Upon injury or stress, new signals emanating from damaged tissue can divert nearby cells into adopting behaviours that are not part of their homeostatic repertoire. This behaviour, known as SC plasticity, typically resolves as wounds heal. However, in cancer, it can endure. Recent studies have yielded insights into the orchestrators of maintenance and lineage commitment for SCs belonging to three mammalian tissues: the haematopoietic system, the skin epithelium and the intestinal epithelium. We delineate the multifactorial determinants and general principles underlying the remarkable facets of SC plasticity, which lend promise for regenerative medicine and cancer therapeutics.
Collapse
Affiliation(s)
- Yejing Ge
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology Development, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Elaine Fuchs
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology Development, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| |
Collapse
|
9
|
Lev R, Seliktar D. Hydrogel biomaterials and their therapeutic potential for muscle injuries and muscular dystrophies. J R Soc Interface 2018; 15:20170380. [PMID: 29343633 PMCID: PMC5805959 DOI: 10.1098/rsif.2017.0380] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 12/18/2017] [Indexed: 12/23/2022] Open
Abstract
Muscular diseases such as muscular dystrophies and muscle injuries constitute a large group of ailments that manifest as muscle weakness, atrophy or fibrosis. Although cell therapy is a promising treatment option, the delivery and retention of cells in the muscle is difficult and prevents sustained regeneration needed for adequate functional improvements. Various types of biomaterials with different physical and chemical properties have been developed to improve the delivery of cells and/or growth factors for treating muscle injuries. Hydrogels are a family of materials with distinct advantages for use as cell delivery systems in muscle injuries and ailments, including their mild processing conditions, their similarities to natural tissue extracellular matrix, and their ability to be delivered with less invasive approaches. Moreover, hydrogels can be made to completely degrade in the body, leaving behind their biological payload in a process that can enhance the therapeutic process. For these reasons, hydrogels have shown great potential as cell delivery matrices. This paper reviews a few of the hydrogel systems currently being applied together with cell therapy and/or growth factor delivery to promote the therapeutic repair of muscle injuries and muscle wasting diseases such as muscular dystrophies.
Collapse
Affiliation(s)
- Rachel Lev
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel
| | - Dror Seliktar
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel
| |
Collapse
|
10
|
Abstract
The Hoechst side population (SP) method is a flow cytometry technique used to obtain stem cells based on the dye efflux properties of the ATP-binding cassette (ABC) transporters. The SP cells are characterized by their capability to efflux the fluorescent DNA-binding dye Hoechst 33342 through their ABC transporters and are enriched in stem cells, which are endowed with a self-renewal capacity and multilineage differentiation potential and express the stemness genes including ABC multidrug transporters. The protocols outlined in this book chapter describe the isolation method of the SP cells from human lung carcinoma cell lines by using Hoechst 33342. In addition, we refer to the propagation method of SP cells by successive rounds of fluorescence-activated cell sorting analysis for SP cells. These approaches will be helpful for the establishment of novel in vitro and in vivo models using cancer stem cells, which may play a key role during carcinogenesis and/or tumor progression.
Collapse
|
11
|
Dziki JL, Sicari BM, Wolf MT, Cramer MC, Badylak SF. Immunomodulation and Mobilization of Progenitor Cells by Extracellular Matrix Bioscaffolds for Volumetric Muscle Loss Treatment. Tissue Eng Part A 2017; 22:1129-1139. [PMID: 27562630 DOI: 10.1089/ten.tea.2016.0340] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Acellular bioscaffolds composed of extracellular matrix (ECM) have been effectively used to promote functional tissue remodeling in both preclinical and clinical studies of volumetric muscle loss, but the mechanisms that contribute to such outcomes are not fully understood. Thirty-two C57bl/6 mice were divided into eight groups of four animals each. A critical-sized defect was created in the quadriceps muscle and was repaired with a small intestinal submucosa ECM bioscaffold or left untreated. Animals were sacrificed at 3, 7, 14, or 56 days after surgery. The spatiotemporal cellular response in both treated and untreated groups was characterized by immunolabeling methods. Early time points showed a robust M2-like macrophage phenotype following ECM treatment in contrast to the predominant M1-like macrophage phenotype present in the untreated group. ECM implantation promoted perivascular stem cell mobilization, increased presence of neurogenic progenitor cells, and was associated with myotube formation. These cell types were present not only at the periphery of the defect near uninjured muscle, but also in the center of the ECM-filled defect. ECM bioscaffolds modify the default response to skeletal muscle injury, and provide a microenvironment conducive to a constructive healing response.
Collapse
Affiliation(s)
- Jenna L Dziki
- 1 Department of Bioengineering, University of Pittsburgh , Pittsburgh, Pennsylvania.,2 McGowan Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Brian M Sicari
- 2 McGowan Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania.,3 Department of Surgery, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Matthew T Wolf
- 1 Department of Bioengineering, University of Pittsburgh , Pittsburgh, Pennsylvania.,2 McGowan Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Madeline C Cramer
- 2 McGowan Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Stephen F Badylak
- 1 Department of Bioengineering, University of Pittsburgh , Pittsburgh, Pennsylvania.,2 McGowan Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania.,3 Department of Surgery, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| |
Collapse
|
12
|
Abstract
Purpose of review Hematopoietic stem cell (HSC) transplantation has yielded tremendous information on experimental properties of HSCs. Yet, it remains unclear whether transplantation reflects the physiology of hematopoiesis. A limitation is the difficulty in accessing HSC functions without isolation, in-vitro manipulation and readout for potential. New genetic fate mapping and clonal marking techniques now shed light on hematopoiesis under physiological conditions. Recent findings Transposon-based genetic marks were introduced across the entire hematopoietic system to follow the clonal dynamics of these tags over time. A polyclonal source downstream from stem cells was found responsible for the production of at least granulocytes. In independent experiments, HSCs were genetically marked in adult mice, and the kinetics of label emergence throughout the system was followed over time. These experiments uncovered that during physiological steady-state hematopoiesis large numbers of HSCs yield differentiated progeny. Individual HSCs were active only rarely, indicating their very slow periodicity of differentiation rather than quiescence. Summary Noninvasive genetic experiments in mice have identified a major role of stem and progenitor cells downstream from HSCs as drivers of adult hematopoiesis, and revealed that post-transplantation hematopoiesis differs quantitatively from normal steady-state hematopoiesis.
Collapse
|
13
|
Ghosh S, Indracanti N, Joshi J, Indraganti PK. Rescuing Self: Transient Isolation and Autologous Transplantation of Bone Marrow Mitigates Radiation-Induced Hematopoietic Syndrome and Mortality in Mice. Front Immunol 2017; 8:1180. [PMID: 28993772 PMCID: PMC5622201 DOI: 10.3389/fimmu.2017.01180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 09/06/2017] [Indexed: 01/19/2023] Open
Abstract
The inflamed bone marrow niche shortly after total body irradiation (TBI) is known to contribute to loss of hematopoietic stem cells in terms of their number and function. In this study, autologous bone marrow transfer (AL-BMT) was evaluated as a strategy for mitigating hematopoietic form of the acute radiation syndrome by timing the collection phase (2 h after irradiation) and reinfusion (24 h after irradiation) using mice as a model system. Collection of bone marrow (BM) cells (0.5 × 106 total marrow cells) 2 h after lethal TBI rescued different subclasses of hematopoietic stem and progenitor cells (HSPCs) from the detrimental inflammatory and damaging milieu in vivo. Cryopreservation of collected graft and its reinfusion 24 h after TBI significantly rescued mice from lethal effects of irradiation (65% survival against 0% in TBI group on day 30th) and hematopoietic depression. Transient hypometabolic state (HMS) induced 2 h after TBI effectively preserved the functional status of HSPCs and improved hematopoietic recovery even when BM was collected 8 h after TBI. Homing studies suggested that AL-BMT yielded similar percentages for different subsets of HSPCs when compared to syngeneic bone marrow transfer. The results suggest that the timing of collection, and reinfusion of graft is crucial for the success of AL-BMT.
Collapse
Affiliation(s)
- Subhajit Ghosh
- Division of Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India.,S.N. Pradhan Centre for Neuroscience-University of Calcutta, Kolkata, India
| | - Namita Indracanti
- Division of Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Jayadev Joshi
- Division of Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India.,S.N. Pradhan Centre for Neuroscience-University of Calcutta, Kolkata, India
| | - Prem Kumar Indraganti
- Division of Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| |
Collapse
|
14
|
Turcotte R, Alt C, Runnels JM, Ito K, Wu JW, Zaher W, Mortensen LJ, Silberstein L, Côté DC, Kung AL, Ito K, Lin CP. Image-guided transplantation of single cells in the bone marrow of live animals. Sci Rep 2017. [PMID: 28634334 PMCID: PMC5478633 DOI: 10.1038/s41598-017-02896-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Transplantation of a single hematopoietic stem cell is an important method for its functional characterization, but the standard transplantation protocol relies on cell homing to the bone marrow after intravenous injection. Here, we present a method to transplant single cells directly into the bone marrow of live mice. We developed an optical platform that integrates a multiphoton microscope with a laser ablation unit for microsurgery and an optical tweezer for cell micromanipulation. These tools allow image-guided single cell transplantation with high spatial control. The platform was used to deliver single hematopoietic stem cells. The engraftment of transplants was tracked over time, illustrating that the technique can be useful for studying both normal and malignant stem cells in vivo.
Collapse
Affiliation(s)
- Raphaël Turcotte
- Advanced Microscopy Program, Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.,Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Clemens Alt
- Advanced Microscopy Program, Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Judith M Runnels
- Advanced Microscopy Program, Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Kyoko Ito
- Ruth L/ and David S. Gottesman Institute for Stem Cell, Regenerative Medicine Research, Department of Cell Biology and Stem Cell Institute, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Juwell W Wu
- Advanced Microscopy Program, Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Walid Zaher
- Advanced Microscopy Program, Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.,Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, 11461, Saudi Arabia
| | - Luke J Mortensen
- Advanced Microscopy Program, Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.,Regenerative Bioscience Center, Rhodes Center for ADS, and College of Engineering, University of Georgia, Athens, GA, 30602, USA
| | - Lev Silberstein
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, 02114, USA
| | - Daniel C Côté
- Département de Physique, Génie Physique et Optique and Centre de recherche de l'Institut Universitaire en Santé Mentale de Québec, Université Laval, Québec City, Québec, G1J 2G3, Canada
| | - Andrew L Kung
- Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Keisuke Ito
- Ruth L/ and David S. Gottesman Institute for Stem Cell, Regenerative Medicine Research, Department of Cell Biology and Stem Cell Institute, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.,Department of Medicine, Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Charles P Lin
- Advanced Microscopy Program, Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA. .,Harvard Stem Cell Institute, Cambridge, MA, 02138, USA.
| |
Collapse
|
15
|
Zakaria N, Satar NA, Abu Halim NH, Ngalim SH, Yusoff NM, Lin J, Yahaya BH. Targeting Lung Cancer Stem Cells: Research and Clinical Impacts. Front Oncol 2017; 7:80. [PMID: 28529925 PMCID: PMC5418222 DOI: 10.3389/fonc.2017.00080] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 04/11/2017] [Indexed: 12/26/2022] Open
Abstract
Lung cancer is the most common cancer worldwide, accounting for 1.8 million new cases and 1.6 million deaths in 2012. Non-small cell lung cancer (NSCLC), which is one of two types of lung cancer, accounts for 85–90% of all lung cancers. Despite advances in therapy, lung cancer still remains a leading cause of death. Cancer relapse and dissemination after treatment indicates the existence of a niche of cancer cells that are not fully eradicated by current therapies. These chemoresistant populations of cancer cells are called cancer stem cells (CSCs) because they possess the self-renewal and differentiation capabilities similar to those of normal stem cells. Targeting the niche of CSCs in combination with chemotherapy might provide a promising strategy to eradicate these cells. Thus, understanding the characteristics of CSCs has become a focus of studies of NSCLC therapies.
Collapse
Affiliation(s)
- Norashikin Zakaria
- Regenerative Medicine Cluster, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Kepala Batas, Penang, Malaysia
| | - Nazilah Abdul Satar
- Regenerative Medicine Cluster, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Kepala Batas, Penang, Malaysia
| | - Noor Hanis Abu Halim
- Regenerative Medicine Cluster, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Kepala Batas, Penang, Malaysia
| | - Siti Hawa Ngalim
- Regenerative Medicine Cluster, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Kepala Batas, Penang, Malaysia
| | - Narazah Mohd Yusoff
- Regenerative Medicine Cluster, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Kepala Batas, Penang, Malaysia
| | - Juntang Lin
- College of Life Science and Technology, Xinxiang Medical University (XXMU), Xinxiang, China.,College of Biomedical Engineering, Xinxiang Medical University (XXMU), Xinxiang, China
| | - Badrul Hisham Yahaya
- Regenerative Medicine Cluster, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Kepala Batas, Penang, Malaysia
| |
Collapse
|
16
|
Chen W, Li M, Su G, Zang Y, Yan Z, Cheng H, Pan B, Cao J, Wu Q, Zhao K, Zhu F, Zeng L, Li Z, Xu K. Co-transplantation of Hematopoietic Stem Cells and Cxcr4 Gene-Transduced Mesenchymal Stem Cells Promotes Hematopoiesis. Cell Biochem Biophys 2016; 71:1579-87. [PMID: 25391891 DOI: 10.1007/s12013-014-0381-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mesenchymal stem cells (MSCs) are a promising candidate for cellular therapies. Co-transplantation of MSCs and hematopoietic stem cells (HSCs) promotes successful engraftment and improves hematopoietic recovery. In this study, the effects of co-transplantation of HSCs and mouse bone marrow (BM)-derived MSCs overexpressing CXCR4 (CXCR4-MSC) on CXCR4-MSC homing capacity and the reconstitution potential in lethally irradiated mice were evaluated. Recovery of donor-derived peripheral blood leukocytes and platelets was accelerated when CXCR4-MSCs were co-transplanted with BM cells. The frequency of c-kit(+)Sca(+)Lin(-) HSCs was higher in recipient BM following co-transplantation of CXCR4-MSCs compared with the EGFP-MSC control and the BMT only groups. Surprisingly, the rate of early engraftment of donor-derived BM cells in recipients co-transplanted with CXCR4-MSCs was slightly lower than in the absence of MSCs on day 7. Moreover, co-transplantation of CXCR4-MSCs regulated the balance of T helper cells subsets. Hematopoietic tissue reconstitution was evaluated by histopathological analysis of BM and spleen. Co-transplantation of CXCR4-MSCs was shown to promote the recovery of hematopoietic organs. These findings indicate that co-transplantation of CXCR4-MSCs promotes the early phase of hematopoietic recovery and sustained hematopoiesis.
Collapse
Affiliation(s)
- Wei Chen
- Department of Hematology, the Affiliated Hospital of Xuzhou Medical College, West Huaihai Road, Xuzhou, 221002, Jiangsu, People's Republic of China.,Xuzhou Medical College, Blood Diseases Institute, Xuzhou, 221002, People's Republic of China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Miao Li
- Xuzhou Children's Hospital, Sudi Road, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Guizhen Su
- Department of Hematology, the Affiliated Hospital of Xuzhou Medical College, West Huaihai Road, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Yu Zang
- Department of Hematology, the Affiliated Hospital of Xuzhou Medical College, West Huaihai Road, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Zhiling Yan
- Department of Hematology, the Affiliated Hospital of Xuzhou Medical College, West Huaihai Road, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Hai Cheng
- Department of Hematology, the Affiliated Hospital of Xuzhou Medical College, West Huaihai Road, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Bin Pan
- Department of Hematology, the Affiliated Hospital of Xuzhou Medical College, West Huaihai Road, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Jiang Cao
- Department of Hematology, the Affiliated Hospital of Xuzhou Medical College, West Huaihai Road, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Qingyun Wu
- Department of Hematology, the Affiliated Hospital of Xuzhou Medical College, West Huaihai Road, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Kai Zhao
- Department of Hematology, the Affiliated Hospital of Xuzhou Medical College, West Huaihai Road, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Feng Zhu
- Department of Hematology, the Affiliated Hospital of Xuzhou Medical College, West Huaihai Road, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Lingyu Zeng
- Department of Hematology, the Affiliated Hospital of Xuzhou Medical College, West Huaihai Road, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Zhenyu Li
- Department of Hematology, the Affiliated Hospital of Xuzhou Medical College, West Huaihai Road, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Kailin Xu
- Department of Hematology, the Affiliated Hospital of Xuzhou Medical College, West Huaihai Road, Xuzhou, 221002, Jiangsu, People's Republic of China. .,Xuzhou Medical College, Blood Diseases Institute, Xuzhou, 221002, People's Republic of China. .,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, 221002, Jiangsu, People's Republic of China.
| |
Collapse
|
17
|
Baldow C, Thielecke L, Glauche I. Model Based Analysis of Clonal Developments Allows for Early Detection of Monoclonal Conversion and Leukemia. PLoS One 2016; 11:e0165129. [PMID: 27764218 PMCID: PMC5072636 DOI: 10.1371/journal.pone.0165129] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 10/06/2016] [Indexed: 12/22/2022] Open
Abstract
The availability of several methods to unambiguously mark individual cells has strongly fostered the understanding of clonal developments in hematopoiesis and other stem cell driven regenerative tissues. While cellular barcoding is the method of choice for experimental studies, patients that underwent gene therapy carry a unique insertional mark within the transplanted cells originating from the integration of the retroviral vector. Close monitoring of such patients allows accessing their clonal dynamics, however, the early detection of events that predict monoclonal conversion and potentially the onset of leukemia are beneficial for treatment. We developed a simple mathematical model of a self-stabilizing hematopoietic stem cell population to generate a wide range of possible clonal developments, reproducing typical, experimentally and clinically observed scenarios. We use the resulting model scenarios to suggest and test a set of statistical measures that should allow for an interpretation and classification of relevant clonal dynamics. Apart from the assessment of several established diversity indices we suggest a measure that quantifies the extension to which the increase in the size of one clone is attributed to the total loss in the size of all other clones. By evaluating the change in relative clone sizes between consecutive measurements, the suggested measure, referred to as maximum relative clonal expansion (mRCE), proves to be highly sensitive in the detection of rapidly expanding cell clones prior to their dominant manifestation. This predictive potential places the mRCE as a suitable means for the early recognition of leukemogenesis especially in gene therapy patients that are closely monitored. Our model based approach illustrates how simulation studies can actively support the design and evaluation of preclinical strategies for the analysis and risk evaluation of clonal developments.
Collapse
Affiliation(s)
- Christoph Baldow
- Institute for Medical Informatics and Biometry, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Lars Thielecke
- Institute for Medical Informatics and Biometry, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Ingmar Glauche
- Institute for Medical Informatics and Biometry, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- * E-mail:
| |
Collapse
|
18
|
Brewer C, Chu E, Chin M, Lu R. Transplantation Dose Alters the Differentiation Program of Hematopoietic Stem Cells. Cell Rep 2016; 15:1848-57. [PMID: 27184851 DOI: 10.1016/j.celrep.2016.04.061] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 03/07/2016] [Accepted: 04/15/2016] [Indexed: 01/14/2023] Open
Abstract
Hematopoietic stem cell (HSC) transplantation is the most prevalent stem cell therapy, but it remains a risky procedure. To improve this treatment, it is important to understand how transplanted stem cells rebuild the blood and immune systems and how this process is impacted by transplantation variables such as the HSC dose. Here, we find that, in the long term following transplantation, 70%-80% of donor-HSC-derived clones do not produce all measured blood cell types. High HSC doses lead to more clones that exhibit balanced lymphocyte production, whereas low doses produce more T-cell-specialized clones. High HSC doses also produce significantly higher proportions of early-differentiating clones compared to low doses. These complex differentiation behaviors uncover the clonal-level regeneration dynamics of hematopoietic regeneration and suggest that transplantation dose can be exploited to improve stem cell therapy.
Collapse
Affiliation(s)
- Casey Brewer
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Elizabeth Chu
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Mike Chin
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Rong Lu
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
19
|
Sicari BM, Dziki JL, Badylak SF. Strategies for functional bioscaffold-based skeletal muscle reconstruction. ANNALS OF TRANSLATIONAL MEDICINE 2015; 3:256. [PMID: 26605302 DOI: 10.3978/j.issn.2305-5839.2015.09.45] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tissue engineering and regenerative medicine-based strategies for the reconstruction of functional skeletal muscle tissue have included cellular and acellular approaches. The use of acellular biologic scaffold material as a treatment for volumetric muscle loss (VML) in five patients has recently been reported with a generally favorable outcome. Further studies are necessary for a better understanding of the mechanism(s) behind acellular bioscaffold-mediated skeletal muscle repair, and for combination cell-based/bioscaffold based approaches. The present overview highlights the current thinking on bioscaffold-based remodeling including the associated mechanisms and the future of scaffold-based skeletal muscle reconstruction.
Collapse
Affiliation(s)
- Brian M Sicari
- 1 McGowan Institute for Regenerative Medicine, 2 Department of Surgery, 3 Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jenna L Dziki
- 1 McGowan Institute for Regenerative Medicine, 2 Department of Surgery, 3 Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Stephen F Badylak
- 1 McGowan Institute for Regenerative Medicine, 2 Department of Surgery, 3 Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
20
|
Abd-Elhalim DM, El-Wazir YM. Do the human umbilical cord blood CD34+ progenitor cells home in the pancreas and kidney of diabetic mice? Int J Diabetes Dev Ctries 2015. [DOI: 10.1007/s13410-015-0424-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
21
|
Sicari BM, Londono R, Badylak SF. Strategies for skeletal muscle tissue engineering: seed vs. soil. J Mater Chem B 2015; 3:7881-7895. [PMID: 32262901 DOI: 10.1039/c5tb01714a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The most commonly used tissue engineering approach includes the ex vivo combination of site-appropriate cell(s) and scaffold material(s) to create three-dimensional constructs for tissue replacement or reconstruction. These three-dimensional combinations are typically subjected to a period of culture and conditioning (i.e., self-assembly and maturation) to promote the development of ex vivo constructs which closely mimic native target tissue. This cell-based approach is challenged by the host response to the engineered tissue construct following surgical implantation. As an alternative to the cell-based approach, acellular biologic scaffolds attract endogenous cells and remodel into partially functional mimics of native tissue upon implantation. The present review examines cell-types (i.e., seed), scaffold materials (i.e., soil), and challenges associated with functional tissue engineering. Skeletal muscle is used as the target tissue prototype but the discussed principles will largely apply to most body systems.
Collapse
Affiliation(s)
- Brian M Sicari
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Suite 300, 450 Technology Drive, Pittsburgh, PA 15218, USA.
| | | | | |
Collapse
|
22
|
Sakamoto H, Takeda N, Arai F, Hosokawa K, Garcia P, Suda T, Frampton J, Ogawa M. Determining c-Myb protein levels can isolate functional hematopoietic stem cell subtypes. Stem Cells 2015; 33:479-90. [PMID: 25329760 DOI: 10.1002/stem.1855] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Accepted: 08/26/2014] [Indexed: 12/20/2022]
Abstract
The transcription factor c-Myb was originally identified as a transforming oncoprotein encoded by two avian leukemia viruses. Subsequently, through the generation of mouse models that affect its expression, c-Myb has been shown to be a key regulator of hematopoiesis, including having critical roles in hematopoietic stem cells (HSCs). The precise function of c-Myb in HSCs although remains unclear. We have generated a novel c-myb allele in mice that allows direct observation of c-Myb protein levels in single cells. Using this reporter line we demonstrate that subtypes of HSCs can be isolated based upon their respective c-Myb protein expression levels. HSCs expressing low levels of c-Myb protein (c-Myb(low) HSC) appear to represent the most immature, dormant HSCs and they are a predominant component of HSCs that retain bromodeoxyuridine labeling. Hematopoietic stress, induced by 5-fluorouracil ablation, revealed that in this circumstance c-Myb-expressing cells become critical for multilineage repopulation. The discrimination of HSC subpopulations based on c-Myb protein levels is not reflected in the levels of c-myb mRNA, there being no more than a 1.3-fold difference comparing c-Myb(low) and c-Myb(high) HSCs. This illustrates how essential it is to include protein studies when aiming to understand the regulatory networks that control stem cell behavior.
Collapse
Affiliation(s)
- Hiroshi Sakamoto
- Department of Cell Differentiation, Institute of Molecular Embryology and Genetics, Kumamoto City, Japan
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Wolf MT, Dearth CL, Sonnenberg SB, Loboa EG, Badylak SF. Naturally derived and synthetic scaffolds for skeletal muscle reconstruction. Adv Drug Deliv Rev 2015; 84:208-21. [PMID: 25174309 DOI: 10.1016/j.addr.2014.08.011] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Revised: 07/22/2014] [Accepted: 08/20/2014] [Indexed: 12/15/2022]
Abstract
Skeletal muscle tissue has an inherent capacity for regeneration following injury. However, severe trauma, such as volumetric muscle loss, overwhelms these natural muscle repair mechanisms prompting the search for a tissue engineering/regenerative medicine approach to promote functional skeletal muscle restoration. A desirable approach involves a bioscaffold that simultaneously acts as an inductive microenvironment and as a cell/drug delivery vehicle to encourage muscle ingrowth. Both biologically active, naturally derived materials (such as extracellular matrix) and carefully engineered synthetic polymers have been developed to provide such a muscle regenerative environment. Next generation naturally derived/synthetic "hybrid materials" would combine the advantageous properties of these materials to create an optimal platform for cell/drug delivery and possess inherent bioactive properties. Advances in scaffolds using muscle tissue engineering are reviewed herein.
Collapse
Affiliation(s)
- Matthew T Wolf
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA 15219, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Christopher L Dearth
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA 15219, USA; Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Sonya B Sonnenberg
- Joint Department of Biomedical Engineering at University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA
| | - Elizabeth G Loboa
- Joint Department of Biomedical Engineering at University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA; Department of Materials Science & Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Stephen F Badylak
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA 15219, USA; Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
24
|
Sicari BM, Rubin JP, Dearth CL, Wolf MT, Ambrosio F, Boninger M, Turner NJ, Weber DJ, Simpson TW, Wyse A, Brown EHP, Dziki JL, Fisher LE, Brown S, Badylak SF. An acellular biologic scaffold promotes skeletal muscle formation in mice and humans with volumetric muscle loss. Sci Transl Med 2014; 6:234ra58. [PMID: 24786326 DOI: 10.1126/scitranslmed.3008085] [Citation(s) in RCA: 338] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Biologic scaffolds composed of naturally occurring extracellular matrix (ECM) can provide a microenvironmental niche that alters the default healing response toward a constructive and functional outcome. The present study showed similarities in the remodeling characteristics of xenogeneic ECM scaffolds when used as a surgical treatment for volumetric muscle loss in both a preclinical rodent model and five male patients. Porcine urinary bladder ECM scaffold implantation was associated with perivascular stem cell mobilization and accumulation within the site of injury, and de novo formation of skeletal muscle cells. The ECM-mediated constructive remodeling was associated with stimulus-responsive skeletal muscle in rodents and functional improvement in three of the five human patients.
Collapse
Affiliation(s)
- Brian M Sicari
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Rose JA, Erzurum S, Asosingh K. Biology and flow cytometry of proangiogenic hematopoietic progenitors cells. Cytometry A 2014; 87:5-19. [PMID: 25418030 DOI: 10.1002/cyto.a.22596] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 10/21/2014] [Accepted: 11/06/2014] [Indexed: 12/25/2022]
Abstract
During development, hematopoiesis and neovascularization are closely linked to each other via a common bipotent stem cell called the hemangioblast that gives rise to both hematopoietic cells and endothelial cells. In postnatal life, this functional connection between the vasculature and hematopoiesis is maintained by a subset of hematopoietic progenitor cells endowed with the capacity to differentiate into potent proangiogenic cells. These proangiogenic hematopoietic progenitors comprise a specific subset of bone marrow (BM)-derived cells that homes to sites of neovascularization and possess potent paracrine angiogenic activity. There is emerging evidence that this subpopulation of hematopoietic progenitors plays a critical role in vascular health and disease. Their angiogenic activity is distinct from putative "endothelial progenitor cells" that become structural cells of the endothelium by differentiation into endothelial cells. Proangiogenic hematopoietic progenitor cell research requires multidisciplinary expertise in flow cytometry, hematology, and vascular biology. This review provides a comprehensive overview of proangiogenic hematopoietic progenitor cell biology and flow cytometric methods to detect these cells in the peripheral blood circulation and BM.
Collapse
Affiliation(s)
- Jonathan A Rose
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio; Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio
| | | | | |
Collapse
|
26
|
Brown BN, Sicari BM, Badylak SF. Rethinking regenerative medicine: a macrophage-centered approach. Front Immunol 2014; 5:510. [PMID: 25408693 PMCID: PMC4219501 DOI: 10.3389/fimmu.2014.00510] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 10/01/2014] [Indexed: 12/14/2022] Open
Abstract
Regenerative medicine, a multi-disciplinary approach that seeks to restore form and function to damaged or diseased tissues and organs, has evolved significantly during the past decade. By adapting and integrating fundamental knowledge from cell biology, polymer science, and engineering, coupled with an increasing understanding of the mechanisms which underlie the pathogenesis of specific diseases, regenerative medicine has the potential for innovative and transformative therapies for heretofore unmet medical needs. However, the translation of novel technologies from the benchtop to animal models and clinical settings is non-trivial and requires an understanding of the mechanisms by which the host will respond to these novel therapeutic approaches. The role of the innate immune system, especially the role of macrophages, in the host response to regenerative medicine based strategies has recently received considerable attention. Macrophage phenotype and function have been suggested as critical and determinant factors in downstream outcomes. The constructive and regulatory, and in fact essential, role of macrophages in positive outcomes represents a significant departure from the classical paradigms of host-biomaterial interactions, which typically consider activation of the host immune system as a detrimental event. It appears desirable that emerging regenerative medicine approaches should not only accommodate but also promote the involvement of the immune system to facilitate positive outcomes. Herein, we describe the current understanding of macrophage phenotype as it pertains to regenerative medicine and suggest that improvement of our understanding of context-dependent macrophage polarization will lead to concurrent improvement in outcomes.
Collapse
Affiliation(s)
- Bryan N Brown
- McGowan Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh, PA , USA ; Department of Bioengineering, University of Pittsburgh , Pittsburgh, PA , USA
| | - Brian M Sicari
- McGowan Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh, PA , USA ; Department of Surgery, University of Pittsburgh , Pittsburgh, PA , USA
| | - Stephen F Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh, PA , USA ; Department of Surgery, University of Pittsburgh , Pittsburgh, PA , USA
| |
Collapse
|
27
|
Belkina AC, Blanton WP, Nikolajczyk BS, Denis GV. The double bromodomain protein Brd2 promotes B cell expansion and mitogenesis. J Leukoc Biol 2013; 95:451-60. [PMID: 24319289 DOI: 10.1189/jlb.1112588] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Bromodomain-containing transcriptional regulators represent new epigenetic targets in different hematologic malignancies. However, bromodomain-mediated mechanisms that couple histone acetylation to transcription in lymphopoiesis and govern mature lymphocyte mitogenesis are poorly understood. Brd2, a transcriptional coregulator that contains dual bromodomains and an extraterminal domain (the BET family), couples chromatin to cell-cycle progression. We reported previously the first functional characterization of a BET protein as an effector of mammalian mitogenic signal transduction: Eμ-Brd2 Tg mice develop "activated B cell" diffuse large B cell lymphoma. No other animal models exist for genetic or lentiviral expression of BET proteins, hampering testing of novel anti-BET anticancer drugs, such as JQ1. We transduced HSCs with Brd2 lentivirus and reconstituted recipient mice to test the hypothesis that Brd2 regulates hematopoiesis in BM and mitogenesis in the periphery. Forced expression of Brd2 provides an expansion advantage to the donor-derived B cell compartment in BM and increases mature B cell mitogenic responsiveness in vitro. Brd2 binds the cyclin A promoter in B cells, shown by ChIP, and increases cyclin A mRNA and protein levels, and S-phase progression in vitro in mitogen-stimulated primary B cells, but not T cells, reinforcing results from Eμ-Brd2 mice. The small molecule BET inhibitor JQ1 reduces B cell mitogenesis, consistent with the interpretation that BET inhibitors are antiproliferative. Brd2-specific knockdown experiments show that Brd2 is also required for hematopoiesis. We conclude that Brd2 plays a critical, independent role in regulation of mitogenic response genes, particularly cyclin A, in B cells.
Collapse
Affiliation(s)
- Anna C Belkina
- 1.72 East Concord St., Rm. K520, Boston, MA 02118, USA. ; Twitter: http://www.twitter.com/GdenisBoston
| | | | | | | |
Collapse
|
28
|
Sicari BM, Dearth CL, Badylak SF. Tissue Engineering and Regenerative Medicine Approaches to Enhance the Functional Response to Skeletal Muscle Injury. Anat Rec (Hoboken) 2013; 297:51-64. [DOI: 10.1002/ar.22794] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/13/2013] [Accepted: 09/13/2013] [Indexed: 12/14/2022]
Affiliation(s)
- Brian M. Sicari
- McGowan Institute for Regenerative Medicine; Pittsburgh Pennsylvania
- Cellular and Molecular Pathology Graduate Program; University of Pittsburgh School of Medicine; Pittsburgh Pennsylvania
| | - Christopher L. Dearth
- McGowan Institute for Regenerative Medicine; Pittsburgh Pennsylvania
- Department of Surgery; University of Pittsburgh School of Medicine; Pittsburgh Pennsylvania
| | - Stephen F. Badylak
- McGowan Institute for Regenerative Medicine; Pittsburgh Pennsylvania
- Department of Surgery; University of Pittsburgh School of Medicine; Pittsburgh Pennsylvania
| |
Collapse
|
29
|
Wu CP, Xie M, Zhou L, Tao L, Zhang M, Tian J. Cooperation of side population cells with CD133 to enrich cancer stem cells in a laryngeal cancer cell line. Head Neck 2013. [DOI: 10.1002/hed.23447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Chun-Ping Wu
- Department of Otolaryngology-Head and Neck Surgery; Fudan University Affiliated Eye, Ear, Nose, and Throat Hospital; Shanghai China
| | - Ming Xie
- Department of Otolaryngology-Head and Neck Surgery; Fudan University Affiliated Eye, Ear, Nose, and Throat Hospital; Shanghai China
| | - Liang Zhou
- Department of Otolaryngology-Head and Neck Surgery; Fudan University Affiliated Eye, Ear, Nose, and Throat Hospital; Shanghai China
| | - Lei Tao
- Department of Otolaryngology-Head and Neck Surgery; Fudan University Affiliated Eye, Ear, Nose, and Throat Hospital; Shanghai China
| | - Ming Zhang
- Department of Otolaryngology-Head and Neck Surgery; Fudan University Affiliated Eye, Ear, Nose, and Throat Hospital; Shanghai China
| | - Jie Tian
- Research Center; Fudan University Affiliated Eye, Ear, Nose, and Throat Hospital; Shanghai China
| |
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW Many surface antigens have been previously used to identify hematopoietic stem cells or cellular elements of the hematopoietic niche. However, to date, not a single surface marker has been identified as a common marker expressed on murine and human hematopoietic stem cells and on cells of the hematopoietic niche. Recently, a few laboratories, including ours, recognized the importance of CD166 as a functional marker on both stem cells and osteoblasts and have begun to characterize the role of CD166 in hematopoiesis. RECENT FINDINGS Expression of CD166 on hematopoietic cells and cells in the marrow microenvironment was first reported more than a decade ago. Lately, however, a more prominent role for CD166 in normal hematopoiesis and in cancer biology including metastasis began to emerge. This review will cover the significance of CD166 in identifying normal hematopoietic stem cells and cells of the hematopoietic niche and highlight how CD166-mediated homophilic interactions between both cell types may be critical for stem cell function. SUMMARY The conserved homology between murine and human CD166 and its involvement in metastasis provides an excellent bridge for translational investigations aimed at enhancing stem cell engraftment and clinical utility of stem cells and at using CD166 as a therapeutic target in cancer.
Collapse
|
31
|
White RL, Nash G, Kavanagh DPJ, Savage COS, Kalia N. Modulating the Adhesion of Haematopoietic Stem Cells with Chemokines to Enhance Their Recruitment to the Ischaemically Injured Murine Kidney. PLoS One 2013; 8:e66489. [PMID: 23840488 PMCID: PMC3686749 DOI: 10.1371/journal.pone.0066489] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 05/07/2013] [Indexed: 02/06/2023] Open
Abstract
Introduction Renal disease affects over 500 million people worldwide and is set to increase as treatment options are predominately supportive. Evidence suggests that exogenous haematopoietic stem cells (HSCs) can be of benefit but due to the rarity and poor homing of these cells, benefits are either minor or transitory. Mechanisms governing HSC recruitment to injured renal microcirculation are poorly understood; therefore this study determined (i) the adhesion molecules responsible for HSC recruitment to the injured kidney, (ii) if cytokine HSC pre-treatment can enhance their homing and (iii) the molecular mechanisms accountable for any enhancement. Methods Adherent and free-flowing HSCs were determined in an intravital murine model of renal ischaemia-reperfusion injury. Some HSCs and animals were pre-treated prior to HSC infusion with function blocking antibodies, hyaluronidase or cytokines. Changes in surface expression and clustering of HSC adhesion molecules were determined using flow cytometry and confocal microscopy. HSC adhesion to endothelial counter-ligands (VCAM-1, hyaluronan) was determined using static adhesion assays in vitro. Results CD49d, CD44, VCAM-1 and hyaluronan governed HSC adhesion to the IR-injured kidney. Both KC and SDF-1α pre-treatment strategies significantly increased HSC adhesion within injured kidney, whilst SDF-1α also increased numbers continuing to circulate. SDF-1α and KC did not increase CD49d or CD44 expression but increased HSC adhesion to VCAM-1 and hyaluronan respectively. SDF-1α increased CD49d surface clustering, as well as HSC deformability. Conclusion Increasing HSC adhesive capacity for its endothelial counter-ligands, potentially through surface clustering, may explain their enhanced renal retention in vivo. Furthermore, increasing HSC deformability through SDF-1α treatment could explain the prolonged systemic circulation; the HSC can therefore continue to survey the damaged tissue instead of becoming entrapped within non-injured sites. Therefore manipulating these mechanisms of HSC recruitment outlined may improve the clinical outcome of cellular therapies for kidney disease.
Collapse
Affiliation(s)
- Rebecca L. White
- School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Gerard Nash
- School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Dean P. J. Kavanagh
- School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Caroline O. S. Savage
- School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Neena Kalia
- School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- * E-mail:
| |
Collapse
|
32
|
Forgacova K, Savvulidi F, Sefc L, Linhartova J, Necas E. All hematopoietic stem cells engraft in submyeloablatively irradiated mice. Biol Blood Marrow Transplant 2013; 19:713-9. [PMID: 23422843 DOI: 10.1016/j.bbmt.2013.02.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 02/11/2013] [Indexed: 12/24/2022]
Abstract
Significant controversy exists regarding the impact of hematopoietic stroma damage by irradiation on the efficiency of engraftment of intravenously transplanted stem cells. It was previously demonstrated that in normal syngenic mice, all intravenously transplanted donor stem cells, present in the bone marrow, compete equally with those of the host. In this study, we comprehensively compared the blood cell production derived from transplanted donor stem cells with that from the host stem cells surviving various doses of submyeloablative irradiation. We compared the partial chimerism resulting from transplantation with theoretical estimates that assumed transplantation efficiencies ranging from 100% to 20%. The highest level of consensus between the experimental and the theoretical results was 100% for homing and engraftment (ie, the utilization of all transplanted stem cells). These results point to a very potent mechanism through which intravenously administered hematopoietic stem cells are captured from circulation, engraft in the hematopoietic tissue, and contribute to blood cell production in irradiated recipients. The damage done to hematopoietic stroma and to the trabecular bone by submyeloablative doses of ionizing radiation does not negatively affect the homing and engraftment mechanisms of intravenously transplanted hematopoietic progenitor and stem cells.
Collapse
Affiliation(s)
- Katarina Forgacova
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | | | | | | | | |
Collapse
|
33
|
Hepburn AC, Veeratterapillay R, Williamson SC, El-Sherif A, Sahay N, Thomas HD, Mantilla A, Pickard RS, Robson CN, Heer R. Side population in human non-muscle invasive bladder cancer enriches for cancer stem cells that are maintained by MAPK signalling. PLoS One 2012; 7:e50690. [PMID: 23226356 PMCID: PMC3511341 DOI: 10.1371/journal.pone.0050690] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 10/23/2012] [Indexed: 12/20/2022] Open
Abstract
Side population (SP) and ABC transporter expression enrich for stem cells in numerous tissues. We explored if this phenotype characterised human bladder cancer stem cells (CSCs) and attempted to identify regulatory mechanisms. Focusing on non-muscle invasive bladder cancer (NMIBC), multiple human cell lines were used to characterise SP and ABC transporter expression. In vitro and in vivo phenotypic and functional assessments of CSC behaviour were undertaken. Expression of putative CSC marker ABCG2 was assessed in clinical NMIBC samples (n = 148), and a role for MAPK signalling, a central mechanism of bladder tumourigenesis, was investigated. Results showed that the ABCG2 transporter was predominantly expressed and was up-regulated in the SP fraction by 3-fold (ABCG2(hi)) relative to the non-SP (NSP) fraction (ABCG2(low)). ABCG2(hi) SP cells displayed enrichment of stem cell markers (Nanog, Notch1 and SOX2) and a three-fold increase in colony forming efficiency (CFE) in comparison to ABCG2(low) NSP cells. In vivo, ABCG2(hi) SP cells enriched for tumour growth compared with ABCG2(low) NSP cells, consistent with CSCs. pERK was constitutively active in ABCG2(hi) SP cells and MEK inhibition also inhibited the ABCG2(hi) SP phenotype and significantly suppressed CFE. Furthermore, on examining clinical NMIBC samples, ABCG2 expression correlated with increased recurrence and decreased progression free survival. Additionally, pERK expression also correlated with decreased progression free survival, whilst a positive correlation was further demonstrated between ABCG2 and pERK expression. In conclusion, we confirm ABCG2(hi) SP enriches for CSCs in human NMIBC and MAPK/ERK pathway is a suitable therapeutic target.
Collapse
Affiliation(s)
- Anastasia C. Hepburn
- Northern Institute for Cancer Research, Newcastle University, Framlington Place, Newcastle upon Tyne, United Kingdom
| | - Rajan Veeratterapillay
- Department of Urology, Freeman Hospital, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Stuart C. Williamson
- Northern Institute for Cancer Research, Newcastle University, Framlington Place, Newcastle upon Tyne, United Kingdom
| | - Amira El-Sherif
- Department of Pathology, Royal Victoria Infirmary, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Neha Sahay
- Northern Institute for Cancer Research, Newcastle University, Framlington Place, Newcastle upon Tyne, United Kingdom
| | - Huw D. Thomas
- Northern Institute for Cancer Research, Newcastle University, Framlington Place, Newcastle upon Tyne, United Kingdom
| | - Alejandra Mantilla
- Northern Institute for Cancer Research, Newcastle University, Framlington Place, Newcastle upon Tyne, United Kingdom
| | - Robert S. Pickard
- Department of Urology, Freeman Hospital, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
- Institute of Cellular Medicine, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, United Kingdom
| | - Craig N. Robson
- Northern Institute for Cancer Research, Newcastle University, Framlington Place, Newcastle upon Tyne, United Kingdom
| | - Rakesh Heer
- Northern Institute for Cancer Research, Newcastle University, Framlington Place, Newcastle upon Tyne, United Kingdom
- Department of Urology, Freeman Hospital, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
34
|
Characterisation of dental pulp stem cells: A new horizon for tissue regeneration? Arch Oral Biol 2012; 57:1439-58. [PMID: 22981360 DOI: 10.1016/j.archoralbio.2012.08.010] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2011] [Revised: 08/09/2012] [Accepted: 08/16/2012] [Indexed: 01/03/2023]
|
35
|
Lomas AJ, Chen GG, El Haj AJ, Forsyth NR. Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) supports adhesion and migration of mesenchymal stem cells and tenocytes. World J Stem Cells 2012; 4. [PMID: 23193433 PMCID: PMC3507844 DOI: 10.4252/wjsc.v4.i9.94] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To establish the potential of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) as a material for tendon repair. METHODS The biocompatibility of PHBHHx with both rat tenocytes (rT) and human mesenchymal stem cells (hMSC) was explored by monitoring adhesive characteristics on films of varying weight/volume ratios coupled to a culture atmosphere of either 21% O(2) (air) or 2% O(2) (physiological normoxia). The diameter and stiffness of PHBHHx films was established using optical coherence tomography and mechanical testing, respectively. RESULTS Film thickness correlated directly with weight/volume PHBHHx (r(2) = 0.9473) ranging from 0.1 mm (0.8% weight/volume) to 0.19 mm (2.4% weight/volume). Film stiffness on the other hand displayed a biphasic response which increased rapidly at values > 1.6% weight/volume. Optimal cell attachment of rT required films of ≥ 1.6% and ≥ 2.0% weight/volume PHBHHx in 2% O(2) and 21% O(2) respectively. A qualitative adhesion increase was noted for hMSC in films ≥ 1.2% weight/volume, becoming significant at 2% weight/volume in 2% O(2). An increase in cell adhesion was also noted with ≥ 2% weight/volume PHBHHx in 21% O(2). Cell migration into films was not observed. CONCLUSION This evaluation demonstrates that PHBHHx is a suitable polymer for future cell/polymer replacement strategies in tendon repair.
Collapse
Affiliation(s)
- Alex J Lomas
- Alex J Lomas, Alicia J El Haj, Nicholas R Forsyth, Guy Hilton Research Centre, Keele University, Stoke on Trent, ST4 7QB, United Kingdom
| | | | | | | |
Collapse
|
36
|
Mayle A, Luo M, Jeong M, Goodell MA. Flow cytometry analysis of murine hematopoietic stem cells. Cytometry A 2012; 83:27-37. [PMID: 22736515 DOI: 10.1002/cyto.a.22093] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 05/15/2012] [Accepted: 06/03/2012] [Indexed: 12/22/2022]
Abstract
Hematopoietic stem cells (HSCs) remain the most well-characterized adult stem cell population both in terms of markers for purification and assays to assess functional potential. However, despite over 40 years of research, working with HSCs in the mouse remains challenging because of the relative abundance (or lack thereof) of these cells in the bone marrow. The frequency of HSCs in murine bone marrow is about 0.01% of total nucleated cells and ∼5,000 can be isolated from an individual mouse depending on the age, sex, and strain of mice as well as purification scheme utilized. Adding to the challenge is the continual reporting of new markers for HSC purification, which makes it difficult for the uninitiated in the field to know which purification strategies yield the highest proportion of long-term, multilineage HSCs. In this updated version of our review from 2009, we review different strategies for hematopoietic stem and progenitor cell identification and purification. We will also discuss methods for rapid flow cytometric analysis of peripheral blood cell types, and novel strategies for working with rare cell populations such as HSCs in the analysis of cell cycle status by BrdU, Ki-67, and Pyronin Y staining. The purpose of updating this review is to provide insight into some of the recent experimental and technical advances in mouse hematopoietic stem cell biology.
Collapse
Affiliation(s)
- Allison Mayle
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
37
|
|
38
|
Gremeaux L, Fu Q, Chen J, Vankelecom H. Activated phenotype of the pituitary stem/progenitor cell compartment during the early-postnatal maturation phase of the gland. Stem Cells Dev 2011; 21:801-13. [PMID: 21970375 DOI: 10.1089/scd.2011.0496] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The rodent pituitary gland undergoes prominent maturation during the first weeks after birth, including a well-known increase in hormone-producing cells. In the past, it has frequently been postulated that stem cells are involved in this early-postnatal growth phase. This hypothesis can now be explored, as pituitary stem/progenitor cells were recently identified. Here, we analyzed in detail the mouse pituitary stem/progenitor cell compartment during the first postnatal week and compared its phenotype with that at the end of the first pituitary growth wave and at adult age. Stem/progenitor cells, as assessed by both side population phenotype and Sox2 expression, are most abundant at birth and gradually decline toward adulthood. The neonatal stem/progenitor cell compartment is clearly more active in terms of proliferation, stemness gene expression, and stem cell-related functional activity including sphere formation and multipotent differentiation capacity. In situ examination of pituitary sections reveals peculiar topographical arrangements of Sox2+ cells, again more pronounced at the neonatal age. Sox2+ cells are particularly prominent at the wedge junction of the anterior and intermediate lobe, and clusters of Sox2+ cells appear to sprout from this and other cleft-lining, marginal zone regions. Colocalization of Sox2 and hormones is generally not observed, thus suggesting mutually exclusive expression. Together, the neonatal pituitary stem/progenitor cell compartment displays an activated phenotype, thus supporting its involvement in the early-postnatal maturation process of the gland.
Collapse
Affiliation(s)
- Lies Gremeaux
- Laboratory of Tissue Plasticity, Department of Molecular Cell Biology, University of Leuven (K.U. Leuven), Leuven, Belgium
| | | | | | | |
Collapse
|
39
|
Czechowicz A, Weissman IL. Purified hematopoietic stem cell transplantation: the next generation of blood and immune replacement. Hematol Oncol Clin North Am 2011; 25:75-87. [PMID: 21236391 DOI: 10.1016/j.hoc.2010.11.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Replacement of disease-causing stem cells with healthy ones has been achieved clinically via hematopoietic cell transplantation (HCT) for the last 40 years, as a treatment modality for a variety of cancers and immunodeficiencies with moderate, but increasing, success. This procedure has traditionally included transplantation of mixed hematopoietic populations that include hematopoietic stem cells (HSC) and other cells, such as T cells. This article explores and delineates the potential expansion of this technique to treat a variety of inherited diseases of immune function, the current barriers in HCT and pure HSC transplantation, and the up-and-coming strategies to combat these obstacles.
Collapse
Affiliation(s)
- Agnieszka Czechowicz
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Lorry I. Lokey Stem Cell Research Building, 265 Campus Drive, Stanford, CA 94305-5323, USA
| | | |
Collapse
|
40
|
Cancer stem cells and side population cells in breast cancer and metastasis. Cancers (Basel) 2011; 3:2106-30. [PMID: 24212798 PMCID: PMC3757406 DOI: 10.3390/cancers3022106] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 04/01/2011] [Accepted: 04/12/2011] [Indexed: 02/07/2023] Open
Abstract
In breast cancer it is never the primary tumour that is fatal; instead it is the development of metastatic disease which is the major cause of cancer related mortality. There is accumulating evidence that suggests that Cancer Stem Cells (CSC) may play a role in breast cancer development and progression. Breast cancer stem cell populations, including side population cells (SP), have been shown to be primitive stem cell-like populations, being long-lived, self-renewing and highly proliferative. SP cells are identified using dual wavelength flow cytometry combined with Hoechst 33342 dye efflux, this ability is due to expression of one or more members of the ABC transporter family. They have increased resistance to chemotherapeutic agents and apoptotic stimuli and have increased migratory potential above that of the bulk tumour cells making them strong candidates for the metastatic spread of breast cancer. Treatment of nearly all cancers usually involves one first-line agent known to be a substrate of an ABC transporter thereby increasing the risk of developing drug resistant tumours. At present there is no marker available to identify SP cells using immunohistochemistry on breast cancer patient samples. If SP cells do play a role in breast cancer progression/Metastatic Breast Cancer (MBC), combining chemotherapy with ABC inhibitors may be able to destroy both the cells making up the bulk tumour and the cancer stem cell population thus preventing the risk of drug resistant disease, recurrence or metastasis.
Collapse
|
41
|
Li RJ, Ying X, Zhang Y, Ju RJ, Wang XX, Yao HJ, Men Y, Tian W, Yu Y, Zhang L, Huang RJ, Lu WL. All-trans retinoic acid stealth liposomes prevent the relapse of breast cancer arising from the cancer stem cells. J Control Release 2011; 149:281-91. [DOI: 10.1016/j.jconrel.2010.10.019] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 09/01/2010] [Accepted: 10/14/2010] [Indexed: 12/21/2022]
|
42
|
Critical Appraisal of the Side Population Assay in Stem Cell and Cancer Stem Cell Research. Cell Stem Cell 2011; 8:136-47. [DOI: 10.1016/j.stem.2011.01.007] [Citation(s) in RCA: 253] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
43
|
Rossi L, Challen GA, Sirin O, Lin KKY, Goodell MA. Hematopoietic stem cell characterization and isolation. Methods Mol Biol 2011; 750:47-59. [PMID: 21618082 DOI: 10.1007/978-1-61779-145-1_3] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Hematopoietic stem cells (HSCs) are defined by the capabilities of multi-lineage differentiation and long-term self-renewal. Both these characteristics contribute to maintain the homeostasis of the system and allow the restoration of hematopoiesis after insults, such as infections or therapeutic ablation. Reconstitution after lethal irradiation strictly depends on a third, fundamental property of HSCs: the capability to migrate under the influence of specific chemokines. Directed by a chemotactic compass, after transplant HSCs find their way to the bone marrow, where they eventually home and engraft. HSCs represent a rare population that primarily resides in the bone marrow with an estimated frequency of 0.01% of total nucleated cells. Separating HSCs from differentiated cells that reside in the bone marrow has been the focus of intense investigation for years. In this chapter, we will describe in detail the strategy routinely used by our laboratory to purify murine HSCs, by exploiting their antigenic phenotype (KSL), combined with the physiological capability to efficiently efflux the vital dye Hoechst 33342, generating the so-called Side Population, or SP.
Collapse
Affiliation(s)
- Lara Rossi
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
| | | | | | | | | |
Collapse
|
44
|
|
45
|
Czechowicz A, Weissman IL. Purified hematopoietic stem cell transplantation: the next generation of blood and immune replacement. Immunol Allergy Clin North Am 2010; 30:159-71. [PMID: 20493393 DOI: 10.1016/j.iac.2010.03.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Replacement of disease-causing stem cells with healthy ones has been achieved clinically via hematopoietic cell transplantation (HCT) for the last 40 years, as a treatment modality for a variety of cancers and immunodeficiencies with moderate, but increasing, success. This procedure has traditionally included transplantation of mixed hematopoietic populations that include hematopoietic stem cells (HSC) and other cells, such as T cells. This article explores and delineates the potential expansion of this technique to treat a variety of inherited diseases of immune function, the current barriers in HCT and pure HSC transplantation, and the up-and-coming strategies to combat these obstacles.
Collapse
Affiliation(s)
- Agnieszka Czechowicz
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 279 Campus Drive, Stanford, CA 94305, USA.
| | | |
Collapse
|
46
|
Quiescent haematopoietic stem cells are activated by IFN-gamma in response to chronic infection. Nature 2010; 465:793-7. [PMID: 20535209 PMCID: PMC2935898 DOI: 10.1038/nature09135] [Citation(s) in RCA: 688] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Accepted: 04/27/2010] [Indexed: 02/07/2023]
Abstract
Lymphocytes and neutrophils are rapidly depleted by systemic infection. Progenitor cells of the haematopoietic system, such as common myeloid progenitors and common lymphoid progenitors, increase the production of immune cells to restore and maintain homeostasis during chronic infection, but the contribution of haematopoietic stem cells (HSCs) to this process is largely unknown. Here we show, using an in vivo mouse model of Mycobacterium avium infection, that an increased proportion of long-term repopulating HSCs proliferate during M. avium infection, and that this response requires interferon-gamma (IFN-gamma) but not interferon-alpha (IFN-alpha) signalling. Thus, the haematopoietic response to chronic bacterial infection involves the activation not only of intermediate blood progenitors but of long-term repopulating HSCs as well. IFN-gamma is sufficient to promote long-term repopulating HSC proliferation in vivo; furthermore, HSCs from IFN-gamma-deficient mice have a lower proliferative rate, indicating that baseline IFN-gamma tone regulates HSC activity. These findings implicate IFN-gamma both as a regulator of HSCs during homeostasis and under conditions of infectious stress. Our studies contribute to a deeper understanding of haematological responses in patients with chronic infections such as HIV/AIDS or tuberculosis.
Collapse
|
47
|
van Os R, Ausema A, Dontje B, van Riezen M, van Dam G, de Haan G. Engraftment of syngeneic bone marrow is not more efficient after intrafemoral transplantation than after traditional intravenous administration. Exp Hematol 2010; 38:1115-23. [PMID: 20643182 DOI: 10.1016/j.exphem.2010.07.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 06/01/2010] [Accepted: 07/08/2010] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Hematopoietic stem cells are key elements for life-long production of mature blood cells. The success of clinical stem cell transplantation may be improved when the number of stem cells that engraft after transplantation can be increased. Here, we investigated in a syngeneic mouse model whether engraftment and reconstitution can be improved by transplantation directly into the bone marrow. MATERIALS AND METHODS In this study, we directly compared syngeneic transplantation of hematopoietic stem cells into the bone marrow with intravenous administration and assessed reconstitution kinetics and engraftment by bioluminescent imaging and chimerism determination. RESULTS Surprisingly, only about 10% of cells injected directly into the femur (intrafemoral, IF) could be retrieved within 5 minutes after injection. Only in the first 48 hours after transplantation, engraftment in IF-transplanted animals was higher compared with intravenous injection. However, at all later time points no differences could be detected using whole body bioluminescence or measuring blood cell reconstitution. Most importantly, we found that IF-transplanted cells did not outcompete cells transplanted intravenously when cotransplanted in the same recipient. CONCLUSIONS In conclusion, IF transplantation in a murine syngeneic setting revealed no enhanced engraftment. Previous reports on IF transplantation may have relied on escape from immune rejection in xenogeneic or allogeneic models. Therefore, we conclude that stem cells can find the proper microenvironment irrespective of the route of administration.
Collapse
Affiliation(s)
- Ronald van Os
- Department of Cell Biology, Section Stem Cell Biology, University Medical Center Groningen, University of Groningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
48
|
Gul H, Lu W, Xu P, Xing J, Chen J. Magnetic carbon nanotube labelling for haematopoietic stem/progenitor cell tracking. NANOTECHNOLOGY 2010; 21:155101. [PMID: 20299726 DOI: 10.1088/0957-4484/21/15/155101] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Haematopoietic stem and progenitor cell (HSPC) research has significantly contributed to the understanding and harnessing of haematopoiesis for regenerative medicine. However, the methodology for real-time tracking HSPC in vivo is still lacking, which seriously restricts the progress of research. Recently, magnetic carbon nanotubes (mCNT) have generated great excitement because they have been successfully used as vehicles to deliver a lot of biomolecules into various cells. There is, however, no report about mCNT being used for tracking HSPC. In this paper, we investigated the uptake efficiency of fluorescein-isothiocyanate-labelled mCNT (FITC-mCNT) into HSPC and their effect on the cytotoxicity and differentiation of HSPC. We found that cellular uptake of FITC-mCNT was concentration-and time-dependent. The uptake of FITC-mCNT into HSPC reached up to 100% with the highest mean fluorescence (MF). More importantly, efficient FITC-mCNT uptake has no adverse effect on the cell viability, cytotoxicity and differentiation of HSPC as confirmed by colony-forming unit assay (CFU). In conclusion, the results reported here suggest the further tailoring of mCNT for their use in HSPC labelling/tracking in vivo or gene delivery into HSPC.
Collapse
Affiliation(s)
- Hilal Gul
- Department of Biomedical Engineering, University of Alberta, Edmonton, AB, T6G 2V2, Canada
| | | | | | | | | |
Collapse
|
49
|
Challen GA, Boles NC, Chambers SM, Goodell MA. Distinct hematopoietic stem cell subtypes are differentially regulated by TGF-beta1. Cell Stem Cell 2010; 6:265-78. [PMID: 20207229 DOI: 10.1016/j.stem.2010.02.002] [Citation(s) in RCA: 447] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Revised: 11/11/2009] [Accepted: 02/02/2010] [Indexed: 02/06/2023]
Abstract
The traditional view of hematopoiesis has been that all the cells of the peripheral blood are the progeny of a unitary homogeneous pool of hematopoietic stem cells (HSCs). Recent evidence suggests that the hematopoietic system is actually maintained by a consortium of HSC subtypes with distinct functional characteristics. We show here that myeloid-biased HSCs (My-HSCs) and lymphoid-biased HSCs (Ly-HSCs) can be purified according to their capacity for Hoechst dye efflux in combination with canonical HSC markers. These phenotypes are stable under natural (aging) or artificial (serial transplantation) stress and are exacerbated in the presence of competing HSCs. My- and Ly-HSCs respond differently to TGF-beta1, presenting a possible mechanism for differential regulation of HSC subtype activation. This study demonstrates definitive isolation of lineage-biased HSC subtypes and contributes to the fundamental change in view that the hematopoietic system is maintained by a continuum of HSC subtypes, rather than a functionally uniform pool.
Collapse
Affiliation(s)
- Grant A Challen
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
50
|
Abstract
Haematopoietic stem cells (HSCs) in mouse bone marrow are located in specialized niches as single cells. During homeostasis, signals from this environment keep some HSCs dormant, which preserves long-term self-renewal potential, while other HSCs actively self renew to maintain haematopoiesis. In response to haematopoietic stress, dormant HSCs become activated and rapidly replenish the haematopoietic system. Interestingly, three factors - granulocyte colony-stimulating factor, interferon-alpha and arsenic trioxide - have been shown to efficiently activate dormant stem cells and thereby could break their resistance to anti-proliferative chemotherapeutics. Thus, we propose that two-step strategies could target resistant leukaemic stem cells by priming tumours with activators of dormancy followed by chemotherapy or targeted therapies.
Collapse
Affiliation(s)
- Andreas Trumpp
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine, German Cancer Research Center, Germany.
| | | | | |
Collapse
|