1
|
Veuthey L, Aliotta A, Bertaggia Calderara D, Pereira Portela C, Alberio L. Mechanisms Underlying Dichotomous Procoagulant COAT Platelet Generation-A Conceptual Review Summarizing Current Knowledge. Int J Mol Sci 2022; 23:2536. [PMID: 35269679 PMCID: PMC8910683 DOI: 10.3390/ijms23052536] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 12/23/2022] Open
Abstract
Procoagulant platelets are a subtype of activated platelets that sustains thrombin generation in order to consolidate the clot and stop bleeding. This aspect of platelet activation is gaining more and more recognition and interest. In fact, next to aggregating platelets, procoagulant platelets are key regulators of thrombus formation. Imbalance of both subpopulations can lead to undesired thrombotic or bleeding events. COAT platelets derive from a common pro-aggregatory phenotype in cells capable of accumulating enough cytosolic calcium to trigger specific pathways that mediate the loss of their aggregating properties and the development of new adhesive and procoagulant characteristics. Complex cascades of signaling events are involved and this may explain why an inter-individual variability exists in procoagulant potential. Nowadays, we know the key agonists and mediators underlying the generation of a procoagulant platelet response. However, we still lack insight into the actual mechanisms controlling this dichotomous pattern (i.e., procoagulant versus aggregating phenotype). In this review, we describe the phenotypic characteristics of procoagulant COAT platelets, we detail the current knowledge on the mechanisms of the procoagulant response, and discuss possible drivers of this dichotomous diversification, in particular addressing the impact of the platelet environment during in vivo thrombus formation.
Collapse
Affiliation(s)
| | | | | | | | - Lorenzo Alberio
- Hemostasis and Platelet Research Laboratory, Division of Hematology and Central Hematology Laboratory, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), CH-1010 Lausanne, Switzerland; (L.V.); (A.A.); (D.B.C.); (C.P.P.)
| |
Collapse
|
2
|
Kholmukhamedov A. Procoagulant Platelets. Platelets 2020. [DOI: 10.5772/intechopen.92638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
There are two well-known subpopulations of activated platelets: pro-aggregatory and procoagulant. Procoagulant platelets represent a subpopulation of activated platelets, which are morphologically and functionally distinct from pro-aggregatory ones. Although various names have been used to describe these platelets in the literature (CoaT, CoaTed, highly activated, ballooned, capped, etc.), there is a consensus on their phenotypic features including exposure of high levels of phosphatidylserine (PSer) on the surface; decreased aggregatory and adhesive properties; support of active tenase and prothrombinase complexes; maximal generation by co-stimulation of glycoprotein VI (GPVI) and protease-activated receptors (PAR). In this chapter, morphologic and functional features of procoagulant platelets, as well as the mechanisms of their formation, will be discussed.
Collapse
|
3
|
Tang Z, Kattula S, Holle LA, Cooley BC, Lin F, Wolberg AS. Factor XIII deficiency does not prevent FeCl 3-induced carotid artery thrombus formation in mice. Res Pract Thromb Haemost 2020; 4:111-116. [PMID: 31989092 PMCID: PMC6971319 DOI: 10.1002/rth2.12278] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/04/2019] [Accepted: 10/13/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The compositions of venous (red blood cell-rich) and arterial (platelet-rich) thrombi are mediated by distinct pathophysiologic processes; however, fibrin is a major structural component of both. The transglutaminase factor XIII (FXIII) stabilizes fibrin against mechanical and biochemical disruption and promotes red blood cell retention in contracted venous thrombi. Previous studies have shown factor XIII (FXIII) inhibition decreases whole blood clot mass and therefore, may be a therapeutic target for reducing venous thrombosis. The role of FXIII in arterial thrombogenesis is less studied, and the particular contribution of platelet FXIII remains unresolved. OBJECTIVE To determine whether FXIII reduction prevents experimental arterial thrombogenesis. METHODS Using wild-type mice and mice with genetically imposed deficiency in FXIII, we measured thrombus formation and stability following ferric chloride-induced arterial thrombosis. We also determined the impact of FXIII on the mass of contracted platelet-rich plasma clots. RESULTS Following vessel injury, F13a+/+ , F13a+/- , and F13a-/- mice developed occlusive arterial thrombi. FXIII deficiency did not significantly reduce the incidence or prolong the time to occlusion. FXIII deficiency also did not alter the timing of reflow events or decrease platelet-rich clot mass. CONCLUSIONS FXIII does not significantly alter the underlying pathophysiology of experimental arterial thrombus formation.
Collapse
Affiliation(s)
- Zhaoming Tang
- Department of Pathology and Laboratory MedicineUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | - Sravya Kattula
- Department of Pathology and Laboratory MedicineUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | - Lori A. Holle
- Department of Pathology and Laboratory MedicineUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | - Brian C. Cooley
- Department of Pathology and Laboratory MedicineUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | - Feng‐Chang Lin
- Department of Biostatistics and North Carolina Translational and Clinical Sciences InstituteUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | - Alisa S. Wolberg
- Department of Pathology and Laboratory MedicineUniversity of North Carolina at Chapel HillChapel HillNCUSA
| |
Collapse
|
4
|
Bhatlekar S, Basak I, Edelstein LC, Campbell RA, Lindsey CR, Italiano JE, Weyrich AS, Rowley JW, Rondina MT, Sola-Visner M, Bray PF. Anti-apoptotic BCL2L2 increases megakaryocyte proplatelet formation in cultures of human cord blood. Haematologica 2019; 104:2075-2083. [PMID: 30733267 PMCID: PMC6886406 DOI: 10.3324/haematol.2018.204685] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 01/30/2019] [Indexed: 12/23/2022] Open
Abstract
Apoptosis is a recognized limitation to generating large numbers of megakaryocytes in culture. The genes responsible have been rigorously studied in vivo in mice, but are poorly characterized in human culture systems. As CD34-positive (+) cells isolated from human umbilical vein cord blood were differentiated into megakaryocytes in culture, two distinct cell populations were identified by flow cytometric forward and side scatter: larger size, lower granularity (LLG), and smaller size, higher granularity (SHG). The LLG cells were CD41aHigh CD42aHigh phosphatidylserineLow, had an electron microscopic morphology similar to mature bone marrow megakaryocytes, developed proplatelets, and displayed a signaling response to platelet agonists. The SHG cells were CD41aLowCD42aLowphosphatidylserineHigh, had a distinctly apoptotic morphology, were unable to develop proplatelets, and showed no signaling response. Screens of differentiating megakaryocytes for expression of 24 apoptosis genes identified BCL2L2 as a novel candidate megakaryocyte apoptosis regulator. Lentiviral BCL2L2 overexpression decreased megakaryocyte apoptosis, increased CD41a+ LLG cells, and increased proplatelet formation by 58%. An association study in 154 healthy donors identified a significant positive correlation between platelet number and platelet BCL2L2 mRNA levels. This finding was consistent with the observed increase in platelet-like particles derived from cultured megakaryocytes over-expressing BCL2L2 BCL2L2 also induced small, but significant increases in thrombin-induced platelet-like particle αIIbβ3 activation and P-selectin expression. Thus, BCL2L2 restrains apoptosis in cultured megakaryocytes, promotes proplatelet formation, and is associated with platelet number. BCL2L2 is a novel target for improving megakaryocyte and platelet yields in in vitro culture systems.
Collapse
Affiliation(s)
- Seema Bhatlekar
- Program in Molecular Medicine and Department of Internal Medicine, University of Utah, Salt Lake City, UT
| | - Indranil Basak
- Program in Molecular Medicine and Department of Internal Medicine, University of Utah, Salt Lake City, UT
| | - Leonard C Edelstein
- Cardeza Foundation for Hematologic Research, Thomas Jefferson University, Philadelphia, PA
| | - Robert A Campbell
- Program in Molecular Medicine and Department of Internal Medicine, University of Utah, Salt Lake City, UT
| | - Cory R Lindsey
- Cardeza Foundation for Hematologic Research, Thomas Jefferson University, Philadelphia, PA
| | | | - Andrew S Weyrich
- Program in Molecular Medicine and Department of Internal Medicine, University of Utah, Salt Lake City, UT
| | - Jesse W Rowley
- Program in Molecular Medicine and Department of Internal Medicine, University of Utah, Salt Lake City, UT
| | - Matthew T Rondina
- Program in Molecular Medicine and Department of Internal Medicine, University of Utah, Salt Lake City, UT
- George E. Wahlen VAMC GRECC, Salt Lake City, UT
| | | | - Paul F Bray
- Program in Molecular Medicine and Department of Internal Medicine, University of Utah, Salt Lake City, UT
- Division of Hematology and Hematologic Malignancies, Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
5
|
Mitchell JL, Mutch NJ. Let's cross-link: diverse functions of the promiscuous cellular transglutaminase factor XIII-A. J Thromb Haemost 2019; 17:19-30. [PMID: 30489000 DOI: 10.1111/jth.14348] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Indexed: 12/16/2022]
Abstract
Essentials Plasma Factor XIII, a heterodimer of A and B subunits FXIIIA2 B2 , is a transglutaminase enzyme with a well-established role in haemostasis. Cells of bone marrow and mesenchymal lineage express the FXIII-A gene (F13A1) that encodes the cellular form of the transglutaminase, a homodimer of the A subunits, FXIII-A. FXIII-A was presumed to function intracellularly, however, several lines of evidence now indicate that FXIII-A is externalised by an as yet unknown mechanism This review describes the mounting evidence that FXIII-A is a diverse transglutaminase with many intracellular and extracellular substrates that can participate in an array of biological processes SUMMARY: Factor XIII is a tranglutaminase enzyme that catalyzes the formation of ε-(γ-glutamyl)lysyl isopeptide bonds in protein substrates. The plasma form, FXIII-A2 B2 , has an established function in hemostasis, where its primary substrate is fibrin. A deficiency in FXIII manifests as a severe bleeding diathesis, underscoring its importance in this pathway. The cellular form of the enzyme, a homodimer of the A-subunits, denoted FXIII-A, has not been studied in as extensive detail. FXIII-A was generally perceived to remain intracellular, owing to the lack of a classical signal peptide for its release. In the last decade, emerging evidence has revealed that this diverse transglutaminase can be externalized from cells, by an as yet unknown mechanism, and can cross-link extracellular substrates and participate in a number of diverse pathways. The FXIII-A gene (F13A1) is expressed in cells of bone marrow and mesenchymal lineage, notably megakaryocytes, monocytes/macrophages, dendritic cells, chrondrocytes, osteoblasts, and preadipocytes. The biological processes that FXIII-A is coupled with, such as wound healing, phagocytosis, and bone and matrix remodeling, reflect its expression in these cell types. This review describes the mounting evidence that this cellular transglutaminase can be externalized, usually in response to stimuli, and participate in extracellular cross-linking reactions. A corollary of being involved in these biological pathways is the participation of FXIII-A in pathological processes. In conclusion, the functions of this transglutaminase extend far beyond its role in hemostasis, and our understanding of this enzyme in terms of its secretion, regulation and substrates is in its infancy.
Collapse
Affiliation(s)
- J L Mitchell
- School of Biological Sciences, University of Reading, Reading, UK
| | - N J Mutch
- Aberdeen Cardiovascular & Diabetes Centre, School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
6
|
Reddy EC, Wang H, Christensen H, McMillan‐Ward E, Israels SJ, Bang KWA, Rand ML. Analysis of procoagulant phosphatidylserine-exposing platelets by imaging flow cytometry. Res Pract Thromb Haemost 2018; 2:736-750. [PMID: 30349893 PMCID: PMC6178738 DOI: 10.1002/rth2.12144] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 06/24/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Upon platelet activation, a subpopulation of procoagulant platelets is formed, characterized by the exposure of the anionic aminophospholipid phosphatidylserine (PS) on the surface membrane. OBJECTIVE To evaluate procoagulant PS-exposing platelets by imaging flow cytometry. METHODS Platelet ultrastructure was examined by transmission electron microscopy, and a comprehensive analysis of procoagulant platelets was performed using imaging flow cytometry; platelets were fluorescently labeled for the markers glycoprotein (GP)IX, activated integrin αIIbβ3, CD62P, and PS exposure. RESULTS A subpopulation of platelets stimulated in suspension by the physiological agonists thrombin+collagen, and all platelets stimulated by the calcium ionophore A23187, had a distinct round morphology. These platelets were PS-exposing, larger in size, had an increased circularity index, and had reduced internal complexity compared with non-PS-exposing platelets. They expressed CD62P and αIIbβ3 in an inactive conformation on the surface, and demonstrated depolarized inner mitochondrial membranes. For the first time, using imaging flow cytometry, a large proportion of PS-exposing platelets possessing platelet-associated extracellular vesicles (EVs) was observed, which demonstrated heterogeneous platelet marker expression that was different from free released EVs. CONCLUSIONS Innovative imaging flow cytometry allowed detailed fluorescence-based, quantitative morphometric analysis of PS-exposing platelets; in becoming procoagulant, platelets undergo remarkable morphological changes, transforming into spherical "balloons," almost devoid of their normal internal architecture. Almost all PS-exposing platelets have associated EVs that are not detectable by traditional flow cytometry. While their functions have yet to be fully elucidated, the heterogeneity of platelet-associated and released EVs suggests that they may contribute to different aspects of hemostasis and of thrombosis.
Collapse
Affiliation(s)
- Emily C. Reddy
- Translational MedicineResearch InstituteThe Hospital for Sick ChildrenTorontoCanada
| | - Hong Wang
- Translational MedicineResearch InstituteThe Hospital for Sick ChildrenTorontoCanada
| | - Hilary Christensen
- Translational MedicineResearch InstituteThe Hospital for Sick ChildrenTorontoCanada
| | | | - Sara J. Israels
- Department of Pediatrics and Child HealthUniversity of ManitobaWinnipegCanada
| | - K. W. Annie Bang
- Lunenfeld‐Tanenbaum Research Institute, Sinai Health SystemTorontoCanada
| | - Margaret L. Rand
- Translational MedicineResearch InstituteThe Hospital for Sick ChildrenTorontoCanada
- Division of Haematology/OncologyThe Hospital for Sick ChildrenTorontoCanada
- Departments of Laboratory Medicine and Pathobiology, Biochemistry, and PaediatricsUniversity of TorontoTorontoCanada
| |
Collapse
|
7
|
Factor XIII in plasma, but not in platelets, mediates red blood cell retention in clots and venous thrombus size in mice. Blood Adv 2018; 2:25-35. [PMID: 29344582 DOI: 10.1182/bloodadvances.2017011890] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 11/29/2017] [Indexed: 01/08/2023] Open
Abstract
The transglutaminase factor XIII (FXIII) stabilizes clots against mechanical and biochemical disruption and is essential for hemostasis. In vitro and in vivo models of venous thrombosis demonstrate that FXIII mediates clot size by promoting red blood cell (RBC) retention. However, the key source of FXIII and whether FXIII activity can be reduced to suppress thrombosis without imposing deleterious hemostatic consequences are 2 critical unresolved questions. FXIII is present in multiple compartments, including plasma (FXIIIplasma) as a heterotetramer of A2 and B2 subunits and platelets (FXIIIplt) as an A2 homodimer. We determined the role of the FXIII compartment and level in clot contraction, composition, and size in vitro and using in vivo models of hemostasis and venous thrombosis. Reducing overall FXIII levels decreased whole blood clot weight but did not alter thrombin generation or contraction of platelet-rich plasma clots. In reconstituted platelet-rich plasma and whole blood clot contraction assays, FXIIIplasma, but not FXIIIplt, produced high-molecular-weight fibrin crosslinks, promoted RBC retention, and increased clot weights. Genetically imposed reduction of FXIII delayed FXIII activation and fibrin crosslinking, suggesting FXIII levels mediate the kinetics of FXIII activation and activity and that the timing of these processes is a critical determinant of RBC retention during clot formation and contraction. A 50% reduction in FXIIIplasma produced significantly smaller venous thrombi but did not increase bleeding in tail transection or saphenous vein puncture models in vivo. Collectively, these findings suggest that partial FXIII reduction may be a therapeutic strategy for reducing venous thrombosis.
Collapse
|
8
|
Choo HJ, Kholmukhamedov A, Zhou C, Jobe S. Inner Mitochondrial Membrane Disruption Links Apoptotic and Agonist-Initiated Phosphatidylserine Externalization in Platelets. Arterioscler Thromb Vasc Biol 2017; 37:1503-1512. [PMID: 28663253 PMCID: PMC5560492 DOI: 10.1161/atvbaha.117.309473] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 06/16/2017] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Phosphatidylserine exposure mediates platelet procoagulant function and regulates platelet life span. Apoptotic, necrotic, and integrin-mediated mechanisms have been implicated as intracellular determinants of platelet phosphatidylserine exposure. Here, we investigate (1) the role of mitochondrial events in platelet phosphatidylserine exposure initiated by these distinct stimuli and (2) the cellular interactions of the procoagulant platelet in vitro and in vivo. APPROACH AND RESULTS Key mitochondrial events were examined, including cytochrome c release and inner mitochondrial membrane (IMM) disruption. In both ABT-737 (apoptotic) and agonist (necrotic)-treated platelets, phosphatidylserine externalization was temporally correlated with IMM disruption. Agonist stimulation resulted in rapid cyclophilin D-dependent IMM disruption that coincided with phosphatidylserine exposure. ABT-737 treatment caused rapid cytochrome c release, eventually followed by caspase-dependent IMM disruption that again closely coincided with phosphatidylserine exposure. A nonmitochondrial and integrin-mediated mechanism has been implicated in the formation of a novel phosphatidylserine-externalizing platelet subpopulation. Using image cytometry, this subpopulation is demonstrated to be the result of the interaction of an aggregatory platelet and a procoagulant platelet rather than indicative of a novel intracellular mechanism regulating platelet phosphatidylserine externalization. Using electron microscopy, similar interactions between aggregatory and procoagulant platelets are demonstrated in vitro and in vivo within a mesenteric vein hemostatic thrombus. CONCLUSIONS Platelet phosphatidylserine externalization is closely associated with the mitochondrial event of IMM disruption identifying a common pathway in phosphatidylserine-externalizing platelets. The limited interaction of procoagulant platelets and integrin-active aggregatory platelets identifies a potential mechanism for procoagulant platelet retention within the hemostatic thrombus.
Collapse
Affiliation(s)
- Hyo-Jung Choo
- From the BloodCenter of Wisconsin, Milwaukee (A.K., S.J.); Emory University School of Medicine, Department of Pediatrics and Children's Healthcare of Atlanta, GA (H.-J.C., C.Z., S.J.); Emory University, School of Medicine, Department of Cell Biology, Atlanta, GA (H.-J.C.); and Medical College of Wisconsin, Department of Pediatrics, Milwaukee (S.J.)
| | - Andaleb Kholmukhamedov
- From the BloodCenter of Wisconsin, Milwaukee (A.K., S.J.); Emory University School of Medicine, Department of Pediatrics and Children's Healthcare of Atlanta, GA (H.-J.C., C.Z., S.J.); Emory University, School of Medicine, Department of Cell Biology, Atlanta, GA (H.-J.C.); and Medical College of Wisconsin, Department of Pediatrics, Milwaukee (S.J.)
| | - ChengZing Zhou
- From the BloodCenter of Wisconsin, Milwaukee (A.K., S.J.); Emory University School of Medicine, Department of Pediatrics and Children's Healthcare of Atlanta, GA (H.-J.C., C.Z., S.J.); Emory University, School of Medicine, Department of Cell Biology, Atlanta, GA (H.-J.C.); and Medical College of Wisconsin, Department of Pediatrics, Milwaukee (S.J.)
| | - Shawn Jobe
- From the BloodCenter of Wisconsin, Milwaukee (A.K., S.J.); Emory University School of Medicine, Department of Pediatrics and Children's Healthcare of Atlanta, GA (H.-J.C., C.Z., S.J.); Emory University, School of Medicine, Department of Cell Biology, Atlanta, GA (H.-J.C.); and Medical College of Wisconsin, Department of Pediatrics, Milwaukee (S.J.).
| |
Collapse
|
9
|
Kastelowitz N, Tamura R, Onasoga A, Stalker TJ, White OR, Brown PN, Brodsky GL, Brass LF, Branchford BR, Di Paola J, Yin H. Peptides derived from MARCKS block coagulation complex assembly on phosphatidylserine. Sci Rep 2017; 7:4275. [PMID: 28655899 PMCID: PMC5487340 DOI: 10.1038/s41598-017-04494-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 05/16/2017] [Indexed: 01/27/2023] Open
Abstract
Blood coagulation involves activation of platelets and coagulation factors. At the interface of these two processes resides the lipid phosphatidylserine. Activated platelets expose phosphatidylserine on their outer membrane leaflet and activated clotting factors assemble into enzymatically active complexes on the exposed lipid, ultimately leading to the formation of fibrin. Here, we describe how small peptide and peptidomimetic probes derived from the lipid binding domain of the protein myristoylated alanine-rich C-kinase substrate (MARCKS) bind to phosphatidylserine exposed on activated platelets and thereby inhibit fibrin formation. The MARCKS peptides antagonize the binding of factor Xa to phosphatidylserine and inhibit the enzymatic activity of prothrombinase. In whole blood under flow, the MARCKS peptides colocalize with, and inhibit fibrin cross-linking, of adherent platelets. In vivo, we find that the MARCKS peptides circulate to remote injuries and bind to activated platelets in the inner core of developing thrombi.
Collapse
Affiliation(s)
- Noah Kastelowitz
- Department of Chemistry & Biochemistry and the BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA
| | - Ryo Tamura
- Department of Chemistry & Biochemistry and the BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA
| | - Abimbola Onasoga
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Timothy J Stalker
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ormacinda R White
- Department of Chemistry & Biochemistry and the BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA
| | - Peter N Brown
- Department of Chemistry & Biochemistry and the BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA
| | - Gary L Brodsky
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Lawrence F Brass
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Brian R Branchford
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Jorge Di Paola
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA.
| | - Hang Yin
- Department of Chemistry & Biochemistry and the BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA.
| |
Collapse
|
10
|
|
11
|
Mattheij NJA, Swieringa F, Mastenbroek TG, Berny-Lang MA, May F, Baaten CCFMJ, van der Meijden PEJ, Henskens YMC, Beckers EAM, Suylen DPL, Nolte MW, Hackeng TM, McCarty OJT, Heemskerk JWM, Cosemans JMEM. Coated platelets function in platelet-dependent fibrin formation via integrin αIIbβ3 and transglutaminase factor XIII. Haematologica 2015; 101:427-36. [PMID: 26721892 DOI: 10.3324/haematol.2015.131441] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 12/23/2015] [Indexed: 11/09/2022] Open
Abstract
Coated platelets, formed by collagen and thrombin activation, have been characterized in different ways: i) by the formation of a protein coat of α-granular proteins; ii) by exposure of procoagulant phosphatidylserine; or iii) by high fibrinogen binding. Yet, their functional role has remained unclear. Here we used a novel transglutaminase probe, Rhod-A14, to identify a subpopulation of platelets with a cross-linked protein coat, and compared this with other platelet subpopulations using a panel of functional assays. Platelet stimulation with convulxin/thrombin resulted in initial integrin α(IIb)β3 activation, the appearance of a platelet population with high fibrinogen binding, (independently of active integrins, but dependent on the presence of thrombin) followed by phosphatidylserine exposure and binding of coagulation factors Va and Xa. A subpopulation of phosphatidylserine-exposing platelets bound Rhod-A14 both in suspension and in thrombi generated on a collagen surface. In suspension, high fibrinogen and Rhod-A14 binding were antagonized by combined inhibition of transglutaminase activity and integrin α(IIb)β3 Markedly, in thrombi from mice deficient in transglutaminase factor XIII, platelet-driven fibrin formation and Rhod-A14 binding were abolished by blockage of integrin α(IIb)β3. Vice versa, star-like fibrin formation from platelets of a patient with deficiency in α(IIb)β3(Glanzmann thrombasthenia) was abolished upon blockage of transglutaminase activity. We conclude that coated platelets, with initial α(IIb)β3 activation and high fibrinogen binding, form a subpopulation of phosphatidylserine-exposing platelets, and function in platelet-dependent star-like fibrin fiber formation via transglutaminase factor XIII and integrin α(IIb)β3.
Collapse
Affiliation(s)
- Nadine J A Mattheij
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, The Netherlands
| | - Frauke Swieringa
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, The Netherlands
| | - Tom G Mastenbroek
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, The Netherlands
| | - Michelle A Berny-Lang
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | | | - Constance C F M J Baaten
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, The Netherlands
| | - Paola E J van der Meijden
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, The Netherlands
| | - Yvonne M C Henskens
- Central Diagnostic Laboratory, Maastricht University Medical Center, The Netherlands
| | - Erik A M Beckers
- Department of Internal Medicine, Maastricht University Medical Center, The Netherlands
| | - Dennis P L Suylen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, The Netherlands
| | | | - Tilman M Hackeng
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, The Netherlands
| | - Owen J T McCarty
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Johan W M Heemskerk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, The Netherlands
| | - Judith M E M Cosemans
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, The Netherlands
| |
Collapse
|
12
|
Abstract
Factor XIII (FXIII) stabilizes thrombi against fibrinolysis by cross-linking α2-antiplasmin (α2AP) to fibrin. Cellular FXIII (FXIII-A) is abundant in platelets, but the extracellular functions of this pool are unclear because it is not released by classical secretion mechanisms. We examined the function of platelet FXIII-A using Chandler model thrombi formed from FXIII-depleted plasma. Platelets stabilized FXIII-depleted thrombi in a transglutaminase-dependent manner. FXIII-A activity on activated platelets was unstable and was rapidly lost over 1 hour. Inhibiting platelet activation abrogated the ability of platelets to stabilize thrombi. Incorporating a neutralizing antibody to α2AP into FXIII-depleted thrombi revealed that the stabilizing effect of platelet FXIII-A on lysis was α2AP dependent. Platelet FXIII-A activity and antigen were associated with the cytoplasm and membrane fraction of unstimulated platelets, and these fractions were functional in stabilizing FXIII-depleted thrombi against lysis. Fluorescence confocal microscopy and flow cytometry revealed exposure of FXIII-A on activated membranes, with maximal signal detected with thrombin and collagen stimulation. FXIII-A was evident in protruding caps on the surface of phosphatidylserine-positive platelets. Our data show a functional role for platelet FXIII-A through exposure on the activated platelet membrane where it exerts antifibrinolytic function by cross-linking α2AP to fibrin.
Collapse
|
13
|
Liu F, Gamez G, Myers DR, Clemmons W, Lam WA, Jobe SM. Mitochondrially mediated integrin αIIbβ3 protein inactivation limits thrombus growth. J Biol Chem 2013; 288:30672-30681. [PMID: 24014035 PMCID: PMC3798537 DOI: 10.1074/jbc.m113.472688] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 08/26/2013] [Indexed: 11/06/2022] Open
Abstract
When platelets are strongly stimulated, a procoagulant platelet subpopulation is formed that is characterized by phosphatidylserine (PS) exposure and epitope modulation of integrin αIIbβ3 or a loss of binding of activation-dependent antibodies. Mitochondrial permeability transition pore (mPTP) formation, which is essential for the formation of procoagulant platelets, is impaired in the absence of cyclophilin D (CypD). Here we investigate the mechanisms responsible for these procoagulant platelet-associated changes in integrin αIIbβ3 and the physiologic role of procoagulant platelet formation in the regulation of platelet aggregation. Among strongly stimulated adherent platelets, integrin αIIbβ3 epitope changes, mPTP formation, PS exposure, and platelet rounding were closely associated. Furthermore, platelet mPTP formation resulted in a decreased ability to recruit additional platelets. In the absence of CypD, integrin αIIbβ3 function was accentuated in both static and flow conditions, and, in vivo, a prothrombotic phenotype occurred in mice with a platelet-specific deficiency of CypD. CypD-dependent proteolytic events, including cleavage of the integrin β3 cytoplasmic domain, coincided closely with integrin αIIbβ3 inactivation. Calpain inhibition blocked integrin β3 cleavage and inactivation but not mPTP formation or PS exposure, indicating that integrin inactivation and PS exposure are mediated by distinct pathways subsequent to mPTP formation. mPTP-dependent alkalinization occurred in procoagulant platelets, suggesting a possible alternative mechanism for enhancement of calpain activity in procoagulant platelets. Together, these results indicate that, in strongly stimulated platelets, mPTP formation initiates the calpain-dependent cleavage of integrin β3 and associated regulatory proteins, resulting in integrin αIIbβ3 inactivation, and demonstrate a novel CypD-dependent negative feedback mechanism that limits platelet aggregation and thrombotic occlusion.
Collapse
Affiliation(s)
- Fang Liu
- From the Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Graciela Gamez
- From the Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322
| | - David R Myers
- From the Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322,; the Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30322, and
| | - Wayne Clemmons
- From the Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Wilbur A Lam
- From the Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322,; the Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30322, and; the Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia 30322
| | - Shawn M Jobe
- From the Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322,; the Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia 30322.
| |
Collapse
|
14
|
Abaeva AA, Canault M, Kotova YN, Obydennyy SI, Yakimenko AO, Podoplelova NA, Kolyadko VN, Chambost H, Mazurov AV, Ataullakhanov FI, Nurden AT, Alessi MC, Panteleev MA. Procoagulant platelets form an α-granule protein-covered "cap" on their surface that promotes their attachment to aggregates. J Biol Chem 2013; 288:29621-32. [PMID: 23995838 DOI: 10.1074/jbc.m113.474163] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Strongly activated "coated" platelets are characterized by increased phosphatidylserine (PS) surface expression, α-granule protein retention, and lack of active integrin αIIbβ3. To study how they are incorporated into thrombi despite a lack of free activated integrin, we investigated the structure, function, and formation of the α-granule protein "coat." Confocal microscopy revealed that fibrin(ogen) and thrombospondin colocalized as "cap," a single patch on the PS-positive platelet surface. In aggregates, the cap was located at the point of attachment of the PS-positive platelets. Without fibrin(ogen) retention, their ability to be incorporated in aggregates was drastically reduced. The surface fibrin(ogen) was strongly decreased in the presence of a fibrin polymerization inhibitor GPRP and also in platelets from a patient with dysfibrinogenemia and a fibrinogen polymerization defect. In contrast, a fibrinogen-clotting protease ancistron increased the amount of fibrin(ogen) and thrombospondin on the surface of the PS-positive platelets stimulated with collagen-related peptide. Transglutaminases are also involved in fibrin(ogen) retention. However, platelets from patients with factor XIII deficiency had normal retention, and a pan-transglutaminase inhibitor T101 had only a modest inhibitory effect. Fibrin(ogen) retention was normal in Bernard-Soulier syndrome and kindlin-3 deficiency, but not in Glanzmann thrombasthenia lacking the platelet pool of fibrinogen and αIIbβ3. These data show that the fibrin(ogen)-covered cap, predominantly formed as a result of fibrin polymerization, is a critical mechanism that allows coated (or rather "capped") platelets to become incorporated into thrombi despite their lack of active integrins.
Collapse
Affiliation(s)
- Anastasia A Abaeva
- From the Center for Theoretical Problems of Physicochemical Pharmacology, 119991 Moscow, Russia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Platelets contribute to hemostasis by forming the platelet plug and then contributing to coagulation by providing a catalytic surface where thrombin generation occurs efficiently. This catalytic activity, known as the platelet procoagulant response, is being recognized as a nuanced response. This review examines platelets’ response to strong stimuli, which results in the formation of a platelet subpopulation (superactivated platelets) with several unique properties, including enhanced procoagulant activity. These platelets contribute uniquely to thrombus architecture and seem to have thrombus regulatory activity. Superactivated platelets’ role in diseases of thrombosis and hemostasis, as either potentiating or mitigating factors, is not currently known, but may be an important pharmacological target.
Collapse
Affiliation(s)
- Marshall Mazepa
- From the Department of Pathology, University of North Carolina Hospitals, Chapel Hill, NC (M.M.); Department of Pathology, Duke University, Lab Service Durham Veterans Affairs Medical Center, Durham, NC (M.H.); and Division of Hematology/Oncology, School of Medicine, University of North Carolina at Chapel Hill, NC (D.M.)
| | - Maureane Hoffman
- From the Department of Pathology, University of North Carolina Hospitals, Chapel Hill, NC (M.M.); Department of Pathology, Duke University, Lab Service Durham Veterans Affairs Medical Center, Durham, NC (M.H.); and Division of Hematology/Oncology, School of Medicine, University of North Carolina at Chapel Hill, NC (D.M.)
| | - Dougald Monroe
- From the Department of Pathology, University of North Carolina Hospitals, Chapel Hill, NC (M.M.); Department of Pathology, Duke University, Lab Service Durham Veterans Affairs Medical Center, Durham, NC (M.H.); and Division of Hematology/Oncology, School of Medicine, University of North Carolina at Chapel Hill, NC (D.M.)
| |
Collapse
|
16
|
Mattheij NJA, Gilio K, van Kruchten R, Jobe SM, Wieschhaus AJ, Chishti AH, Collins P, Heemskerk JWM, Cosemans JMEM. Dual mechanism of integrin αIIbβ3 closure in procoagulant platelets. J Biol Chem 2013; 288:13325-36. [PMID: 23519467 PMCID: PMC3650371 DOI: 10.1074/jbc.m112.428359] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 03/20/2013] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Inactivation of integrin αIIbβ3 reverses platelet aggregate formation upon coagulation. RESULTS AND CONCLUSION Platelets from patient (Scott) and mouse (Capn1(-/-) and Ppif(-/-)) blood reveal a dual mechanism of αIIbβ3 inactivation: by calpain-2 cleavage of integrin-associated proteins and by cyclophilin D/TMEM16F-dependent phospholipid scrambling. SIGNIFICANCE These data provide novel insight into the switch mechanisms from aggregating to procoagulant platelets. Aggregation of platelets via activated integrin αIIbβ3 is a prerequisite for thrombus formation. Phosphatidylserine-exposing platelets with a key role in the coagulation process disconnect from a thrombus by integrin inactivation via an unknown mechanism. Here we show that αIIbβ3 inactivation in procoagulant platelets relies on a sustained high intracellular Ca(2+), stimulating intracellular cleavage of the β3 chain, talin, and Src kinase. Inhibition of calpain activity abolished protein cleavage, but only partly suppressed αIIbβ3 inactivation. Integrin αIIbβ3 inactivation was unchanged in platelets from Capn1(-/-) mice, suggesting a role of the calpain-2 isoform. Scott syndrome platelets, lacking the transmembrane protein TMEM16F and having low phosphatidylserine exposure, displayed reduced αIIbβ3 inactivation with the remaining activity fully dependent on calpain. In platelets from Ppif(-/-) mice, lacking mitochondrial permeability transition pore (mPTP) formation, agonist-induced phosphatidylserine exposure and αIIbβ3 inactivation were reduced. Treatment of human platelets with cyclosporin A gave a similar phenotype. Together, these data point to a dual mechanism of αIIbβ3 inactivation via calpain(-2) cleavage of integrin-associated proteins and via TMEM16F-dependent phospholipid scrambling with an assistant role of mPTP formation.
Collapse
Affiliation(s)
- Nadine J. A. Mattheij
- From the Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Karen Gilio
- From the Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Roger van Kruchten
- From the Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Shawn M. Jobe
- the Department of Pediatrics, Emory University, Atlanta, Georgia 30322
| | - Adam J. Wieschhaus
- the Department of Pharmacology, University of Illinois, Chicago, Illinois 60607
- the Department of Molecular Physiology and Pharmacology, Tufts University School of Medicine, Boston, Massachusetts 02111, and
| | - Athar H. Chishti
- the Department of Molecular Physiology and Pharmacology, Tufts University School of Medicine, Boston, Massachusetts 02111, and
| | - Peter Collins
- the Arthur Bloom Haemophilia Centre, Department of Haematology, Medical School of Cardiff University, Cardiff CF14 4YU, United Kingdom
| | - Johan W. M. Heemskerk
- From the Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Judith M. E. M. Cosemans
- From the Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
17
|
Heemskerk JWM, Mattheij NJA, Cosemans JMEM. Platelet-based coagulation: different populations, different functions. J Thromb Haemost 2013; 11:2-16. [PMID: 23106920 DOI: 10.1111/jth.12045] [Citation(s) in RCA: 238] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Platelets in a thrombus interact with (anti)coagulation factors and support blood coagulation. In the concept of cell-based control of coagulation, three different roles of platelets can be distinguished: control of thrombin generation, support of fibrin formation, and regulation of fibrin clot retraction. Here, we postulate that different populations of platelets with distinct surface properties are involved in these coagulant functions. Platelets with elevated Ca(2+) and exposed phosphatidylserine control thrombin and fibrin generation, while platelets with activated α(IIb) β(3) regulate clot retraction. We review how coagulation factor binding depends on the platelet activation state. Furthermore, we discuss the ligands, platelet receptors and downstream intracellular signaling pathways implicated in these coagulant functions. These insights lead to an adapted model of platelet-based coagulation.
Collapse
Affiliation(s)
- J W M Heemskerk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands.
| | | | | |
Collapse
|
18
|
Choo HJ, Saafir TB, Mkumba L, Wagner MB, Jobe SM. Mitochondrial calcium and reactive oxygen species regulate agonist-initiated platelet phosphatidylserine exposure. Arterioscler Thromb Vasc Biol 2012; 32:2946-55. [PMID: 23087357 PMCID: PMC3545632 DOI: 10.1161/atvbaha.112.300433] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To study the interactions of cytoplasmic calcium elevation, mitochondrial permeability transition pore (mPTP) formation, and reactive oxygen species formation in the regulation of phosphatidylserine (PS) exposure in platelets. METHODS AND RESULTS mPTP formation, but not the degree of cytoplasmic calcium elevation, was associated with PS exposure in wild-type, cyclophilin D-null, ionomycin-treated, and reactive oxygen species-treated platelets. In the absence of the mPTP regulator cyclophilin D, agonist-initiated mPTP formation and high-level PS exposure were markedly blunted, but cytoplasmic calcium transients were unchanged. Mitochondrial calcium (Ca(2+)(mit)) transients and reactive oxygen species, key regulators of mPTP formation, were examined in strongly stimulated platelets. Increased reactive oxygen species production occurred in strongly stimulated platelets and was dependent on extracellular calcium entry, but not the presence of cyclophilin D. Ca(2+)(mit) increased significantly in strongly stimulated platelets. Abrogation of Ca(2+)(mit) entry, either by inhibition of the Ca(2+)(mit) uniporter or mitochondrial depolarization, prevented mPTP formation and exposure but not platelet aggregation or granule release. CONCLUSIONS Sustained cytoplasmic calcium levels are necessary, but not sufficient, for high-level PS exposure in response to agonists. Increased Ca(2+)(mit) levels are a key signal initiating mPTP formation and PS exposure. Blockade of Ca(2+)(mit) entry allows the specific inhibition of platelet procoagulant activity.
Collapse
Affiliation(s)
- Hyo-Jung Choo
- Department of Pediatrics, Aflac Cancer Center and Blood Disorders Service, Emory University and Children’s Healthcare of Atlanta
| | - Talib B. Saafir
- Department of Pediatrics, Sibley Heart Center, Emory University and Children’s Healthcare of Atlanta
| | - Laura Mkumba
- Department of Pediatrics, Aflac Cancer Center and Blood Disorders Service, Emory University and Children’s Healthcare of Atlanta
| | - Mary B. Wagner
- Department of Pediatrics, Sibley Heart Center, Emory University and Children’s Healthcare of Atlanta
| | - Shawn M. Jobe
- Department of Pediatrics, Aflac Cancer Center and Blood Disorders Service, Emory University and Children’s Healthcare of Atlanta
| |
Collapse
|
19
|
Platelet biogenesis and functions require correct protein O-glycosylation. Proc Natl Acad Sci U S A 2012; 109:16143-8. [PMID: 22988088 DOI: 10.1073/pnas.1208253109] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Platelets express a variety of membrane and secreted glycoproteins, but the importance of glycosylation to platelet functions is poorly understood. To explore the importance of O-glycosylation, we generated mice with a targeted deletion of Cosmc in murine endothelial/hematopoietic cells (EHC) (EHC Cosmc(-/y)). X-linked Cosmc encodes an essential chaperone that regulates protein O-glycosylation. This targeted mutation resulted in lethal perinatal hemorrhage in the majority of mice, and the surviving mice displayed severely prolonged tail-bleeding times and macrothrombocytopenia. EHC Cosmc(-/y) platelets exhibited a marked decrease in GPIb-IX-V function and agonist-mediated integrin αIIbβ3 activation, associated with loss of interactions with von Willebrand factor and fibrinogen, respectively. Significantly, three O-glycosylated glycoproteins, GPIbα, αIIb, and GPVI normally on platelet surfaces that play essential roles in platelet functions, were partially proteolyzed in EHC Cosmc(-/y) platelets. These results demonstrate that extended O-glycans are required for normal biogenesis of the platelets as well as the expression and functions of their essential glycoproteins, and that variations in O-glycosylation may contribute to altered hemostasis.
Collapse
|
20
|
Tsujimoto I, Moriya K, Sakai K, Dickneite G, Sakai T. Critical role of factor XIII in the initial stages of carbon tetrachloride-induced adult liver remodeling. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:3011-9. [PMID: 22019897 PMCID: PMC3260829 DOI: 10.1016/j.ajpath.2011.08.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 08/05/2011] [Accepted: 08/24/2011] [Indexed: 12/29/2022]
Abstract
The transglutaminase-mediated, covalent cross-linking of proteins is an essential step in tissue remodeling after injury. This process provides tissues with extra rigidity and resistance against proteolytic degradation. Plasma coagulation factor XIII (FXIII) is a transglutaminase that promotes cross-linking of the extracellular matrix (ECM) components fibrin and fibronectin to form a provisional matrix in response to tissue damage. However, the functional requirement for this FXIII-mediated cross-linked provisional matrix in adult tissue remodeling remains to be defined. Although it has been proposed that the formation FXIII-mediated fibrin-fibronectin provisional matrix is a critical step for ECM remodeling, we show in an FXIII subunit A-deficient murine model of acute liver injury that the lack of FXIII subunit A did not interfere with collagen reconstruction and resolution after liver injury. Furthermore, FXIIIA deficiency caused significantly increased hepatocyte apoptosis and a delay in hepatocyte regeneration after injury, which were accompanied by a significantly high induction of p53 expression. These findings suggest novel functions of FXIII that the FXIII-mediated covalently cross-linked matrix could promote survival signals for hepatocytes in adult tissue remodeling.
Collapse
Affiliation(s)
- Ikuko Tsujimoto
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | | | | | | | | |
Collapse
|
21
|
Muszbek L, Bereczky Z, Bagoly Z, Komáromi I, Katona É. Factor XIII: a coagulation factor with multiple plasmatic and cellular functions. Physiol Rev 2011; 91:931-72. [PMID: 21742792 DOI: 10.1152/physrev.00016.2010] [Citation(s) in RCA: 346] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Factor XIII (FXIII) is unique among clotting factors for a number of reasons: 1) it is a protransglutaminase, which becomes activated in the last stage of coagulation; 2) it works on an insoluble substrate; 3) its potentially active subunit is also present in the cytoplasm of platelets, monocytes, monocyte-derived macrophages, dendritic cells, chondrocytes, osteoblasts, and osteocytes; and 4) in addition to its contribution to hemostasis, it has multiple extra- and intracellular functions. This review gives a general overview on the structure and activation of FXIII as well as on the biochemical function and downregulation of activated FXIII with emphasis on new developments in the last decade. New aspects of the traditional functions of FXIII, stabilization of fibrin clot, and protection of fibrin against fibrinolysis are summarized. The role of FXIII in maintaining pregnancy, its contribution to the wound healing process, and its proangiogenic function are reviewed in details. Special attention is given to new, less explored, but promising fields of FXIII research that include inhibition of vascular permeability, cardioprotection, and its role in cartilage and bone development. FXIII is also considered as an intracellular enzyme; a separate section is devoted to its intracellular activation, intracellular action, and involvement in platelet, monocyte/macrophage, and dendritic cell functions.
Collapse
Affiliation(s)
- László Muszbek
- Clinical Research Center and Thrombosis, Haemostasis and Vascular Biology Research Group of the Hungarian Academy of Sciences, University of Debrecen, Medical and Health Science Center, Debrecen, Hungary.
| | | | | | | | | |
Collapse
|
22
|
Hoffmann BR, Annis DS, Mosher DF. Reactivity of the N-terminal region of fibronectin protein to transglutaminase 2 and factor XIIIA. J Biol Chem 2011; 286:32220-30. [PMID: 21757696 DOI: 10.1074/jbc.m111.255562] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Transglutaminase 2 (TG2) is secreted by a non-classical pathway into the extracellular space, where it has several activities pertinent to fibronectin (FN), including binding to the gelatin-binding domain of FN and acting as an integrin co-receptor. Glutamines in the N-terminal tail of FN are known to be susceptible to transamidation by both TG2 and activated blood coagulation factor XIII (FXIIIa). We used immunoblotting, limited proteolysis, and mass spectrometry to localize glutamines within FN that are subject to TG2-catalyzed incorporation of dansylcadaverine in comparison to residues modified by FXIIIa. Such analysis of plasma FN indicated that Gln-3, Gln-7, and Gln-9 in the N-terminal tail and Gln-246 of the linker between fifth and sixth type I modules ((5)F1 and (6)F1) are transamidated by both enzymes. Only minor incorporation of dansylcadaverine was detected elsewhere. Labeling of C-terminally truncated FN constructs revealed efficient TG2- or FXIIIa-catalyzed dansylcadaverine incorporation into the N-terminal residues of constructs as small as the 29-kDa fragment that includes (1-5)F1 and lacks modules from the adjacent gelatin-binding domain. However, when only (1-3)F1 were present, dansylcadaverine incorporation into the N-terminal residues of FN was lost and instead was in the enzymes, near the active site of TG2 and terminal domains of FXIIIa. Thus, these results demonstrate that FXIIIa and TG2 act similarly on glutamines at either end of (1-5)F1 and transamidation specificity of both enzymes is achieved through interactions with the intact 29K fragment.
Collapse
Affiliation(s)
- Brian R Hoffmann
- Department of Biomolecular Chemistry and Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
23
|
Fager AM, Wood JP, Bouchard BA, Feng P, Tracy PB. Properties of procoagulant platelets: defining and characterizing the subpopulation binding a functional prothrombinase. Arterioscler Thromb Vasc Biol 2010; 30:2400-7. [PMID: 21071689 DOI: 10.1161/atvbaha.110.216531] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The goal of this study was to define and characterize the subpopulation of platelets capable of regulating the functional interactions of factors Va (FVa) and Xa (FXa) on the thrombin-activated platelet surface. METHODS AND RESULTS Flow cytometric analyses were used to define and characterize platelet subpopulations. At a concentration of thrombin known to elicit maximal platelet activation, platelet-derived FVa release, and prothrombinase assembly/function, only a subpopulation of platelets was positive for FVa and FXa binding. An additional subpopulation bound lower levels of FVa but little, if any, FXa. Fluorescence microscopy analyses confirmed these data. Phenotypically, platelets capable of binding FXa were more highly reticulated and demonstrated significantly increased expression of several key adhesion molecules, including P-selectin, glycoprotein Ibα, and integrins α(IIb) and β(3). This platelet subpopulation was also defined by the expression of a nondissociable, membrane-bound pool of functional platelet-derived FVa, which made up ≈35% to 50% of the total membrane-bound cofactor. CONCLUSIONS The ability of activated platelets to support thrombin generation is defined by a subpopulation of platelets expressing a nondissociable pool of platelet-derived FVa and increased adhesive receptor density. This subpopulation is hypothesized to play a significant role in regulating both normal hemostasis and pathological thrombus formation because the adherent properties of platelets and their ability to mount and sustain a procoagulant response are crucial steps in both of these processes.
Collapse
Affiliation(s)
- Ammon M Fager
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, Vt 05405, USA
| | | | | | | | | |
Collapse
|
24
|
Dale GL, Remenyi G, Friese P. Tetraspanin CD9 is required for microparticle release from coated-platelets. Platelets 2010; 20:361-6. [PMID: 19658001 DOI: 10.1080/09537100903096692] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
CD9, a member of the tetraspanin superfamily, is the third most abundant protein on the platelet surface, but its function remains unknown. In this report, we demonstrate that CD9 is required for the release of microparticles from coated-platelets. Coated-platelets are formed as a result of dual agonist activation with collagen and thrombin, and each coated-platelet releases 15-25 microparticles averaging 0.4 microm in diameter. We report here that four separate monoclonal antibodies against CD9 inhibited microparticle release from coated-platelets by 72-102% with an IC(50) of approximately 500 ng/mL for ALB6 and SN4. In addition, the anti-alpha(IIb)beta(3) monoclonal antibody AP2 also inhibited microparticle release although additional anti-alpha(IIb)beta(3) monoclonals did not. These data support participation of the tetraspanin CD9, together with the integrin alpha(IIb)beta(3), in the membrane vesiculation process associated with platelet microparticle release.
Collapse
Affiliation(s)
- George L Dale
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA.
| | | | | |
Collapse
|
25
|
Saxena K, Pethe K, Dale GL. Coated-platelet levels may explain some variability in clinical phenotypes observed with severe hemophilia. J Thromb Haemost 2010; 8:1140-2. [PMID: 20180820 DOI: 10.1111/j.1538-7836.2010.03828.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Iismaa SE, Mearns BM, Lorand L, Graham RM. Transglutaminases and disease: lessons from genetically engineered mouse models and inherited disorders. Physiol Rev 2009; 89:991-1023. [PMID: 19584319 DOI: 10.1152/physrev.00044.2008] [Citation(s) in RCA: 264] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The human transglutaminase (TG) family consists of a structural protein, protein 4.2, that lacks catalytic activity, and eight zymogens/enzymes, designated factor XIII-A (FXIII-A) and TG1-7, that catalyze three types of posttranslational modification reactions: transamidation, esterification, and hydrolysis. These reactions are essential for biological processes such as blood coagulation, skin barrier formation, and extracellular matrix assembly but can also contribute to the pathophysiology of various inflammatory, autoimmune, and degenerative conditions. Some members of the TG family, for example, TG2, can participate in biological processes through actions unrelated to transamidase catalytic activity. We present here a comprehensive review of recent insights into the physiology and pathophysiology of TG family members that have come from studies of genetically engineered mouse models and/or inherited disorders. The review focuses on FXIII-A, TG1, TG2, TG5, and protein 4.2, as mice deficient in TG3, TG4, TG6, or TG7 have not yet been reported, nor have mutations in these proteins been linked to human disease.
Collapse
Affiliation(s)
- Siiri E Iismaa
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute and Universityof New South Wales, Sydney, New South Wales 2010, Australia
| | | | | | | |
Collapse
|
27
|
Jayo A, Conde I, Lastres P, Jiménez-Yuste V, González-Manchón C. New insights into the expression and role of platelet factor XIII-A. J Thromb Haemost 2009; 7:1184-91. [PMID: 19422454 DOI: 10.1111/j.1538-7836.2009.03456.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND The A subunit of factor XIII (FXIII-A) functions as an intracellular transglutaminase (TG) in the megakaryocyte/platelet lineage, where it probably participates in the cytoskeletal remodeling associated with cell activation. However, so far, the precise role of cellular FXIII (cFXIII) and the functional consequences of its absence in FXIII-A-deficient patients are unknown. OBJECTIVES AND METHODS In this study, we used platelets from four patients with congenital deficiency of FXIII-A to study the role of cFXIII in platelet functions. RESULTS We found that FXIII-A represents the only detectable source of TG activity in platelets and that the binding of fibrinogen in response to thrombin receptor agonist peptide (TRAP) stimulation was significantly reduced in platelets from the patients. In agreement with this, in control platelets, monodansyl-cadaverine (MDC), a competitive amino-donor for TGs, inhibited fibrinogen binding induced by TRAP in a dose-dependent manner. Moreover, upon adhesion to fibrinogen, normal platelets incubated with MDC as well as FXIII-A-deficient platelets showed a distinct extension pattern with reduced lamellipodia and increased filopodia formation, suggesting a delay in spreading. CONCLUSIONS These findings provide evidence for the direct involvement of cFXIII-dependent TG activity in the regulation of platelet functions.
Collapse
Affiliation(s)
- A Jayo
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | | | | | | | | |
Collapse
|
28
|
Jobe SM, Wilson KM, Leo L, Raimondi A, Molkentin JD, Lentz SR, Di Paola J. Critical role for the mitochondrial permeability transition pore and cyclophilin D in platelet activation and thrombosis. Blood 2008; 111:1257-65. [PMID: 17989312 PMCID: PMC2214770 DOI: 10.1182/blood-2007-05-092684] [Citation(s) in RCA: 161] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Accepted: 10/27/2007] [Indexed: 02/02/2023] Open
Abstract
Many of the cellular responses that occur in activated platelets resemble events that take place following activation of cell-death pathways in nucleated cells. We tested the hypothesis that formation of the mitochondrial permeability transition pore (MPTP), a key signaling event during cell death, also plays a critical role in platelet activation. Stimulation of murine platelets with thrombin plus the glycoprotein VI agonist convulxin resulted in a rapid loss of mitochondrial transmembrane potential (Deltapsi(m)) in a subpopulation of activated platelets. In the absence of cyclophilin D (CypD), an essential regulator of MPTP formation, murine platelet activation responses were altered. CypD-deficient platelets exhibited defects in phosphatidylserine externalization, high-level surface fibrinogen retention, membrane vesiculation, and procoagulant activity. Also, in CypD-deficient platelet-rich plasma, clot retraction was altered. Stimulation with thrombin plus H(2)O(2), a known activator of MPTP formation, also increased high-level surface fibrinogen retention, phosphatidylserine externalization, and platelet procoagulant activity in a CypD-dependent manner. In a model of carotid artery photochemical injury, thrombosis was markedly accelerated in CypD-deficient mice. These results implicate CypD and the MPTP as critical regulators of platelet activation and suggest a novel CypD-dependent negative-feedback mechanism regulating arterial thrombosis.
Collapse
Affiliation(s)
- Shawn M Jobe
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
Munnix ICA, Kuijpers MJE, Auger J, Thomassen CMLGD, Panizzi P, van Zandvoort MAM, Rosing J, Bock PE, Watson SP, Heemskerk JWM. Segregation of platelet aggregatory and procoagulant microdomains in thrombus formation: regulation by transient integrin activation. Arterioscler Thromb Vasc Biol 2007; 27:2484-90. [PMID: 17761939 PMCID: PMC2376762 DOI: 10.1161/atvbaha.107.151100] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Platelets play a dual role in thrombosis by forming aggregates and stimulating coagulation. We investigated the commitment of platelets to these separate functions during collagen-induced thrombus formation in vitro and in vivo. METHODS AND RESULTS High-resolution 2-photon fluorescence microscopy revealed that in thrombus formation under flow, fibrin(ogen)-binding platelets assembled into separate aggregates, whereas distinct patches of nonaggregated platelets exposed phosphatidylserine. The latter platelet population had inactivated alphaIIb beta3 integrins and displayed increased binding of coagulation factors. Coated platelets, expressing serotonin binding sites, were not identified as a separate population. Thrombin generation and coagulation favored the transformation to phosphatidylserine-exposing platelets with inactivated integrins and reduced adhesion. Prolonged tyrosine phosphorylation in vitro resulted in secondary downregulation of active alphaIIb beta3. CONCLUSIONS These results lead to a new spatial model of thrombus formation, in which aggregated platelets ensure thrombus stability, whereas distinct patches of nonaggregated platelets effectuate procoagulant activity and generate thrombin and fibrin. Herein, the hemostatic activity of a developing thrombus is determined by the balance in formation of proaggregatory and procoagulant platelets. This balance is influenced by antiplatelet and anticoagulant medication.
Collapse
Affiliation(s)
- Imke C A Munnix
- Department of Biochemistry, Maastricht University, CARIM, Maastricht University, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Sane DC, Kontos JL, Greenberg CS. Roles of transglutaminases in cardiac and vascular diseases. FRONT BIOSCI-LANDMRK 2007; 12:2530-45. [PMID: 17127261 PMCID: PMC2762549 DOI: 10.2741/2253] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
All transglutaminases share the common enzymatic activity of transamidation, or the cross-linking of glutamine and lysine residues to form N epsilon (gamma-glutamyl) lysyl isopeptide bonds. The plasma proenzyme factor XIII is responsible for stabilizing the fibrin clot against physical and fibrinolytic disruption. Another member of the transglutaminase family, tissue transglutaminase or TG2 is abundantly expressed in cardiomyocytes, vascular cells and macrophages. The transglutaminases have a variety of functions independent of their transamidating activity. For example, TG2 binds and hydrolyzes GTP, thereby fostering signal transduction by several G protein coupled receptors. Accumulating evidence points to novel roles for factor XIII and TG2 in cardiovascular biology including: (a) modulating platelet activity, (b) regulating glucose control, (c) contributing to the development of hypertension, (d) influencing the progression of atherosclerosis, (e) regulating vascular permeability and angiogenesis (f) and contributing to myocardial signaling, contractile activity and ischemia/reperfusion injury. In this review, we summarize the cardiovascular biology of two members of the family of transglutaminases, Factor XIII and TG2.
Collapse
Affiliation(s)
- David C Sane
- Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157-1045, USA.
| | | | | |
Collapse
|
31
|
Horstman LL, Jy W, Minagar A, Bidot CJ, Jimenez JJ, Alexander JS, Ahn YS. Cell-derived microparticles and exosomes in neuroinflammatory disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2007; 79:227-68. [PMID: 17531844 DOI: 10.1016/s0074-7742(07)79010-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
All blood cells and the vascular endothelium shed microparticles (MP) from their plasma membranes when suitably stimulated, and assay of MP in patient blood has found increasing application to the monitoring of disease states. In addition, mounting evidence suggests that MP are not mere epiphenomena but play significant roles in the pathophysiology of thromboses, inflammation, and cancers. This chapter endeavors to summarize the limited number of studies thus far done on MP in neurological disorders such as multiple sclerosis (MS), transient ischemic attacks, and the neurological manifestations of antiphospholipid syndrome (APS). In addition, the chapter offers some plausible hypotheses on possible roles of MP in the pathophsyiology of these disorders, chiefly, the hypothesis that MP are indeed important participants in some neuropathologies, especially those which are ischemic in nature, but probably also inflammatory ones. The chapter also goes over the history and general principles of MP studies (e.g., assay methods and pitfalls), comparison with alternative methods (e.g., soluble markers of disease states), subclasses of MP (such as exosomes), and other topics aimed at helping readers to consider MP studies in their own clinical fields. Tables include a listing of bioactive agents known to be carried on MP, many of which were heretofore considered strictly soluble, and some of which can be transferred from cell to cell via MP vectors, for example certain cytokine receptors.
Collapse
Affiliation(s)
- Lawrence L Horstman
- Wallace H. Coulter Platelet Laboratory, Department of Medicine, University of Miami, Miami, Florida 33136, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Wilson KM, McCaw RB, Leo L, Arning E, Lhoták S, Bottiglieri T, Austin RC, Lentz SR. Prothrombotic Effects of Hyperhomocysteinemia and Hypercholesterolemia in ApoE-Deficient Mice. Arterioscler Thromb Vasc Biol 2007; 27:233-40. [PMID: 17082485 DOI: 10.1161/01.atv.0000251607.96118.af] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective—
We tested the hypothesis that hyperhomocysteinemia and hypercholesterolemia promote arterial thrombosis in mice.
Methods and Results—
Male apolipoprotein E (
Apoe
)-deficient mice were fed one of four diets: control, hyperhomocysteinemic (HH), high fat (HF), or high fat/hyperhomocysteinemic (HF/HH). Total cholesterol was elevated 2-fold with the HF or HF/HH diets compared with the control or HH diets (
P
<0.001). Plasma total homocysteine (tHcy) was elevated (12 to 15 μmol/L) with the HH or HF/HH diets compared with the control or HF diets (4 to 6 μmol/L;
P
<0.001). Aortic sinus lesion area correlated strongly with total cholesterol (
P
<0.001) but was independent of tHcy. At 12 weeks of age, the time to thrombotic occlusion of the carotid artery after photochemical injury was >50% shorter in mice fed the HF diets, with or without hyperhomocysteinemia, compared with the control diet (
P
<0.05). At 24 weeks of age, carotid artery thrombosis was also accelerated in mice fed the HH diet (
P
<0.05). Endothelium-dependent nitric oxide–mediated relaxation of carotid artery rings was impaired in mice fed the HF, HH, or HF/HH diets compared with the control diet (
P
<0.05).
Conclusions—
Hyperhomocysteinemia and hypercholesterolemia, alone or in combination, produce endothelial dysfunction and increased susceptibility to thrombosis in Apoe-deficient mice.
Collapse
Affiliation(s)
- Katina M Wilson
- Department of Internal Medicine, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
BACKGROUND Activation of platelets with collagen plus thrombin produces a subset of cells known as coated-platelets. Coated-platelets retain several alpha-granule proteins on their surface, express phosphatidylserine (PS), lose mitochondrial potential and release microparticles. OBJECTIVE A number of these characteristics are also observed in apoptotic cells, and this similarity leads to the hypothesis that mechanisms controlling initiation of apoptosis might also affect generation of coated-platelets. RESULTS In this report, we demonstrate that BH3 mimetics, molecules that facilitate apoptosis by releasing pro-apoptotic Bax from its antiapoptotic partner Bcl-2, are able to promote coated-platelet formation as monitored by several different markers of these cells. Specifically, gossypol and methoxy-antimycin (MAM) promote fibrinogen retention, mitochondrial depolarization, and PS exposure upon activation with thrombin plus convulxin, a ligand of the glycoprotein VI collagen receptor. Gossypol also potentiates microparticle release by convulxin plus thrombin activated platelets although MAM does not. In addition, Bax activators together with thrombin generate coated-platelets, effectively bypassing the requirement for convulxin. CONCLUSION These findings further support a close relationship between apoptotic-like events and the production of coated-platelets.
Collapse
Affiliation(s)
- G L Dale
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | | |
Collapse
|
34
|
Dayal S, Wilson KM, Leo L, Arning E, Bottiglieri T, Lentz SR. Enhanced susceptibility to arterial thrombosis in a murine model of hyperhomocysteinemia. Blood 2006; 108:2237-43. [PMID: 16804115 PMCID: PMC1895559 DOI: 10.1182/blood-2006-02-005991] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hyperhomocysteinemia is a risk factor for thrombosis, but the mechanisms are not well defined. We tested the hypothesis that hyperhomocysteinemia accelerates arterial thrombosis in mice. Mice heterozygous for a targeted disruption of the cystathionine beta-synthase gene (Cbs+/-) and wild-type littermates (Cbs+/+) were fed either a control diet or a high methionine/low folate (HM/LF) diet for 6 to 8 months to produce graded hyperhomocysteinemia. The time to occlusion of the carotid artery after photochemical injury was shortened by more than 50% in Cbs+/+ or Cbs+/- mice fed the HM/LF diet (P < .001 versus control diet). Carotid artery thrombosis was not accelerated in mice deficient in endothelial nitric oxide synthase (Nos3), which suggests that decreased endothelium-derived nitric oxide is not a sufficient mechanism for enhancement of thrombosis. Cbs+/+ and Cbs+/- mice fed the HM/LF diet had elevated levels of reactive oxygen species in the carotid artery, increased aortic expression of the NADPH oxidase catalytic subunit, Nox4, and decreased activation of anticoagulant protein C in the aorta (P < .05 versus control diet). We conclude that hyperhomocysteinemia enhances susceptibility to arterial thrombosis through a mechanism that is not caused by loss of endothelium-derived nitric oxide but may involve oxidative stress and impairment of the protein C anticoagulant pathway.
Collapse
Affiliation(s)
- Sanjana Dayal
- Department of Internal Medicine, C32 GH, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | |
Collapse
|