1
|
Chandrasekaran FP, Nelson EJR. Molecular dynamics simulations involving different β-propeller mutations reported in Swiss and French patients correlate with their disease phenotypes. Sci Rep 2024; 14:24133. [PMID: 39406775 PMCID: PMC11480402 DOI: 10.1038/s41598-024-75070-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
Integrin αIIbβ3 is the predominant receptor for fibrinogen which mediates platelet aggregation, an important step in hemostasis and thrombosis. Several mutations have been reported in the genes encoding αIIb and β3 subunits among patients with Glanzmann thrombasthenia, of which 177 are in the β-propeller domain. The two subunits form a heterodimer at the interface between β-propeller and β-I domains of αIIb and β3, respectively with their stability critical for intracellular trafficking, surface expression, and ligand binding. Our study was aimed at retrieving the β-propeller mutations from various databases and studying structural variations due to select mutations upon interaction with fibrinogen using molecular docking and molecular dynamics. Mutations were studied for their impact on phenotypic severity, structural stability, and evolutionary conservation. Molecular docking analysis and molecular dynamics simulations were carried out for αIIb-β3 complexes as well as αIIbβ3-fibrinogen complexes; in particular, E355K structure had more deviations, fluctuations, and other changes which compromised its structural stability and binding affinity when compared to both wild-type and G401C structures. Our comprehensive in silico analysis clearly reiterates that mutations in the β-propeller are not only responsible for structural changes in this domain but also have implications on the overall structure and function of integrin αIIbβ3.
Collapse
Affiliation(s)
- Finola Priyadharshini Chandrasekaran
- Gene Therapy Laboratory, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632 014, India
| | - Everette Jacob Remington Nelson
- Gene Therapy Laboratory, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632 014, India.
| |
Collapse
|
2
|
Guan IA, Liu JST, Sawyer RC, Li X, Jiao W, Jiramongkol Y, White MD, Hagimola L, Passam FH, Tran DP, Liu X, Schoenwaelder SM, Jackson SP, Payne RJ, Liu X. Integrating Phenotypic and Chemoproteomic Approaches to Identify Covalent Targets of Dietary Electrophiles in Platelets. ACS CENTRAL SCIENCE 2024; 10:344-357. [PMID: 38435523 PMCID: PMC10906253 DOI: 10.1021/acscentsci.3c00822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 12/24/2023] [Accepted: 12/28/2023] [Indexed: 03/05/2024]
Abstract
A large variety of dietary phytochemicals has been shown to improve thrombosis and stroke outcomes in preclinical studies. Many of these compounds feature electrophilic functionalities that potentially undergo covalent addition to the sulfhydryl side chain of cysteine residues within proteins. However, the impact of such covalent modifications on the platelet activity and function remains unclear. This study explores the irreversible engagement of 23 electrophilic phytochemicals with platelets, unveiling the unique antiplatelet selectivity of sulforaphane (SFN). SFN impairs platelet responses to adenosine diphosphate (ADP) and a thromboxane A2 receptor agonist while not affecting thrombin and collagen-related peptide activation. It also substantially reduces platelet thrombus formation under arterial flow conditions. Using an alkyne-integrated probe, protein disulfide isomerase A6 (PDIA6) was identified as a rapid kinetic responder to SFN. Mechanistic profiling studies revealed SFN's nuanced modulation of PDIA6 activity and substrate specificity. In an electrolytic injury model of thrombosis, SFN enhanced the thrombolytic activity of recombinant tissue plasminogen activator (rtPA) without increasing blood loss. Our results serve as a catalyst for further investigations into the preventive and therapeutic mechanisms of dietary antiplatelets, aiming to enhance the clot-busting power of rtPA, currently the only approved therapeutic for stroke recanalization that has significant limitations.
Collapse
Affiliation(s)
- Ivy A. Guan
- School
of Chemistry, Faculty of Science, The University
of Sydney, Sydney, New South Wales 2006, Australia
- The
Heart Research Institute, The University
of Sydney, Newtown, New South Wales 2042, Australia
| | - Joanna S. T. Liu
- The
Heart Research Institute, The University
of Sydney, Newtown, New South Wales 2042, Australia
- School
of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Renata C. Sawyer
- School
of Chemistry, Faculty of Science, The University
of Sydney, Sydney, New South Wales 2006, Australia
- The
Heart Research Institute, The University
of Sydney, Newtown, New South Wales 2042, Australia
| | - Xiang Li
- Department
of Medicine, Washington University in St.
Louis, St. Louis, Missouri 63110, United States
- McDonnell
Genome Institute, Washington University
in St. Louis, St. Louis, Missouri 63108, United States
| | - Wanting Jiao
- Ferrier Research
Institute, Victoria University of Wellington, Wellington 6140, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand
| | - Yannasittha Jiramongkol
- School
of Chemistry, Faculty of Science, The University
of Sydney, Sydney, New South Wales 2006, Australia
- Charles
Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Mark D. White
- School
of Chemistry, Faculty of Science, The University
of Sydney, Sydney, New South Wales 2006, Australia
| | - Lejla Hagimola
- School
of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Freda H. Passam
- School
of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Denise P. Tran
- Sydney
Mass Spectrometry, The University of Sydney, Camperdown, New South Wales 2006, Australia
| | - Xiaoming Liu
- School
of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Simone M. Schoenwaelder
- The
Heart Research Institute, The University
of Sydney, Newtown, New South Wales 2042, Australia
- School
of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Shaun P. Jackson
- The
Heart Research Institute, The University
of Sydney, Newtown, New South Wales 2042, Australia
- Charles
Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Richard J. Payne
- School
of Chemistry, Faculty of Science, The University
of Sydney, Sydney, New South Wales 2006, Australia
- Australian
Research Council Centre of Excellence for Innovations in Peptide and
Protein Science, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Xuyu Liu
- School
of Chemistry, Faculty of Science, The University
of Sydney, Sydney, New South Wales 2006, Australia
- The
Heart Research Institute, The University
of Sydney, Newtown, New South Wales 2042, Australia
| |
Collapse
|
3
|
Zhang J, Tang J, Li G, Li N, Wang J, Yao R, Yu T. SINE-VNTR-Alu retrotransposon insertion as a novel mutational event underlying Glanzmann thrombasthenia. J Thromb Haemost 2023; 21:3597-3607. [PMID: 37604334 DOI: 10.1016/j.jtha.2023.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 08/01/2023] [Accepted: 08/06/2023] [Indexed: 08/23/2023]
Abstract
BACKGROUND Glanzmann thrombasthenia (GT) is an autosomal recessive platelet aggregation disorder caused by mutations in ITGA2B or ITGB3. OBJECTIVES We aimed to assess the phenotype and investigate the genetic etiology of a GT pedigree. METHODS A patient with bleeding manifestations and mild mental retardation was enrolled. Complete blood count, coagulation, and platelet aggregation tests were performed. Causal mutations were identified via whole exome and genome sequencing and subsequently confirmed through polymerase chain reaction and Sanger sequencing. The transcription of ITGB3 was characterized using RNA sequencing and reverse transcription polymerase chain reaction. The αⅡb and β3 biosynthesis was investigated via whole blood flow cytometry and in vitro studies. RESULTS GT was diagnosed in a patient with defective platelet aggregation. Novel compound heterozygous ITGB3 variants were identified, with a maternal nonsense mutation (c.2222G>A, p.Trp741∗) and a paternal SINE-VNTR-Alu (SVA) retrotransposon insertion. The 5' truncated SVA element was inserted in a sense orientation in intron 11 of ITGB3, resulting in aberrant splicing of ITGB3 and significantly reducing β3 protein content. Meanwhile, both the expression and transportation of β3 were damaged by the ITGB3 c.2222G>A. Almost no αⅡb and β3 expressions were detected on the patient's platelets surface. CONCLUSION Novel compound heterozygous ITGB3 mutations were identified in the GT pedigree, resulting in defects of αⅡbβ3 biosynthesis. This is the first report of SVA retrotransposon insertion in the genetic pathogenesis of GT. Our study highlights the importance of combining multiple high-throughput sequencing technologies for the molecular diagnosis of genetic disorders.
Collapse
Affiliation(s)
- Jiasheng Zhang
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Tang
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guoqiang Li
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Niu Li
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jian Wang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ruen Yao
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Tingting Yu
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
4
|
Sun S, Qiao B, Han Y, Wang B, Wei S, Chen Y. Posttranslational modifications of platelet adhesion receptors. Pharmacol Res 2022; 183:106413. [PMID: 36007773 DOI: 10.1016/j.phrs.2022.106413] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/11/2022] [Accepted: 08/19/2022] [Indexed: 10/15/2022]
Abstract
Platelets play a key role in normal hemostasis, whereas pathological platelet adhesion is involved in various cardiovascular events. The underlying cause in cardiovascular events involves plaque rupture leading to subsequent platelet adhesion, activation, release, and eventual thrombosis. Traditional antithrombotic drugs often target the signal transduction process of platelet adhesion receptors by influencing the synthesis of some key molecules, and their effects are limited. Posttranslational modifications (PTMs) of platelet adhesion receptors increase the functional diversity of the receptors and affect platelet physiological and pathological processes. Antithrombotic drugs targeting PTMs of platelet adhesion receptors may represent a new therapeutic idea. In this review, various PTMs, including phosphorylation, glycosylation, ubiquitination, nitrosylation, methylation, lipidation, and proteolysis, of three platelet adhesion receptors, glycoprotein Ib-IX-V (GPIb-IX-V), glycoprotein VI (GPVI), and integrin αIIbβ3, are reviewed. It is important to comprehensively understand the PTMs process of platelet adhesion receptors.
Collapse
Affiliation(s)
- Shukun Sun
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Bao Qiao
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Yu Han
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Bailu Wang
- Clinical Trial Center, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Shujian Wei
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China.
| | - Yuguo Chen
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
5
|
Mathews N, Rivard GE, Bonnefoy A. Glanzmann Thrombasthenia: Perspectives from Clinical Practice on Accurate Diagnosis and Optimal Treatment Strategies. J Blood Med 2021; 12:449-463. [PMID: 34149292 PMCID: PMC8205616 DOI: 10.2147/jbm.s271744] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/20/2021] [Indexed: 01/27/2023] Open
Abstract
Glanzmann thrombasthenia (GT) is a rare autosomal recessive disorder of fibrinogen-mediated platelet aggregation due to a quantitative or qualitative deficit of the αIIbβ3 integrin at the platelet surface membrane resulting from mutation(s) in ITGA2B and/or ITGB3. Patients tend to present in early childhood with easy bruising and mucocutaneous bleeding. The diagnostic process requires consideration of more common disorders of haemostasis and coagulation prior to confirming the disorder with platelet light transmission aggregation, flow cytometry of CD41 and CD61 expression, and/or exon sequencing of ITGA2B and ITGB3. Antifibrinolytic therapy, recombinant activated factor VII, and platelet transfusions are the mainstay of therapy, although the latter may trigger formation of anti-platelet antibodies in GT patients and inadvertent platelet-refractory disease. The management of these patients therefore remains complex, particularly in the context of trauma, labour and delivery, and perioperative care. Bone marrow transplantation remains the sole curative option, although the venue of gene therapy is being increasingly explored as a future alternative for definitive treatment of GT.
Collapse
Affiliation(s)
- Natalie Mathews
- Division of Haematology/Oncology, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Georges-Etienne Rivard
- Division of Hematology-Oncology, Department of Pediatrics, CHU Sainte-Justine, Université de Montréal, Montréal, Québec, H3T 1C5, Canada
| | - Arnaud Bonnefoy
- Division of Hematology-Oncology, Department of Pediatrics, CHU Sainte-Justine, Université de Montréal, Montréal, Québec, H3T 1C5, Canada
| |
Collapse
|
6
|
El-Kadiry AEH, Merhi Y. The Role of the Proteasome in Platelet Function. Int J Mol Sci 2021; 22:3999. [PMID: 33924425 PMCID: PMC8069084 DOI: 10.3390/ijms22083999] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 02/06/2023] Open
Abstract
Platelets are megakaryocyte-derived acellular fragments prepped to maintain primary hemostasis and thrombosis by preserving vascular integrity. Although they lack nuclei, platelets harbor functional genomic mediators that bolster platelet activity in a signal-specific manner by performing limited de novo protein synthesis. Furthermore, despite their limited protein synthesis, platelets are equipped with multiple protein degradation mechanisms, such as the proteasome. In nucleated cells, the functions of the proteasome are well established and primarily include proteostasis among a myriad of other signaling processes. However, the role of proteasome-mediated protein degradation in platelets remains elusive. In this review article, we recapitulate the developing literature on the functions of the proteasome in platelets, discussing its emerging regulatory role in platelet viability and function and highlighting how its functional coupling with the transcription factor NF-κB constitutes a novel potential therapeutic target in atherothrombotic diseases.
Collapse
Affiliation(s)
- Abed El-Hakim El-Kadiry
- Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, Research Centre, Montreal, QC H1T 1C8, Canada;
- Biomedical Sciences Program, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Yahye Merhi
- Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, Research Centre, Montreal, QC H1T 1C8, Canada;
- Biomedical Sciences Program, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| |
Collapse
|
7
|
Nešić D, Bush M, Spasic A, Li J, Kamata T, Handa M, Filizola M, Walz T, Coller BS. Electron microscopy shows that binding of monoclonal antibody PT25-2 primes integrin αIIbβ3 for ligand binding. Blood Adv 2021; 5:1781-1790. [PMID: 33760023 PMCID: PMC8045492 DOI: 10.1182/bloodadvances.2020004166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/16/2021] [Indexed: 01/14/2023] Open
Abstract
The murine monoclonal antibody (mAb) PT25-2 induces αIIbβ3 to bind ligand and initiate platelet aggregation. The underlying mechanism is unclear, because previous mutagenesis studies suggested that PT25-2 binds to the αIIb β propeller, a site distant from the Arg-Gly-Asp-binding pocket. To elucidate the mechanism, we studied the αIIbβ3-PT25-2 Fab complex by negative-stain and cryo-electron microscopy (EM). We found that PT25-2 binding results in αIIbβ3 partially exposing multiple ligand-induced binding site epitopes and adopting extended conformations without swing-out of the β3 hybrid domain. The cryo-EM structure showed PT25-2 binding to the αIIb residues identified by mutagenesis but also to 2 additional regions. Overlay of the cryo-EM structure with the bent αIIbβ3 crystal structure showed that binding of PT25-2 creates clashes with the αIIb calf-1/calf-2 domains, suggesting that PT25-2 selectively binds to partially or fully extended receptor conformations and prevents a return to its bent conformation. Kinetic studies of the binding of PT25-2 compared with mAbs 10E5 and 7E3 support this hypothesis. We conclude that PT25-2 induces αIIbβ3 ligand binding by binding to extended conformations and by preventing the interactions between the αIIb and β3 leg domains and subsequently the βI and β3 leg domains required for the bent-closed conformation.
Collapse
Affiliation(s)
| | - Martin Bush
- Laboratory of Molecular Electron Microscopy, Rockefeller University, New York, NY
| | - Aleksandar Spasic
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, New York, NY; and
| | - Jihong Li
- Laboratory of Blood and Vascular Biology and
| | | | - Makoto Handa
- Center for Transfusion Medicine and Cell Therapy, Keio University, Tokyo, Japan
| | - Marta Filizola
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, New York, NY; and
| | - Thomas Walz
- Laboratory of Molecular Electron Microscopy, Rockefeller University, New York, NY
| | | |
Collapse
|
8
|
Fouassier M, Babuty A, Debord C, Béné MC. Platelet immunophenotyping in health and inherited bleeding disorders, a review and practical hints. CYTOMETRY PART B-CLINICAL CYTOMETRY 2020; 98:464-475. [PMID: 32516490 DOI: 10.1002/cyto.b.21892] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/16/2020] [Accepted: 05/13/2020] [Indexed: 12/15/2022]
Abstract
Inherited platelet function disorders are rare hemorrhagic diseases. The gold standard for their exploration is optical aggregometry; however, investigations by flow cytometry (FCM) are being increasingly used. In this review, the physiology of platelets is first recalled, setting the stage for the compartments of platelets that can be apprehended by specific and appropriate labeling. As this requires some pre-analytical precautions and specific analytical settings, a second part focuses on these characteristic aspects, based on literature and on the authors' experience in the field, for qualitative or quantitative explorations. Membrane labeling with antibodies to CD42a or CD41, respectively, useful to assess the genetic-related defects of Glanzmann thrombocytopenia and Bernard Soulier syndrome are then described. Platelet degranulation disorders are detailed in the next section, as they can be explored, upon platelet activation, by measuring the expression of surface P-Selectin (CD62P) or CD63. Mepacrin uptake and release after activation is another test allowing to explore the function of dense granules. Finally, the flip-flop anomaly related to Scott syndrome is depicted. Tables summarizing possible FCM assays, and characteristic histograms are provided as reference for flow laboratories interested in developing platelet exploration.
Collapse
Affiliation(s)
- Marc Fouassier
- Hematology Biology Department, Nantes University Hospital and CRCINA, Nantes, France
| | - Antoine Babuty
- Hematology Biology Department, Nantes University Hospital and CRCINA, Nantes, France
| | - Camille Debord
- Hematology Biology Department, Nantes University Hospital and CRCINA, Nantes, France
| | - Marie C Béné
- Hematology Biology Department, Nantes University Hospital and CRCINA, Nantes, France
| |
Collapse
|
9
|
Xiao B, Mao J, Sun B, Zhang W, Wang Y, Wang P, Ruan Z, Xi W, Li H, Zhou J, Lu Y, Ding Q, Wang X, Liu J, Yan J, Luo C, Shi X, Yang R, Xi X. Integrin β3 Deficiency Results in Hypertriglyceridemia via Disrupting LPL (Lipoprotein Lipase) Secretion. Arterioscler Thromb Vasc Biol 2020; 40:1296-1310. [PMID: 32237906 DOI: 10.1161/atvbaha.119.313191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Integrin β3 is implicated in numerous biological processes such as its relevance to blood triglyceride, yet whether β3 deficiency affects this metabolic process remains unknown. Approach and Results: We showed that the Chinese patients with β3-deficient Glanzmann thrombasthenia had a 2-fold higher serum triglyceride level together with a lower serum LPL (lipoprotein lipase) level than those with an αIIb deficiency or healthy subjects. The β3 knockout mice recapitulated these phenotypic features. The elevated plasma triglyceride level was due to impaired LPL-mediated triglyceride clearance caused by a disrupted LPL secretion. Further analysis revealed that β3 directly bound LPL via a juxtamembrane TIH (threonine isoleucine histidine)720-722 motif in its cytoplasmic domain and functioned as an adaptor protein by interacting with LPL and PKD (protein kinase D) to form the PKD/β3/LPL complex that is required for β3-mediated LPL secretion. Furthermore, the impaired triglyceride clearance in β3 knockout mice could be corrected by adeno-associated virus serotype 9 (AAV9)-mediated delivery of wild-type but not TIH720-722-mutated β3 genes. CONCLUSIONS This study reveals a hypertriglyceridemia in both β3-deficient Chinese patients and mice and provides novel insights into the molecular mechanisms of the significant roles of β3 in LPL secretion and triglyceride metabolism, drawing attention to the metabolic consequences in patients with β3-deficient Glanzmann thrombasthenia.
Collapse
Affiliation(s)
- Bing Xiao
- From the State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, China (B.X., X.X.)
| | - Jianhua Mao
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (J.M., W.Z., Y.W., P.W., Z.R., X.X.)
| | - Boyang Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Hematological Disorders, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China (B.S., H.L., R.Y.)
| | - Wei Zhang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (J.M., W.Z., Y.W., P.W., Z.R., X.X.)
| | - Yun Wang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (J.M., W.Z., Y.W., P.W., Z.R., X.X.)
| | - Pengran Wang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (J.M., W.Z., Y.W., P.W., Z.R., X.X.)
| | - Zheng Ruan
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (J.M., W.Z., Y.W., P.W., Z.R., X.X.)
| | - Wenda Xi
- Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (W.X.)
| | - Huiyuan Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Hematological Disorders, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China (B.S., H.L., R.Y.)
| | - Jingyi Zhou
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (J.Z., Y.L., Q.D., X.W.)
| | - Yide Lu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (J.Z., Y.L., Q.D., X.W.)
| | - Qiulan Ding
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (J.Z., Y.L., Q.D., X.W.)
| | - Xuefeng Wang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (J.Z., Y.L., Q.D., X.W.)
| | - Jingqiu Liu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China (J.L., C.L.)
| | - Jinsong Yan
- Department of Hematology, Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Second Hospital of Dalian Medical University, China (J.Y.)
| | - Cheng Luo
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China (J.L., C.L.)
| | - Xiaofeng Shi
- Department of Hematology, Affiliated Hospital of Jiangsu University, Zhenjiang, China (X.S.)
| | - Renchi Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Hematological Disorders, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China (B.S., H.L., R.Y.)
| | - Xiaodong Xi
- From the State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, China (B.X., X.X.).,State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (J.M., W.Z., Y.W., P.W., Z.R., X.X.)
| |
Collapse
|
10
|
|
11
|
Ornelas A, Zacharias-Millward N, Menter DG, Davis JS, Lichtenberger L, Hawke D, Hawk E, Vilar E, Bhattacharya P, Millward S. Beyond COX-1: the effects of aspirin on platelet biology and potential mechanisms of chemoprevention. Cancer Metastasis Rev 2018; 36:289-303. [PMID: 28762014 PMCID: PMC5557878 DOI: 10.1007/s10555-017-9675-z] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
After more than a century, aspirin remains one of the most commonly used drugs in western medicine. Although mainly used for its anti-thrombotic, anti-pyretic, and analgesic properties, a multitude of clinical studies have provided convincing evidence that regular, low-dose aspirin use dramatically lowers the risk of cancer. These observations coincide with recent studies showing a functional relationship between platelets and tumors, suggesting that aspirin's chemopreventive properties may result, in part, from direct modulation of platelet biology and biochemistry. Here, we present a review of the biochemistry and pharmacology of aspirin with particular emphasis on its cyclooxygenase-dependent and cyclooxygenase-independent effects in platelets. We also correlate the results of proteomic-based studies of aspirin acetylation in eukaryotic cells with recent developments in platelet proteomics to identify non-cyclooxygenase targets of aspirin-mediated acetylation in platelets that may play a role in its chemopreventive mechanism.
Collapse
Affiliation(s)
- Argentina Ornelas
- Department of Cancer Systems Imaging, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Niki Zacharias-Millward
- Department of Cancer Systems Imaging, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David G Menter
- Department of Gastrointestinal (GI) Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer S Davis
- Department of Epidemiology, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lenard Lichtenberger
- McGovern Medical School, Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - David Hawke
- Department of Systems Biology, Proteomics and Metabolomics Facility, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ernest Hawk
- Department of Clinical Cancer Prevention, Division of OVP, Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eduardo Vilar
- Department of Clinical Cancer Prevention, Division of OVP, Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pratip Bhattacharya
- Department of Cancer Systems Imaging, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Steven Millward
- Department of Cancer Systems Imaging, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
12
|
Pillois X, Peters P, Segers K, Nurden AT. In silico analysis of structural modifications in and around the integrin αIIb genu caused by ITGA2B variants in human platelets with emphasis on Glanzmann thrombasthenia. Mol Genet Genomic Med 2018; 6:249-260. [PMID: 29385657 PMCID: PMC5902390 DOI: 10.1002/mgg3.365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/01/2017] [Accepted: 12/20/2017] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Studies on the inherited bleeding disorder, Glanzmann thrombasthenia (GT), have helped define the role of the αIIbβ3 integrin in platelet aggregation. Stable bent αIIbβ3 undergoes conformation changes on activation allowing fibrinogen binding and its taking an extended form. The αIIb genu assures the fulcrum of the bent state. Our goal was to determine how structural changes induced by missense mutations in the αIIb genu define GT phenotype. METHODS Sanger sequencing of ITGA2B and ITGB3 in the index case followed by in silico modeling of all known GT-causing missense mutations extending from the lower part of the β-propeller, and through the thigh and upper calf-1 domains. RESULTS A homozygous c.1772A>C transversion in exon 18 of ITGA2B coding for a p.Asp591Ala substitution in an interconnecting loop of the lower thigh domain of αIIb in a patient with platelets lacking αIIbβ3 led us to extend our in silico modeling to all 16 published disease-causing missense variants potentially affecting the αIIb genu. Modifications of structuring H-bonding were the major cause in the thigh domain although one mutation gave mRNA decay. In contrast, short-range changes induced in calf-1 appeared minor suggesting long-range effects. All result in severe to total loss of αIIbβ3 in platelets. The absence of mutations within a key Ca2+-binding loop in the genu led us to scan public databases; three potential single allele variants giving major structural changes were identiffied suggesting that this key region is not protected from genetic variation. CONCLUSIONS It appears that the αIIb genu is the object of stringent quality control to prevent platelets from circulating with activated and extended integrin.
Collapse
Affiliation(s)
- Xavier Pillois
- Institut de Rhythmologie et de Modélisation Cardiaque, Plateforme Technologique d'Innovation BiomédicaleHôpital Xavier ArnozanBordeauxFrance
- Université de BordeauxINSERM U1034BordeauxFrance
| | - Pierre Peters
- Laboratoire de Thrombose‐HémostaseService d'Hématologie biologique et Immuno‐HématologieCHU Sart TilmanLiègeBelgium
| | | | | |
Collapse
|
13
|
Nurden AT, Pillois X. ITGA2B and ITGB3 gene mutations associated with Glanzmann thrombasthenia. Platelets 2017; 29:98-101. [PMID: 29125375 DOI: 10.1080/09537104.2017.1371291] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Alan T Nurden
- a Institut de Rhythmologie et de Modélisation Cardiaque, Plateforme Technologique d'Innovation Biomédicale, Hôpital Xavier Arnozan , Pessac , France
| | - Xavier Pillois
- a Institut de Rhythmologie et de Modélisation Cardiaque, Plateforme Technologique d'Innovation Biomédicale, Hôpital Xavier Arnozan , Pessac , France.,b Université de Bordeaux, INSERM U1034 , Pessac , France
| |
Collapse
|
14
|
The importance of N-glycosylation on β 3 integrin ligand binding and conformational regulation. Sci Rep 2017; 7:4656. [PMID: 28680094 PMCID: PMC5498496 DOI: 10.1038/s41598-017-04844-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 05/19/2017] [Indexed: 11/25/2022] Open
Abstract
N-glycosylations can regulate the adhesive function of integrins. Great variations in both the number and distribution of N-glycosylation sites are found in the 18 α and 8 β integrin subunits. Crystal structures of αIIbβ3 and αVβ3 have resolved the precise structural location of each N-glycan site, but the structural consequences of individual N-glycan site on integrin activation remain unclear. By site-directed mutagenesis and structure-guided analyses, we dissected the function of individual N-glycan sites in β3 integrin activation. We found that the N-glycan site, β3-N320 at the headpiece and leg domain interface positively regulates αIIbβ3 but not αVβ3 activation. The β3-N559 N-glycan at the β3-I-EGF3 and αIIb-calf-1 domain interface, and the β3-N654 N-glycan at the β3-β-tail and αIIb-calf-2 domain interface positively regulate the activation of both αIIbβ3 and αVβ3 integrins. In contrast, removal of the β3-N371 N-glycan near the β3 hybrid and I-EGF3 interface, or the β3-N452 N-glycan at the I-EGF1 domain rendered β3 integrin more active than the wild type. We identified one unique N-glycan at the βI domain of β1 subunit that negatively regulates α5β1 activation. Our study suggests that the bulky N-glycans influence the large-scale conformational rearrangement by potentially stabilizing or destabilizing the domain interfaces of integrin.
Collapse
|
15
|
Nurden AT, Pillois X, Fiore M, Alessi MC, Bonduel M, Dreyfus M, Goudemand J, Gruel Y, Benabdallah-Guerida S, Latger-Cannard V, Négrier C, Nugent D, Oiron RD, Rand ML, Sié P, Trossaert M, Alberio L, Martins N, Sirvain-Trukniewicz P, Couloux A, Canault M, Fronthroth JP, Fretigny M, Nurden P, Heilig R, Vinciguerra C. Expanding the Mutation Spectrum Affecting αIIbβ3 Integrin in Glanzmann Thrombasthenia: Screening of the ITGA2B and ITGB3 Genes in a Large International Cohort. Hum Mutat 2016; 36:548-61. [PMID: 25728920 DOI: 10.1002/humu.22776] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 02/18/2015] [Indexed: 12/19/2022]
Abstract
We report the largest international study on Glanzmann thrombasthenia (GT), an inherited bleeding disorder where defects of the ITGA2B and ITGB3 genes cause quantitative or qualitative defects of the αIIbβ3 integrin, a key mediator of platelet aggregation. Sequencing of the coding regions and splice sites of both genes in members of 76 affected families identified 78 genetic variants (55 novel) suspected to cause GT. Four large deletions or duplications were found by quantitative real-time PCR. Families with mutations in either gene were indistinguishable in terms of bleeding severity that varied even among siblings. Families were grouped into type I and the rarer type II or variant forms with residual αIIbβ3 expression. Variant forms helped identify genes encoding proteins mediating integrin activation. Splicing defects and stop codons were common for both ITGA2B and ITGB3 and essentially led to a reduced or absent αIIbβ3 expression; included was a heterozygous c.1440-13_c.1440-1del in intron 14 of ITGA2B causing exon skipping in seven unrelated families. Molecular modeling revealed how many missense mutations induced subtle changes in αIIb and β3 domain structure across both subunits, thereby interfering with integrin maturation and/or function. Our study extends knowledge of GT and the pathophysiology of an integrin.
Collapse
Affiliation(s)
- Alan T Nurden
- Institut de Rhythmologie et de Modélisation Cardiaque, Plateforme Technologique d'Innovation Biomédicale, Hôpital Xavier Arnozan, Pessac, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Wihadmadyatami H, Heidinger K, Röder L, Werth S, Giptner A, Hackstein H, Knorr M, Bein G, Sachs UJ, Santoso S. Alloantibody against new platelet alloantigen (Lapa) on glycoprotein IIb is responsible for a case of fetal and neonatal alloimmune thrombocytopenia. Transfusion 2015; 55:2920-9. [DOI: 10.1111/trf.13238] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 04/30/2015] [Accepted: 06/09/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Hevi Wihadmadyatami
- Institute for Clinical Immunology and Transfusion Medicine; Justus Liebig University; Giessen Germany
- Department of Anatomy; Faculty of Veterinary Medicine; Universitas Gadjah Mada; Yogyakarta Indonesia
| | - Kathrin Heidinger
- Institute for Clinical Immunology and Transfusion Medicine; Justus Liebig University; Giessen Germany
| | - Lida Röder
- Institute for Clinical Immunology and Transfusion Medicine; Justus Liebig University; Giessen Germany
| | - Silke Werth
- Institute for Clinical Immunology and Transfusion Medicine; Justus Liebig University; Giessen Germany
| | - Astrid Giptner
- Institute for Clinical Immunology and Transfusion Medicine; Justus Liebig University; Giessen Germany
| | - Holger Hackstein
- Institute for Clinical Immunology and Transfusion Medicine; Justus Liebig University; Giessen Germany
| | - Martin Knorr
- Department of Paediatric Oncology and Haematology; University Clinic; Essen Germany
| | - Gregor Bein
- Institute for Clinical Immunology and Transfusion Medicine; Justus Liebig University; Giessen Germany
| | - Ulrich J. Sachs
- Institute for Clinical Immunology and Transfusion Medicine; Justus Liebig University; Giessen Germany
| | - Sentot Santoso
- Institute for Clinical Immunology and Transfusion Medicine; Justus Liebig University; Giessen Germany
| |
Collapse
|
17
|
Ali RA, Wuescher LM, Worth RG. Platelets: essential components of the immune system. CURRENT TRENDS IN IMMUNOLOGY 2015; 16:65-78. [PMID: 27818580 PMCID: PMC5096834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Platelets are anucleate cell fragments known for their central role in coagulation and vascular integrity. However, it is becoming increasingly clear that platelets contribute to diverse immunological processes extending beyond the traditional view of platelets as fragmentary mediators of hemostasis and thrombosis. There is recent evidence that platelets participate in: 1) intervention against microbial threats; 2) recruitment and promotion of innate effector cell functions; 3) modulating antigen presentation; and 4) enhancement of adaptive immune responses. In this way, platelets should be viewed as the underappreciated orchestrator of the immune system. This review will discuss recent and historical evidence regarding how platelets influence both innate and adaptive immune responses.
Collapse
|
18
|
Shi DS, Smith MCP, Campbell RA, Zimmerman PW, Franks ZB, Kraemer BF, Machlus KR, Ling J, Kamba P, Schwertz H, Rowley JW, Miles RR, Liu ZJ, Sola-Visner M, Italiano JE, Christensen H, Kahr WHA, Li DY, Weyrich AS. Proteasome function is required for platelet production. J Clin Invest 2014; 124:3757-66. [PMID: 25061876 DOI: 10.1172/jci75247] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 06/05/2014] [Indexed: 01/03/2023] Open
Abstract
The proteasome inhibiter bortezomib has been successfully used to treat patients with relapsed multiple myeloma; however, many of these patients become thrombocytopenic, and it is not clear how the proteasome influences platelet production. Here we determined that pharmacologic inhibition of proteasome activity blocks proplatelet formation in human and mouse megakaryocytes. We also found that megakaryocytes isolated from mice deficient for PSMC1, an essential subunit of the 26S proteasome, fail to produce proplatelets. Consistent with decreased proplatelet formation, mice lacking PSMC1 in platelets (Psmc1(fl/fl) Pf4-Cre mice) exhibited severe thrombocytopenia and died shortly after birth. The failure to produce proplatelets in proteasome-inhibited megakaryocytes was due to upregulation and hyperactivation of the small GTPase, RhoA, rather than NF-κB, as has been previously suggested. Inhibition of RhoA or its downstream target, Rho-associated protein kinase (ROCK), restored megakaryocyte proplatelet formation in the setting of proteasome inhibition in vitro. Similarly, fasudil, a ROCK inhibitor used clinically to treat cerebral vasospasm, restored platelet counts in adult mice that were made thrombocytopenic by tamoxifen-induced suppression of proteasome activity in megakaryocytes and platelets (Psmc1(fl/fl) Pdgf-Cre-ER mice). These results indicate that proteasome function is critical for thrombopoiesis, and suggest inhibition of RhoA signaling as a potential strategy to treat thrombocytopenia in bortezomib-treated multiple myeloma patients.
Collapse
|
19
|
Nurden AT, Pillois X, Nurden P. Understanding the genetic basis of Glanzmann thrombasthenia: implications for treatment. Expert Rev Hematol 2014; 5:487-503. [PMID: 23146053 DOI: 10.1586/ehm.12.46] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Alan T Nurden
- Plateforme Technologique et d'Innovation Biomédicale, Hôpital Xavier Arnozan, Pessac, France.
| | | | | |
Collapse
|
20
|
Kraemer BF, Weyrich AS, Lindemann S. Protein degradation systems in platelets. Thromb Haemost 2013; 110:920-4. [PMID: 24048267 DOI: 10.1160/th13-03-0183] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 07/28/2013] [Indexed: 01/05/2023]
Abstract
Protein synthesis and degradation are essential processes that allow cells to survive and adapt to their surrounding milieu. In nucleated cells, the degradation and/or cleavage of proteins is required to eliminate aberrant proteins. Cells also degrade proteins as a mechanism for cell signalling and complex cellular functions. Although the last decade has convincingly shown that platelets synthesise proteins, the roles of protein degradation in these anucleate cytoplasts are less clear. Here we review what is known about protein degradation in platelets placing particular emphasis on the proteasome and the cysteine protease calpain.
Collapse
Affiliation(s)
- B F Kraemer
- Andrew Weyrich, MD, Eccles Institute of Human Genetics, Department of Internal Medicine, University of Utah, Salt Lake City, Building 533 Room 4220, Salt Lake City, Utah 84112, USA, Tel: +1 801 5850702, Fax: +1 801 5850701, E-mail:
| | | | | |
Collapse
|
21
|
Nurden AT, Pillois X, Wilcox DA. Glanzmann thrombasthenia: state of the art and future directions. Semin Thromb Hemost 2013; 39:642-55. [PMID: 23929305 DOI: 10.1055/s-0033-1353393] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Glanzmann thrombasthenia (GT) is the principal inherited disease of platelets and the most commonly encountered disorder of an integrin. GT is characterized by spontaneous mucocutaneous bleeding and an exaggerated response to trauma caused by platelets that fail to aggregate when stimulated by physiologic agonists. GT is caused by quantitative or qualitative deficiencies of αIIbβ3, an integrin coded by the ITGA2B and ITGB3 genes and which by binding fibrinogen and other adhesive proteins joins platelets together in the aggregate. Widespread genotyping has revealed that mutations spread across both genes, yet the reason for the extensive variation in both the severity and intensity of bleeding between affected individuals remains poorly understood. Furthermore, although genetic defects of ITGB3 affect other tissues with β3 present as αvβ3 (the vitronectin receptor), the bleeding phenotype continues to dominate. Here, we look in detail at mutations that affect (i) the β-propeller region of the αIIb head domain and (ii) the membrane proximal disulfide-rich epidermal growth factor (EGF) domains of β3 and which often result in spontaneous integrin activation. We also examine deep vein thrombosis as an unexpected complication of GT and look at curative procedures for the diseases, including allogeneic stem cell transfer and the potential for gene therapy.
Collapse
Affiliation(s)
- Alan T Nurden
- Plateforme Technologique et d'Innovation Biomédicale, Hôpital Xavier Arnozan, Pessac, France.
| | | | | |
Collapse
|
22
|
|
23
|
Aster RH. Drug-Induced Thrombocytopenia. Platelets 2013. [DOI: 10.1016/b978-0-12-387837-3.00041-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
Nicolaou N, Margadant C, Kevelam SH, Lilien MR, Oosterveld MJS, Kreft M, van Eerde AM, Pfundt R, Terhal PA, van der Zwaag B, Nikkels PGJ, Sachs N, Goldschmeding R, Knoers NVAM, Renkema KY, Sonnenberg A. Gain of glycosylation in integrin α3 causes lung disease and nephrotic syndrome. J Clin Invest 2012; 122:4375-87. [PMID: 23114595 DOI: 10.1172/jci64100] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 09/06/2012] [Indexed: 12/23/2022] Open
Abstract
Integrins are transmembrane αβ glycoproteins that connect the extracellular matrix to the cytoskeleton. The laminin-binding integrin α3β1 is expressed at high levels in lung epithelium and in kidney podocytes. In podocytes, α3β1 associates with the tetraspanin CD151 to maintain a functional filtration barrier. Here, we report on a patient homozygous for a novel missense mutation in the human ITGA3 gene, causing fatal interstitial lung disease and congenital nephrotic syndrome. The mutation caused an alanine-to-serine substitution in the integrin α3 subunit, thereby introducing an N-glycosylation motif at amino acid position 349. We expressed this mutant form of ITGA3 in murine podocytes and found that hyperglycosylation of the α3 precursor prevented its heterodimerization with β1, whereas CD151 association with the α3 subunit occurred normally. Consequently, the β1 precursor accumulated in the ER, and the mutant α3 precursor was degraded by the ubiquitin-proteasome system. Thus, these findings uncover a gain-of-glycosylation mutation in ITGA3 that prevents the biosynthesis of functional α3β1, causing a fatal multiorgan disorder.
Collapse
Affiliation(s)
- Nayia Nicolaou
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Chapman LM, Aggrey AA, Field DJ, Srivastava K, Ture S, Yui K, Topham DJ, Baldwin WM, Morrell CN. Platelets present antigen in the context of MHC class I. THE JOURNAL OF IMMUNOLOGY 2012; 189:916-23. [PMID: 22706078 DOI: 10.4049/jimmunol.1200580] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Platelets are most recognized for their vital role as the cellular mediator of thrombosis, but platelets also have important immune functions. Platelets initiate and sustain vascular inflammation in many disease conditions, including arthritis, atherosclerosis, transplant rejection, and severe malaria. We now demonstrate that platelets express T cell costimulatory molecules, process and present Ag in MHC class I, and directly activate naive T cells in a platelet MHC class I-dependent manner. Using an experimental cerebral malaria mouse model, we also demonstrate that platelets present pathogen-derived Ag to promote T cell responses in vivo, and that platelets can be used in a cell-based vaccine model to induce protective immune responses. Our study demonstrates a novel Ag presentation role for platelets.
Collapse
Affiliation(s)
- Lesley M Chapman
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Floyd CN, Ferro A. The platelet fibrinogen receptor: from megakaryocyte to the mortuary. JRSM Cardiovasc Dis 2012; 1:10.1258_cvd.2012.012007. [PMID: 24175064 PMCID: PMC3738324 DOI: 10.1258/cvd.2012.012007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Platelets are integral to normal haemostatic function and act to control vascular haemorrhage with the formation of a stable clot. The fibrinogen receptor (glycoprotein IIb/IIIa [GPIIb/IIIa]) is the most abundant platelet integrin and, by binding fibrinogen, facilitates irreversible binding of platelets to the exposed extracellular matrix and enables the cross-linking of adjacent platelets. The vital role of GPIIb/IIIa requires tight control of both its synthesis and function. After transcription from distinct domains on chromosome 17, the two subunits of the heterodimer are carefully directed through organelles with intricate regulatory steps designed to prevent the cellular expression of a dysfunctional receptor. Similarly, exquisite control of platelet activation via bidirectional signalling acts to limit the inappropriate and excessive formation of platelet-mediated thrombus. However, the enormous diversity of genetic mutations in the fibrinogen receptor has resulted in a number of allelic variants becoming established. The Pro33 polymorphism in GPIIIa is associated with increased cardiovascular risk due to a pathological persistence of outside-in signalling once fibrinogen has dissociated from the receptor. The polymorphism has also been associated with the phenomenon of aspirin resistance, although larger epidemiological studies are required to establish this conclusively. A failure of appropriate receptor function due to a diverse range of mutations in both structural and signalling domains, results in the bleeding diathesis Glanzmann's thrombasthaenia. GPIIb/IIIa inhibitors were the first rationally designed anti-platelet drugs and have proven to be a successful therapeutic option in high-risk primary coronary intervention. As our understanding of bidirectional signalling improves, more subtle and directed therapeutic strategies may be developed.
Collapse
Affiliation(s)
- Christopher N Floyd
- Department of Clinical Pharmacology, Cardiovascular Division, King's College London , London SE1 9NH , UK
| | | |
Collapse
|
27
|
Pillois X, Fiore M, Heilig R, Pico M, Nurden AT. A novel amino acid substitution of integrin αIIb in Glanzmann thrombasthenia confirms that the N-terminal region of the receptor plays a role in maintaining β-propeller structure. Platelets 2012; 24:77-80. [DOI: 10.3109/09537104.2012.665278] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
28
|
Ohgomori T, Nanao T, Morita A, Ikekita M. Asn54-linked glycan is critical for functional folding of intercellular adhesion molecule-5. Glycoconj J 2011; 29:47-55. [PMID: 22187327 DOI: 10.1007/s10719-011-9363-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 11/21/2011] [Accepted: 11/28/2011] [Indexed: 11/24/2022]
Abstract
Intercellular adhesion molecule-5 (ICAM-5, telencephalin) is a dendritically polarized type I membrane glycoprotein, and promotes dendritic filopodia formation. Although we have determined the N-glycan structures of ICAM-5 in a previous report, their function is unknown. Here, we produced fifteen ICAM-5 gene constructs, in which each potential N-glycosylation site was mutated, to elucidate the function of the N-glycans of ICAM-5, and observed the effects of transfection of them on a neuronal cell line, Neuro-2a (N2a). Only the N54Q mutant, which is the mutant for the most N-terminal glycosylation site, failed to induce filopodia-like protrusions in N2a cells. Immunofluorescence staining and cell surface biotinylation revealed that N54Q ICAM-5 was confined to the ER and also could not be expressed on the cell surface. This is further supported by the biochemical evidence that almost all N-glycans of N54Q ICAM-5 were digested by Endo glycosidase H and peptide:N-glycanase, indicating that almost all of them retain high-mannose-type structures in ER. In additon, it also failed to form disulfide bonds or functional protein complexes. The stable transformants of N54Q ICAM-5 showed retarded cell growth, but it was interesting that there was no apparent ER stress, because the mutant was sequentially degraded via ER associated degradation pathway by comparing the susceptibilities of the responses to various inhibitors of this pathway in wild-type and N54Q ICAM-5 transfectants. Taken together, the Asn(54)-linked glycan is necessary for normal trafficking and function of ICAM-5, but is unassociated with ER-associated degradation of it.
Collapse
Affiliation(s)
- Tomohiro Ohgomori
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Yamazaki, Noda, Chiba, Japan.
| | | | | | | |
Collapse
|
29
|
Glanzmann thrombasthenia: a review of ITGA2B and ITGB3 defects with emphasis on variants, phenotypic variability, and mouse models. Blood 2011; 118:5996-6005. [PMID: 21917754 DOI: 10.1182/blood-2011-07-365635] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Characterized by mucocutaneous bleeding arising from a lack of platelet aggregation to physiologic stimuli, Glanzmann thrombasthenia (GT) is the archetype-inherited disorder of platelets. Transmitted by autosomal recessive inheritance, platelets in GT have quantitative or qualitative deficiencies of the fibrinogen receptor, αIIbβ3, an integrin coded by the ITGA2B and ITGB3 genes. Despite advances in our understanding of the disease, extensive phenotypic variability with respect to severity and intensity of bleeding remains poorly understood. Importantly, genetic defects of ITGB3 also potentially affect other tissues, for β3 has a wide tissue distribution when present as αvβ3 (the vitronectin receptor). We now look at the repertoire of ITGA2B and ITGB3 gene defects, reexamine the relationship between phenotype and genotype, and review integrin structure in the many variant forms. Evidence for modifications in platelet production is assessed, as is the multifactorial etiology of the clinical expression of the disease. Reports of cardiovascular disease and deep vein thrombosis, cancer, brain disease, bone disorders, and pregnancy defects in GT are discussed in the context of the results obtained for mouse models where nonhemostatic defects of β3-deficiency or nonfunction are being increasingly described.
Collapse
|
30
|
Mitchell WB, Li J, Murcia M, Valentin N, Newman PJ, Coller BS. Mapping early conformational changes in alphaIIb and beta3 during biogenesis reveals a potential mechanism for alphaIIbbeta3 adopting its bent conformation. Blood 2007; 109:3725-32. [PMID: 17209052 PMCID: PMC1874580 DOI: 10.1182/blood-2006-11-058420] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Current evidence supports a model in which the low-affinity state of the platelet integrin alphaIIbbeta3 results from alphaIIbbeta3 adopting a bent conformation. To assess alphaIIbbeta3 biogenesis and how alphaIIbbeta3 initially adopts the bent conformation, we mapped the conformational states occupied by alphaIIb and beta3 during biogenesis using conformation-specific monoclonal antibodies (mAbs). We found that alphaIIbbeta3 complex formation was not limited by the availability of either free pro-alphaIIb or free beta3, suggesting that other molecules, perhaps chaperones, control complex formation. Five beta3-specific, ligand-induced binding site (LIBS) mAbs reacted with much or all free beta3 but not with beta3 when in complex with mature alphaIIb, suggesting that beta3 adopts its mature conformation only after complex formation. Conversely, 2 alphaIIb-specific LIBS mAbs directed against the alphaIIb Calf-2 region adjacent to the membrane reacted with only minor fractions of free pro-alphaIIb, raising the possibility that pro-alphaIIb adopts a bent conformation early in biogenesis. Our data suggest a working model in which pro-alphaIIb adopts a bent conformation soon after synthesis, and then beta3 assumes its bent conformation by virtue of its interaction with the bent pro-alphaIIb.
Collapse
Affiliation(s)
- W Beau Mitchell
- Department of Pediatrics, Mount Sinai School of Medicine, and New York Blood Center, 310 E. 67th Street, New York, NY 10021, USA.
| | | | | | | | | | | |
Collapse
|