1
|
Yang B, Shen F, Zhu Y, Lu W, Cai H. E74-like ETS transcription factor 1 promotes the progression of pancreatic cancer by regulating doublecortin-like kinase 1/Janus kinase/signal transducer and activator of transcription pathway. Am J Cancer Res 2024; 14:616-629. [PMID: 38455425 PMCID: PMC10915310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/28/2023] [Indexed: 03/09/2024] Open
Abstract
This study was targeted at investigating the biological functions of E74-like ETS transcription factor 1 (ELF1) in pancreatic cancer (PC) and its underlying mechanism. ELF1 expression in PC tissues was detected by quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) and immunohistochemistry. Cell counting kit-8 (CCK-8) method, EdU method and flow cytometry were used to detect the cell proliferation and apoptosis of PC cell lines after transfection. A subcutaneous tumorigenesis model was constructed to validate the oncogenic role of ELF1 in vivo. PROMO database was used to predict the binding site of ELF1 on the promoter region of doublecortin-like kinase 1 (DCLK1). Dual-luciferase reporter gene assay, chromatin immunoprecipitation-quantitative polymerase chain reaction (ChIP-qPCR) assay and quantitative real-time PCR were performed to detect the binding of ELF1 to the promoter region of DCLK1. The effect of ELF1 on DCLK1 expression was detected by Western blot assay. It was found that ELF1 expression in PC tissues and cells was up-regulated. ELF1 overexpression promoted the proliferation and inhibited the apoptosis of PC cells, while knocking down ELF1 had the opposite effects. ELF1 could bind to the promoter region of DCLK1 and ELF1 overexpression promoted the expression of DCLK1. Bioinformatics analysis suggested that Janus kinase (JAK) - signal transducer and activator of transcription (STAT) signaling pathway was associated to DCLK1 expression, and overexpression of ELF1 promoted the expression of Janus kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3). In conclusion, ELF1 promoted the malignant progression of PC via regulating DCLK1/ JAK/STAT signaling pathway.
Collapse
Affiliation(s)
- Bin Yang
- Department of Hepato-Pancreato-Biliary Surgery, The Second Affiliated Hospital of Zhejiang University School of MedicineHangzhou 310009, Zhejiang, China
| | - Fengxian Shen
- Department of Reproductive Endocrinology, The Obstetrics and Gynecology Hospital Affiliated to Zhejiang University School of MedicineHangzhou 310006, Zhejiang, China
| | - Yi Zhu
- Department of Hepato-Pancreato-Biliary Surgery, The Second Affiliated Hospital of Zhejiang University School of MedicineHangzhou 310009, Zhejiang, China
| | - Wenjie Lu
- Department of Hepato-Pancreato-Biliary Surgery, The Second Affiliated Hospital of Zhejiang University School of MedicineHangzhou 310009, Zhejiang, China
| | - Haolei Cai
- Department of Hepato-Pancreato-Biliary Surgery, The Second Affiliated Hospital of Zhejiang University School of MedicineHangzhou 310009, Zhejiang, China
| |
Collapse
|
2
|
Stankovic I, Notaras M, Wolujewicz P, Lu T, Lis R, Ross ME, Colak D. Schizophrenia endothelial cells exhibit higher permeability and altered angiogenesis patterns in patient-derived organoids. Transl Psychiatry 2024; 14:53. [PMID: 38263175 PMCID: PMC10806043 DOI: 10.1038/s41398-024-02740-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/29/2023] [Accepted: 01/05/2024] [Indexed: 01/25/2024] Open
Abstract
Schizophrenia (SCZ) is a complex neurodevelopmental disorder characterized by the manifestation of psychiatric symptoms in early adulthood. While many research avenues into the origins of SCZ during brain development have been explored, the contribution of endothelial/vascular dysfunction to the disease remains largely elusive. To model the neuropathology of SCZ during early critical periods of brain development, we utilized patient-derived induced pluripotent stem cells (iPSCs) to generate 3D cerebral organoids and define cell-specific signatures of disease. Single-cell RNA sequencing revealed that while SCZ organoids were similar in their macromolecular diversity to organoids generated from healthy controls (CTRL), SCZ organoids exhibited a higher percentage of endothelial cells when normalized to total cell numbers. Additionally, when compared to CTRL, differential gene expression analysis revealed a significant enrichment in genes that function in vessel formation, vascular regulation, and inflammatory response in SCZ endothelial cells. In line with these findings, data from 23 donors demonstrated that PECAM1+ microvascular vessel-like structures were increased in length and number in SCZ organoids in comparison to CTRL organoids. Furthermore, we report that patient-derived endothelial cells displayed higher paracellular permeability, implicating elevated vascular activity. Collectively, our data identified altered gene expression patterns, vessel-like structural changes, and enhanced permeability of endothelial cells in patient-derived models of SCZ. Hence, brain microvascular cells could play a role in the etiology of SCZ by modulating the permeability of the developing blood brain barrier (BBB).
Collapse
Affiliation(s)
- Isidora Stankovic
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Michael Notaras
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Paul Wolujewicz
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Tyler Lu
- Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Raphael Lis
- Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY, USA
| | - M Elizabeth Ross
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Dilek Colak
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Gale and Ira Drukier Institute for Children's Health, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
3
|
Li T, Jia Z, Liu J, Xu X, Wang H, Li D, Qiu Z. Transcription activation of SPINK4 by ELF-1 augments progression of colon cancer by regulating biological behaviors. Tissue Cell 2023; 84:102190. [PMID: 37586179 DOI: 10.1016/j.tice.2023.102190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/25/2023] [Accepted: 07/29/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND SPINK4 was highly expressed in colorectal cancer and resulted in worse prognosis of colorectal cancer patients. However, the expression and function of SPINK4 in colon cancer have not been revealed. METHODS Analysis from GEPIA website showed the expression and function of SPINK4 in colon cancer samples. Colon cancer cell lines were applied to detect the biological function of SPINK4. Functionally, the transcriptional factor of SPINK4 has been predicted and verified. Finally, the associations between transcriptional factor and SPINK4 have been confirmed. RESULTS SPINK4 expression was obviously increased in colon cancer samples. HCT-116 and DXH-1 cells in si-SPINK4-1 or si-SPINK4-2 group displayed an obvious reduction in its proliferation, cell cycle, invasion and migration compared to those in the si-control group. Moreover, transcriptional factor ELF-1 bound to the promoter of SPINK4 and affected its expression in colon cancer cells. High ELF-1 expression was presented in colon cancer samples and resulted in worse prognosis of colon cancer patients. Additionally, si-SPINK4 antagonized the function of ELF-1 overexpression in modulating colon cancer cell proliferation, cell cycle and mobility. CONCLUSIONS Our findings afforded a theoretical basis for further research on the treatment of colon cancer based on the control of ELF-1/SPINK4 expression.
Collapse
Affiliation(s)
- Tonghu Li
- Department of General Surgery, Shuyang Nanguan Hospital, Suqian City, Jiangsu Province, China
| | - Zheng Jia
- Department of General Surgery, Shuyang Nanguan Hospital, Suqian City, Jiangsu Province, China
| | - Jingxi Liu
- Department of General Surgery, Shuyang Nanguan Hospital, Suqian City, Jiangsu Province, China
| | - Xilei Xu
- Department of General Surgery, Shuyang Nanguan Hospital, Suqian City, Jiangsu Province, China
| | - Huajun Wang
- Department of General Surgery, Shuyang Nanguan Hospital, Suqian City, Jiangsu Province, China
| | - Da Li
- Department of General Surgery, Shuyang Nanguan Hospital, Suqian City, Jiangsu Province, China
| | - Zhengcai Qiu
- Department of General Surgery, Shuyang Hospital of Traditional Chinese Medicine, Suqian City, Jiangsu Province, China.
| |
Collapse
|
4
|
Zhu P, Dou C, Song Z, Bi X, Wu X, Miao Y. ELF1/PRR11/ARP2/3 promoted trophoblast cells proliferation and motility in early pregnancy. Am J Reprod Immunol 2023; 90:e13758. [PMID: 37641376 DOI: 10.1111/aji.13758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/02/2023] [Accepted: 07/17/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND/OBJECTIVE Early pregnancy loss (EPL) is a common adverse pregnancy outcome with an incidence of approximately 10-30%. There are many factors that cause EPL, among which the lack of proliferation and invasive properties of trophoblast cells can lead to embryonic development. Therefore, in this study, the molecular biology of trophoblast cells was investigated. METHODS Placental villous tissues from EPL patients were collected to explore ELF1 and PRR11 gene expression. The proliferation and migration of trophoblast cells were assessed by MTT, crystalline violet staining, and traswell assays, respectively. Western blotting and RT-qPCR were performed to investigate the relationship between ELF1, PRR11, and ARP2/3. F-actin polymerization and FAK activation were evaluated by immunofluorescence and western blotting. Ultimately, ELF1/PRR11/ARP2/3 expression was verified in the EPL mice model RESULTS: ELF1 and PRR11 were lowly expressed in placental villous tissues from EPL. The overexpression of ELF1 and PRR11 promoted proliferation and migration of trophoblast cells. Moreover, while ELF1 bound to the PRR11 promoter and promoted transcriptional activation. Finally, ELF1/PRR11/ARP2/3 showed low expression in the placental tissue of EPL mice. CONCLUSION Our study suggested that PRR11 promoted the motility of trophoblast cells by binding to the ARP2/3 complex to promote F-actin polymerization and FAK activation. In addition, ELF1 bound to the initiation site of PRR11 to promote its transcription. ELF1/PRR11/ARP2/3 may play an important role in EPL.
Collapse
Affiliation(s)
- Pengfei Zhu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University, Wuhan, Hubei, China
- Center for Reproductive Medicine, Children's Hospital of Shanxi and Women Health Center, Taiyuan, Shanxi, China
| | - Chengli Dou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhijiao Song
- Department of Health Care, Children's Hospital of Shanxi and Women Health Center, Taiyuan, Shanxi, China
| | - Xingyu Bi
- Center for Reproductive Medicine, Children's Hospital of Shanxi and Women Health Center, Taiyuan, Shanxi, China
| | - Xueqing Wu
- Center for Reproductive Medicine, Children's Hospital of Shanxi and Women Health Center, Taiyuan, Shanxi, China
| | - Yiliang Miao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
5
|
Wei M, Yang R, Ye M, Zhan Y, Liu B, Meng L, Xie L, Du M, Wang J, Gao R, Chen D, Dong R, Dong K. MYBL2 accelerates epithelial-mesenchymal transition and hepatoblastoma metastasis via the Smad/SNAI1 pathway. Am J Cancer Res 2022; 12:1960-1981. [PMID: 35693071 PMCID: PMC9185624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 03/19/2022] [Indexed: 06/15/2023] Open
Abstract
Hepatoblastoma (HB) accounts for the majority of hepatic malignancies in children. Although the prognosis of patients with HB has improved in past decades, metastasis is an indicator of poor overall survival. Herein, we applied single-cell RNA sequencing to explore the transcriptomic profiling of 25,264 metastatic cells isolated from the lungs of two patients with HB. The transcriptomes uncovered the heterogeneity of malignant cells after metastatic lung colonization, and these cells had varied expression signatures associated with the cell cycle, epithelial-mesenchymal plasticity, and hepatic differentiation. Single-cell regulatory network inference and clustering (SCENIC) was utilized to identify the co-expressed transcriptional factors which regulated and represented the different cell states. We further screened the key factor by bioinformatics analysis and found that MYBL2 upregulation was significantly associated with metastasis and poor prognosis. The relationship between ectopic MYBL2 and metastasis was subsequently proved by immunohistochemistry (IHC) of HB tissues, and the functions of MYBL2 in promoting proliferation, migration, and epithelial-to-mesenchymal transition (EMT) were verified by in vitro and in vivo assays. Importantly, the levels of Smad2/3 phosphorylation and SNAI1 expression were increased in MYBL2-transfected cells. Consequently, these results indicated that the MYBL2-controlled Smad/SNAI1 pathway induced EMT and promoted HB tumorigenesis and metastasis.
Collapse
Affiliation(s)
- Meng Wei
- Department of Pediatric Surgery, Children’s Hospital of Fudan University399 Wanyuan Road, Shanghai 201102, China
| | - Ran Yang
- Department of Pediatric Surgery, Children’s Hospital of Fudan University399 Wanyuan Road, Shanghai 201102, China
| | - Mujie Ye
- Department of Pediatric Surgery, Children’s Hospital of Fudan University399 Wanyuan Road, Shanghai 201102, China
| | - Yong Zhan
- Department of Pediatric Surgery, Children’s Hospital of Fudan University399 Wanyuan Road, Shanghai 201102, China
| | - Baihui Liu
- Department of Pediatric Surgery, Children’s Hospital of Fudan University399 Wanyuan Road, Shanghai 201102, China
| | - Lingdu Meng
- Department of Pediatric Surgery, Children’s Hospital of Fudan University399 Wanyuan Road, Shanghai 201102, China
| | - Lulu Xie
- Department of Pediatric Surgery, Children’s Hospital of Fudan University399 Wanyuan Road, Shanghai 201102, China
| | - Min Du
- Department of Pediatric Surgery, Children’s Hospital of Fudan University399 Wanyuan Road, Shanghai 201102, China
- Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of ChinaChengdu 610091, China
| | - Junfeng Wang
- Department of Pediatric Surgery, Children’s Hospital of Fudan University399 Wanyuan Road, Shanghai 201102, China
| | - Runnan Gao
- Department of Pediatric Surgery, Children’s Hospital of Fudan University399 Wanyuan Road, Shanghai 201102, China
| | - Deqian Chen
- Department of Pediatric Surgery, Children’s Hospital of Fudan University399 Wanyuan Road, Shanghai 201102, China
| | - Rui Dong
- Department of Pediatric Surgery, Children’s Hospital of Fudan University399 Wanyuan Road, Shanghai 201102, China
| | - Kuiran Dong
- Department of Pediatric Surgery, Children’s Hospital of Fudan University399 Wanyuan Road, Shanghai 201102, China
| |
Collapse
|
6
|
Hu M, Li H, Xie H, Fan M, Wang J, Zhang N, Ma J, Che S. ELF1 Transcription Factor Enhances the Progression of Glioma via ATF5 promoter. ACS Chem Neurosci 2021; 12:1252-1261. [PMID: 33720698 DOI: 10.1021/acschemneuro.1c00070] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A key transcriptional activator, activating transcription factor 5 (ATF5), is aberrantly overexpressed in glioma and supports both poor prognosis and antiapototic potential. Unfortunately, data on ATF5 is largely based on its regulatory mechanism. Further investigation of the upstream regulatory factor for ATF5 transcription in glioma is required. Clinical data for patients with diagnosed glioma were obtained from The Cancer Genome Atlas (TCGA). Additionally, transcription factors potentially regulating the ATF5 promoter in glioma were screened with bioinformatics. A further experimental study was performed to investigate both the role of E74-like factor 1 (ELF1) and the binding of ELF1 and the ATF5 promoter in glioma. We show that ATF5 expression is upregulated in glioma tissues and associated with tumor malignancy and worse prognosis. As a putative upstream regulator, silencing ELF1 inhibits glioma cell growth and migration with ATF5 involvement. Moreover, ELF1 upregulation is also associated with poor prognosis in glioma. Importantly, the luciferase assay and chromatin immunoprecipitation (ChIP) reveal that the ATF5 gene promoter is essential for ELF1-dependent activation of ATF5 gene transcription. These results indicate that a high expression of ELF1 may be related to the malignant behavior of human glioma and ELF1 promotes glioma development mediated by transactivation of the ATF5 gene.
Collapse
Affiliation(s)
- Ming Hu
- Department of Special Medicine, Basic Medicine College, Qingdao University, Qingdao, Shandong 266071, P. R. China
| | - Huanting Li
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P. R. China
| | - Hongwei Xie
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P. R. China
| | - Mingchao Fan
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P. R. China
| | - Jianpeng Wang
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P. R. China
| | - Niankai Zhang
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P. R. China
| | - Junwei Ma
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P. R. China
| | - Shusheng Che
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P. R. China
| |
Collapse
|
7
|
Pang Y, Zhao Y, Wang Y, Wang X, Wang R, Liu N, Li P, Ji M, Ye J, Sun T, Li J, Ma D, Lu F, Ji C. TNFAIP8 promotes AML chemoresistance by activating ERK signaling pathway through interaction with Rac1. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:158. [PMID: 32795319 PMCID: PMC7427779 DOI: 10.1186/s13046-020-01658-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 07/28/2020] [Indexed: 12/18/2022]
Abstract
Background Chemoresistance is emerging as a major barrier to successful treatment in acute myeloid leukemia (AML), and evasion of apoptosis is among the fundamental underlying mechanisms. Therefore, unraveling molecular networks that drive this process constitutes an urgent unmet need. Herein, we aim to characterize the role and molecular mechanism of the tumor necrosis factor ɑ-induced protein 8 (TNFAIP8), a novel anti-apoptotic molecule, in AML chemoresistance. Methods The expression levels of TNFAIP8 were assessed in AML patients and cell lines by RT-qPCR and western blots. The transcriptional regulation of TNFAIP8 was analyzed with luciferase reporter assay and ChIP followed by RT-qPCR. Functional experiments were conducted to evaluate the effects of TNFAIP8 on apoptosis, drug sensitivity and proliferation of AML cells. Potential effects of TNFAIP8 on the activation of extracellular signal-regulated kinase (ERK) pathway were detected by western blots. CoIP and P21-activated kinase (PAK) pull-down assay were performed to ascertain the upstream target. The overall effects of TNFAIP8 on AML were examined in murine models. Results Upregulated TNFAIP8 expression was first confirmed in human AML patients and cell lines. E74 like ETS transcription factor 1 (ELF1) was then identified to contribute to its aberrant expression. Through manipulating TNFAIP8 expression, we described its role in protecting AML cells from apoptosis induced by chemotherapeutic agents and in promoting drug resistance. Notably, the leukemia-promoting action of TNFAIP8 was mediated by sustaining activity of the ERK signaling pathway, through an interaction with Rac family small GTPase 1 (Rac1). In addition, in vivo experiments confirmed that TNFAIP8 suppression lowered leukemia infiltration and improved survival. Conclusion Our data provide a molecular basis for the role of TNFAIP8 in chemoresistance and progression of AML and highlight the unique function of TNFAIP8 as an attractive therapeutic target.
Collapse
Affiliation(s)
- Yihua Pang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Yanan Zhao
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Yan Wang
- Department of Hematology, Taian central hospital, Taian, 271000, Shandong, China
| | - Xinlu Wang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Ruiqing Wang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Na Liu
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Peng Li
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Min Ji
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Jingjing Ye
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Tao Sun
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Jingxin Li
- Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, Shandong, China
| | - Daoxin Ma
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Fei Lu
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China.
| | - Chunyan Ji
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
8
|
Wouters J, Kalender-Atak Z, Minnoye L, Spanier KI, De Waegeneer M, Bravo González-Blas C, Mauduit D, Davie K, Hulselmans G, Najem A, Dewaele M, Pedri D, Rambow F, Makhzami S, Christiaens V, Ceyssens F, Ghanem G, Marine JC, Poovathingal S, Aerts S. Robust gene expression programs underlie recurrent cell states and phenotype switching in melanoma. Nat Cell Biol 2020; 22:986-998. [PMID: 32753671 DOI: 10.1038/s41556-020-0547-3] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 06/23/2020] [Indexed: 02/07/2023]
Abstract
Melanoma cells can switch between a melanocytic and a mesenchymal-like state. Scattered evidence indicates that additional intermediate state(s) may exist. Here, to search for such states and decipher their underlying gene regulatory network (GRN), we studied 10 melanoma cultures using single-cell RNA sequencing (RNA-seq) as well as 26 additional cultures using bulk RNA-seq. Although each culture exhibited a unique transcriptome, we identified shared GRNs that underlie the extreme melanocytic and mesenchymal states and the intermediate state. This intermediate state is corroborated by a distinct chromatin landscape and is governed by the transcription factors SOX6, NFATC2, EGR3, ELF1 and ETV4. Single-cell migration assays confirmed the intermediate migratory phenotype of this state. Using time-series sampling of single cells after knockdown of SOX10, we unravelled the sequential and recurrent arrangement of GRNs during phenotype switching. Taken together, these analyses indicate that an intermediate state exists and is driven by a distinct and stable 'mixed' GRN rather than being a symbiotic heterogeneous mix of cells.
Collapse
Affiliation(s)
- Jasper Wouters
- Center for Brain & Disease Research, VIB-KU Leuven, Leuven, Belgium.,Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Zeynep Kalender-Atak
- Center for Brain & Disease Research, VIB-KU Leuven, Leuven, Belgium.,Department of Human Genetics, KU Leuven, Leuven, Belgium.,Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Liesbeth Minnoye
- Center for Brain & Disease Research, VIB-KU Leuven, Leuven, Belgium.,Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Katina I Spanier
- Center for Brain & Disease Research, VIB-KU Leuven, Leuven, Belgium.,Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Maxime De Waegeneer
- Center for Brain & Disease Research, VIB-KU Leuven, Leuven, Belgium.,Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Carmen Bravo González-Blas
- Center for Brain & Disease Research, VIB-KU Leuven, Leuven, Belgium.,Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - David Mauduit
- Center for Brain & Disease Research, VIB-KU Leuven, Leuven, Belgium.,Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Kristofer Davie
- Center for Brain & Disease Research, VIB-KU Leuven, Leuven, Belgium.,Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Gert Hulselmans
- Center for Brain & Disease Research, VIB-KU Leuven, Leuven, Belgium.,Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Ahmad Najem
- Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Michael Dewaele
- Center for Cancer Biology, VIB-KU Leuven, Leuven, Belgium.,Department of Oncology, KU Leuven, Leuven, Belgium
| | - Dennis Pedri
- Center for Brain & Disease Research, VIB-KU Leuven, Leuven, Belgium.,Center for Cancer Biology, VIB-KU Leuven, Leuven, Belgium.,Department of Oncology, KU Leuven, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Florian Rambow
- Center for Cancer Biology, VIB-KU Leuven, Leuven, Belgium.,Department of Oncology, KU Leuven, Leuven, Belgium
| | - Samira Makhzami
- Center for Brain & Disease Research, VIB-KU Leuven, Leuven, Belgium.,Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Valerie Christiaens
- Center for Brain & Disease Research, VIB-KU Leuven, Leuven, Belgium.,Department of Human Genetics, KU Leuven, Leuven, Belgium
| | | | - Ghanem Ghanem
- Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Jean-Christophe Marine
- Center for Cancer Biology, VIB-KU Leuven, Leuven, Belgium.,Department of Oncology, KU Leuven, Leuven, Belgium
| | | | - Stein Aerts
- Center for Brain & Disease Research, VIB-KU Leuven, Leuven, Belgium. .,Department of Human Genetics, KU Leuven, Leuven, Belgium.
| |
Collapse
|
9
|
Wang M, Yang C, Liu X, Zheng J, Xue Y, Ruan X, Shen S, Wang D, Li Z, Cai H, Liu Y. An upstream open reading frame regulates vasculogenic mimicry of glioma via ZNRD1-AS1/miR-499a-5p/ELF1/EMI1 pathway. J Cell Mol Med 2020; 24:6120-6136. [PMID: 32368853 PMCID: PMC7294115 DOI: 10.1111/jcmm.15217] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/20/2020] [Accepted: 03/04/2020] [Indexed: 02/06/2023] Open
Abstract
Increasing evidence has suggested that gliomas can supply blood through vasculogenic mimicry. In this study, the expression and function of ZNRD1‐AS1‐144aa‐uORF (144aa‐uORF) and some non‐coding RNAs in gliomas were assessed. Real‐time quantitative PCR or Western blot was used to discover the expression of 144aa‐uORF, ZNRD1‐AS1, miR‐499a‐5p, ELF1 and EMI1 in gliomas. In addition, RIP and RNA pull‐down assays were applied to explore the interrelationship between 144aa‐uORF and ZNRD1‐AS1. The role of the 144aa‐uORF\ZNRD1‐AS1\miR‐499a‐5p\ELF1\EMI1 axis in vasculogenic mimicry formation of gliomas was analysed. This study illustrates the reduced expression of the 144aa‐uORF in glioma tissues and cells. Up‐regulation of 144aa‐uORF inhibits proliferation, migration, invasion and vasculogenic mimicry formation within glioma cells. The up‐regulated 144aa‐uORF can increase the degradation of ZNRD1‐AS1 through the nonsense‐mediated RNA decay (NMD) pathway. Knockdown of ZNRD1‐AS1 inhibits vasculogenic mimicry in glioma cells by modulating miR‐499a‐5p. At the same time, miR‐499a‐5p is down‐regulated and has a tumour‐suppressive effect in gliomas. In addition, ZNRD1‐AS1 serves as a competitive endogenous RNA (ceRNA) and regulates the expression of ELF1 by binding to miR‐499a‐5p. Notably, ELF1 binds to the promoter region of EMI1 and up‐regulates EMI1 expression, while simultaneously promoting vasculogenic mimicry in glioma cells. This study suggests that the 144aa‐uORF\ZNRD1‐AS1\miR‐499a‐5p\ELF1\EMI1 axis takes key part in regulating the formation of vasculogenic mimicry in gliomas and may provide a potential target for glioma treatment.
Collapse
Affiliation(s)
- Mo Wang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Chunqing Yang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Xiaobai Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Jian Zheng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Yixue Xue
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| | - Xuelei Ruan
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| | - Shuyuan Shen
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| | - Di Wang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Zhen Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Heng Cai
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| |
Collapse
|
10
|
Wang L, Tang D, Wu T, Sun F. ELF1-mediated LUCAT1 promotes choroidal melanoma by modulating RBX1 expression. Cancer Med 2020; 9:2160-2170. [PMID: 31968402 PMCID: PMC7064025 DOI: 10.1002/cam4.2859] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/10/2019] [Accepted: 01/06/2020] [Indexed: 12/14/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are essential regulators of gene expression and biological behaviors. However, the contribution of lncRNA LUCAT1 to choroidal melanoma (CM) remains unexplored. Here, we examined the expression of LUCAT1 in CM cells by qRT‐PCR and investigated its biological effects by cell counting kit‐8, EdU, TUNEL, transwell assays, and Western blot. Bioinformatics tools were applied to find RNA candidates for further study. Moreover, mechanistic experiments including RNA immunoprecipitation assay, pull‐down assay, and luciferase reporter assay confirmed the relation or interaction among the indicated molecules. Here, we reported ELF1 as the transcription activator of LUCAT1. Functionally, elevated expression of LUCAT1 positively regulated CM cell proliferation, metastasis, and epithelial‐mesenchymal transition process. In addition, we verified the competing endogenous RNA (ceRNA) hypothesis of LUCAT1 and confirmed LUCAT1 modulates CM progression by modulating miR‐514a/b‐3p/RBX1 axis. Meanwhile, miR‐514a/b‐3p was suggested to repress CM progression, whereas RBX1 was unmasked to aggravate CM development. Of note, RBX1 overexpression rescued the inhibitory effect of LUCAT1 silence on the biological processes of CM cells. Altogether, this study unveiled the modulation axis ELF1/LUCAT1/miR‐514a/b‐3p/RBX1 and evidenced LUCAT1 as a promoter in CM for the first time, providing a novel insight into future treatment of CM.
Collapse
Affiliation(s)
- Lina Wang
- Tianjin Medical University Eye Hospital, Tianjin, China.,Tianjin First Central Hospital, Tianjin, China
| | - Dongrun Tang
- Tianjin Medical University Eye Hospital, Tianjin, China
| | - Tong Wu
- Tianjin Medical University Eye Hospital, Tianjin, China
| | - Fengyuan Sun
- Tianjin Medical University Eye Hospital, Tianjin, China
| |
Collapse
|
11
|
Das S, Bhattacharya B, Das B, Sinha B, Jamatia T, Paul K. Etiologic Role of Kinases in the Progression of Human Cancers and Its Targeting Strategies. Indian J Surg Oncol 2019; 12:34-45. [PMID: 33994726 DOI: 10.1007/s13193-019-00972-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 08/07/2019] [Indexed: 11/30/2022] Open
Abstract
Cancer is one of the dominant causes of death worldwide while lifelong prognosis is still inauspicious. The maturation of the cancer is seen as a process of transformation of a healthy cell into a tumor-sensitive cell, which is held entirely at the cellular, molecular, and genetic levels of the organism. Tyrosine kinases can play a major, etiologic role in the inception of malignancy and devote to the uncontrolled proliferation of cancerous cells and the progression of a tumor as well as the development of metastatic disease. Angiogenesis and oncogene activation are the major event in cell proliferation. The growth of a tumor and metastasis are fully depending on angiogenesis and lymphangiogenesis triggered by chemical signals from tumor cells in a phase of rapid growth. Tyrosine kinase inhibitors are compounds that inhibit tyrosine kinases and effective in targeting angiogenesis and blocking the signaling pathways of oncogenes. Small molecule tyrosine kinase inhibitors like afatinib, erlotinib, crizotinib, gefitinib, and cetuximab are shown to a selective cut off tactic toward the constitutive activation of an oncogene in tumor cells, and thus contemplated as promising therapeutic approaches for the diagnosis of cancer and malignancies.
Collapse
Affiliation(s)
- Sanjoy Das
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| | - Bireswar Bhattacharya
- Regional Institute of Pharmaceutical Science and Technology, Agartala, Tripura 799005 India
| | - Biplajit Das
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| | - Bibek Sinha
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| | - Taison Jamatia
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| | - Kishan Paul
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| |
Collapse
|
12
|
Chen CH, Su LJ, Tsai HT, Hwang CF. ELF-1 expression in nasopharyngeal carcinoma facilitates proliferation and metastasis of cancer cells via modulation of CCL2/CCR2 signaling. Cancer Manag Res 2019; 11:5243-5254. [PMID: 31289447 PMCID: PMC6560358 DOI: 10.2147/cmar.s196355] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 04/16/2019] [Indexed: 01/28/2023] Open
Abstract
Background: Nasopharyngeal carcinoma (NPC) is a prevalent malignant tumor in Southeast Asia. The management of NPC has remained a challenge until now. ELF-1 is a member of the ETS family of transcription factors that regulate genes involved in cellular growth. ELF-1 expression has been reported in various cancers and is required for tumor growth and angiogenesis; however, its function in NPC remains unclear. In the present study, we characterized the role and underlying mechanism of ELF-1 in NPC. Methods: The biological functions of ELF-1 in NPC cells such as proliferation, migration, invasion, and drug resistance were investigated using MTT, BrdU incorporation, and Transwell assays. To gain more insight into the mechanism of ELF-1 in NPC, we analyzed CCL2/CCR2 signaling by Western blotting, ELISA, siRNAs, and CCR2 antagonist. Results: Gain-of-function of ELF-1 in TW01 and TW04 cells promoted NPC cell proliferation, BrdU incorporation, migration, invasion and cisplatin resistance. By contrast, knockdown of ELF-1 produced opposite results. Overexpression of ELF-1 enhanced the expression of CCL2 via binding to its promoter region and increased the level of the extracellular matrix protein CCL2 in cell culture medium. ELF-1 expression also modulated the downstream targets of CCL2/CCR2 signaling. Most importantly, ELF-1-induced NPC malignant phenotypes were abrogated by a CCR2 inhibitor, implying that the CCL2/CCR2 signaling axis was involved in ELF-1-mediated regulation in NPC. Conclusion: Our data suggest that ELF-1 plays an oncogenic role in NPC development associated with the CCL2/CCR2 signaling pathway and may therefore be a potential target for NPC therapy.
Collapse
Affiliation(s)
- Chang-Han Chen
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510020, People's Republic of China.,Department of Applied Chemistry, Graduate Institute of Biomedicine and Biomedical Technology, National Chi Nan University, Nantou, 54561, Taiwan
| | - Li-Jen Su
- Department of Biomedical Sciences and Engineering, College of Health Sciences and Technology, National Central University, Taoyuan City, Taiwan.,Education and Research Center for Technology Assisted Substance Abuse Prevention and Management, Taoyuan City, Taiwan.,IHMed Global, Taipei City, Taiwan
| | - Hsin-Ting Tsai
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510020, People's Republic of China
| | - Chung-Feng Hwang
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan.,Kaohsiung Chang Gung Head and Neck Oncology Group, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| |
Collapse
|
13
|
Effects of acupuncture plus mild hypothermia on apoptosis-related factors in rats with cerebral ischemia-reperfusion. JOURNAL OF ACUPUNCTURE AND TUINA SCIENCE 2017. [DOI: 10.1007/s11726-017-0993-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
He DX, Zhang GY, Gu XT, Mao AQ, Lu CX, Jin J, Liu DQ, Ma X. Genome-wide profiling of long non-coding RNA expression patterns in anthracycline-resistant breast cancer cells. Int J Oncol 2016; 49:1695-1703. [PMID: 27633960 DOI: 10.3892/ijo.2016.3665] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 07/29/2016] [Indexed: 11/05/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are involved in cancer progression. In the present study, we analyzed the lncRNA profiles in adriamycin-resistant and -sensitive breast cancer cells and found a group of dysregulated lncRNAs in the adriamycin-resistant cells. Expression of the dysregulated lncRNAs was correlated with dysregulated mRNAs, and these were enriched in GO and KEGG pathways associated with cancer progression and chemoresistance development. Among these lncRNA-mRNA interactions, some lncRNAs may cis‑regulate neighboring protein-coding genes and be involved in chemoresistance. We then validated that the lncRNA NONHSAT028712 regulated nearby CDK2 and interfered with the cell cycle and chemoresistance. Furthermore, we identified another group of lncRNAs that trans-regulated genes by interacting with different transcription factors. For example, NONHSAT057282 and NONHSAG023333 modulated chemoresistance and most likely interacted with the transcription factors ELF1 and E2F1, respectively. In conclusion, in the present study, we report for the first time the lncRNA expression patterns in adriamycin-resistant breast cancer cells, and provide a group of novel lncRNA targets that mediate chemoresistance development in both cis- and trans-action modes.
Collapse
Affiliation(s)
- Dong-Xu He
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Guang-Yuan Zhang
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Xiao-Ting Gu
- Department of Cellular and Molecular Pharmacology, School of Medicine and Pharmaceutics, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Ai-Qin Mao
- Department of Cellular and Molecular Pharmacology, School of Medicine and Pharmaceutics, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Chun-Xiao Lu
- Department of Cellular and Molecular Pharmacology, School of Medicine and Pharmaceutics, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Jian Jin
- Department of Cellular and Molecular Pharmacology, School of Medicine and Pharmaceutics, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - De-Quan Liu
- Department of Breast Surgery, The Third Affiliated Hospital, Kunming Medical University, Kunming, Yunnan 650031, P.R. China
| | - Xin Ma
- Department of Cellular and Molecular Pharmacology, School of Medicine and Pharmaceutics, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| |
Collapse
|
15
|
Larsen S, Kawamoto S, Tanuma SI, Uchiumi F. The hematopoietic regulator, ELF-1, enhances the transcriptional response to Interferon-β of the OAS1 anti-viral gene. Sci Rep 2015; 5:17497. [PMID: 26643049 PMCID: PMC4672336 DOI: 10.1038/srep17497] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 10/30/2015] [Indexed: 12/11/2022] Open
Abstract
Interferon (IFN) therapy is effective in treating cancers, haematological and virus induced diseases. The classical Jak/Stat pathway of IFN signal transduction leading to changes in transcriptional activity is well established but alone does not explain the whole spectrum of cellular responses to IFN. Gene promoters contain cis-acting sequences that allow precise and contextual binding of transcription factors, which control gene expression. Using the transcriptional response to IFN as a starting point we report a high frequency of tandem GGAA motifs in the proximal promoters of Interferon stimulated genes, suggesting a key regulatory action. Utilizing the well-characterized anti-viral gene, OAS1, as an example Interferon stimulated gene promoter containing such a duplicated GGAA motif, we have demonstrated a regulatory role of this promoter in response to IFN by mutation analysis. Furthermore, we identified ELF-1 as a direct binding factor at this motif. Additionally, recruitment of RB1 and SP1 factors to the promoter following IFN stimulation is shown. ELF-1 overexpression enhanced and knockdown of ELF-1 inhibited full activation of OAS1 by IFN stimulation. Collectively, ELF-1 binds an important duplicated GGAA cis-acting element at the OAS1 promoter and in cooperation with RB1 and SP1 recruitment contributes to regulation in response to IFN stimulation.
Collapse
Affiliation(s)
- Steven Larsen
- Research Center for RNA Science, RIST, Tokyo University of Science, Noda, Chiba, Japan.,Department of Gene Regulation, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Shota Kawamoto
- Department of Gene Regulation, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Sei-ichi Tanuma
- Research Center for RNA Science, RIST, Tokyo University of Science, Noda, Chiba, Japan.,Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Fumiaki Uchiumi
- Research Center for RNA Science, RIST, Tokyo University of Science, Noda, Chiba, Japan.,Department of Gene Regulation, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| |
Collapse
|
16
|
Zhu B, Xu T, Yuan J, Guo X, Liu D. Transcriptome sequencing reveals differences between primary and secondary hair follicle-derived dermal papilla cells of the Cashmere goat (Capra hircus). PLoS One 2013; 8:e76282. [PMID: 24069460 PMCID: PMC3777969 DOI: 10.1371/journal.pone.0076282] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 08/22/2013] [Indexed: 12/30/2022] Open
Abstract
The dermal papilla is thought to establish the character and control the size of hair follicles. Inner Mongolia Cashmere goats (Capra hircus) have a double coat comprising the primary and secondary hair follicles, which have dramatically different sizes and textures. The Cashmere goat is rapidly becoming a potent model for hair follicle morphogenesis research. In this study, we established two dermal papilla cell lines during the anagen phase of the hair growth cycle from the primary and secondary hair follicles and clarified the similarities and differences in their morphology and growth characteristics. High-throughput transcriptome sequencing was used to identify gene expression differences between the two dermal papilla cell lines. Many of the differentially expressed genes are involved in vascularization, ECM-receptor interaction and Wnt/β-catenin/Lef1 signaling pathways, which intimately associated with hair follicle morphogenesis. These findings provide valuable information for research on postnatal morphogenesis of hair follicles.
Collapse
Affiliation(s)
- Bing Zhu
- The Key Laboratory of Mammalian Reproductive Biology and Biotechnology of the Ministry of Education, Inner Mongolia University, Hohhot, China
| | - Teng Xu
- The Key Laboratory of Mammalian Reproductive Biology and Biotechnology of the Ministry of Education, Inner Mongolia University, Hohhot, China
| | - Jianlong Yuan
- The Key Laboratory of Mammalian Reproductive Biology and Biotechnology of the Ministry of Education, Inner Mongolia University, Hohhot, China
| | - Xudong Guo
- The Key Laboratory of Mammalian Reproductive Biology and Biotechnology of the Ministry of Education, Inner Mongolia University, Hohhot, China
- * E-mail: (XG); (DL)
| | - Dongjun Liu
- The Key Laboratory of Mammalian Reproductive Biology and Biotechnology of the Ministry of Education, Inner Mongolia University, Hohhot, China
- * E-mail: (XG); (DL)
| |
Collapse
|
17
|
Feik E, Schweifer N, Baierl A, Sommergruber W, Haslinger C, Hofer P, Maj-Hes A, Madersbacher S, Gsur A. Integrative analysis of prostate cancer aggressiveness. Prostate 2013; 73:1413-26. [PMID: 23813660 DOI: 10.1002/pros.22688] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 04/22/2013] [Indexed: 12/12/2022]
Abstract
BACKGROUND Clinical management of prostate cancer (PC) is still highly demanding on the identification of robust biomarkers which will allow a more precise prediction of disease progression. METHODS We profiled both mRNA expression and DNA copy number alterations (CNAs) from laser capture microdissected cells from 31 PC patients and 17 patients with benign prostatic hyperplasia using Affymetrix GeneChip® technology. PC patients were subdivided into an aggressive (Gleason Score 8 or higher, and/or T3/T4 and/or N+/M+) and non-aggressive (all others) form of PC. Furthermore, we correlated the two datasets, as genes whose varied expression is due to a chromosomal alteration, may suggest a causal implication of these genes in the disease. All statistical analyses were performed in R version 2.15.0 and Bioconductor version 1.8.1., respectively. RESULTS We confirmed several common altered chromosomal regions as well as recently discovered loci such as deletions on chromosomes 3p14.1-3p13 and 13q13.3-13q14.11 supporting a possible role for RYBP, RGC32, and ELF1 in tumor suppression. Integrative analysis of expression and CN data combined with data retrieved from online databases propose PTP4A3 and ELF1 as possible factors for tumor progression. CONCLUSIONS Copy number data analysis revealed some significant differences between aggressive and non-aggressive tumors, while gene expression data alone could not define an aggressive group of patients. The assessment of CNA may have diagnostic and prognostic value in PC.
Collapse
Affiliation(s)
- Elisabeth Feik
- Department of Medicine I, Division: Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Tzenov YR, Andrews PG, Voisey K, Popadiuk P, Xiong J, Popadiuk C, Kao KR. Human papilloma virus (HPV) E7-mediated attenuation of retinoblastoma (Rb) induces hPygopus2 expression via Elf-1 in cervical cancer. Mol Cancer Res 2013; 11:19-30. [PMID: 23284001 DOI: 10.1158/1541-7786.mcr-12-0510] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The human papillomavirus (HPV) is the etiologic agent of cervical cancer. In this study, we provide evidence for the human Pygopus (hPygo)2 gene as a cellular biomarker for HPV-related disease. In a tumor microarray of cervical cancer progression, hPygo2 levels were greater in high-grade lesions and squamous cell carcinomas than in normal epithelia. Similarly, hPygo2 mRNA and protein levels were greater in HPV-positive cervical cancer cells relative to uninfected primary cells. RNA interference (RNAi)-mediated depletion of HPV-E7 increased whereas E74-like factor (Elf)-1 RNAi decreased association of Retinoblastoma (Rb) tumor suppressor with the hPygo2 promoter in cervical cancer cell lines. Transfection of dominant-active Rb inhibited Elf-1-dependent activation of hPygo2, whereas Elf-1 itself increased hPygo2 expression. Chromatin immunoprecipitation assays showed that Rb repressed hPygo2 by inhibiting Elf-1 at the Ets-binding site in the hPygo2 promoter. These results suggested that abrogation of Rb by E7 resulted in derepression of Elf-1, which in turn stimulated expression of hPygo2. Thus, initiation of hPygo2 expression by Elf-1 was required for proliferation of cervical cancer cells and its expression therefore may act as a surrogate marker for dysplasia.
Collapse
Affiliation(s)
- Youlian R Tzenov
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, 300 Prince Philip Drive, St. John's, NL, Canada, A1B 3V6
| | | | | | | | | | | | | |
Collapse
|
19
|
Feng W, Chumley P, Hua P, Rezonzew G, Jaimes D, Duckworth MW, Xing D, Jaimes EA. Role of the transcription factor erythroblastosis virus E26 oncogen homolog-1 (ETS-1) as mediator of the renal proinflammatory and profibrotic effects of angiotensin II. Hypertension 2012; 60:1226-33. [PMID: 22966006 DOI: 10.1161/hypertensionaha.112.197871] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Angiotensin II (Ang II) plays a major role in the pathogenesis of end-organ injury in hypertension via its diverse hemodynamic and nonhemodynamic effects. Erythroblastosis virus E26 oncogen homolog-1 (ETS-1) is an important transcription factor recently recognized as an important mediator of cell proliferation, inflammation, and fibrosis. In the present studies, we tested the hypothesis that ETS-1 is a common mediator of the renal proinflammatory and profibrotic effects of Ang II. C57BL6 mice (n=6 per group) were infused with vehicle (control), Ang II (1.4 mg/kg per day), Ang II and an ETS-1 dominant-negative peptide (10 mg/kg per day), or Ang II and an ETS-1 mutant peptide (10 mg/kg per day) via osmotic minipump for 2 or 4 weeks. The infusion of Ang II resulted in significant increases in blood pressure and left ventricular hypertrophy, which were not modified by ETS-1 blockade. The administration of ETS-1 dominant-negative peptide significantly attenuated Ang II-induced renal injury as assessed by urinary protein excretion, mesangial matrix expansion, and cell proliferation. Furthermore, ETS-1 dominant-negative peptide but not ETS-1 mutant peptide significantly reduced Ang II-mediated upregulation of transforming growth factor-β, connective tissue growth factor, and α-smooth muscle actin. In addition, ETS-1 blockade reduced several proinflammatory effects of Ang II, including macrophage infiltration, nitrotyrosine expression, and NOX4 mRNA expression. Our studies suggest that ETS-1 is a common mediator of the proinflammatory and profibrotic effects of Ang II-induced hypertensive renal damage and may result in the development of novel strategies in the treatment and prevention of end-organ injury in hypertension.
Collapse
Affiliation(s)
- Wenguang Feng
- Division of Nephrology, University of Alabama at Birmingham, Ziegler Research Building 637, 1530 3rd Ave South, Birmingham, AL 35294, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Bandla S, Pennathur A, Luketich JD, Beer DG, Lin L, Bass AJ, Godfrey TE, Litle VR. Comparative genomics of esophageal adenocarcinoma and squamous cell carcinoma. Ann Thorac Surg 2012; 93:1101-6. [PMID: 22450065 DOI: 10.1016/j.athoracsur.2012.01.064] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2011] [Revised: 01/18/2012] [Accepted: 01/20/2012] [Indexed: 12/20/2022]
Abstract
BACKGROUND Esophageal cancer consists of two major histologic types: esophageal squamous cell carcinoma (ESCC), predominant globally, and esophageal adenocarcinoma (EAC), which has a higher incidence in westernized countries. Five-year overall survival is 15%. Clinical trials frequently combine histologic types although they are different diseases with distinct origins. In the evolving era of personalized medicine and targeted therapies, we hypothesized that ESCC and EAC have genomic differences important for developing new therapeutic strategies for esophageal cancer. METHODS We explored DNA copy number abnormalities in 70 ESCCs with publicly available array data and 189 EACs from our group. All data was from single nucleotide polymorphism arrays. Analysis was performed using a segmentation algorithm. Log ratio thresholds for copy number gain and loss were set at ±0.2 (approximately 2.3 and 1.7 copies, respectively). RESULTS The ESCC and EAC genomes showed some copy number abnormalities with similar frequencies (eg, CDKN2A, EGFR, KRAS, MYC, CDK6, MET) but also many copy number abnormalities with different frequencies between histologic types, most of which were amplification events. Some of these regions harbor genes for which targeted therapies are currently available (VEGFA, ERBB2) or for which agents are in clinical trials (PIK3CA, FGFR1). Other regions contain putative oncogenes that may be targeted in the future. CONCLUSIONS Using single nucleotide polymorphism arrays we compared genomic abnormalities in a large cohort of EACs and ESCCs. We report here the similar and different frequencies of copy number abnormalities in ESCC and EAC. These results may allow development of histology-specific therapeutic agents for esophageal cancer.
Collapse
Affiliation(s)
- Santhoshi Bandla
- Department of Surgery, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642-8410, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Hua P, Feng W, Rezonzew G, Chumley P, Jaimes EA. The transcription factor ETS-1 regulates angiotensin II-stimulated fibronectin production in mesangial cells. Am J Physiol Renal Physiol 2012; 302:F1418-29. [PMID: 22357921 DOI: 10.1152/ajprenal.00477.2011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Angiotensin II (ANG II) produced as result of activation of the renin-angiotensin system (RAS) plays a critical role in the pathogenesis of chronic kidney disease via its hemodynamic effects on the renal microcirculation as well as by its nonhemodynamic actions including the production of extracellular matrix proteins such as fibronectin, a multifunctional extracellular matrix protein that plays a major role in cell adhesion and migration as well as in the development of glomerulosclerosis. ETS-1 is an important transcription factor essential for normal kidney development and glomerular integrity. We previously showed that ANG II increases ETS-1 expression and is required for fibronectin production in mesangial cells. In these studies, we determined that ANG II induces phosphorylation of ETS-1 via activation of the type 1 ANG II receptor and that Erk1/2 and Akt/PKB phosphorylation are required for these effects. In addition, we characterized the role of ETS-1 on the transcriptional activation of fibronectin production in mesangial cells. We determined that ETS-1 directly activates the fibronectin promoter and by utilizing gel shift assays and chromatin immunoprecipitation assays identified two different ETS-1 binding sites that promote the transcriptional activation of fibronectin in response to ANG II. In addition, we identified the essential role of CREB and its coactivator p300 on the transcriptional activation of fibronectin by ETS-1. These studies unveil novel mechanisms involved in RAS-induced production of the extracellular matrix protein fibronectin in mesangial cells and establish the role of the transcription factor ETS-1 as a direct mediator of these effects.
Collapse
Affiliation(s)
- Ping Hua
- Division of Nephrology, University of Alabama at Birmingham, 1530 3rd Ave. South, Birmingham, AL 35294-1150, USA
| | | | | | | | | |
Collapse
|
22
|
The manipulation of miRNA-gene regulatory networks by KSHV induces endothelial cell motility. Blood 2011; 118:2896-905. [PMID: 21715310 DOI: 10.1182/blood-2011-01-330589] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
miRNAs have emerged as master regulators of cancer-related events. miRNA dysregulation also occurs in Kaposi sarcoma (KS). Exploring the roles of KS-associated miRNAs should help to identify novel angiogenesis and lymphangiogenesis pathways. In the present study, we show that Kaposi sarcoma-associated herpesvirus (KSHV), the etiological agent of KS, induces global miRNA changes in lymphatic endothelial cells (LECs). Specifically, the miR-221/miR-222 cluster is down-regulated, whereas miR-31 is up-regulated. Both latent nuclear antigen (LANA) and Kaposin B repress the expression of the miR-221/miR-222 cluster, which results in an increase of endothelial cell (EC) migration. In contrast, miR-31 stimulates EC migration, so depletion of miR-31 in KSHV-transformed ECs reduces cell motility. Analysis of the putative miRNA targets among KSHV-affected genes showed that ETS2 and ETS1 are the downstream targets of miR-221 and miR-222, respectively. FAT4 is one of the direct targets of miR-31. Overexpression of ETS1 or ETS2 alone is sufficient to induce EC migration, whereas a reduction in FAT4 enhances EC motility. Our results show that KSHV regulates multiple miRNA-mRNA networks to enhance EC motility, which eventually contributes to KS progression by promoting the spread of malignant KS progenitor cells. Targeting KSHV-regulated miRNAs or genes might allow the development of novel therapeutic strategies that induce angiogenesis or allow the treatment of pathogenic (lymph)angiogenesis.
Collapse
|
23
|
RhoJ is an endothelial cell-restricted Rho GTPase that mediates vascular morphogenesis and is regulated by the transcription factor ERG. Blood 2011; 118:1145-53. [PMID: 21628409 DOI: 10.1182/blood-2010-10-315275] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ERG is a member of the ETS transcription factor family that is highly enriched in endothelial cells (ECs). To further define the role of ERG in regulating EC function, we evaluated the effect of ERG knock-down on EC lumen formation in 3D collagen matrices. Blockade of ERG using siRNA completely interferes with EC lumen formation. Quantitative PCR (QPCR) was used to identify potential downstream gene targets of ERG. In particular, we identified RhoJ as the Rho GTPase family member that is closely related to Cdc42 as a target of ERG. Knockdown of ERG expression in ECs led to a 75% reduction in the expression of RhoJ. Chromatin immunoprecipitation and transactivation studies demonstrated that ERG could bind to functional sites in the proximal promoter of the RhoJ gene. Knock-down of RhoJ similarly resulted in a marked reduction in the ability of ECs to form lumens. Suppression of either ERG or RhoJ during EC lumen formation was associated with a marked increase in RhoA activation and a decrease in Rac1 and Cdc42 activation and their downstream effectors. Finally, in contrast to other Rho GTPases, RhoJ exhibits a highly EC-restricted expression pattern in several different tissues, including the brain, heart, lung, and liver.
Collapse
|
24
|
Differential requirements for the Ets transcription factor Elf-1 in the development of NKT cells and NK cells. Blood 2010; 117:1880-7. [PMID: 21148815 DOI: 10.1182/blood-2010-09-309468] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
E26 Transformation specific (Ets) family transcription factors control the expression of a large number of genes regulating hematopoietic cell development and function. Two such transcription factors, Ets-1 and myeloid Elf-1-like factor (MEF), have been shown to play critical roles in both natural killer (NK)- and NKT-cell development, but not in the development of conventional T cells. In this study, we address the role of E74-like factor 1 (Elf-1), another Ets family transcription factor that is closely related to MEF but divergent from Ets-1, in NK- and NKT-cell development using Elf-1-deficient (Elf-1(-/-)) mice. Whereas the proportion of NK cells in Elf-1(-/-) mice was normal, the proportion of NKT cells was significantly reduced in the thymus and periphery of Elf-1(-/-) mice compared with wild-type (WT) mice. Although Ets-1-deficient mice lack NKT cells altogether, Elf-1(-/-) mice exhibited only a partial block in NKT-cell development caused by a cell-intrinsic defect in the selection, survival, and maturation of NKT cells. In addition, residual NKT cells found in Elf-1(-/-) mice produced less cytokine upon antigen stimulation compared with WT NKT cells. Our data demonstrate that Elf-1 plays an important and nonredundant role in the development and function of NKT cells, but is not involved in NK-cell development.
Collapse
|
25
|
A previously unrecognized promoter of LMO2 forms part of a transcriptional regulatory circuit mediating LMO2 expression in a subset of T-acute lymphoblastic leukaemia patients. Oncogene 2010; 29:5796-808. [PMID: 20676125 DOI: 10.1038/onc.2010.320] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The T-cell oncogene Lim-only 2 (LMO2) critically influences both normal and malignant haematopoiesis. LMO2 is not normally expressed in T cells, yet ectopic expression is seen in the majority of T-acute lymphoblastic leukaemia (T-ALL) patients with specific translocations involving LMO2 in only a subset of these patients. Ectopic lmo2 expression in thymocytes of transgenic mice causes T-ALL, and retroviral vector integration into the LMO2 locus was implicated in the development of clonal T-cell disease in patients undergoing gene therapy. Using array-based chromatin immunoprecipitation, we now demonstrate that in contrast to B-acute lymphoblastic leukaemia, human T-ALL samples largely use promoter elements with little influence from distal enhancers. Active LMO2 promoter elements in T-ALL included a previously unrecognized third promoter, which we demonstrate to be active in cell lines, primary T-ALL patients and transgenic mice. The ETS factors ERG and FLI1 previously implicated in lmo2-dependent mouse models of T-ALL bind to the novel LMO2 promoter in human T-ALL samples, while in return LMO2 binds to blood stem/progenitor enhancers in the FLI1 and ERG gene loci. Moreover, LMO2, ERG and FLI1 all regulate the +1 enhancer of HHEX/PRH, which was recently implicated as a key mediator of early progenitor expansion in LMO2-driven T-ALL. Our data therefore suggest that a self-sustaining triad of LMO2/ERG/FLI1 stabilizes the expression of important mediators of the leukaemic phenotype such as HHEX/PRH.
Collapse
|
26
|
Calero-Nieto FJ, Wood AD, Wilson NK, Kinston S, Landry JR, Göttgens B. Transcriptional regulation of Elf-1: locus-wide analysis reveals four distinct promoters, a tissue-specific enhancer, control by PU.1 and the importance of Elf-1 downregulation for erythroid maturation. Nucleic Acids Res 2010; 38:6363-74. [PMID: 20525788 PMCID: PMC2965225 DOI: 10.1093/nar/gkq490] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Ets transcription factors play important roles during the development and maintenance of the haematopoietic system. One such factor, Elf-1 (E74-like factor 1) controls the expression of multiple essential haematopoietic regulators including Scl/Tal1, Lmo2 and PU.1. However, to integrate Elf-1 into the wider regulatory hierarchies controlling haematopoietic development and differentiation, regulatory elements as well as upstream regulators of Elf-1 need to be identified. Here, we have used locus-wide comparative genomic analysis coupled with chromatin immunoprecipitation (ChIP-chip) assays which resulted in the identification of five distinct regulatory regions directing expression of Elf-1. Further, ChIP-chip assays followed by functional validation demonstrated that the key haematopoietic transcription factor PU.1 is a major upstream regulator of Elf-1. Finally, overexpression studies in a well-characterized erythroid differentiation assay from primary murine fetal liver cells demonstrated that Elf-1 downregulation is necessary for terminal erythroid differentiation. Given the known activation of PU.1 by Elf-1 and our newly identified reciprocal activation of Elf-1 by PU.1, identification of an inhibitory role for Elf-1 has significant implications for our understanding of how PU.1 controls myeloid-erythroid differentiation. Our findings therefore not only represent the first report of Elf-1 regulation but also enhance our understanding of the wider regulatory networks that control haematopoiesis.
Collapse
Affiliation(s)
- Fernando J Calero-Nieto
- Department of Haematology, Cambridge Institute for Medical Research, Cambridge University, Hills Road, Cambridge CB2 0XY, UK.
| | | | | | | | | | | |
Collapse
|
27
|
Guo S, Colbert LS, Fuller M, Zhang Y, Gonzalez-Perez RR. Vascular endothelial growth factor receptor-2 in breast cancer. Biochim Biophys Acta Rev Cancer 2010; 1806:108-21. [PMID: 20462514 DOI: 10.1016/j.bbcan.2010.04.004] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 04/16/2010] [Accepted: 04/21/2010] [Indexed: 12/31/2022]
Abstract
Investigations over the last decade have established the essential role of growth factors and their receptors during angiogenesis and carcinogenesis. The vascular endothelial growth factor receptor (VEGFR) family in mammals contains three members, VEGFR-1 (Flt-1), VEGFR-2 (KDR/Flk-1) and VEGFR-3 (Flt-4), which are transmembrane tyrosine kinase receptors that regulate the formation of blood and lymphatic vessels. In the early 1990s, the above VEGFR was structurally characterized by cDNA cloning. Among these three receptors, VEGFR-2 is generally recognized to have a principal role in mediating VEGF-induced responses. VEGFR-2 is considered as the earliest marker for endothelial cell development. Importantly, VEGFR-2 directly regulates tumor angiogenesis. Therefore, several inhibitors of VEGFR-2 have been developed and many of them are now in clinical trials. In addition to targeting endothelial cells, the VEGF/VEGFR-2 system works as an essential autocrine/paracrine process for cancer cell proliferation and survival. Recent studies mark the continuous and increased interest in this related, but distinct, function of VEGF/VEGFR-2 in cancer cells: the autocrine/paracrine loop. Several mechanisms regulate VEGFR-2 levels and modulate its role in tumor angiogenesis and physiologic functions, i.e.: cellular localization/trafficking, regulation of cis-elements of promoter, epigenetic regulation and signaling from Notch, cytokines/growth factors and estrogen, etc. In this review, we will focus on updated information regarding VEGFR-2 research with respect to the molecular mechanisms of VEGFR-2 regulation in human breast cancer. Investigations in the activation, function, and regulation of VEGFR-2 in breast cancer will allow the development of new pharmacological strategies aimed at directly targeting cancer cell proliferation and survival.
Collapse
Affiliation(s)
- Shanchun Guo
- Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | | | | | | | | |
Collapse
|
28
|
The role of ets factors in tumor angiogenesis. JOURNAL OF ONCOLOGY 2010; 2010:767384. [PMID: 20454645 PMCID: PMC2863161 DOI: 10.1155/2010/767384] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 02/06/2010] [Accepted: 03/02/2010] [Indexed: 12/14/2022]
Abstract
Angiogenesis is a critical component of tumor growth. A number of growth factors, including VEGF, FGF, and HGF, have been implicated as angiogenic growth factors that promote tumor angiogenesis in different types of cancer. Ets-1 is the prototypic member of the Ets transcription factor family. Ets-1 is known to be a downstream mediator of angiogenic growth factors. Expression of Ets-1 in a variety of different tumors is associated with increased angiogenesis. A role for other selected members of the Ets transcription factor family has also been shown to be important for the development of tumor angiogenesis. Because Ets factors also express a number of other important genes involved in cell growth, they contribute not only to tumor growth, but to disease progression. Targeting Ets factors in mouse tumor models through the use of dominant-negative Ets proteins or membrane permeable peptides directed at competitively inhibiting the DNA binding domain has now demonstrated the therapeutic potential of inhibiting selected Ets transcription factors to limit tumor growth and disease progression.
Collapse
|
29
|
Feng W, Xing D, Hua P, Zhang Y, Chen YF, Oparil S, Jaimes EA. The transcription factor ETS-1 mediates proinflammatory responses and neointima formation in carotid artery endoluminal vascular injury. Hypertension 2010; 55:1381-8. [PMID: 20368503 DOI: 10.1161/hypertensionaha.110.150995] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The transcription factor ETS-1 is a critical mediator of vascular inflammation and hypertrophy in hypertension. We tested the hypothesis that ETS-1 is a mediator of proinflammatory responses and neointimal hyperplasia after balloon injury of the carotid artery. For this study, we took advantage of the availability of an ETS-1 dominant-negative (DN) peptide. Sprague-Dawley rats were assigned to treatment with ETS-1 DN, a mutant peptide (ETS-1 MU), or vehicle (Veh) and subjected to balloon injury of the carotid artery. After 2, 24 hours, and 14 days, the rats were euthanized, and both carotid arteries were processed for real-time polymerase chain reaction (2 hours), immunofluorescence and immunohistochemistry (24 hours), and morphometric analysis (14 days). ETS-1 mRNA was up regulated (2.4-fold) in injured carotid arteries. By immunofluorescence, we confirmed increased nuclear expression of ETS-1 24 hours postinjury. The carotid artery mRNA expression of monocyte chemotactic protein-1, cytokine-induced neutrophil chemoattractant-2, P-selectin, E-selectin, vascular cell adhesion molecule, and intercellular adhesion molecule was increased 2 hours after injury. ETS-1 DN but not ETS-1 MU significantly reduced mRNA and protein expression for monocyte chemotactic protein-1, P-selectin, and E-selectin in injured arteries. These changes were accompanied by concomitant reductions in vascular monocyte and leukocyte infiltration. Moreover, treatment with ETS-1 DN but not ETS-1 MU resulted in a 50% reduction in neointima formation at day 14 after balloon injury. This study unveils the role of ETS-1 as a mediator of inflammation and neointima formation in a model of carotid artery balloon injury and may result in the development of novel strategies in the treatment of vascular injury.
Collapse
Affiliation(s)
- Wenguang Feng
- Division of Nephrology and Hypertension, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Transcription factors of the ETS family are important regulators of endothelial gene expression. Here, we review the evidence that ETS factors regulate angiogenesis and briefly discuss the target genes and pathways involved. Finally, we discuss novel evidence that shows how these transcription factors act in a combinatorial fashion with others, through composite sites that may be crucial in determining endothelial specificity in gene transcription.
Collapse
|
31
|
Abstract
In this issue of Blood, Wei and colleagues investigate the overlapping roles of Ets1 and Ets2 in the regulation of endothelial cell function and survival during embryonic angiogenesis.1
Collapse
|
32
|
Zhan Y, Yuan L, Oettgen P. Alterations in transcriptional responses associated with vascular aging. JOURNAL OF INFLAMMATION-LONDON 2009; 6:16. [PMID: 19460151 PMCID: PMC2691401 DOI: 10.1186/1476-9255-6-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Accepted: 05/21/2009] [Indexed: 01/11/2023]
Abstract
Vascular aging is an independent risk factor for cardiovascular disease that can occur in the absence of other traditional risk factors. Inflammation is a hallmark of vascular aging that ultimately leads to structural changes in the vessel wall including an increase in medial thickness and perivascular fibrosis. Several classes of transcription factors have been identified that participate in the regulation of cellular responses associated with vascular aging. Nuclear factor (NF)-κB is the prototypic example of a transcriptional activator in the setting of inflammation, being activated in response to multiple inflammatory mediators including pro-inflammatory cytokines and bacterial endotoxin. In contrast, the activation of the nuclear hormone receptor and transcription factor peroxisome proliferator-activated receptor-alpha (PPAR-α) results in its translocation from the cell surface to the nucleus where it exerts anti-inflammatory effects. Vascular aging is also associated with endothelial dysfunction. One important repair mechanism for improving endothelial function is the recruitment of endothelial progenitor cells (EPCs). In the setting of aging the number of EPCs diminishes which has been linked to a decrease in the activity and/or expression of the transcription factor hypoxia inducible factor (HIF)-1 alpha. A change in the balance of the activity of pro-inflammatory transcription factors versus those that inhibit inflammation likely contributes to the process of vascular aging. The purpose of this review is to summarize our current knowledge of these age-related changes in transcriptional responses, and to discuss the therapeutic potential of targeting some of these factors.
Collapse
Affiliation(s)
- Yumei Zhan
- Division of Cardiology, and Molecular and Vascular Biology, Department of Medicine, Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA.
| | | | | |
Collapse
|
33
|
Yuan L, Nikolova-Krstevski V, Zhan Y, Kondo M, Bhasin M, Varghese L, Yano K, Carman CV, Aird WC, Oettgen P. Antiinflammatory effects of the ETS factor ERG in endothelial cells are mediated through transcriptional repression of the interleukin-8 gene. Circ Res 2009; 104:1049-57. [PMID: 19359602 DOI: 10.1161/circresaha.108.190751] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
ERG (Ets-related gene) is an ETS transcription factor that has recently been shown to regulate a number of endothelial cell (EC)-restricted genes including VE-cadherin, von Willebrand factor, endoglin, and intercellular adhesion molecule-2. Our preliminary data demonstrate that unlike other ETS factors, ERG exhibits a highly EC-restricted pattern of expression in cultured primary cells and several adult mouse tissues including the heart, lung, and brain. In response to inflammatory stimuli, such as tumor necrosis factor-alpha, we observed a marked reduction of ERG expression in ECs. To further define the role of ERG in the regulation of normal EC function, we used RNA interference to knock down ERG. Microarray analysis of RNA derived from ERG small interfering RNA- or tumor necrosis factor-alpha-treated human umbilical vein (HUV)ECs revealed significant overlap (P<0.01) in the genes that are up- or downregulated. Of particular interest to us was a significant change in expression of interleukin (IL)-8 at both protein and RNA levels. Exposure of ECs to tumor necrosis factor-alpha is known to be associated with increased neutrophil attachment. We observed that knockdown of ERG in HUVECs is similarly associated with increased neutrophil attachment compared to control small interfering RNA-treated cells. This enhanced adhesion could be blocked with IL-8 neutralizing or IL-8 receptor blocking antibodies. ERG can inhibit the activity of the IL-8 promoter in a dose dependent manner. Direct binding of ERG to the IL-8 promoter in ECs was confirmed by chromatin immunoprecipitation. In summary, our findings support a role for ERG in promoting antiinflammatory effects in ECs through repression of inflammatory genes such as IL-8.
Collapse
Affiliation(s)
- Lei Yuan
- Division of Cardiology, Department of Medicine, and the Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Nicol AF, Pires ARC, de Souza SR, Nuovo GJ, Grinsztejn B, Tristão A, Russomano FB, Velasque L, Lapa e Silva JR, Pirmez C. Cell-cycle and suppressor proteins expression in uterine cervix in HIV/HPV co-infection: comparative study by tissue micro-array (TMA). BMC Cancer 2008; 8:289. [PMID: 18840277 PMCID: PMC2577688 DOI: 10.1186/1471-2407-8-289] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Accepted: 10/07/2008] [Indexed: 11/18/2022] Open
Abstract
Background The oncoproteins of human papillomavirus (HPVs) directly effect cell-cycle control. We hypothesize that regulatory and cell cycle protein expression might be additionally modified in the cervix of HIV/HPV co-infected women. Methods We analyzed the expression of Rb, p27, VEGF and Elf-1 transcriptor factor by immunohistochemistry in 163 paraffin-embeded cervical samples using Tissue Micro-Array (TMA) and correlated this to HIV-1 and HPV infection. Results HIV/HPV co-infection was associated with a significant increase in expression (p < 0.001) of VEGF and p27 in both low and high grade CIN when compared to the cervices of women infected by HPV alone. Decreased Rb expression was evident with increased CIN grade in the cervices of women infected with HPV alone (p = 0.003 average of cells/mm2 in CIN I: 17.9, CIN II/III: 4.8, and tumor 3.9). Rb expression increased 3-fold for both low and high grade CIN with HPV/HIV-1 co-infection compared to HPV infection alone but did not reach statistical significance. There was a significant increase in Elf-1 expression in HPV+/HIV- women with CIN II/III and tumor (average of cells/mm2 in CIN I: 63.8; CIN II/III: 115.7 and tumor: 112.0, p = 0.005), in comparison to controls. Conclusion Co-infection of HPV and HIV leads to significant increase in the VEGF and p27 expression when compared to HPV+/HIV-negative infection that could facilitate viral persistence and invasive tumor development.
Collapse
Affiliation(s)
- Alcina F Nicol
- Laboratory of Immunopathology, Instituto Oswaldo Cruz - FIOCRUZ, Rio de Janeiro, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Marignol L, Coffey M, Lawler M, Hollywood D. Hypoxia in prostate cancer: A powerful shield against tumour destruction? Cancer Treat Rev 2008; 34:313-27. [DOI: 10.1016/j.ctrv.2008.01.006] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Revised: 12/17/2007] [Accepted: 01/12/2008] [Indexed: 01/23/2023]
|
36
|
Coronary development is regulated by ATP-dependent SWI/SNF chromatin remodeling component BAF180. Dev Biol 2008; 319:258-66. [PMID: 18508041 DOI: 10.1016/j.ydbio.2008.04.020] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 03/21/2008] [Accepted: 04/08/2008] [Indexed: 02/03/2023]
Abstract
Dissecting the molecular mechanisms that guide the proper development of epicardial cell lineages is critical for understanding the etiology of both congenital and adult forms of human cardiovascular disease. In this study, we describe the function of BAF180, a polybromo protein in ATP-dependent SWI/SNF chromatin remodeling complexes, in coronary development. Ablation of BAF180 leads to impaired epithelial-to-mesenchymal-transition (EMT) and arrested maturation of epicardium around E11.5. Three-dimensional collagen gel assays revealed that the BAF180 mutant epicardial cells indeed possess significantly compromised migrating and EMT potentials. Consequently, the mutant hearts form abnormal surface nodules and fail to develop the fine and continuous plexus of coronary vessels that cover the entire ventricle around E14. PECAM and *-SMA staining assays indicate that these nodules are defective structures resulting from the failure of endothelial and smooth muscle cells within them to form coronary vessels. PECAM staining also reveal that there are very few coronary vessels inside the myocardium of mutant hearts. Consistent with this, quantitative RT-PCR analysis indicate that the expression of genes involved in FGF, TGF, and VEGF pathways essential for coronary development are down-regulated in mutant hearts. Together, these data reveal for the first time that BAF180 is critical for coronary vessel formation.
Collapse
|
37
|
Ni W, Zhan Y, He H, Maynard E, Balschi JA, Oettgen P. Ets-1 Is a Critical Transcriptional Regulator of Reactive Oxygen Species and p47
phox
Gene Expression in Response to Angiotensin II. Circ Res 2007; 101:985-94. [PMID: 17872466 DOI: 10.1161/circresaha.107.152439] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Angiotensin (Ang) II is a potent mediator of vascular inflammation. A central mechanism by which Ang II promotes inflammation is through the generation of reactive oxygen species (ROS). In the current study, we investigated the role of the transcription factor Ets-1 in regulating Ang II–induced ROS generation. ROS generation was measured in the thoracic aorta of Ets-1
−/−
mice compared with littermate controls after continuous infusion of Ang II. H
2
O
2
and superoxide anion (O
2
−
) production were significantly blunted in the Ets-1
−/−
mice. Inhibition of Ets-1 expression by small interfering RNA in primary human aortic smooth muscle cells also potently inhibited ROS production and the induction of the NAD(P)H oxidase subunit p47
phox
in response to Ang II. To evaluate the therapeutic potential of inhibiting Ets-1 in wild-type mice, dominant negative Ets-1 membrane-permeable peptides were administered systemically. Ang II–induced ROS production and medial hypertrophy in the thoracic aorta were markedly diminished as a result of blocking Ets-1. In summary, Ets-1 functions as a critical downstream transcriptional mediator of Ang II ROS generation by regulating the expression of NAD(P)H oxidase subunits such as
p47
phox
.
Collapse
Affiliation(s)
- Weihua Ni
- Division of Cardiology, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
The ETS (E26 Transformation-specific Sequence) factors are comprised of a family of transcription factors that share a highly conserved DNA binding domain. Although originally described for their role as protooncogenes in the development of several types of human cancer, they have subsequently been shown to regulate a wide variety of biological processes including cellular growth and differentiation under normal and pathological conditions. As transcription factors, they can either function as activators or repressors of gene expression. Several ETS family members are expressed in cells of vascular origin, including endothelial cells and vascular smooth muscle cells, where they regulate the expression of a number of vascular-specific genes. In the past few years, emerging evidence supports a novel role for selected ETS family members in the regulation of vascular inflammation and remodeling. ETS factor expression can be induced by proinflammatory cytokines, growth factors, and vasoactive peptides. Examples of some of the target genes regulated by ETS factors include adhesion molecules, chemokines, and matrix metalloproteinases. Targeted disruption of selected ETS family members such as Ets-1 in mice is associated with marked reductions in the recruitment of inflammatory cells and vascular remodeling in response to systemic administration of the vasoactive peptide angiotensin II. The purpose of this review is to provide an overview of recent advances that have been made in defining a role for selected members of the ETS transcription factor family in the regulation of vascular-specific gene expression, vascular inflammation, and remodeling.
Collapse
Affiliation(s)
- Peter Oettgen
- Division of Cardiology, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA.
| |
Collapse
|
39
|
Blei F. Literature watch. Emerging roles of the Angiopoietin-Tie and the ephrin-Eph systems as regulators of cell trafficking. Lymphat Res Biol 2006; 4:167-76. [PMID: 17034297 DOI: 10.1089/lrb.2006.4.167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
40
|
Pimanda JE, Chan WYI, Donaldson IJ, Bowen M, Green AR, Göttgens B. Endoglin expression in the endothelium is regulated by Fli-1, Erg, and Elf-1 acting on the promoter and a -8-kb enhancer. Blood 2006; 107:4737-45. [PMID: 16484587 DOI: 10.1182/blood-2005-12-4929] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Angiogenesis is critical to the growth and regeneration of tissue but is also a key component of tumor growth and chronic inflammatory disorders. Endoglin plays a key role in angiogenesis by modulating cellular responses to transforming growth factor-beta (TGF-beta) signaling and is upregulated in proliferating endothelial cells. To gain insights into the transcriptional hierarchies that govern endoglin expression, we used a combination of comparative genomic, biochemical, and transgenic approaches. Both the promoter and a region 8 kb upstream of exon 1 were active in transfection assays in endothelial cells. In transgenic mice, the promoter directed low-level expression to a subset of endothelial cells. By contrast, inclusion of the -8 enhancer resulted in robust endothelial activity with additional staining in developing ear mesenchyme. Subsequent molecular analysis demonstrated that both the -8 enhancer and the promoter depend on conserved Ets sites, which were bound in endothelial cells in vivo by Fli-1, Erg, and Elf-1. This study therefore establishes the transcriptional framework within which endoglin functions during angiogenesis.
Collapse
Affiliation(s)
- John E Pimanda
- Department of Hematology, Cambridge Institute of Medical Research, University of Cambridge, Cambridge CB2 2XY, UK
| | | | | | | | | | | |
Collapse
|