1
|
Chen TE, Lo J, Huang SP, Chang KC, Liu PL, Wu HE, Chen YR, Chang YC, Liu CC, Lee PY, Lai YH, Wu PC, Wang SC, Li CY. Glaucine inhibits hypoxia-induced angiogenesis and attenuates LPS-induced inflammation in human retinal pigment epithelial ARPE-19 cells. Eur J Pharmacol 2024; 981:176883. [PMID: 39128809 DOI: 10.1016/j.ejphar.2024.176883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 07/24/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Glaucine is an aporphine alkaloid with anti-inflammatory, bronchodilator and anti-cancer activities. However, the effects of glaucine in the regulation of age-related macular degeneration (AMD) remain unclear. Herein, we aimed to investigate the anti-angiogenetic and anti-inflammatory effects of glaucine in ARPE-19 cells. ARPE-19 cells were treated with N-(methoxyoxoacetyl)-glycine, methyl ester (DMOG) and cobalt chloride (CoCl2) for induction of hypoxia, while lipopolysaccharide (LPS) treatment was used for elicitation of inflammatory response. Cell viability was analyzed using 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay. The expression of hypoxia-inducible factor (HIF-1α) and vascular endothelial growth factor (VEGF) were measured by Western blot. The secretion of VEGF, interleukin (IL)-6 and monocyte chemoattractant protein-1 (MCP-1) was detected using enzyme-linked immunosorbent assay (ELISA). Human umbilical vein endothelial cells (HUVECs) were used for tube formation analysis. Expression of HIF-1α and secretion of VEGF were significantly increased under DMOG and CoCl2 induction, whereas glaucine significantly attenuated both HIF-1α expression and VEGF secretion by DMOG- and CoCl2-induced ARPE-19 cells. In addition, glaucine suppressed the tube formation by DMOG- and CoCl2-induced HUVEC cells. Moreover, glaucine also attenuated the production of IL-6 and MCP-1 by LPS-induced ARPE-19 cells. This study indicated that glaucine exhibited anti-angiogenic and anti-inflammatory effects, suggesting that glaucine might have benefits for the treatment of AMD.
Collapse
Affiliation(s)
- Ting-En Chen
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Jung Lo
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Department of Ophthalmology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Shu-Pin Huang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Institute of Medical Science and Technology, College of Medicine, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Kun-Che Chang
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA; Department of Neurobiology, Center of Neuroscience, University of Pittsburgh School of Medicine, Pitts-burgh, PA, 15213, USA
| | - Po-Len Liu
- Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Hsin-En Wu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Yuan-Ru Chen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Yo-Chen Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Department of Ophthalmology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Ching-Chih Liu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Department of Ophthalmology, Chi Mei Medical Center, Tainan 71004, Taiwan
| | - Po-Yen Lee
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Yu-Hung Lai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Pei-Chang Wu
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Department of Ophthalmology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Shu-Chi Wang
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 80756, Taiwan.
| | - Chia-Yang Li
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 80756, Taiwan.
| |
Collapse
|
2
|
Monaci S, Coppola F, Filippi I, Falsini A, Carraro F, Naldini A. Targeting hypoxia signaling pathways in angiogenesis. Front Physiol 2024; 15:1408750. [PMID: 38725568 PMCID: PMC11079266 DOI: 10.3389/fphys.2024.1408750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 04/10/2024] [Indexed: 05/12/2024] Open
Abstract
Oxygen (O2) supply is constantly maintained by the vascular network for a proper tissue oxygenation. Hypoxia is the result of an increased O2 demand and/or decreased supply and is common in both physiological conditions and human diseases. Angiogenesis is one of the adaptive responses to hypoxia and is mainly regulated by the hypoxia-inducible factors, HIFs. These heterodimeric transcription factors are composed of one of three O2-dependent α subunits (HIF-1, HIF-2, and HIF-3) and a constitutively expressed O2-insensitive subunit (HIF-1β). Among them HIF-1α is the most characterized and its activity is tightly controlled. Under hypoxia, its intracellular accumulation triggers the transcription of several genes, involved in cell survival/proliferation, autophagy, apoptosis, cell metabolism, and angiogenesis. HIF pathway is also modulated by specific microRNAs (miRNAs), thus resulting in the variation of several cellular responses, including alteration of the angiogenic process. The pro-angiogenic activity of HIF-1α is not restricted to endothelial cells, as it also affects the behavior of other cell types, including tumor and inflammatory/immune cells. In this context, exosomes play a crucial role in cell-cell communication by transferring bio-active cargos such as mRNAs, miRNAs, and proteins (e.g., VEGFA mRNA, miR210, HIF-1α). This minireview will provide a synopsis of the multiple factors able to modulate hypoxia-induced angiogenesis especially in the tumor microenvironment context. Targeting hypoxia signaling pathways by up-to-date approaches may be relevant in the design of therapeutic strategies in those pathologies where angiogenesis is dysregulated.
Collapse
Affiliation(s)
- Sara Monaci
- Cellular and Molecular Physiology Unit, Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Federica Coppola
- Cellular and Molecular Physiology Unit, Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Irene Filippi
- Cellular and Molecular Physiology Unit, Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Alessandro Falsini
- Cellular and Molecular Physiology Unit, Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Fabio Carraro
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Antonella Naldini
- Cellular and Molecular Physiology Unit, Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| |
Collapse
|
3
|
Abstract
The timing of life on Earth is remarkable: between individuals of the same species, a highly similar temporal pattern is observed, with shared periods of activity and inactivity each day. At the individual level, this means that over the course of a single day, a person alternates between two states. They are either upright, active, and communicative or they lie down in a state of (un)consciousness called sleep where even the characteristic of neuronal signals in the brain shows distinctive properties. The circadian clock governs both of these time stamps-activity and (apparent) inactivity-making them come and go consistently at the same approximate time each day. This behavior thus represents the meeting of two pervasive systems: the circadian clock and metabolism. In this article, we will describe what is known about how the circadian clock anticipates daily changes in oxygen usage, how circadian clock regulation may relate to normal physiology, and to hypoxia and ischemia that can result from pathologies such as myocardial infarction and stroke.
Collapse
Affiliation(s)
- Francesca Sartor
- Institute of Medical Psychology, Medical Faculty, LMU Munich, Germany (F.S., B.F.-B., M.M.)
| | - Borja Ferrero-Bordera
- Institute of Medical Psychology, Medical Faculty, LMU Munich, Germany (F.S., B.F.-B., M.M.)
| | - Jeffrey Haspel
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO (J.H.)
| | - Markus Sperandio
- Institute for Cardiovascular Physiology and Pathophysiology, Walter Brendel Center for Experimental Medicine, and the Biomedical Center (BMC), Medical Faculty, LMU Munich, Germany (M.S.)
| | - Paul M Holloway
- Radcliffe Department of Medicine, University of Oxford, United Kingdom (P.M.H.)
| | - Martha Merrow
- Institute of Medical Psychology, Medical Faculty, LMU Munich, Germany (F.S., B.F.-B., M.M.)
| |
Collapse
|
4
|
Dellaquila A, Dujardin C, Le Bao C, Chaumeton C, Carré A, Le Guilcher C, Lam F, Simon-Yarza T. Fibroblasts mediate endothelium response to angiogenic cues in a newly developed 3D stroma engineered model. BIOMATERIALS ADVANCES 2023; 154:213636. [PMID: 37778292 DOI: 10.1016/j.bioadv.2023.213636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/30/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023]
Abstract
Three-dimensional stroma engineered models would enable fundamental and applicative studies of human tissues interaction and remodeling in both physiological and pathological conditions. In this work, we propose a 3D vascularized stroma model to be used as in vitro platform for drug testing. A pullulan/dextran-based porous scaffold containing pre-patterned microchannels of 100 μm diameter is used for co-culturing of fibroblasts within the matrix pores and endothelial cells to form the lumen. Optical clearing of the constructs by hyperhydration allows for in-depth imaging of the model up to 1 mm by lightsheet and confocal microscopy. Our 3D vascularized stroma model allows for higher viability, metabolism and cytokines expression compared to a monocultured vascular model. Stroma-endothelium cross-talk is then investigated by exposing the system to pro and anti-angiogenic molecules. The results highlight the protective role played by fibroblasts on the vasculature, as demonstrated by decreased cytotoxicity, restoration of nitric oxide levels upon challenge, and sustained expression of endothelial markers CD31, vWF and VEGF. Our tissue model provides a 3D engineered platform for in vitro studies of stroma remodeling in angiogenesis-driven events, known to be a leading mechanism in diseased conditions, such as metastatic cancers, retinopathies and ischemia, and to investigate related potential therapies.
Collapse
Affiliation(s)
- Alessandra Dellaquila
- Université Paris Cité, Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science, INSERM U1148, X. Bichat Hospital, Paris 75018, France.
| | - Chloé Dujardin
- Université Paris Cité, Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science, INSERM U1148, X. Bichat Hospital, Paris 75018, France
| | - Chau Le Bao
- Université Paris Cité, Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science, INSERM U1148, X. Bichat Hospital, Paris 75018, France
| | - Chloé Chaumeton
- Sorbonne Université, Institute of Biology Paris-Seine, Paris 75005, France
| | - Albane Carré
- Université Paris Cité, Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science, INSERM U1148, X. Bichat Hospital, Paris 75018, France
| | - Camille Le Guilcher
- Université Paris Cité, Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science, INSERM U1148, X. Bichat Hospital, Paris 75018, France
| | - France Lam
- Sorbonne Université, Institute of Biology Paris-Seine, Paris 75005, France
| | - Teresa Simon-Yarza
- Université Paris Cité, Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science, INSERM U1148, X. Bichat Hospital, Paris 75018, France.
| |
Collapse
|
5
|
Emerging Role of IGF-1 in Prostate Cancer: A Promising Biomarker and Therapeutic Target. Cancers (Basel) 2023; 15:cancers15041287. [PMID: 36831629 PMCID: PMC9954466 DOI: 10.3390/cancers15041287] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Prostate cancer (PCa) is a highly heterogeneous disease driven by gene alterations and microenvironmental influences. Not only enhanced serum IGF-1 but also the activation of IGF-1R and its downstream signaling components has been increasingly recognized to have a vital driving role in the development of PCa. A better understanding of IGF-1/IGF-1R activity and regulation has therefore emerged as an important subject of PCa research. IGF-1/IGF-1R signaling affects diverse biological processes in cancer cells, including promoting survival and renewal, inducing migration and spread, and promoting resistance to radiation and castration. Consequently, inhibitory reagents targeting IGF-1/IGF-1R have been developed to limit cancer development. Multiple agents targeting IGF-1/IGF-1R signaling have shown effects against tumor growth in tumor xenograft models, but further verification of their effectiveness in PCa patients in clinical trials is still needed. Combining androgen deprivation therapy or cytotoxic chemotherapeutics with IGF-1R antagonists based on reliable predictive biomarkers and developing and applying novel agents may provide more desirable outcomes. This review will summarize the contribution of IGF-1 signaling to the development of PCa and highlight the relevance of this signaling axis in potential strategies for cancer therapy.
Collapse
|
6
|
Zhuang Y, Liu K, He Q, Gu X, Jiang C, Wu J. Hypoxia signaling in cancer: Implications for therapeutic interventions. MedComm (Beijing) 2023; 4:e203. [PMID: 36703877 PMCID: PMC9870816 DOI: 10.1002/mco2.203] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/14/2022] [Accepted: 12/18/2022] [Indexed: 01/25/2023] Open
Abstract
Hypoxia is a persistent physiological feature of many different solid tumors and a key driver of malignancy, and in recent years, it has been recognized as an important target for cancer therapy. Hypoxia occurs in the majority of solid tumors due to a poor vascular oxygen supply that is not sufficient to meet the needs of rapidly proliferating cancer cells. A hypoxic tumor microenvironment (TME) can reduce the effectiveness of other tumor therapies, such as radiotherapy, chemotherapy, and immunotherapy. In this review, we discuss the critical role of hypoxia in tumor development, including tumor metabolism, tumor immunity, and tumor angiogenesis. The treatment methods for hypoxic TME are summarized, including hypoxia-targeted therapy and improving oxygenation by alleviating tumor hypoxia itself. Hyperoxia therapy can be used to improve tissue oxygen partial pressure and relieve tumor hypoxia. We focus on the underlying mechanisms of hyperoxia and their impact on current cancer therapies and discuss the prospects of hyperoxia therapy in cancer treatment.
Collapse
Affiliation(s)
- Yan Zhuang
- State Key Laboratory of Pharmaceutical BiotechnologyNational Institute of Healthcare Data Science at Nanjing UniversityJiangsu Key Laboratory of Molecular MedicineMedicineMedical School of Nanjing UniversityNanjing UniversityNanjingChina
| | - Kua Liu
- State Key Laboratory of Pharmaceutical BiotechnologyNational Institute of Healthcare Data Science at Nanjing UniversityJiangsu Key Laboratory of Molecular MedicineMedicineMedical School of Nanjing UniversityNanjing UniversityNanjingChina
| | - Qinyu He
- State Key Laboratory of Pharmaceutical BiotechnologyNational Institute of Healthcare Data Science at Nanjing UniversityJiangsu Key Laboratory of Molecular MedicineMedicineMedical School of Nanjing UniversityNanjing UniversityNanjingChina
| | - Xiaosong Gu
- Microecological, Regenerative and Microfabrication Technical Platform for Biomedicine and Tissue EngineeringJinan Microecological Biomedicine Shandong LaboratoryJinan CityChina
| | - Chunping Jiang
- State Key Laboratory of Pharmaceutical BiotechnologyNational Institute of Healthcare Data Science at Nanjing UniversityJiangsu Key Laboratory of Molecular MedicineMedicineMedical School of Nanjing UniversityNanjing UniversityNanjingChina
- Microecological, Regenerative and Microfabrication Technical Platform for Biomedicine and Tissue EngineeringJinan Microecological Biomedicine Shandong LaboratoryJinan CityChina
| | - Junhua Wu
- State Key Laboratory of Pharmaceutical BiotechnologyNational Institute of Healthcare Data Science at Nanjing UniversityJiangsu Key Laboratory of Molecular MedicineMedicineMedical School of Nanjing UniversityNanjing UniversityNanjingChina
- Microecological, Regenerative and Microfabrication Technical Platform for Biomedicine and Tissue EngineeringJinan Microecological Biomedicine Shandong LaboratoryJinan CityChina
| |
Collapse
|
7
|
Negah SS, Forouzanfar F. Dual Role of Fibroblast Growth Factor Pathways in Sleep Regulation. Endocr Metab Immune Disord Drug Targets 2023; 23:63-69. [PMID: 35927892 DOI: 10.2174/1871530322666220802161031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 05/11/2022] [Accepted: 05/20/2022] [Indexed: 11/22/2022]
Abstract
Sleep plays an important function in neuro-immuno-endocrine homeostasis. Sleep disorders have been associated with an increased risk of metabolic and cognitive impairments. Among different factors that have an effect on sleep metabolism, a growing body of literature has investigated growth factors in the course of sleep quality and disorders. A good example of growth factors is fibroblast growth factors (FGFs), which are a large family of polypeptide growth factors. Evidence has shown that FGFs are involved in the modulation of sleep-wake behavior by their receptor subtypes and ligands, e.g., FFG1 plays an important role in the quality of sleep through somnogenic effects, while the high level of FGF23 is associated with secondary disorders in shift workers. Therefore, a controversial effect of FGFs can be seen in the course of sleep in physiologic and pathologic conditions. Further investigation on this topic would help us to understand the role of FGFs in sleep disorders as a therapeutic option and biomarker.
Collapse
Affiliation(s)
- Sajad Sahab Negah
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.,Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Forouzanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Mohammad Omar J, Hai Y, Jin S. Hypoxia-induced factor and its role in liver fibrosis. PeerJ 2022; 10:e14299. [PMID: 36523459 PMCID: PMC9745792 DOI: 10.7717/peerj.14299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 10/04/2022] [Indexed: 12/12/2022] Open
Abstract
Liver fibrosis develops as a result of severe liver damage and is considered a major clinical concern throughout the world. Many factors are crucial for liver fibrosis progression. While advancements have been made to understand this disease, no effective pharmacological drug and treatment strategies have been established that can effectively prevent liver fibrosis or even could halt the fibrotic process. Most of those advances in curing liver fibrosis have been aimed towards mitigating the causes of fibrosis, including the development of potent antivirals to inhibit the hepatitis virus. It is not practicable for many individuals; however, a liver transplant becomes the only suitable alternative. A liver transplant is an expensive procedure. Thus, there is a significant need to identify potential targets of liver fibrosis and the development of such agents that can effectively treat or reverse liver fibrosis by targeting them. Researchers have identified hypoxia-inducible factors (HIFs) in the last 16 years as important transcription factors driving several facets of liver fibrosis, making them possible therapeutic targets. The latest knowledge on HIFs and their possible role in liver fibrosis, along with the cell-specific activities of such transcription factors that how they play role in liver fibrosis progression, is discussed in this review.
Collapse
Affiliation(s)
- Jan Mohammad Omar
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical, Harbin, Heilongjiang, China
| | - Yang Hai
- College of International Education, Harbin Medical University, Harbin, Heilongjiang, China
| | - Shizhu Jin
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical, Harbin, Heilongjiang, China
| |
Collapse
|
9
|
Tao J, Miao R, Liu G, Qiu X, Yang B, Tan X, Liu L, Long J, Tang W, Jing W. Spatiotemporal correlation between HIF-1α and bone regeneration. FASEB J 2022; 36:e22520. [PMID: 36065633 DOI: 10.1096/fj.202200329rr] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/04/2022] [Accepted: 08/15/2022] [Indexed: 12/20/2022]
Abstract
Hypoxia-inducible factors (HIFs) are core regulators of the hypoxia response. HIF signaling is activated in the local physiological and pathological hypoxic environment, acting on downstream target genes to synthesize the corresponding proteins and regulate the hypoxic stress response. HIFs belong to the hypoxia-activated transcription family and contain two heterodimeric transcription factors, HIF-α and HIF-β. Under hypoxia, the dimer formed by HIF-α binding to HIF-β translocates into the nucleus and binds to the hypoxia response element (HRE) to induce transcription of a series of genes. HIF-1α plays an important role in innate bone development and acquired bone regeneration. HIF-1α promotes bone regeneration mainly through the following two pathways: (1) By regulating angiogenesis-osteoblast coupling to promote bone regeneration; and (2) by inducing metabolic reprogramming in osteoblasts, promoting cellular anaerobic glycolysis, ensuring the energy supply of osteoblasts under hypoxic conditions, and further promoting bone regeneration and repair. This article reviews recent basic research on HIF-1α and its role in promoting osteogenesis, discusses the possible molecular mechanisms, introduces the hypoxia-independent role of HIF-1α and reviews the application prospects of HIF-1α in tissue engineering.
Collapse
Affiliation(s)
- Junming Tao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Rong Miao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Gang Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaoning Qiu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Baohua Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xinzhi Tan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lei Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jie Long
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wei Tang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wei Jing
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Salminen A. Mutual antagonism between aryl hydrocarbon receptor and hypoxia-inducible factor-1α (AhR/HIF-1α) signaling: Impact on the aging process. Cell Signal 2022; 99:110445. [PMID: 35988806 DOI: 10.1016/j.cellsig.2022.110445] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/27/2022] [Accepted: 08/16/2022] [Indexed: 11/26/2022]
Abstract
The ambient oxygen level, many environmental toxins, and the rays of ultraviolet light (UV) provide a significant risk for the maintenance of organismal homeostasis. The aryl hydrocarbon receptors (AhR) represent a complex sensor system not only for environmental toxins and UV radiation but also for many endogenous ligands, e.g., L-tryptophan metabolites. The AhR signaling system is evolutionarily conserved and AhR homologs existed as many as 600 million years ago. The ancient atmosphere demanded the evolution of an oxygen-sensing system, i.e., hypoxia-inducible transcription factors (HIF) and their prolyl hydroxylase regulators (PHD). Given that both signaling systems have important roles in embryogenesis, it seems that they have been involved in the evolution of multicellular organisms. The evolutionary origin of the aging process is unknown although it is most likely associated with the evolution of multicellularity. Intriguingly, there is compelling evidence that while HIF-1α signaling extends the lifespan, that of AhR promotes many age-related degenerative processes, e.g., it increases oxidative stress, inhibits autophagy, promotes cellular senescence, and aggravates extracellular matrix degeneration. In contrast, HIF-1α signaling stimulates autophagy, inhibits cellular senescence, and enhances cell proliferation. Interestingly, there is a clear antagonism between the AhR and HIF-1α signaling pathways. For instance, (i) AhR and HIF-1α factors heterodimerize with the same factor, ARNT/HIF-1β, leading to their competition for DNA-binding, (ii) AhR and HIF-1α signaling exert antagonistic effects on autophagy, and (iii) co-chaperone p23 exhibits specific functions in the signaling of AhR and HIF-1α factors. One might speculate that it is the competition between the AhR and HIF-1α signaling pathways that is a driving force in the aging process.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| |
Collapse
|
11
|
Varghese T, Dasgupta S, Anand G, Rejish Kumar VJ, Sahu NP, Pal AK, Puthiyottil M. Dietary arginine attenuates hypoxia- induced HIF expression, metabolic responses and oxidative stress in Indian Major Carp, Cirrhinus mrigala. Comp Biochem Physiol B Biochem Mol Biol 2022; 259:110714. [PMID: 35026416 DOI: 10.1016/j.cbpb.2022.110714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/27/2021] [Accepted: 01/04/2022] [Indexed: 02/07/2023]
Abstract
Hypoxia is a common stressor in aquaculture systems, which causes severe physiological disturbances, ultimately leading to mortality or reduced productivity. Arginine, as a precursor of NO, has a role in enhancing oxygen delivery. Thus, an experiment was conducted to evaluate the effect of dietary arginine (Arg) in Cirrhinus mrigala exposed to hypoxia. The fish were fed with different levels of arginine for 60 days and exposed for 72 h to a sublethal level of hypoxia (0.50 ± 0.16 mg/L dissolved oxygen [DO]). The six treatment groups with three replicates were N0 (0% Arg + Normoxia), H0 (0% Arg + Hypoxia), N0.7 (0.70% Arg + Normoxia), H0.7 (0.70% Arg + Hypoxia), N1.4 (1.40% Arg + Normoxia), H1.4 (1.40% Arg + Hypoxia). Eighteen experimental units with twelve animals (5.8 ± 0.18 g) each were used for the trial.The results indicated that supplementation of arginine at 0.7 and 1.4% enhanced the hypoxia tolerance time, although the high dose (1.4%) did not yield any further increments. The exposure to hypoxia up-regulated Hypoxia Inducible Factor (HIF)-1α mRNA expression and supplementation of arginine significantly decreased hypoxia induced up-regulation of HIF at 1.4%. Arginine supplementation partially or completely normalised the hypoxia induced changes in the metabolic enzymes of C. mrigala. The fish exposed to hypoxic conditions exhibited significantly higher (P < 0.05) lipid peroxidation levels than those maintained under normoxic conditions, while arginine feeding significant in reducing lipid peroxidation. Antioxidant enzyme activities were significantly higher (P < 0.05) in hypoxia-exposed carp, indicating increased oxidative stress during the hypoxic exposure, that was improved in Arg-supplemented groups. However, arginine did not modulate erythrocyte countsalthough itreduced the erythrocyte fragility. We conclude arginine supplementation is effective in ameliorating hypoxia induced metabolic alterations and improving antioxidant defences in fish.
Collapse
Affiliation(s)
- Tincy Varghese
- ICAR-Central Institute of Fisheries Education (CIFE), Mumbai 400061, India.
| | - Subrata Dasgupta
- ICAR-Central Institute of Fisheries Education (CIFE), Mumbai 400061, India
| | - Garima Anand
- ICAR-Central Institute of Fisheries Education (CIFE), Mumbai 400061, India
| | - V J Rejish Kumar
- Kerala University of Fisheries and Ocean Studies, Kochi, Kerala 682 506, India
| | | | - Asim Kumar Pal
- ICAR-Central Institute of Fisheries Education (CIFE), Mumbai 400061, India
| | - Mishal Puthiyottil
- ICAR-Central Inland Fisheries Research Institute, Kolkata 700 120, India.
| |
Collapse
|
12
|
Woo KV, Shen IY, Weinheimer CJ, Kovacs A, Nigro J, Lin CY, Chakinala M, Byers DE, Ornitz DM. Endothelial FGF signaling is protective in hypoxia-induced pulmonary hypertension. J Clin Invest 2021; 131:141467. [PMID: 34623323 DOI: 10.1172/jci141467] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 06/25/2021] [Indexed: 01/08/2023] Open
Abstract
Hypoxia-induced pulmonary hypertension (PH) is one of the most common and deadliest forms of PH. Fibroblast growth factor receptors 1 and 2 (FGFR1/2) are elevated in patients with PH and in mice exposed to chronic hypoxia. Endothelial FGFR1/2 signaling is important for the adaptive response to several injury types and we hypothesized that endothelial FGFR1/2 signaling would protect against hypoxia-induced PH. Mice lacking endothelial FGFR1/2, mice with activated endothelial FGFR signaling, and human pulmonary artery endothelial cells (HPAECs) were challenged with hypoxia. We assessed the effect of FGFR activation and inhibition on right ventricular pressure, vascular remodeling, and endothelial-mesenchymal transition (EndMT), a known pathologic change seen in patients with PH. Hypoxia-exposed mice lacking endothelial FGFRs developed increased PH, while mice overexpressing a constitutively active FGFR in endothelial cells did not develop PH. Mechanistically, lack of endothelial FGFRs or inhibition of FGFRs in HPAECs led to increased TGF-β signaling and increased EndMT in response to hypoxia. These phenotypes were reversed in mice with activated endothelial FGFR signaling, suggesting that FGFR signaling inhibits TGF-β pathway-mediated EndMT during chronic hypoxia. Consistent with these observations, lung tissue from patients with PH showed activation of FGFR and TGF-β signaling. Collectively, these data suggest that activation of endothelial FGFR signaling could be therapeutic for hypoxia-induced PH.
Collapse
Affiliation(s)
- Kel Vin Woo
- Division of Cardiology, Department of Pediatrics.,Department of Developmental Biology
| | | | | | | | | | | | - Murali Chakinala
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Derek E Byers
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | | |
Collapse
|
13
|
Gu Y, Liu W, Liu G, Li X, Lu P. Assessing the protective effects of cryptotanshinone on CoCl 2‑induced hypoxia in RPE cells. Mol Med Rep 2021; 24:739. [PMID: 34435647 PMCID: PMC8404095 DOI: 10.3892/mmr.2021.12379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 06/24/2021] [Indexed: 12/27/2022] Open
Abstract
The development of several retinal diseases is closely related to hypoxia. As a component of the Traditional Chinese medicine Salvia miltiorrhiza, the effects of cryptotanshinone (CT) on retinal cells under hypoxic conditions are not well understood. The aim of the present study was to explore how CT exerted its protective effects on retinal pigment epithelium (RPE) cells under hypoxic conditions induced by cobalt chloride (CoCl2). The effects of CT were investigated using a Cell Counting Kit-8 assay, Annexin V-FITC/PI staining, reverse transcription-quantitative PCR and western blotting in ARPE-19 cells. CT (10 and 20 µM) reduced the CoCl2-induced increase in vascular endothelial growth factor expression and hypoxia-inducible transcription factor-1α expression in ARPE-19 cells. Additionally, CT alleviated hypoxia-induced apoptosis by regulating Bcl-2 and Bax protein expression. CT treatment also reduced the increase in the mRNA levels of IL-6, IL-1β and TNF-α induced by CoCl2. In summary, CT may protect RPE cells against apoptosis and inflammation in CoCl2-induced hypoxia, and these results warrant further in vivo study into its value as a drug for treating hypoxic eye diseases.
Collapse
Affiliation(s)
- Yu Gu
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Weiming Liu
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Gaoqin Liu
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Xin Li
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Peirong Lu
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
14
|
Human Granulosa Cells-Stemness Properties, Molecular Cross-Talk and Follicular Angiogenesis. Cells 2021; 10:cells10061396. [PMID: 34198768 PMCID: PMC8229878 DOI: 10.3390/cells10061396] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/29/2021] [Accepted: 06/02/2021] [Indexed: 12/31/2022] Open
Abstract
The ovarian follicle is the basic functional unit of the ovary, comprising theca cells and granulosa cells (GCs). Two different types of GCs, mural GCs and cumulus cells (CCs), serve different functions during folliculogenesis. Mural GCs produce oestrogen during the follicular phase and progesterone after ovulation, while CCs surround the oocyte tightly and form the cumulus oophurus and corona radiata inner cell layer. CCs are also engaged in bi-directional metabolite exchange with the oocyte, as they form gap-junctions, which are crucial for both the oocyte’s proper maturation and GC proliferation. However, the function of both GCs and CCs is dependent on proper follicular angiogenesis. Aside from participating in complex molecular interplay with the oocyte, the ovarian follicular cells exhibit stem-like properties, characteristic of mesenchymal stem cells (MSCs). Both GCs and CCs remain under the influence of various miRNAs, and some of them may contribute to polycystic ovary syndrome (PCOS) or premature ovarian insufficiency (POI) occurrence. Considering increasing female fertility problems worldwide, it is of interest to develop new strategies enhancing assisted reproductive techniques. Therefore, it is important to carefully consider GCs as ovarian stem cells in terms of the cellular features and molecular pathways involved in their development and interactions as well as outline their possible application in translational medicine.
Collapse
|
15
|
Pilmane M, Jain N, Vitenberga-Verza Z. Expression Analysis of FGF/FGFR and FOX Family Proteins in Mucosal Tissue Obtained from Orofacial Cleft-Affected Children. BIOLOGY 2021; 10:423. [PMID: 34068496 PMCID: PMC8151933 DOI: 10.3390/biology10050423] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 01/02/2023]
Abstract
Orofacial clefts affect hundreds of thousands of children worldwide annually and are usually corrected by a series of surgeries extending to childhood. The underlying mechanisms that lead to clefts are still unknown, mainly because of the multifactorial etiology and the myriad of interactions between genes and environmental factors. In the present study, we investigated the role and expression of candidate genes belonging to the FGF/FGFR signaling pathway and FOX family in tissue material obtained from 12 pediatric patients undergoing cleft correction surgery. The expression was investigated using immunohistochemistry (IHC) and chromogenic in-situ hybridization (CISH) in three cell/tissue types-epithelial cells, connective tissue, and endothelial cells. We found elevated expression of FGFR1 in epithelial cells while no expression was observed in endothelial cells. Further, our results elucidate the potential pathogenetic role of FGFR1 in cellular proliferation, local site inflammation, and fibrosis in cleft patients. Along with bFGF (also called FGF2), FGFR1 could play a pro-inflammatory role in clefts. Over-amplification of FGFR2 in some patients, along with bFGF, could potentially suggest roles for these genes in angiogenesis. Additionally, increased expression of FOXE1 (also called TTF2) contributes to local site inflammation. Finally, zero to low amplification of FOXO1 could suggest its potential role in inducing oxidative stress in the endothelium along with reduced epithelial apoptosis.
Collapse
Affiliation(s)
| | - Nityanand Jain
- Department of Morphology, Institute of Anatomy and Anthropology, Riga Stradinš University, LV-1007 Riga, Latvia; (M.P.); (Z.V.-V.)
| | | |
Collapse
|
16
|
A specific RIP3 + subpopulation of microglia promotes retinopathy through a hypoxia-triggered necroptotic mechanism. Proc Natl Acad Sci U S A 2021; 118:2023290118. [PMID: 33836603 PMCID: PMC7980367 DOI: 10.1073/pnas.2023290118] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Retinopathy is the leading cause of blindness, and development of effective therapy is urgently needed. Here, we defined an unprecedented subgroup of microglia that is responsible for causing retinopathy under hypoxia. Mechanistic studies demonstrated the signaling pathway of hypoxia-induced necroptosis of retinal microglia, i.e., the hypoxia–RIP1–RIP3–MLKL signaling axis, triggered an explosive release of FGF2, which in its turn to induce retinal neovascularization. Simultaneous targeting of necroptosis–FGF2 pathway and VEGF produces synergistic effects for treating retinopathy. On the basis of our findings, we propose a concept of necroptotic microglia-induced retinal angiogenesis and highlight a combination therapy for effective treatment of retinopathy. Retinal neovascularization is a leading cause of severe visual loss in humans, and molecular mechanisms of microglial activation-driven angiogenesis remain unknown. Using single-cell RNA sequencing, we identified a subpopulation of microglia named sMG2, which highly expressed necroptosis-related genes Rip3 and Mlkl. Genetic and pharmacological loss of function demonstrated that hypoxia-induced microglial activation committed to necroptosis through the RIP1/RIP3-mediated pathway. Specific deletion of Rip3 gene in microglia markedly decreased retinal neovascularization. Furthermore, hypoxia induced explosive release of abundant FGF2 in microglia through RIP3-mediated necroptosis. Importantly, blocking signaling components of the microglia necropotosis–FGF2 axis largely ablated retinal angiogenesis and combination therapy with simultaneously blocking VEGF produced synergistic antiangiogenic effects. Together, our data demonstrate that targeting the microglia necroptosis axis is an antiangiogenesis therapy for retinal neovascular diseases.
Collapse
|
17
|
Chen M, Xiao H, Chen B, Bian Z, Kwan HY. The advantages of using Scutellaria baicalensis and its flavonoids for the management of non-viral hepatocellular carcinoma. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
18
|
Hu J, Zhao Y, Wu Y, Yang K, Hu K, Sun A, Ge J. Shexiang Baoxin Pill Attenuates Ischemic Injury by Promoting Angiogenesis by Activation of Aldehyde Dehydrogenase 2. J Cardiovasc Pharmacol 2021; 77:408-417. [PMID: 33662981 DOI: 10.1097/fjc.0000000000000967] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 11/12/2020] [Indexed: 11/25/2022]
Abstract
ABSTRACT Promoting angiogenesis is a critical treatment strategy for ischemic cardiovascular diseases. Shexiang Baoxin Pill (SBP), a traditional Chinese medicine, has been reported to be capable of relieving angina and improve heart function by promoting angiogenesis. The aim of this study was to determine the role of mitochondrial aldehyde dehydrogenase 2 (ALDH2) in SBP-induced angiogenesis. Left femoral artery ligation was performed in wild-type mice (WT) and ALDH2 knockout mice, which were administrated with SBP (20 mg/kg/d) or equal volume saline per day by gastric gavage for 2 weeks. Perfusion recovery, angiogenesis in chronic hind limb ischemia, was significantly improved in the WT + SBP group than in the WT group. However, these beneficial effects were absent in ALDH2 knockout mice. In vitro, hypoxia impaired the ability of proliferation, migration and tube formation, sprouting angiogenesis, and promoted apoptosis in cardiovascular microvascular endothelial cells, whereas the hypoxia damage was restored by SBP. The protective effect of SBP was remarkably weakened by ALDH2 knockdown. Furthermore, SBP suppressed hypoxia-induced ALDH2/protein kinase B (AKT)/mammalian target of rapamycin pathways. In conclusion, this study demonstrated that SBP protected lower limb from ischemia injury through the ALDH2-dependent pathway. The protective mechanism of SBP in cardiovascular microvascular endothelial cells was partly mediated through ALDH2/AKT/mammalian target of rapamycin pathways.
Collapse
Affiliation(s)
- Jingjing Hu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yongchao Zhao
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yonghui Wu
- Department of Cardiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, Zhejiang, China ; and
| | - Kun Yang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Kai Hu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Aijun Sun
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
- Institute of Biomedical Science, Fudan University, Shanghai, China
| | - Junbo Ge
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
- Institute of Biomedical Science, Fudan University, Shanghai, China
| |
Collapse
|
19
|
Sun J, Shi L, Xiao T, Xue J, Li J, Wang P, Wu L, Dai X, Ni X, Liu Q. microRNA-21, via the HIF-1α/VEGF signaling pathway, is involved in arsenite-induced hepatic fibrosis through aberrant cross-talk of hepatocytes and hepatic stellate cells. CHEMOSPHERE 2021; 266:129177. [PMID: 33310519 DOI: 10.1016/j.chemosphere.2020.129177] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/17/2020] [Accepted: 11/29/2020] [Indexed: 06/12/2023]
Abstract
Long-term exposure to arsenic, a widely distributed environmental toxicant, may result in damage to various organs, including the liver. Mice exposed chronically to arsenite developed hepatic damage, inflammation, and fibrosis, as well as increased levels of microRNA-21 (miR-21) and hypoxia-inducible factor (HIF)-1α. The levels of miR-21 and HIF-1α were also enhanced in primary hepatocytes and L-02 cells exposed to arsenite. The culture media from these cells induced the activation of hepatic stellate cells (HSCs), as demonstrated by up-regulation of the protein levels of α-smooth muscle actin (α-SMA) and collagen1A2 (COL1A2) and by increased activity in gel contractility assays. For L-02 cells, knockdown of miR-21 blocked the arsenite-induced up-regulation of HIF-1α and vascular endothelial growth factor (VEGF), which prevented the activation of LX-2 cells induced by medium from arsenite-exposed L-02 cells. However, these effects were reversed by down-regulation of von Hippel Lindau protein (pVHL). In arsenite-treated L-02 cells, miR-21 knockdown elevated the levels of ubiquitination and accelerated the degradation of HIF-1α via pVHL. In the livers of miR-21-/- mice exposed chronically to arsenite, there were less hepatic damage, lower fibrosis, lower levels of HIF-1α and VEGF, and higher levels of pVHL than for wild-type mice. In summary, we propose that miR-21, acting via the HIF-1α/VEGF signaling pathway, is involved in arsenite-induced hepatic fibrosis through mediating aberrant cross-talk of hepatocytes and HSCs. The findings provide evidence relating to the pathogenesis of hepatic fibrosis induced by exposure to arsenic.
Collapse
Affiliation(s)
- Jing Sun
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Le Shi
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210046, Jiangsu, People's Republic of China
| | - Tian Xiao
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Junchao Xue
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Junjie Li
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Peiwen Wang
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Lu Wu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Xiangyu Dai
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Xinye Ni
- Second People's Hospital of Changzhou, Nanjing Medical University, Changzhou, 213003, Jiangsu, People's Republic of China.
| | - Qizhan Liu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China.
| |
Collapse
|
20
|
Li Y, Liu S, Pan D, Xu B, Xing X, Zhou H, Zhang B, Zhou S, Ning G, Feng S. The potential role and trend of HIF‑1α in intervertebral disc degeneration: Friend or foe? (Review). Mol Med Rep 2021; 23:239. [PMID: 33537810 PMCID: PMC7893690 DOI: 10.3892/mmr.2021.11878] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 11/08/2019] [Indexed: 12/11/2022] Open
Abstract
Lower back pain (LBP) is one of the most common reasons for seeking medical advice in orthopedic clinics. Increasingly, research has shown that symptomatic intervertebral disc degeneration (IDD) is mostly related to LBP. This review first outlines the research and findings of studies into IDD, from the physiological structure of the intervertebral disc (IVD) to various pathological cascades. The vicious cycles of IDD are re-described in relation to the analysis of the relationship among the pathological mechanisms involved in IDD. Interestingly, a ‘chief molecule’ was found, hypoxia-inducible factor-1α (HIF-1α), that may regulate all other mechanisms involved in IDD. When the vicious cycle is established, the low oxygen tension activates the expression of HIF-1α, which subsequently enters into the hypoxia-induced HIF pathways. The HIF pathways are dichotomized as friend and foe pathways according to the oxygen tension of the IVD microenvironment. Combined with clinical outcomes and previous research, the trend of IDD development has been predicted in this paper. Lastly, an early precautionary diagnosis and treatment method is proposed whereby nucleus pulposus tissue for biopsy can be obtained through IVD puncture guided by B-ultrasound when the patient is showing symptoms but MRI imaging shows negative results. The assessment criteria for biopsy and the feasibility, superiority and challenges of this approach have been discussed. Overall, it is clear that HIF-1α is an indispensable reference indicator for the accurate diagnosis and treatment of IDD.
Collapse
Affiliation(s)
- Yongjin Li
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Shen Liu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Dayu Pan
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Baoshan Xu
- Department of Spine Surgery, Tianjin Hospital, Tianjin 300000, P.R. China
| | - Xuewu Xing
- Department of Orthopedic Surgery, First Central Clinical of Tianjin Medical University, Tianjin 300052, P.R. China
| | - Hengxing Zhou
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Bin Zhang
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Suzhe Zhou
- Department of Orthopedics, The Affiliated Zhongshan Hospital of Fudan University, Shanghai 200034, P.R. China
| | - Guangzhi Ning
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Shiqing Feng
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
21
|
Jones VM, Suarez-Martinez AD, Hodges NA, Murfee WL, Llull R, Katz AJ. A clinical perspective on adipose-derived cell therapy for enhancing microvascular health and function: Implications and applications for reconstructive surgery. Microcirculation 2020; 28:e12672. [PMID: 33174272 DOI: 10.1111/micc.12672] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/18/2020] [Accepted: 11/04/2020] [Indexed: 12/21/2022]
Abstract
Restoration of form and function requires apposition of tissues in the form of flaps to reconstitute local perfusion. Successful reconstruction relies on flap survival and its integration with the recipient bed. The flap's precariously perfused hypoxic areas undergo adaptive microvascular changes both internally and in connection with the recipient bed. A cell-mediated, coordinated response to hypoxia drives these adaptive processes, restoring a tissue's normoxic homeostasis via de novo vasculogenesis, sprouting angiogenesis, and stabilizing arterialization. As cells exert prolonged and coordinated effects on site, their use as biological agents merit translational consideration of sourcing angio-competent cells and delivering them to territories enduring microcirculatory acclimatization. Angio-competent cells abound in adipose tissue: a reliable, accessible, and expendable source of adipose-derived cells (ADC). When subject to enzymatic digestion and centrifugation, adipose tissue separates its various ADC: A subset of buoyant oil-dense adipocytes (the tissue's parenchymal component) accumulates on a supra-natant layer, whereas the mesenchymal component remains in the infra-natant sediment, containing the tissue's stromal vascular fraction (SVF), where angio-component cells abound. The SVF can be further manipulated, selected, or culture expanded into more specific stromal subsets (herein defined as adipose stromal cells, ASC). While promising clinical applications for ADC await clinical proof and regulatory authorization, basic science investigation is needed to elucidate the specific ADC mechanisms that influence microvascular growth, remodeling, and function following flap surgery. The objective of this article is to share the clinical perspectives of reconstructive plastic surgeons regarding the use of ADC-based therapies to help with flap tissue integration, revascularization, and wound healing. Specifically, the focus will be on considering the potential for ADC as therapeutic agents and how their clinical application motivates basic science opportunities.
Collapse
Affiliation(s)
- V Morgan Jones
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Ariana D Suarez-Martinez
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Nicholas A Hodges
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Walter L Murfee
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Ramon Llull
- Department of Plastic Surgery, Hospital Quiron Salud PalmaPlanas, Palma, Spain
| | - Adam J Katz
- Department of Plastic and Reconstructive Surgery, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
22
|
An allosteric peptide inhibitor of HIF-1α regulates hypoxia-induced retinal neovascularization. Proc Natl Acad Sci U S A 2020; 117:28297-28306. [PMID: 33106407 DOI: 10.1073/pnas.2017234117] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Retinal neovascularization (NV), a leading cause of vision loss, results from localized hypoxia that stabilizes the hypoxia-inducible transcription factors HIF-1α and HIF-2α, enabling the expression of angiogenic factors and genes required to maintain homeostasis under conditions of oxygen stress. HIF transcriptional activity depends on the interaction between its intrinsically disordered C-terminal domain and the transcriptional coactivators CBP/p300. Much effort is currently directed at disrupting protein-protein interactions between disease-associated transcription factors like HIF and their cellular partners. The intrinsically disordered protein CITED2, a direct product of HIF-mediated transcription, functions as a hypersensitive negative regulator that attenuates the hypoxic response by competing allosterically with HIF-1α for binding to CBP/p300. Here, we show that a peptide fragment of CITED2 is taken up by retinal cells and efficiently regulates pathological angiogenesis in murine models of ischemic retinopathy. Both vaso-obliteration (VO) and NV were significantly inhibited in an oxygen-induced retinopathy (OIR) model following intravitreal injection of the CITED2 peptide. The CITED2 peptide localized to retinal neurons and glia, resulting in decreased expression of HIF target genes. Aflibercept, a commonly used anti-VEGF therapy for retinal neovascular diseases, rescued NV but not VO in OIR. However, a combination of the CITED2 peptide and a reduced dose of aflibercept significantly decreased both NV and VO. In contrast to anti-VEGF agents, the CITED2 peptide can rescue hypoxia-induced retinal NV by modulating the hypoxic response through direct competition with HIF for CBP/p300, suggesting a dual targeting strategy for treatment of ischemic retinal diseases and other neovascular disorders.
Collapse
|
23
|
Zakeri N, Mirdamadi ES, Kalhori D, Solati-Hashjin M. Signaling molecules orchestrating liver regenerative medicine. J Tissue Eng Regen Med 2020; 14:1715-1737. [PMID: 33043611 DOI: 10.1002/term.3135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/06/2020] [Accepted: 09/09/2020] [Indexed: 12/19/2022]
Abstract
The liver is in charge of more than 500 functions in the human body, which any damage and failure to the liver can significantly compromise human life. Numerous studies are being carried out in regenerative medicine, as a potential driving force, toward alleviating the need for liver donors and fabrication of a 3D-engineered transplantable hepatic tissue. Liver tissue engineering brings three main factors of cells, extracellular matrix (ECM), and signaling molecules together, while each of these three factors tries to mimic the physiological state of the tissue to direct tissue regeneration. Signaling molecules play a crucial role in directing tissue fabrication in liver tissue engineering. When mimicking the natural in vivo process of regeneration, it is tightly associated with three main phases of differentiation, proliferation (progression), and tissue maturation through vascularization while directing each of these phases is highly regulated by the specific signaling molecules. The understanding of how these signaling molecules guide the dynamic behavior of regeneration would be a tool for further tailoring of bioengineered systems to help the liver regeneration with many cellular, molecular, and tissue-level functions. Hence, the signaling molecules come to aid all these phases for further improvements toward the clinical use of liver tissue engineering as the goal.
Collapse
Affiliation(s)
- Nima Zakeri
- BioFabrication Lab (BFL), Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Elnaz Sadat Mirdamadi
- BioFabrication Lab (BFL), Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Dianoosh Kalhori
- BioFabrication Lab (BFL), Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Mehran Solati-Hashjin
- BioFabrication Lab (BFL), Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| |
Collapse
|
24
|
Vadlakonda L, Indracanti M, Kalangi SK, Gayatri BM, Naidu NG, Reddy ABM. The Role of Pi, Glutamine and the Essential Amino Acids in Modulating the Metabolism in Diabetes and Cancer. J Diabetes Metab Disord 2020; 19:1731-1775. [PMID: 33520860 DOI: 10.1007/s40200-020-00566-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 06/04/2020] [Indexed: 02/07/2023]
Abstract
Purpose Re-examine the current metabolic models. Methods Review of literature and gene networks. Results Insulin activates Pi uptake, glutamine metabolism to stabilise lipid membranes. Tissue turnover maintains the metabolic health. Current model of intermediary metabolism (IM) suggests glucose is the source of energy, and anaplerotic entry of fatty acids and amino acids into mitochondria increases the oxidative capacity of the TCA cycle to produce the energy (ATP). The reduced cofactors, NADH and FADH2, have different roles in regulating the oxidation of nutrients, membrane potentials and biosynthesis. Trans-hydrogenation of NADH to NADPH activates the biosynthesis. FADH2 sustains the membrane potential during the cell transformations. Glycolytic enzymes assume the non-canonical moonlighting functions, enter the nucleus to remodel the genetic programmes to affect the tissue turnover for efficient use of nutrients. Glycosylation of the CD98 (4F2HC) stabilises the nutrient transporters and regulates the entry of cysteine, glutamine and BCAA into the cells. A reciprocal relationship between the leucine and glutamine entry into cells regulates the cholesterol and fatty acid synthesis and homeostasis in cells. Insulin promotes the Pi transport from the blood to tissues, activates the mitochondrial respiratory activity, and glutamine metabolism, which activates the synthesis of cholesterol and the de novo fatty acids for reorganising and stabilising the lipid membranes for nutrient transport and signal transduction in response to fluctuations in the microenvironmental cues. Fatty acids provide the lipid metabolites, activate the second messengers and protein kinases. Insulin resistance suppresses the lipid raft formation and the mitotic slippage activates the fibrosis and slow death pathways.
Collapse
Affiliation(s)
| | - Meera Indracanti
- Institute of Biotechnology, University of Gondar, Gondar, Ethiopia
| | - Suresh K Kalangi
- Amity Stem Cell Institute, Amity University Haryana, Amity Education Valley Pachgaon, Manesar, Gurugram, HR 122413 India
| | - B Meher Gayatri
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046 India
| | - Navya G Naidu
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046 India
| | - Aramati B M Reddy
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046 India
| |
Collapse
|
25
|
Patel A, Mohammad Abedi S, Lekkala M, Baumgart M. Genomic-based treatment of patients with head and neck cancer. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2020. [DOI: 10.1080/23808993.2020.1799710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Arpan Patel
- James P Wilmot Cancer Institute, Division of Hematology/Oncology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Seyed Mohammad Abedi
- James P Wilmot Cancer Institute, Division of Hematology/Oncology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Manidhar Lekkala
- James P Wilmot Cancer Institute, Division of Hematology/Oncology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Megan Baumgart
- James P Wilmot Cancer Institute, Division of Hematology/Oncology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
26
|
Csósza G, Karlócai K, Losonczy G, Müller V, Lázár Z. Growth factors in pulmonary arterial hypertension: Focus on preserving right ventricular function. Physiol Int 2020; 107:177-194. [PMID: 32692713 DOI: 10.1556/2060.2020.00021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 02/17/2020] [Indexed: 12/24/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a rare and progressive disease, characterized by increased vascular resistance leading to right ventricle (RV) failure. The extent of right ventricular dysfunction crucially influences disease prognosis; however, currently no therapies have specific cardioprotective effects. Besides discussing the pathophysiology of right ventricular adaptation in PAH, this review focuses on the roles of growth factors (GFs) in disease pathomechanism. We also summarize the involvement of GFs in the preservation of cardiomyocyte function, to evaluate their potential as cardioprotective biomarkers and novel therapeutic targets in PAH.
Collapse
Affiliation(s)
- G Csósza
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - K Karlócai
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - G Losonczy
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - V Müller
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Z Lázár
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
27
|
Effects of EHP-101 on inflammation and remyelination in murine models of Multiple sclerosis. Neurobiol Dis 2020; 143:104994. [PMID: 32599064 DOI: 10.1016/j.nbd.2020.104994] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/05/2020] [Accepted: 06/20/2020] [Indexed: 01/26/2023] Open
Abstract
Multiple Sclerosis (MS) is characterized by a combination of inflammatory and neurodegenerative processes in the spinal cord and the brain. Natural and synthetic cannabinoids such as VCE-004.8 have been studied in preclinical models of MS and represent promising candidates for drug development. VCE-004.8 is a multitarget synthetic cannabidiol (CBD) derivative acting as a dual Peroxisome proliferator-activated receptor-gamma/Cannabinoid receptor type 2 (PPARγ/CB2) ligand agonist that also activates the Hypoxia-inducible factor (HIF) pathway. EHP-101 is an oral lipidic formulation of VCE-004.8 that has shown efficacy in several preclinical models of autoimmune, inflammatory, fibrotic, and neurodegenerative diseases. EHP-101 alleviated clinical symptomatology in EAE and transcriptomic analysis demonstrated that EHP-101 prevented the expression of many inflammatory genes closely associated with MS pathophysiology in the spinal cord. EHP-101 normalized the expression of several genes associated with oligodendrocyte function such as Teneurin 4 (Tenm4) and Gap junction gamma-3 (Gjc3) that were downregulated in EAE. EHP-101 treatment prevented microglia activation and demyelination in both the spinal cord and the brain. Moreover, EAE was associated with a loss in the expression of Oligodendrocyte transcription factor 2 (Olig2) in the corpus callosum, a marker for oligodendrocyte differentiation, which was restored by EHP-101 treatment. In addition, EHP-101 enhanced the expression of glutathione S-transferase pi (GSTpi), a marker for mature oligodendrocytes in the brain. We also found that a diet containing 0.2% cuprizone for six weeks induced a clear loss of myelin in the brain measured by Cryomyelin staining and Myelin basic protein (MBP) expression. Moreover, EHP-101 also prevented cuprizone-induced microglial activation, astrogliosis and reduced axonal damage. Our results provide evidence that EHP-101 showed potent anti-inflammatory activity, prevented demyelination, and enhanced remyelination. Therefore, EHP-101 represents a promising drug candidate for the potential treatment of different forms of MS.
Collapse
|
28
|
Blersch J, Francisco V, Rebelo C, Jiménez-Balsa A, Antunes H, Pinto S, Simões S, Rai A, Ferreira L. A light-triggerable formulation to control the stability of pro-angiogenic transcription factor hypoxia inducible factor-1α (HIF-1α). NANOSCALE 2020; 12:9935-9942. [PMID: 32352454 DOI: 10.1039/c9nr10503d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The control of vascular remodeling mediated by transcription factor HIF-1α is critical in the treatment of several diseases including cancer, retinopathies, chronic wounds, and ischemic heart disease, among others. Gene silencing using a small interfering RNA (siRNA) is a promising therapeutic strategy to regulate HIF-1α; however, the delivery systems developed so far have limited endothelial targeting and efficiency. Herein, we have synthesized a light-triggerable polymeric nanoparticle (NP) library composed of 110 formulations which showed variable morphology, charge and disassembly rates after UV exposure. More than 35% of the formulations of the library were more efficient in gene knockdown than the siRNA delivered by a commercial transfection agent (lipofectamine RNAiMAX). The most efficient siRNA delivery formulations were tested against different cell types to identify one with preferential targeting to endothelial cells. Using a two-step methodology, we have identified a formulation that shows exquisite targeting to endothelial cells and is able to deliver more efficiently the siRNA that modulates HIF-1α than commercial transfection agents. Overall, the strategy reported here increases the specificity for tissue regulation and the efficiency for the intracellular delivery of siRNAs.
Collapse
Affiliation(s)
- Josephine Blersch
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Autenshlyus A, Arkhipov S, Mikhailova E, Marinkin I, Arkhipova V, Varaksin N. The Relationship Between Cytokine Production, CSF2RA, and IL1R2 Expression in Mammary Adenocarcinoma, Tumor Histopathological Parameters, and Lymph Node Metastasis. Technol Cancer Res Treat 2020; 18:1533033819883626. [PMID: 31635541 PMCID: PMC6806119 DOI: 10.1177/1533033819883626] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Objective: The aim of this study was to evaluate the relationship between cytokine production,
GM-CSF receptor (CSF2RA), and IL-1 receptor (IL1R2) expression in mammary adenocarcinoma
and their association with it histopathological parameters and lymph node
metastasis. Methods: We analyzed tumor biopsy samples (cultured in vitro) from 50 women
(aged 43-75) with invasive ductal mammary adenocarcinomas. Enzyme-linked immunosorbent
assay method the concentrations of interleukin 2, interleukin 6, interleukin 8,
interleukin 10, interleukin 17, interleukin 18, interleukin 1β, interleukin 1Ra, tumor
necrosis factor α, interferon γ, granulocyte colony-stimulating factor, granulocyte
macrophage colony-stimulating factor, and vascular endothelial growth factor A were
determined in culture supernatants. The expression of CSF2RA and IL1R2 in tumor biopsy
was evaluated by immunohistochemical method. Results: We showed that the “cytokine profile” of a tumor (the ability of tumor cells and its
microenvironment to produce different cytokines) is very individual. It has been shown
that the features of the cytokine profile of the mammary adenocarcinoma are important
for the formation and realization of the metastatic potential of the mammary
adenocarcinoma. We found correlations between some histopathological parameters of
mammary adenocarcinoma and coefficients KGM-CSF/CSF2RA and
KIL-1β/IL1R2, which are the ratios of concentrations of granulocyte
macrophage colony-stimulating factor and interleukin -1β to expression of CSF2RA and
IL1R2, respectively. KGM-CSF/CSF2RA positively correlated with highly
differentiated cells, and KIL-1β/IL1R2 positively correlated with the number
of mitoses, poorly differentiated cells, and a number of lymph nodes with metastases.
KGM-CSF/CSF2RA positively correlated with the concentrations of interleukin
6, interleukin 8, interleukin 1Ra, and granulocyte colony-stimulating factor.
KIL-1β/IL1R2 positively correlated with concentrations of interleukin 1β
and interferon γ and negative correlated with the concentrations of vascular endothelial
growth factor A and tumor necrosis factor α. It is shown that KIL-1β/IL1R2
can be considered as a prognostic indicator predicting the probability of mammary
adenocarcinoma metastasis to regional lymph nodes. Conclusions: The ratios of granulocyte macrophage colony-stimulating factor and interleukin 1β
cytokines, produced in tumor, to the expression of CSF2RA and IL1R2 depend on levels of
interleukin 6, interleukin 8, tumor necrosis factor α, interferon γ, granulocyte
colony-stimulating factor, and vascular endothelial growth factor A and are important
factors affecting the progression and metastasis of the breast cancer.
Collapse
Affiliation(s)
- Alexander Autenshlyus
- Novosibirsk State Medical University, Russia.,Institute of Molecular Biology and Biophysics, Subdivision of Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - Sergey Arkhipov
- Novosibirsk State Medical University, Russia.,Institute of Molecular Biology and Biophysics, Subdivision of Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - Elena Mikhailova
- Novosibirsk State Medical University, Russia.,Institute of Molecular Biology and Biophysics, Subdivision of Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | | | | | | |
Collapse
|
30
|
Ghoneum A, Abdulfattah AY, Warren BO, Shu J, Said N. Redox Homeostasis and Metabolism in Cancer: A Complex Mechanism and Potential Targeted Therapeutics. Int J Mol Sci 2020; 21:E3100. [PMID: 32354000 PMCID: PMC7247161 DOI: 10.3390/ijms21093100] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/22/2020] [Accepted: 04/26/2020] [Indexed: 12/13/2022] Open
Abstract
Reactive Oxygen Species or "ROS" encompass several molecules derived from oxygen that can oxidize other molecules and subsequently transition rapidly between species. The key roles of ROS in biological processes are cell signaling, biosynthetic processes, and host defense. In cancer cells, increased ROS production and oxidative stress are instigated by carcinogens, oncogenic mutations, and importantly, metabolic reprograming of the rapidly proliferating cancer cells. Increased ROS production activates myriad downstream survival pathways that further cancer progression and metastasis. In this review, we highlight the relation between ROS, the metabolic programing of cancer, and stromal and immune cells with emphasis on and the transcription machinery involved in redox homeostasis, metabolic programing and malignant phenotype. We also shed light on the therapeutic targeting of metabolic pathways generating ROS as we investigate: Orlistat, Biguandes, AICAR, 2 Deoxyglucose, CPI-613, and Etomoxir.
Collapse
Affiliation(s)
- Alia Ghoneum
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
| | - Ammar Yasser Abdulfattah
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
| | - Bailey Olivia Warren
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
| | - Junjun Shu
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
- The Third Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Neveen Said
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
- Departments of Urology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
- Comprehensive Cancer Center, Winston Salem, NC 27157, USA
| |
Collapse
|
31
|
Cho H, Macklin BL, Lin YY, Zhou L, Lai MJ, Lee G, Gerecht S, Duh EJ. iPSC-derived endothelial cell response to hypoxia via SDF1a/CXCR4 axis facilitates incorporation to revascularize ischemic retina. JCI Insight 2020; 5:131828. [PMID: 32213707 DOI: 10.1172/jci.insight.131828] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 02/20/2020] [Indexed: 12/15/2022] Open
Abstract
Ischemic retinopathies are major causes of blindness worldwide. Local hypoxia created by loss of vascular supply leads to tissue injury and aberrant neovascularization in the retina. There is a great need for therapies that enhance revascularization of hypoxic neuroretinal tissue. To test the therapeutic feasibility of human-induced pluripotent stem cell-derived endothelial cells (hiPSC-ECs) for the treatment of ischemic retinopathies, we compared the angiogenic potential of hiPSC-ECs with mature human retinal endothelial cells (HRECs) in response to hypoxia. hiPSC-ECs formed more robust and complex vascular networks in collagen gels, whereas HRECs displayed minimal sprouting. The cells were further tested in the mouse oxygen-induced retinopathy (OIR) model. Retinas with hiPSC-EC injection showed colocalization with host vessels, whereas HRECs lacked such responses. hiPSC-ECs markedly reduced vaso-obliteration and pathological neovascularization. This beneficial effect of hiPSC-ECs was explained by the stromal cell-derived factor-1a (SDF1a)/CXCR4 axis; hiPSC-ECs exhibited much higher cell-surface expression of CXCR4 than HRECs and greater chemotaxis toward SDF1a-embedded 3D collagen hydrogel. Furthermore, treatment with neutralizing antibody to CXCR4 abolished recruitment of hiPSCs in the OIR model. These findings suggest superior angiogenic potential of hiPSC-ECs under hypoxia and underscore the importance of SDF1a/CXCR4 in the reparative function of hiPSC-ECs in ischemic diseases.
Collapse
Affiliation(s)
- Hongkwan Cho
- Department of Ophthalmology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Bria L Macklin
- Department of Chemical and Biomolecular Engineering, Institute for NanoBioTechnology, Johns Hopkins University Baltimore, Maryland, USA
| | - Ying-Yu Lin
- Department of Chemical and Biomolecular Engineering, Institute for NanoBioTechnology, Johns Hopkins University Baltimore, Maryland, USA
| | - Lingli Zhou
- Department of Ophthalmology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Michael J Lai
- Department of Ophthalmology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Grace Lee
- Department of Ophthalmology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sharon Gerecht
- Department of Chemical and Biomolecular Engineering, Institute for NanoBioTechnology, Johns Hopkins University Baltimore, Maryland, USA
| | - Elia J Duh
- Department of Ophthalmology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
32
|
Li JY, Wang TT, Li C, Wang ZF, Li S, Ma L, Zheng LL. Semaphorin 3A-hypoxia inducible factor 1 subunit alpha co-overexpression enhances the osteogenic differentiation of induced pluripotent stem cells-derived mesenchymal stem cells in vitro. Chin Med J (Engl) 2020; 133:301-309. [PMID: 31929360 PMCID: PMC7004611 DOI: 10.1097/cm9.0000000000000612] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Background: Mesenchymal stem or stromal cells (MSCs) derived from the induced pluripotent stem cells (iPSCs) have uniform biological activity, which makes the clinical application of MSCs in bone repair possible. Culturing the iPSC-MSCs onto osteoconductive materials is a promising tissue engineering-based strategy in bone regeneration. The aim of this work was to evaluate the effects of semaphorin 3A (Sema3A) and hypoxia inducible factor 1 subunit alpha (HIF1α) co-overexpression on the survival and osteogenic differentiation of iPSC-MSCs. Methods: Sema3A and HIF1α were linked together with the three (GGGGS; G, glycine; S, serine) peptide fragment, and their co-expression in iPSC-MSCs was mediated by a lentiviral vector. The fusion protein retained the immune reactivity for both Sema3A and HIF1α as determined with Western blotting. iPSC-MSCs were infected with overexpression lentivirus (oeLenti) as negative control, oeLenti-Sema3A, oeLenti-HIF1α or oeLenti-Sema3A-HIF1α lentiviruses. Results: Sema3A overexpression alone promoted the osteogenic differentiation of iPSC-MSCs (the activity and/or expression of osteoblast markers, such as alkaline phosphatase, osteopontin, and osteocalcin, were upregulated), and suppressed cell survival. The Sema3A-HIF1α fusion protein showed a comparable osteoconductive effect to that of Sema3A without reducing cell survival. We further seeded iPSC-MSCs modified by SemaA-HIF1α overexpression onto hydroxyapatite (HA) scaffolds, and evaluated their growth and differentiation on this three-dimensional material. Additional data indicated that, as compared to iPSC-MSCs cultured in ordinary two-dimensional dishes, cells cultured in HA scaffolds grew (blank vs. HA scaffolds: 0.83 vs. 1.39 for survival) and differentiated better (blank vs. HA scaffolds: 11.29 vs. 16.62 for alkaline phosphatase activity). Conclusion: Modifying iPSC-MSCs with pro-osteogenic (Sema3A) and pro-survival (HIF1α) factors may represent a promising strategy to optimize tissue engineering-based strategy in bone repair.
Collapse
Affiliation(s)
- Jing-Yi Li
- Department of Plastic Surgery, Capital Medical University Affiliated Beijing Tiantan Hospital, Beijing 100050, China
| | - Ting-Ting Wang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Chong Li
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Zhi-Fang Wang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Shan Li
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Li Ma
- Department of Plastic Surgery, China-Japan Friendship Hospital, Beijing 100029, China
| | - Li-Li Zheng
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| |
Collapse
|
33
|
[Pros and cons of classic crossectomy with stripping compared to endoluminal treatment : Competition or team play?]. Hautarzt 2020; 71:6-11. [PMID: 31807791 DOI: 10.1007/s00105-019-04515-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The chronic venous insufficiency (CVI) of the leg veins is one of the most common diseases in our society. Thus, it is important to know the clinical picture of CVI and the pros and cons of the different treatment options. Of the various treatments available for varicose veins (conservative therapy, operative procedures, endoluminal techniques, foam sclerotherapy), an evidence-based, treatment option should be individually chosen for each patient. In this article, the pros and cons of surgery are compared with endoluminal therapy in order to draw practical conclusions for the treatment decision.
Collapse
|
34
|
Dong X, Lu X, Kingston K, Brewer E, Juliar BA, Kripfgans OD, Fowlkes JB, Franceschi RT, Putnam AJ, Liu Z, Fabiilli ML. Controlled delivery of basic fibroblast growth factor (bFGF) using acoustic droplet vaporization stimulates endothelial network formation. Acta Biomater 2019; 97:409-419. [PMID: 31404713 DOI: 10.1016/j.actbio.2019.08.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/22/2019] [Accepted: 08/08/2019] [Indexed: 12/28/2022]
Abstract
The challenge of translating pro-angiogenic growth factors for therapeutic purposes has stimulated a myriad of biomaterials-based, delivery approaches. Many techniques rely on incorporating a growth factor into a hydrogel. The kinetics of release can be tuned based on the physiochemical properties of the growth factor and scaffold. We have developed an acoustically-responsive scaffold (ARS), whereby release of a growth factor is non-invasively and spatiotemporally controlled in an on-demand manner using focused ultrasound. An ARS consists of a fibrin matrix doped with a growth factor-loaded, sonosensitive emulsion. In this study, we used an ARS to investigate the impact of basic fibroblast growth factor (bFGF) release on endothelial tubule formation. The co-culture model of angiogenic sprouting consisted of endothelial cell-coated microbeads and dispersed fibroblasts. bFGF release correlated with the acoustic pressure applied while sprout length correlated with both the volume of bFGF-loaded emulsion in the ARS and acoustic pressure. Minimal bFGF release and sprouting were observed in the absence of ultrasound exposure. Staggering the release of bFGF via multiple ultrasound exposures did not affect sprouting. Additionally, sprouting did not display a dependence on the distance between each microbead and the ARS. Overall, these results highlight the potential of using ultrasound to control regenerative processes via the controlled delivery of a growth factor. STATEMENT OF SIGNIFICANCE: Due to the ineffectiveness of conventional routes of administration, implantable hydrogels are often used as matrices to deliver growth factors (GFs). Spatial control of release is typically realized using anisotropic constructs while temporal control is obtained by modifying matrix properties and GF-scaffold interactions. In this study, we demonstrate how focused ultrasound can be used to non-invasively and spatiotemporally control release of basic fibroblast growth factor (bFGF), in an on-demand manner, from a composite hydrogel. The acoustically-responsive scaffold (ARS) consists of a bFGF-loaded, monodispersed double emulsion embedded within a fibrin matrix. We demonstrate how controlled release of bFGF can stimulate endothelial network formation. These results may be of interest to groups working on controlled release strategies for GFs, especially in the context of stimulating angiogenesis.
Collapse
|
35
|
Wu H, Ma S, Xiang M, Tong S. HTRA1 promotes transdifferentiation of normal fibroblasts to cancer-associated fibroblasts through activation of the NF-κB/bFGF signaling pathway in gastric cancer. Biochem Biophys Res Commun 2019; 514:933-939. [PMID: 31088682 DOI: 10.1016/j.bbrc.2019.05.076] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 05/10/2019] [Indexed: 12/30/2022]
Abstract
Cancer-associated fibroblasts comprise the major stromal cell populations in gastric cancer, which is a significant contributor to cancer-related death worldwide. As a member of the serine protease family, HTRA1 is reportedly involved in malignant transformation of various tumor types. In the present study, we observed that HTRA1 is positively correlated with α-SMA expression in gastric cancer tissues, which was also confirmed by correlation analysis and Gene Set Enrichment Analysis (GSEA) using the GEO database. Upregulation of HTRA1 in gastric cancer cell lines induces expression of α-SMA in normal fibroblasts. To explore how HTRA1 activates normal fibroblasts, an ELISA assay was performed. Secretion of bFGF/FGF2 from gastric cancer cells was significantly increased in response to HTRA1 overexpression. However, upreguation of α-SMA in normal fibroblasts induced by HTRA1 was restored by inhibiting the expression of bFGF. Furthermore, HTRA1 promotes bFGF/FGF2 expression through activation of NF-κB signaling in gastric cancer cells. Inhibition of the NF-κB signaling pathway partially restored baseline expression levels of α-SMA induced by HTRA1. In conclusion, HTRA1 promotes transdifferentiation of normal fibroblasts to cancer-associated fibroblasts by increasing bFGF/FGF2 expression, which is dependent upon activation of NF-κB signaling in gastric cancer.
Collapse
Affiliation(s)
- Hongxue Wu
- Department of Gastrointestinal Surgery, Wuhan University, Renmin Hospital, No. 99 Zhang Zhidong Road, Wuhan, 430060, Hubei Province, PR China
| | - Shujin Ma
- Department of Gastrointestinal Surgery, Wuhan University, Renmin Hospital, No. 99 Zhang Zhidong Road, Wuhan, 430060, Hubei Province, PR China
| | - Mingwei Xiang
- Department of Gastrointestinal Surgery, Wuhan University, Renmin Hospital, No. 99 Zhang Zhidong Road, Wuhan, 430060, Hubei Province, PR China
| | - Shilun Tong
- Department of Gastrointestinal Surgery, Wuhan University, Renmin Hospital, No. 99 Zhang Zhidong Road, Wuhan, 430060, Hubei Province, PR China.
| |
Collapse
|
36
|
Hoshi T, Watanabe Miyano S, Watanabe H, Sonobe RMK, Seki Y, Ohta E, Nomoto K, Matsui J, Funahashi Y. Lenvatinib induces death of human hepatocellular carcinoma cells harboring an activated FGF signaling pathway through inhibition of FGFR-MAPK cascades. Biochem Biophys Res Commun 2019; 513:1-7. [PMID: 30944079 DOI: 10.1016/j.bbrc.2019.02.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 02/03/2019] [Indexed: 01/16/2023]
Abstract
Lenvatinib inhibits VEGF- and FGF-driven angiogenesis, and proliferation of tumor cells with activated FGF signaling pathways in preclinical models, and we previously demonstrated antitumor activity in human HCC xenograft tumor models. Here, we examined the inhibitory activity of lenvatinib against FGF-driven survival of human HCC cell lines. First, we conducted a histological analysis of FGF19-overexpressing Hep3B2.1-7 xenograft tumors collected from mice treated with lenvatinib. Second, we examined the effects of pharmacological inhibition on survival of cultured HCC cells with an activated FGF signaling pathway under nutrient-starved culture condition to mimic tumor microenvironments induced by angiogenesis inhibition. In the first analysis, area of histological focal necrosis was greater in Hep3B2.1-7 xenograft tumors with the lenvatinib treatment than that after the treatment with sorafenib, which does not inhibit FGFRs. Lenvatinib and E7090 (a selective FGFR1-3 inhibitor), but not sorafenib, induced death of Hep3B2.1-7, and another FGF19 overexpressing HuH-7 cells. Lenvatinib and E7090 decreased phosphorylation of downstream molecules of the FGF signaling pathway (such as FRS2, Erk, and p38 MAPK), and induced PARP cleavage, even under limited nutrients. PD0325901, MEK inhibitor, caused the same changes in HCC cells as those described above for lenvatinib and E7090. These results reveal that the FGF signaling pathway through MAPK cascades plays an important role in survival of HCC cell lines with an activated FGF signaling pathway under limited nutrients, and FGFR-MAPK cascades likely contribute to survival of HCC cells with an activated FGF signaling pathway under tumor microenvironments with limited nutrients, where tumor angiogenesis is inhibited.
Collapse
Affiliation(s)
- Taisuke Hoshi
- Tsukuba Research Laboratories, Eisai Co., Ltd., Ibaraki, Japan
| | | | - Hideki Watanabe
- Tsukuba Research Laboratories, Eisai Co., Ltd., Ibaraki, Japan
| | | | - Yuki Seki
- Tsukuba Research Laboratories, Eisai Co., Ltd., Ibaraki, Japan
| | - Etsuko Ohta
- Tsukuba Research Laboratories, Eisai Co., Ltd., Ibaraki, Japan
| | - Kenichi Nomoto
- Oncology Business Group, Eisai Inc., Woodcliff Lake, NJ, USA
| | - Junji Matsui
- Oncology Business Group, Eisai Inc., Woodcliff Lake, NJ, USA
| | | |
Collapse
|
37
|
Nuclear FGFR2 negatively regulates hypoxia-induced cell invasion in prostate cancer by interacting with HIF-1 and HIF-2. Sci Rep 2019; 9:3480. [PMID: 30837551 PMCID: PMC6401139 DOI: 10.1038/s41598-019-39843-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 01/30/2019] [Indexed: 12/19/2022] Open
Abstract
The fibroblast growth factor receptor 2 (FGFR2) is a membrane receptor that promotes cell proliferation and differentiation. FGFR2 is also present in the nucleus, which raises a question on a new role of FGFR2 in regulating gene expression. Hypoxia-inducible factors 1 and 2 (HIF-1 and HIF-2) are nuclear proteins that transactivate many genes essential for cancer survival and metastasis under hypoxic conditions. Here, we investigated if nuclear FGFR2 modulates the HIF-driven hypoxic response. Using the TCGA database, we found that FGFR2 downregulation is associated with poor prognosis in prostate cancer. A gene-set enrichment analysis showed that metastasis- and hypoxia-related genes are associated with a low expression of FGFR2 in prostate cancer. Thus, we tested the possibility that FGFR2 negatively regulates the hypoxia-triggered metastasis of prostate cancer. FGFR2 controls migration and invasion of prostate cancer cells under hypoxia by inhibiting the HIF-driven gene expression. FGFR2 and HIF proteins co-localize and associate in the nucleus under hypoxia. FGFR2 interacts with the transactivation domain of HIF-1α and blocks the recruitment of coactivator p300, resulting in repression of HIF target genes. Based on these results, we propose a novel function of FGFR2 as a metastasis suppressor by controlling HIF-mediated hypoxic responses.
Collapse
|
38
|
Huynh H, Lee LY, Goh KY, Ong R, Hao H, Huang A, Wang Y, Graus Porta D, Chow P, Chung A. Infigratinib Mediates Vascular Normalization, Impairs Metastasis, and Improves Chemotherapy in Hepatocellular Carcinoma. Hepatology 2019; 69:943-958. [PMID: 30575985 PMCID: PMC6635738 DOI: 10.1002/hep.30481] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 12/16/2018] [Indexed: 12/21/2022]
Abstract
The fibroblast growth factor (FGF) signaling cascade is a key signaling pathway in hepatocarcinogenesis. We report high FGF receptor (FGFR) expression in 17.7% (11 of 62) of hepatocellular carcinoma (HCC) models. Infigratinib, a pan-FGFR inhibitor, potently suppresses the growth of high-FGFR-expressing and sorafenib-resistant HCCs. Infigratinib inhibits FGFR signaling and its downstream targets, cell proliferation, the angiogenic rescue program, hypoxia, invasion, and metastasis. Infigratinib also induces apoptosis and vessel normalization and improves the overall survival of mice bearing FGFR-driven HCCs. Infigratinib acts in synergy with the microtubule-depolymerizing drug vinorelbine to promote apoptosis, suppress tumor growth, and improve the overall survival of mice. Increased expression levels of FGFR-2 and FGFR-3 through gene amplification correlate with treatment response and may serve as potential biomarkers for patient selection. Conclusion: Treatments with Infigratinib alone or in combination with vinorelbine may be effective in a subset of patients with HCC with FGFR-driven tumors.
Collapse
Affiliation(s)
- Hung Huynh
- Laboratory of Molecular Endocrinology, Division of Molecular and Cellular ResearchNational Cancer CentreSingapore
| | - Liek Yeow Lee
- Laboratory of Molecular Endocrinology, Division of Molecular and Cellular ResearchNational Cancer CentreSingapore
| | - Kah Yong Goh
- Laboratory of Molecular Endocrinology, Division of Molecular and Cellular ResearchNational Cancer CentreSingapore
| | - Richard Ong
- Laboratory of Molecular Endocrinology, Division of Molecular and Cellular ResearchNational Cancer CentreSingapore
| | | | - Alan Huang
- Novartis Institutes for Biomedical ResearchCambridgeMA
| | - Youzhen Wang
- Oncology Drug Discovery PharmacologyNovartis Institutes for Biomedical ResearchCambridgeMA
| | - Diana Graus Porta
- Oncology Translational Research, Novartis Institutes for Biomedical Research at BaselBaselSwitzerland
| | - Pierce Chow
- Department of General SurgerySingapore General HospitalSingapore
| | - Alexander Chung
- Department of General SurgerySingapore General HospitalSingapore
| |
Collapse
|
39
|
Keeley TP, Mann GE. Defining Physiological Normoxia for Improved Translation of Cell Physiology to Animal Models and Humans. Physiol Rev 2019; 99:161-234. [PMID: 30354965 DOI: 10.1152/physrev.00041.2017] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The extensive oxygen gradient between the air we breathe (Po2 ~21 kPa) and its ultimate distribution within mitochondria (as low as ~0.5-1 kPa) is testament to the efforts expended in limiting its inherent toxicity. It has long been recognized that cell culture undertaken under room air conditions falls short of replicating this protection in vitro. Despite this, difficulty in accurately determining the appropriate O2 levels in which to culture cells, coupled with a lack of the technology to replicate and maintain a physiological O2 environment in vitro, has hindered addressing this issue thus far. In this review, we aim to address the current understanding of tissue Po2 distribution in vivo and summarize the attempts made to replicate these conditions in vitro. The state-of-the-art techniques employed to accurately determine O2 levels, as well as the issues associated with reproducing physiological O2 levels in vitro, are also critically reviewed. We aim to provide the framework for researchers to undertake cell culture under O2 levels relevant to specific tissues and organs. We envisage that this review will facilitate a paradigm shift, enabling translation of findings under physiological conditions in vitro to disease pathology and the design of novel therapeutics.
Collapse
Affiliation(s)
- Thomas P Keeley
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, Faculty of Life Sciences and Medicine, King's College London , London , United Kingdom
| | - Giovanni E Mann
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, Faculty of Life Sciences and Medicine, King's College London , London , United Kingdom
| |
Collapse
|
40
|
Luo W, Wang Y. Hypoxia Mediates Tumor Malignancy and Therapy Resistance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1136:1-18. [PMID: 31201713 DOI: 10.1007/978-3-030-12734-3_1] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hypoxia is a hallmark of the tumor microenvironment and contributes to tumor malignant phenotypes. Hypoxia-inducible factor (HIF) is a master regulator of intratumoral hypoxia and controls hypoxia-mediated pathological processes in tumors, including angiogenesis, metabolic reprogramming, epigenetic reprogramming, immune evasion, pH homeostasis, cell migration/invasion, stem cell pluripotency, and therapy resistance. In this book chapter, we reviewed the causes and types of intratumoral hypoxia, hypoxia detection methods, and the oncogenic role of HIF in tumorigenesis and chemo- and radio-therapy resistance.
Collapse
Affiliation(s)
- Weibo Luo
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA. .,Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Yingfei Wang
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA. .,Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
41
|
DiGiacomo JW, Gilkes DM. Therapeutic Strategies to Block the Hypoxic Response. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1136:141-157. [DOI: 10.1007/978-3-030-12734-3_10] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
42
|
Growth arrest-specific gene 6 transfer promotes mesenchymal stem cell survival and cardiac repair under hypoxia and ischemia via enhanced autocrine signaling and paracrine action. Arch Biochem Biophys 2018; 660:108-120. [PMID: 30365934 DOI: 10.1016/j.abb.2018.10.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 10/08/2018] [Accepted: 10/22/2018] [Indexed: 01/10/2023]
Abstract
Poor cell viability after transplantation has restricted the therapeutic capacity of mesenchymal stem cells (MSCs) for cardiac dysfunction after myocardial infarction (MI). Growth arrest-specific gene 6 (Gas6) encodes a secreted γ-carboxyglutamic acid (Gla)-containing protein that functions in cell growth, adhesion, chemotaxis, mitogenesis and cell survival. In this study, we genetically modified MSCs with Gas6 and evaluated cell survival, cardiac function, and infarct size in a rat model of MI via intramyocardial delivery. Functional studies demonstrated that Gas6 transfer significantly reduced MSC apoptosis, increased survival of MSCs in vitro and in vivo, and that Gas6-engineered MSCs (MSCGas6)-treated animals had smaller infarct size and showed remarkably functional recovery as compared with control MSCs (MSCNull)-treated animals. Mechanistically, Gas6 could enhance phosphatidylinositol 3-kinase (PI3K)/Akt signaling and improve hypoxia-inducible factor-1 alpha (HIF-1α)-driven secretion of four major growth factors (VEGF, bFGF, SDF and IGF-1) in MSCs under hypoxia in an Axl-dependent autocrine manner. The paracrine action of MSCGas6 was further validated by coculture neonatal rat cardiomyocytes with conditioned medium from hypoxia-treated MSCGas6, as well as by pretreatment cardiomyocytes with the specific receptor inhibitors of VEGF, bFGF, SDF and IGF-1. Collectively, our data suggest that Gas6 may advance the efficacy of MSC therapy for post-infarcted heart failure via enhanced Gas6/Axl autocrine prosurvival signaling and paracrine cytoprotective action.
Collapse
|
43
|
Human Pluripotent Stem Cells to Engineer Blood Vessels. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2018; 163:147-168. [PMID: 29090328 DOI: 10.1007/10_2017_28] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Development of pluripotent stem cells (PSCs) is a remarkable scientific advancement that allows scientists to harness the power of regenerative medicine for potential treatment of disease using unaffected cells. PSCs provide a unique opportunity to study and combat cardiovascular diseases, which continue to claim the lives of thousands each day. Here, we discuss the differentiation of PSCs into vascular cells, investigation of the functional capabilities of the derived cells, and their utilization to engineer microvascular beds or vascular grafts for clinical application. Graphical Abstract Human iPSCs generated from patients are differentiated toward ECs and perivascular cells for use in disease modeling, microvascular bed development, or vascular graft fabrication.
Collapse
|
44
|
Bradykinin B2 Receptor Contributes to Inflammatory Responses in Human Endothelial Cells by the Transactivation of the Fibroblast Growth Factor Receptor FGFR-1. Int J Mol Sci 2018; 19:ijms19092638. [PMID: 30200598 PMCID: PMC6163484 DOI: 10.3390/ijms19092638] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/31/2018] [Accepted: 09/03/2018] [Indexed: 12/19/2022] Open
Abstract
Elevated levels of bradykinin (BK) and fibroblast growth factor-2 (FGF-2) have been implicated in the pathogenesis of inflammatory and angiogenic disorders. In angiogenesis, both stimuli induce a pro-inflammatory signature in endothelial cells, activating an autocrine/paracrine amplification loop that sustains the neovascularization process. Here we investigated the contribution of the FGF-2 pathway in the BK-mediated human endothelial cell permeability and migration, and the role of the B2 receptor (B2R) of BK in this cross-talk. BK (1 µM) upregulated the FGF-2 expression and promoted the FGF-2 signaling, both in human umbilical vein endothelial cells (HUVEC) and in retinal capillary endothelial cells (HREC) by the activation of Fibroblast growth factor receptor-1 (FGFR-1) and its downstream signaling (fibroblast growth factor receptor substrate: FRSα, extracellular signal–regulated kinases1/2: ERK1/2, and signal transducer and activator of transcription 3: STAT3 phosphorylation). FGFR-1 phosphorylation triggered by BK was c-Src mediated and independent from FGF-2 upregulation. Either HUVEC and HREC exposed to BK showed increased permeability, disassembly of adherens and tight-junction, and increased cell migration. B2R blockade by the selective antagonist, fasitibant, significantly inhibited FGF-2/FGFR-1 signaling, and in turn, BK-mediated endothelial cell permeability and migration. Similarly, the FGFR-1 inhibitor, SU5402, and the knock-down of the receptor prevented the BK/B2R inflammatory response in endothelial cells. In conclusion, this work demonstrates the existence of a BK/B2R/FGFR-1/FGF-2 axis in endothelial cells that might be implicated in propagation of angiogenic/inflammatory responses. A B2R blockade, by abolishing the initial BK stimulus, strongly attenuated FGFR-1-driven cell permeability and migration.
Collapse
|
45
|
Natale G, Bocci G. Does metronomic chemotherapy induce tumor angiogenic dormancy? A review of available preclinical and clinical data. Cancer Lett 2018; 432:28-37. [PMID: 29885517 DOI: 10.1016/j.canlet.2018.06.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 05/11/2018] [Accepted: 06/03/2018] [Indexed: 02/08/2023]
Abstract
Tumor dormancy is the ability of cancer cells to survive in a non-proliferating state. This condition can depend on three main mechanisms: cell cycle arrest (quiescence or cell dormancy), immunosurveillance (immunologic dormancy), or lack of functional blood vessels (angiogenic dormancy). In particular, under angiogenic dormancy, cancer cell proliferation is counterbalanced by apoptosis owing to poor vascularization, impeding tumor mass expansion beyond a microscopic size, with an asymptomatic and non-metastatic state. Tumor vasculogenic or non-angiogenic switch is essential to promote escape from tumor dormancy, leading to tumor mass proliferation and metastasis. In avascular lesions angiogenesis process results blocked from the equilibrium between pro- and anti-angiogenic factors, such as vascular endothelial growth factor (VEGF) and thrombospondin-1 (TSP-1), respectively. The angiogenic switch mainly depends on the disruption of this balance, in favor of pro-angiogenic factors, and on the recruitment of circulating endothelial progenitors (CEPs) that promote the formation of new blood vessels. Metronomic chemotherapy, the regular intake of doses able to sustain low but active concentrations of chemotherapeutic drugs during protracted time periods, is an encouraging therapeutic approach that has shown to upregulate anti-angiogenic factors such as TSP-1 and decline pro-angiogenic factors such as VEGF, suppressing the proangiogenic cells such as CEPs. In this perspective, metronomic chemotherapy may be one of the available therapeutic approaches capable to modulate favorably the angiogenic tumor dormancy, but further research is essential to better define this particular characteristic.
Collapse
Affiliation(s)
- Gianfranco Natale
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, and Museo di Anatomia Umana ''Filippo Civinini'', Università di Pisa, Pisa, Italy
| | - Guido Bocci
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Pisa, Italy.
| |
Collapse
|
46
|
Mesenchymal Stromal Cells and Cutaneous Wound Healing: A Comprehensive Review of the Background, Role, and Therapeutic Potential. Stem Cells Int 2018; 2018:6901983. [PMID: 29887893 PMCID: PMC5985130 DOI: 10.1155/2018/6901983] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/09/2018] [Indexed: 12/13/2022] Open
Abstract
Cutaneous wound repair is a highly coordinated cascade of cellular responses to injury which restores the epidermal integrity and its barrier functions. Even under optimal healing conditions, normal wound repair of adult human skin is imperfect and delayed healing and scarring are frequent occurrences. Dysregulated wound healing is a major concern for global healthcare, and, given the rise in diabetic and aging populations, this medicoeconomic disease burden will continue to rise. Therapies to reliably improve nonhealing wounds and reduce scarring are currently unavailable. Mesenchymal stromal cells (MSCs) have emerged as a powerful technique to improve skin wound healing. Their differentiation potential, ease of harvest, low immunogenicity, and integral role in native wound healing physiology make MSCs an attractive therapeutic remedy. MSCs promote cell migration, angiogenesis, epithelialization, and granulation tissue formation, which result in accelerated wound closure. MSCs encourage a regenerative, rather than fibrotic, wound healing microenvironment. Recent translational research efforts using modern bioengineering approaches have made progress in creating novel techniques for stromal cell delivery into healing wounds. This paper discusses experimental applications of various stromal cells to promote wound healing and discusses the novel methods used to increase MSC delivery and efficacy.
Collapse
|
47
|
Involvement of Bradykinin B2 Receptor in Pathological Vascularization in Oxygen-Induced Retinopathy in Mice and Rabbit Cornea. Int J Mol Sci 2018; 19:ijms19020330. [PMID: 29360776 PMCID: PMC5855552 DOI: 10.3390/ijms19020330] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/15/2018] [Accepted: 01/19/2018] [Indexed: 12/26/2022] Open
Abstract
The identification of components of the kallikrein-kinin system in the vitreous from patients with microvascular retinal diseases suggests that bradykinin (BK) signaling may contribute to pathogenesis of retinal vascular complications. BK receptor 2 (B2R) signaling has been implicated in both pro-inflammatory and pro-angiogenic effects promoted by BK. Here, we investigated the role of BK/B2R signaling in the retinal neovascularization in the oxygen-induced retinopathy (OIR) model. Blockade of B2R signaling by the antagonist fasitibant delayed retinal vascularization in mouse pups, indicating that the retinal endothelium is a target of the BK/B2R system. In the rabbit cornea assay, a model of pathological neoangiogenesis, the B2 agonist kallidin induced vessel sprouting and promoted cornea opacity, a sign of edema and tissue inflammation. In agreement with these results, in the OIR model, a blockade of B2R signaling significantly reduced retinal neovascularization, as determined by the area of retinal tufts, and, in the retinal vessel, it also reduced vascular endothelial growth factor and fibroblast growth factor-2 expression. All together, these findings show that B2R blockade reduces retinal neovascularization and inhibits the expression of proangiogenic and pro-inflammatory cytokines, suggesting that targeting B2R signaling may be an effective strategy for treating ischemic retinopathy.
Collapse
|
48
|
Redundant angiogenic signaling and tumor drug resistance. Drug Resist Updat 2018; 36:47-76. [DOI: 10.1016/j.drup.2018.01.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/22/2017] [Accepted: 01/11/2018] [Indexed: 02/07/2023]
|
49
|
Fuster-Matanzo A, Manferrari G, Marchetti B, Pluchino S. Wnt3a promotes pro-angiogenic features in macrophages in vitro: Implications for stroke pathology. Exp Biol Med (Maywood) 2017; 243:22-28. [PMID: 29199847 DOI: 10.1177/1535370217746392] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Wnt3a is implicated in several key cellular processes and its expression has been reported in different cell types. Here, we report a novel function for Wnt3a in macrophages, whose exposure to this ligand shifts them towards a pro-angiogenic phenotype capable, under oxygen and glucose deprivation, of inducing in vitro tubular pattern structures in endothelial cells resembling capillary-like vasculature. These newly acquired angiogenetic features also include increased proliferation and migration and surprisingly, an increase in cell death. This work provides a new link between Wnt3a and macrophage-mediated angiogenesis under glucose and oxygen deprivation in vitro, which are worth further investigation in pathological conditions including stroke, where the stimulation of the angiogenic process might help to recovery after tissue injury Impact statement This work provides a new link between Wnt3a and macrophage-mediated angiogenesis under glucose and oxygen deprivation in vitro. Our results reveal how Wnt3a shifts macrophages towards a pro-angiogenic phenotype, which is able-in absence of both glucose and oxygen-of inducing angiogenesis in vitro, thus pointing to a synergy between the activation of the pathway and the hypoxia scenario. This work also demonstrates that modulation of cell death is key in order to explain the observed angiogenic effects. We consider all these findings of significant importance, since no connection between Wnt3a, macrophages, and angiogenesis has been established so far. Furthermore, we do believe that this work provides new and interesting results, with Wnt signaling pathway emerging as an interesting target mediating beneficial outcomes during the inflammatory response undoubtedly linked to stroke pathology, where angiogenesis has been already proposed as a potential mechanism to promote recovery after the injury.
Collapse
Affiliation(s)
- Almudena Fuster-Matanzo
- 1 Department of Clinical Neurosciences - Division of Stem Cell Neurobiology, Wellcome Trust-Medical Research Council Stem Cell Institute and NIHR Biomedical Research Centre, 151895 University of Cambridge , Cambridge CB2 0HA, UK
| | - Giulia Manferrari
- 1 Department of Clinical Neurosciences - Division of Stem Cell Neurobiology, Wellcome Trust-Medical Research Council Stem Cell Institute and NIHR Biomedical Research Centre, 151895 University of Cambridge , Cambridge CB2 0HA, UK
| | - Bianca Marchetti
- 2 Department of Biomedical and Biotechnological Sciences (BIOMETEC), Pharmacology Section, University of Catania Medical School, Catania 95125, Italy.,3 OASI Institute for Research and Care on Mental Retardation and Brain Aging, Neuropharmacology Section, Troina 94018 (EN), Italy
| | - Stefano Pluchino
- 1 Department of Clinical Neurosciences - Division of Stem Cell Neurobiology, Wellcome Trust-Medical Research Council Stem Cell Institute and NIHR Biomedical Research Centre, 151895 University of Cambridge , Cambridge CB2 0HA, UK
| |
Collapse
|
50
|
Jiang L, Li W, Mamtilahun M, Song Y, Ma Y, Qu M, Lu Y, He X, Zheng J, Fu Z, Zhang Z, Yang GY, Wang Y. Optogenetic Inhibition of Striatal GABAergic Neuronal Activity Improves Outcomes After Ischemic Brain Injury. Stroke 2017; 48:3375-3383. [PMID: 29146880 DOI: 10.1161/strokeaha.117.019017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/12/2017] [Accepted: 10/17/2017] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Striatal GABAergic neuron is known as a key regulator in adult neurogenesis. However, the specific role of striatal GABAergic neuronal activity in the promotion of neurological recovery after ischemic stroke remains unknown. Here, we used optogenetic approach to investigate these effects and mechanism. METHODS Laser stimulation was delivered via an implanted optical fiber to inhibit or activate the striatal GABAergic neurons in Gad2-Arch-GFP or Gad2-ChR2-tdTomato mice (n=80) 1 week after 60-minute transient middle cerebral artery occlusion. Neurological severity score, brain atrophy volume, microvessel density, and cell morphological changes were examined using immunohistochemistry. Gene expression and protein levels of related growth factors were further examined using real-time polymerase chain reaction and Western blotting. RESULTS Inhibiting striatal GABAergic neuronal activity improved functional recovery, reduced brain atrophy volume, and prohibited cell death compared with the control (P<0.05). Microvessel density and bFGF (basic fibroblast growth factor) expression in the inhibition group were also increased (P<0.05). In contrast, activation of striatal GABAergic neurons resulted in adverse effects compared with the control (P<0.05). Using cocultures of GABAergic neurons, astrocytes, and endothelial cells, we further demonstrated that the photoinhibition of GABAergic neuronal activity could upregulate bFGF expression in endothelial cells, depending on the presence of astrocytes. The conditioned medium from the aforementioned photoinhibited 3-cell coculture system protected cells from oxygen glucose deprivation injury. CONCLUSIONS After ischemic stroke, optogenetic inhibition of GABAergic neurons upregulated bFGF expression by endothelial cells and promoted neurobehavioral recovery, possibly orchestrated by astrocytes. Optogenetically inhibiting neuronal activity provides a novel approach to promote neurological recovery.
Collapse
Affiliation(s)
- Lu Jiang
- From the Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering (L.J., W.L., M.M., Y.L., Z.Z., G.-Y.Y., Y.W.), Department of Neurology, Ruijin Hospital, School of Medicine (Y.S., Y.M., M.Q., Z.F., G.-Y.Y.), School of Agriculture and Biology (J.Z.), and Brain Science and Technology Research Center (Y.W.), Shanghai Jiao Tong University, Shanghai, China; and Department of Human Anatomy, School of Basic Medical Science, and Institute of Neuroscience and the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510182, China (X.H.)
| | - Wanlu Li
- From the Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering (L.J., W.L., M.M., Y.L., Z.Z., G.-Y.Y., Y.W.), Department of Neurology, Ruijin Hospital, School of Medicine (Y.S., Y.M., M.Q., Z.F., G.-Y.Y.), School of Agriculture and Biology (J.Z.), and Brain Science and Technology Research Center (Y.W.), Shanghai Jiao Tong University, Shanghai, China; and Department of Human Anatomy, School of Basic Medical Science, and Institute of Neuroscience and the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510182, China (X.H.)
| | - Muyassar Mamtilahun
- From the Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering (L.J., W.L., M.M., Y.L., Z.Z., G.-Y.Y., Y.W.), Department of Neurology, Ruijin Hospital, School of Medicine (Y.S., Y.M., M.Q., Z.F., G.-Y.Y.), School of Agriculture and Biology (J.Z.), and Brain Science and Technology Research Center (Y.W.), Shanghai Jiao Tong University, Shanghai, China; and Department of Human Anatomy, School of Basic Medical Science, and Institute of Neuroscience and the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510182, China (X.H.)
| | - Yaying Song
- From the Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering (L.J., W.L., M.M., Y.L., Z.Z., G.-Y.Y., Y.W.), Department of Neurology, Ruijin Hospital, School of Medicine (Y.S., Y.M., M.Q., Z.F., G.-Y.Y.), School of Agriculture and Biology (J.Z.), and Brain Science and Technology Research Center (Y.W.), Shanghai Jiao Tong University, Shanghai, China; and Department of Human Anatomy, School of Basic Medical Science, and Institute of Neuroscience and the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510182, China (X.H.)
| | - Yuanyuan Ma
- From the Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering (L.J., W.L., M.M., Y.L., Z.Z., G.-Y.Y., Y.W.), Department of Neurology, Ruijin Hospital, School of Medicine (Y.S., Y.M., M.Q., Z.F., G.-Y.Y.), School of Agriculture and Biology (J.Z.), and Brain Science and Technology Research Center (Y.W.), Shanghai Jiao Tong University, Shanghai, China; and Department of Human Anatomy, School of Basic Medical Science, and Institute of Neuroscience and the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510182, China (X.H.)
| | - Meijie Qu
- From the Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering (L.J., W.L., M.M., Y.L., Z.Z., G.-Y.Y., Y.W.), Department of Neurology, Ruijin Hospital, School of Medicine (Y.S., Y.M., M.Q., Z.F., G.-Y.Y.), School of Agriculture and Biology (J.Z.), and Brain Science and Technology Research Center (Y.W.), Shanghai Jiao Tong University, Shanghai, China; and Department of Human Anatomy, School of Basic Medical Science, and Institute of Neuroscience and the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510182, China (X.H.)
| | - Yifan Lu
- From the Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering (L.J., W.L., M.M., Y.L., Z.Z., G.-Y.Y., Y.W.), Department of Neurology, Ruijin Hospital, School of Medicine (Y.S., Y.M., M.Q., Z.F., G.-Y.Y.), School of Agriculture and Biology (J.Z.), and Brain Science and Technology Research Center (Y.W.), Shanghai Jiao Tong University, Shanghai, China; and Department of Human Anatomy, School of Basic Medical Science, and Institute of Neuroscience and the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510182, China (X.H.)
| | - Xiaosong He
- From the Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering (L.J., W.L., M.M., Y.L., Z.Z., G.-Y.Y., Y.W.), Department of Neurology, Ruijin Hospital, School of Medicine (Y.S., Y.M., M.Q., Z.F., G.-Y.Y.), School of Agriculture and Biology (J.Z.), and Brain Science and Technology Research Center (Y.W.), Shanghai Jiao Tong University, Shanghai, China; and Department of Human Anatomy, School of Basic Medical Science, and Institute of Neuroscience and the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510182, China (X.H.)
| | - Jieyu Zheng
- From the Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering (L.J., W.L., M.M., Y.L., Z.Z., G.-Y.Y., Y.W.), Department of Neurology, Ruijin Hospital, School of Medicine (Y.S., Y.M., M.Q., Z.F., G.-Y.Y.), School of Agriculture and Biology (J.Z.), and Brain Science and Technology Research Center (Y.W.), Shanghai Jiao Tong University, Shanghai, China; and Department of Human Anatomy, School of Basic Medical Science, and Institute of Neuroscience and the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510182, China (X.H.)
| | - Zongjie Fu
- From the Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering (L.J., W.L., M.M., Y.L., Z.Z., G.-Y.Y., Y.W.), Department of Neurology, Ruijin Hospital, School of Medicine (Y.S., Y.M., M.Q., Z.F., G.-Y.Y.), School of Agriculture and Biology (J.Z.), and Brain Science and Technology Research Center (Y.W.), Shanghai Jiao Tong University, Shanghai, China; and Department of Human Anatomy, School of Basic Medical Science, and Institute of Neuroscience and the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510182, China (X.H.)
| | - Zhijun Zhang
- From the Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering (L.J., W.L., M.M., Y.L., Z.Z., G.-Y.Y., Y.W.), Department of Neurology, Ruijin Hospital, School of Medicine (Y.S., Y.M., M.Q., Z.F., G.-Y.Y.), School of Agriculture and Biology (J.Z.), and Brain Science and Technology Research Center (Y.W.), Shanghai Jiao Tong University, Shanghai, China; and Department of Human Anatomy, School of Basic Medical Science, and Institute of Neuroscience and the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510182, China (X.H.)
| | - Guo-Yuan Yang
- From the Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering (L.J., W.L., M.M., Y.L., Z.Z., G.-Y.Y., Y.W.), Department of Neurology, Ruijin Hospital, School of Medicine (Y.S., Y.M., M.Q., Z.F., G.-Y.Y.), School of Agriculture and Biology (J.Z.), and Brain Science and Technology Research Center (Y.W.), Shanghai Jiao Tong University, Shanghai, China; and Department of Human Anatomy, School of Basic Medical Science, and Institute of Neuroscience and the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510182, China (X.H.).
| | - Yongting Wang
- From the Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering (L.J., W.L., M.M., Y.L., Z.Z., G.-Y.Y., Y.W.), Department of Neurology, Ruijin Hospital, School of Medicine (Y.S., Y.M., M.Q., Z.F., G.-Y.Y.), School of Agriculture and Biology (J.Z.), and Brain Science and Technology Research Center (Y.W.), Shanghai Jiao Tong University, Shanghai, China; and Department of Human Anatomy, School of Basic Medical Science, and Institute of Neuroscience and the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510182, China (X.H.).
| |
Collapse
|