1
|
Bolognesi MM, Dall’Olio L, Maerten A, Borghesi S, Castellani G, Cattoretti G. Seeing or believing in hyperplexed spatial proteomics via antibodies: New and old biases for an image-based technology. BIOLOGICAL IMAGING 2024; 4:e10. [PMID: 39464237 PMCID: PMC11503829 DOI: 10.1017/s2633903x24000138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 07/23/2024] [Accepted: 09/04/2024] [Indexed: 10/29/2024]
Abstract
Hyperplexed in-situ targeted proteomics via antibody immunodetection (i.e., >15 markers) is changing how we classify cells and tissues. Differently from other high-dimensional single-cell assays (flow cytometry, single-cell RNA sequencing), the human eye is a necessary component in multiple procedural steps: image segmentation, signal thresholding, antibody validation, and iconographic rendering. Established methods complement the human image evaluation, but may carry undisclosed biases in such a new context, therefore we re-evaluate all the steps in hyperplexed proteomics. We found that the human eye can discriminate less than 64 out of 256 gray levels and has limitations in discriminating luminance levels in conventional histology images. Furthermore, only images containing visible signals are selected and eye-guided digital thresholding separates signal from noise. BRAQUE, a hyperplexed proteomic tool, can extract, in a marker-agnostic fashion, granular information from markers which have a very low signal-to-noise ratio and therefore are not visualized by traditional visual rendering. By analyzing a public human lymph node dataset, we also found unpredicted staining results by validated antibodies, which highlight the need to upgrade the definition of antibody specificity in hyperplexed immunostaining. Spatially hyperplexed methods upgrade and supplant traditional image-based analysis of tissue immunostaining, beyond the human eye contribution.
Collapse
Affiliation(s)
- Maddalena M. Bolognesi
- Istituto di Bioimmagini e Fisiologia Molecolare – CNR, Milan, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Lorenzo Dall’Olio
- Laboratorio di Data Science and Bioinformatics, IRCCS Istituto delle Scienze Neurologiche di Bologna – AUSL BO Ospedale Bellaria, Bologna, Italy
| | - Amy Maerten
- Department of in vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Jette, Belgium
| | - Simone Borghesi
- Department of Mathematics and Applications, University of Milano Bicocca, Milan, Italy
| | - Gastone Castellani
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Giorgio Cattoretti
- Pathology, Department of Medicine and Surgery, Universitá di Milano-Bicocca, Monza, Italy
| |
Collapse
|
2
|
Wang Y, Rambold U, Fiedler P, Babushku T, Tapken CL, Hoefig KP, Hofer TP, Adler H, Yildirim AÖ, Strobl LJ, Zimber-Strobl U. CD30 influences germinal center B-cell dynamics and the expansion of IgG1-switched B cells. Cell Mol Immunol 2024:10.1038/s41423-024-01219-w. [PMID: 39420111 DOI: 10.1038/s41423-024-01219-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024] Open
Abstract
Initially, identified as a Hodgkin lymphoma marker, CD30 was subsequently detected on a subset of human B cells within and around germinal centers (GCs). While CD30 expression is typically restricted to a few B cells, expansion of CD30-expressing B cells occurs in certain immune disorders and during viral infections. The role of CD30 in B cells remains largely unclear. To address this gap in knowledge, we established a conditional CD30-knockin mouse strain. In these mice, B-cell-specific CD30 expression led to a normal B-cell phenotype in young mice, but most aged mice exhibited significant expansion of B cells, T cells and myeloid cells and increased percentages of GC B cells and IgG1-switched cells. This may be driven by the expansion of CD4+ senescence-associated T cells and T follicular helper cells, which partially express CD30-L (CD153) and may stimulate CD30-expressing B cells. Inducing CD30 expression in antigen-activated B cells accelerates the GC reaction and augments plasma cell differentiation, possibly through the posttranscriptional upregulation of CXCR4. Furthermore, CD30 expression in GC B cells promoted the expansion of IgG1-switched cells, which displayed either a GC or memory-like B-cell phenotype, with abnormally high IgG1 levels compared with those in controls. These findings shed light on the role of CD30 signaling in GC B cells and suggest that elevated CD30+ B-cell numbers lead to pathological lymphocyte activation and proliferation.
Collapse
Affiliation(s)
- Yan Wang
- Research Unit Gene Vectors, Research Group B-Cell Development and Activation, Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany
| | - Ursula Rambold
- Institute of Asthma and Allergy Prevention, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
- Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Petra Fiedler
- Research Unit Gene Vectors, Research Group B-Cell Development and Activation, Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany
| | - Tea Babushku
- Research Unit Gene Vectors, Research Group B-Cell Development and Activation, Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany
| | - Claas L Tapken
- Institute of Lung Health and Immunity (LHI), Helmholtz Center Munich, Comprehensive Pneumology Center (CPC-M), Neuherberg, Germany
| | - Kai P Hoefig
- Research Unit Molecular Immune Regulation, Helmholtz Center Munich, Munich, Germany
| | - Thomas P Hofer
- Immunoanalytics - Research Group Tissue Control of Immunocytes, Helmholtz Center Munich, Munich, Germany
| | - Heiko Adler
- Institute of Asthma and Allergy Prevention, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
- Member of the German Center of Lung Research (DZL), Munich, Germany
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Ali Önder Yildirim
- Member of the German Center of Lung Research (DZL), Munich, Germany
- Institute of Lung Health and Immunity (LHI), Helmholtz Center Munich, Comprehensive Pneumology Center (CPC-M), Neuherberg, Germany
| | - Lothar J Strobl
- Research Unit Gene Vectors, Research Group B-Cell Development and Activation, Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany.
- Institute of Lung Health and Immunity (LHI), Helmholtz Center Munich, Comprehensive Pneumology Center (CPC-M), Neuherberg, Germany.
| | - Ursula Zimber-Strobl
- Research Unit Gene Vectors, Research Group B-Cell Development and Activation, Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany.
- Institute of Lung Health and Immunity (LHI), Helmholtz Center Munich, Comprehensive Pneumology Center (CPC-M), Neuherberg, Germany.
| |
Collapse
|
3
|
Nakshbandi U, van Ginkel MS, Verstappen GMPJ, Spijkervet FKL, Arends S, Haacke EA, Liefers SC, Vissink A, Bootsma H, Kroese FGM, van der Vegt B. Histopathological comparison of Sjögren-related features between paired labial and parotid salivary gland biopsies of sicca patients. Rheumatology (Oxford) 2024; 63:2670-2677. [PMID: 38538884 PMCID: PMC11443036 DOI: 10.1093/rheumatology/keae154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/19/2024] [Indexed: 10/02/2024] Open
Abstract
OBJECTIVES To compare focus score and other histopathological features between paired labial and parotid salivary gland biopsies in a diagnostic cohort of suspected Sjögren's disease (SjD) patients. METHODS Labial and parotid salivary gland biopsies were simultaneously obtained from patients with sicca complaints, suspected of having SjD. Biopsies were formalin fixed and paraffin embedded. Sections were stained with haematoxylin & eosin, and for CD3, CD20, CD45, cytokeratin, CD21, Bcl6, activation-induced deaminase (AID) and IgA/IgG. Focus score and other histopathological features characteristic for SjD were analysed. RESULTS Based on the expert opinion of three experienced rheumatologists, 36 patients were diagnosed as SjD and 63 as non-SjD sicca patients. When taking all patients together, absolute agreement of various histopathological features between labial and parotid biopsies was high and varied between 80% (focus score) and 93% [(pre-)lymphoepithelial lesions (LELs)]. More labial gland biopsies had a focus score ≥1 compared with their parotid counterpart. Accordingly, the area of infiltrate was larger in labial gland biopsies. When considering only SjD patients, labial glands contained significantly fewer B-lymphocytes and germinal centres/mm2, and less severe LELs compared with parotid glands. CONCLUSION Labial and parotid glands from SjD patients contain similar histopathological key features, and thus both glands can be used for diagnosis and classification of SjD. However, parotid salivary glands reveal more evident B-lymphocyte-related features, while labial glands exhibit more inflammation, which may be partially unrelated to SjD.
Collapse
Affiliation(s)
- Uzma Nakshbandi
- Department of Rheumatology and Clinical Immunology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Martha S van Ginkel
- Department of Rheumatology and Clinical Immunology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Gwenny M P J Verstappen
- Department of Rheumatology and Clinical Immunology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Fred K L Spijkervet
- Department of Oral and Maxillofacial Surgery, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Suzanne Arends
- Department of Rheumatology and Clinical Immunology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Erlin A Haacke
- Department of Pathology, Pathology Friesland, Leeuwarden, The Netherlands
| | - Silvia C Liefers
- Department of Rheumatology and Clinical Immunology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Arjan Vissink
- Department of Oral and Maxillofacial Surgery, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Hendrika Bootsma
- Department of Rheumatology and Clinical Immunology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Frans G M Kroese
- Department of Rheumatology and Clinical Immunology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Bert van der Vegt
- Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
4
|
Qi J, Yan L, Sun J, Huang C, Su B, Cheng J, Shen L. SUMO-specific protease 1 regulates germinal center B cell response through deSUMOylation of PAX5. Proc Natl Acad Sci U S A 2024; 121:e2314619121. [PMID: 38776375 PMCID: PMC11145296 DOI: 10.1073/pnas.2314619121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
Humoral immunity depends on the germinal center (GC) reaction where B cells are tightly controlled for class-switch recombination and somatic hypermutation and finally generated into plasma and memory B cells. However, how protein SUMOylation regulates the process of the GC reaction remains largely unknown. Here, we show that the expression of SUMO-specific protease 1 (SENP1) is up-regulated in GC B cells. Selective ablation of SENP1 in GC B cells results in impaired GC dark and light zone organization and reduced IgG1-switched GC B cells, leading to diminished production of class-switched antibodies with high-affinity in response to a TD antigen challenge. Mechanistically, SENP1 directly binds to Paired box protein 5 (PAX5) to mediate PAX5 deSUMOylation, sustaining PAX5 protein stability to promote the transcription of activation-induced cytidine deaminase. In summary, our study uncovers SUMOylation as an important posttranslational mechanism regulating GC B cell response.
Collapse
Affiliation(s)
- Jingjing Qi
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Lichong Yan
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Jiping Sun
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Chuanxin Huang
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Bing Su
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Jinke Cheng
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Lei Shen
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| |
Collapse
|
5
|
Della Mina E, Jackson KJL, Crawford AJI, Faulks ML, Pathmanandavel K, Acquarola N, O'Sullivan M, Kerre T, Naesens L, Claes K, Goodnow CC, Haerynck F, Kracker S, Meyts I, D'Orsogna LJ, Ma CS, Tangye SG. A Novel Heterozygous Variant in AICDA Impairs Ig Class Switching and Somatic Hypermutation in Human B Cells and is Associated with Autosomal Dominant HIGM2 Syndrome. J Clin Immunol 2024; 44:66. [PMID: 38363477 PMCID: PMC10873450 DOI: 10.1007/s10875-024-01665-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 01/21/2024] [Indexed: 02/17/2024]
Abstract
B cells and their secreted antibodies are fundamental for host-defense against pathogens. The generation of high-affinity class switched antibodies results from both somatic hypermutation (SHM) of the immunoglobulin (Ig) variable region genes of the B-cell receptor and class switch recombination (CSR) which alters the Ig heavy chain constant region. Both of these processes are initiated by the enzyme activation-induced cytidine deaminase (AID), encoded by AICDA. Deleterious variants in AICDA are causal of hyper-IgM syndrome type 2 (HIGM2), a B-cell intrinsic primary immunodeficiency characterised by recurrent infections and low serum IgG and IgA levels. Biallelic variants affecting exons 2, 3 or 4 of AICDA have been identified that impair both CSR and SHM in patients with autosomal recessive HIGM2. Interestingly, B cells from patients with autosomal dominant HIGM2, caused by heterozygous variants (V186X, R190X) located in AICDA exon 5 encoding the nuclear export signal (NES) domain, show abolished CSR but variable SHM. We herein report the immunological and functional phenotype of two related patients presenting with common variable immunodeficiency who were found to have a novel heterozygous variant in AICDA (L189X). This variant led to a truncated AID protein lacking the last 10 amino acids of the NES at the C-terminal domain. Interestingly, patients' B cells carrying the L189X variant exhibited not only greatly impaired CSR but also SHM in vivo, as well as CSR and production of IgG and IgA in vitro. Our findings demonstrate that the NES domain of AID can be essential for SHM, as well as for CSR, thereby refining the correlation between AICDA genotype and SHM phenotype as well as broadening our understanding of the pathophysiology of HIGM disorders.
Collapse
Affiliation(s)
- Erika Della Mina
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia
| | - Katherine J L Jackson
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia
| | - Alexander J I Crawford
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia
| | - Megan L Faulks
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia
| | - Karrnan Pathmanandavel
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia
| | - Nicolino Acquarola
- Department of Clinical Immunology and PathWest, Fiona Stanley Hospital, Murdoch, WA, Australia
| | - Michael O'Sullivan
- Department of Clinical Immunology and PathWest, Fiona Stanley Hospital, Murdoch, WA, Australia
- Department of Immunology, Perth Children's Hospital, Perth, WA, Australia
| | - Tessa Kerre
- Department of Hematology, Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Center for Primary Immunodeficiency Ghent (CPIG), Jeffrey Modell Diagnosis and Research Center, ERN Rita Network Center, Ghent University Hospital, Ghent, Belgium
| | - Leslie Naesens
- Center for Primary Immunodeficiency Ghent (CPIG), Jeffrey Modell Diagnosis and Research Center, ERN Rita Network Center, Ghent University Hospital, Ghent, Belgium
- Primary Immunodeficiency Research Lab, Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Karlien Claes
- Center for Primary Immunodeficiency Ghent (CPIG), Jeffrey Modell Diagnosis and Research Center, ERN Rita Network Center, Ghent University Hospital, Ghent, Belgium
- Primary Immunodeficiency Research Lab, Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Christopher C Goodnow
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia
| | - Filomeen Haerynck
- Center for Primary Immunodeficiency Ghent (CPIG), Jeffrey Modell Diagnosis and Research Center, ERN Rita Network Center, Ghent University Hospital, Ghent, Belgium
- Primary Immunodeficiency Research Lab, Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Sven Kracker
- Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Imagine Institute, 75015, Paris, France
- Université Paris Cité, 75015, Paris, France
| | - Isabelle Meyts
- Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, KU Leuven, Louvain, Belgium
- Pediatric Immunodeficiency, Department of Pediatrics, University Hospitals Leuven, Louvain, Belgium
| | - Lloyd J D'Orsogna
- Department of Clinical Immunology and PathWest, Fiona Stanley Hospital, Murdoch, WA, Australia
- School of Medicine, University of Western Australia, Nedlands, WA, Australia
| | - Cindy S Ma
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia
| | - Stuart G Tangye
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia.
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia.
| |
Collapse
|
6
|
Budeus B, Kibler A, Küppers R. Human IgM-expressing memory B cells. Front Immunol 2023; 14:1308378. [PMID: 38143767 PMCID: PMC10748387 DOI: 10.3389/fimmu.2023.1308378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/27/2023] [Indexed: 12/26/2023] Open
Abstract
A hallmark of T cell dependent (TD) humoral immune responses is the generation of long-lived memory B cells. The generation of these cells occurs primarily in the germinal center (GC) reaction, where antigen-activated B cells undergo affinity maturation as a major consequence of the combined processes of proliferation, somatic hypermutation of their immunoglobulin V (IgV) region genes, and selection for improved affinity of their B-cell antigen receptors. As many B cells also undergo class-switching to IgG or IgA in these TD responses, there was traditionally a focus on class-switched memory B cells in both murine and human studies on memory B cells. However, it has become clear that there is also a large subset of IgM-expressing memory B cells, which have important phenotypic and functional similarities but also differences to class-switched memory B cells. There is an ongoing discussion about the origin of distinct subsets of human IgM+ B cells with somatically mutated IgV genes. We argue here that the vast majority of human IgM-expressing B cells with somatically mutated IgV genes in adults is indeed derived from GC reactions, even though a generation of some mostly lowly mutated IgM+ B cells from other differentiation pathways, mainly in early life, may exist.
Collapse
Affiliation(s)
| | | | - Ralf Küppers
- Institute of Cell Biology (Cancer Research), Medical Faculty, University of Duisburg–Essen, Essen, Germany
| |
Collapse
|
7
|
Bucheli OTM, Eyer K. Insights into the relationship between persistent antibody secretion and metabolic programming - A question for single-cell analysis. Immunol Lett 2023; 260:35-43. [PMID: 37315849 DOI: 10.1016/j.imlet.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 04/28/2023] [Accepted: 06/10/2023] [Indexed: 06/16/2023]
Abstract
Vaccination aims to generate a protective and persisting antibody response. Indeed, humoral vaccine-mediated protection depends on the quality and quantity of the produced antigen-specific antibodies for its initial magnitude and the persistence of the plasma cells for its duration. Therefore, understanding the mechanisms behind the generation, selection and maintenance of long-lived plasma cells secreting protective antibodies is of fundamental importance for understanding long-term immunity, vaccine responses, therapeutical approaches for autoimmune disease and multiple myeloma. Recent studies have observed correlations between the generation, function and lifespan of plasma cells and their metabolism, with metabolism being both a main driver and primary consequence of changes in cellular behavior. This review introduces how metabolic programs influence and drive immune cell functions in general and plasma cell differentiation and longevity more specifically, summarizing the current knowledge on metabolic pathways and their influences on cellular fate. In addition, available technologies to profile metabolism and their limitations are discussed, leading to the unique and open technological challenges for further advancement of this research field.
Collapse
Affiliation(s)
- Olivia T M Bucheli
- Laboratory for Functional Immune Repertoire Analysis, Institute of Pharmaceutical Sciences, D-CHAB, ETH Zürich, 8093 Zürich, Switzerland
| | - Klaus Eyer
- Laboratory for Functional Immune Repertoire Analysis, Institute of Pharmaceutical Sciences, D-CHAB, ETH Zürich, 8093 Zürich, Switzerland.
| |
Collapse
|
8
|
Steinmetz TD, Verstappen GM, Suurmond J, Kroese FGM. Targeting plasma cells in systemic autoimmune rheumatic diseases - Promises and pitfalls. Immunol Lett 2023; 260:44-57. [PMID: 37315847 DOI: 10.1016/j.imlet.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/12/2023] [Accepted: 06/10/2023] [Indexed: 06/16/2023]
Abstract
Plasma cells are the antibody secretors of the immune system. Continuous antibody secretion over years can provide long-term immune protection but could also be held responsible for long-lasting autoimmunity in case of self-reactive plasma cells. Systemic autoimmune rheumatic diseases (ARD) affect multiple organ systems and are associated with a plethora of different autoantibodies. Two prototypic systemic ARDs are systemic lupus erythematosus (SLE) and Sjögren's disease (SjD). Both diseases are characterized by B-cell hyperactivity and the production of autoantibodies against nuclear antigens. Analogues to other immune cells, different subsets of plasma cells have been described. Plasma cell subsets are often defined dependent on their current state of maturation, that also depend on the precursor B-cell subset from which they derived. But, a universal definition of plasma cell subsets is not available so far. Furthermore, the ability for long-term survival and effector functions may differ, potentially in a disease-specific manner. Characterization of plasma cell subsets and their specificity in individual patients can help to choose a suitable targeting approach for either a broad or more selective plasma cell depletion. Targeting plasma cells in systemic ARDs is currently challenging because of side effects or varying depletion efficacies in the tissue. Recent developments, however, like antigen-specific targeting and CAR-T-cell therapy might open up major benefits for patients beyond current treatment options.
Collapse
Affiliation(s)
- Tobit D Steinmetz
- University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Gwenny M Verstappen
- University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jolien Suurmond
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Frans G M Kroese
- University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
9
|
Venturutti L, Rivas MA, Pelzer BW, Flümann R, Hansen J, Karagiannidis I, Xia M, McNally DR, Isshiki Y, Lytle A, Teater M, Chin CR, Meydan C, Knittel G, Ricker E, Mason CE, Ye X, Pan-Hammarström Q, Steidl C, Scott DW, Reinhardt HC, Pernis AB, Béguelin W, Melnick AM. An Aged/Autoimmune B-cell Program Defines the Early Transformation of Extranodal Lymphomas. Cancer Discov 2023; 13:216-243. [PMID: 36264161 PMCID: PMC9839622 DOI: 10.1158/2159-8290.cd-22-0561] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 09/26/2022] [Accepted: 10/17/2022] [Indexed: 01/17/2023]
Abstract
A third of patients with diffuse large B-cell lymphoma (DLBCL) present with extranodal dissemination, which is associated with inferior clinical outcomes. MYD88L265P is a hallmark extranodal DLBCL mutation that supports lymphoma proliferation. Yet extranodal lymphomagenesis and the role of MYD88L265P in transformation remain mostly unknown. Here, we show that B cells expressing Myd88L252P (MYD88L265P murine equivalent) activate, proliferate, and differentiate with minimal T-cell costimulation. Additionally, Myd88L252P skewed B cells toward memory fate. Unexpectedly, the transcriptional and phenotypic profiles of B cells expressing Myd88L252P, or other extranodal lymphoma founder mutations, resembled those of CD11c+T-BET+ aged/autoimmune memory B cells (AiBC). AiBC-like cells progressively accumulated in animals prone to develop lymphomas, and ablation of T-BET, the AiBC master regulator, stripped mouse and human mutant B cells of their competitive fitness. By identifying a phenotypically defined prospective lymphoma precursor population and its dependencies, our findings pave the way for the early detection of premalignant states and targeted prophylactic interventions in high-risk patients. SIGNIFICANCE Extranodal lymphomas feature a very poor prognosis. The identification of phenotypically distinguishable prospective precursor cells represents a milestone in the pursuit of earlier diagnosis, patient stratification, and prophylactic interventions. Conceptually, we found that extranodal lymphomas and autoimmune disorders harness overlapping pathogenic trajectories, suggesting these B-cell disorders develop and evolve within a spectrum. See related commentary by Leveille et al. (Blood Cancer Discov 2023;4:8-11). This article is highlighted in the In This Issue feature, p. 1.
Collapse
Affiliation(s)
- Leandro Venturutti
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, BC V5Z1L3, Canada., Terry Fox Laboratory, BC Cancer, Vancouver, BC V5Z1L3, Canada., Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T1Z7, Canada.,Corresponding authors: Leandro Venturutti, PhD. Centre for Lymphoid Cancer and Terry Fox Laboratory, BC Cancer Research Institute, 675 W 10th Ave, Vancouver, BC, V5Z 1L3, Canada. Phone: 604-675-8000; Fax: 604-877-0712; , Ari M. Melnick, MD. Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, 413 E 69th St, New York, NY, 10021, USA. Phone: 646-962-6725; Fax: 646-962-0576;
| | - Martin A. Rivas
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Benedikt W. Pelzer
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA., Mildred Scheel School of Oncology Aachen Bonn Cologne Düsseldorf (MSSO ABCD), Faculty of Medicine and University Hospital of Cologne, Cologne D-50937, Germany
| | - Ruth Flümann
- Department I of Internal Medicine, University Hospital Cologne, Cologne 50931, Germany., Max-Planck-Institute for Biology of Aging, Cologne 50931, Germany
| | - Julia Hansen
- Department I of Internal Medicine, University Hospital Cologne, Cologne 50931, Germany., Max-Planck-Institute for Biology of Aging, Cologne 50931, Germany
| | - Ioannis Karagiannidis
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Min Xia
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Dylan R. McNally
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Yusuke Isshiki
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Andrew Lytle
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, BC V5Z1L3, Canada
| | - Matt Teater
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Christopher R. Chin
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA., Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021, USA., The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine and the WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10021, USA
| | - Cem Meydan
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021, USA., The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine and the WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10021, USA
| | - Gero Knittel
- Department of Hematology and Stem Cell Transplantation, West German Cancer Center, University Hospital of Essen, University of Duisburg-Essen, Essen 45147, Germany
| | - Edd Ricker
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY 10021, USA
| | - Christopher E. Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021, USA., The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine and the WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10021, USA
| | - Xiaofei Ye
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183 Huddinge, Stockholm, Sweden
| | - Qiang Pan-Hammarström
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183 Huddinge, Stockholm, Sweden
| | - Christian Steidl
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, BC V5Z1L3, Canada., Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T1Z7, Canada
| | - David W. Scott
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, BC V5Z1L3, Canada., Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T1Z7, Canada., Department of Medicine, University of British Columbia, Vancouver, BC V6T1Z7, Canada
| | - Hans Christian Reinhardt
- Department of Hematology and Stem Cell Transplantation, West German Cancer Center, University Hospital of Essen, University of Duisburg-Essen, Essen 45147, Germany
| | - Alessandra B. Pernis
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY 10021, USA
| | - Wendy Béguelin
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Ari M. Melnick
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA.,Corresponding authors: Leandro Venturutti, PhD. Centre for Lymphoid Cancer and Terry Fox Laboratory, BC Cancer Research Institute, 675 W 10th Ave, Vancouver, BC, V5Z 1L3, Canada. Phone: 604-675-8000; Fax: 604-877-0712; , Ari M. Melnick, MD. Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, 413 E 69th St, New York, NY, 10021, USA. Phone: 646-962-6725; Fax: 646-962-0576;
| |
Collapse
|
10
|
Garcia B, Dong F, Casadei E, Rességuier J, Ma J, Cain KD, Castrillo PA, Xu Z, Salinas I. A Novel Organized Nasopharynx-Associated Lymphoid Tissue in Teleosts That Expresses Molecular Markers Characteristic of Mammalian Germinal Centers. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:2215-2226. [PMID: 36426979 DOI: 10.4049/jimmunol.2200396] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/16/2022] [Indexed: 01/04/2023]
Abstract
Nasal immunity is an ancient and conserved arm of the mucosal immune system in vertebrates. In teleost fish, we previously reported the presence of a nasopharynx-associated lymphoid tissue (NALT) characterized by scattered immune cells located in the trout olfactory lamellae. This diffuse NALT mounts innate and adaptive immune responses to nasal infection or vaccination. In mammals, lymphoid structures such as adenoids and tonsils support affinity maturation of the adaptive immune response in the nasopharyngeal cavity. These structures, known as organized NALT (O-NALT), have not been identified in teleost fish to date, but their evolutionary forerunners exist in sarcopterygian fish. In this study, we report that the rainbow trout nasal cavity is lined with a lymphoepithelium that extends from the most dorsal opening of the nares to the ventral nasal cavity. Within the nasal lymphoepithelium we found lymphocyte aggregates called O-NALT in this study that are composed of ∼ 56% CD4+, 24% IgM+, 16% CD8α+, and 4% IgT+ lymphocytes and that have high constitutive aicda mRNA expression. Intranasal (i.n.) vaccination with live attenuated infectious hematopoietic necrosis virus triggers expansions of B and T cells and aicda expression in response to primary i.n. vaccination. IgM+ B cells undergo proliferation and apoptosis within O-NALT upon prime but not boost i.n. vaccination. Our results suggest that novel mucosal microenvironments such as O-NALT may be involved in the affinity maturation of the adaptive immune response in early vertebrates.
Collapse
Affiliation(s)
- Benjamin Garcia
- Department of Biology, Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, NM
| | - Fen Dong
- Department of Biology, Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, NM.,Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, China
| | - Elisa Casadei
- Department of Biology, Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, NM
| | - Julien Rességuier
- Section for Physiology and Cell Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Jie Ma
- Department of Fish and Wildlife Sciences, University of Idaho, Moscow, ID; and
| | - Kenneth D Cain
- Department of Fish and Wildlife Sciences, University of Idaho, Moscow, ID; and
| | - Pedro A Castrillo
- Department of Biology, Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, NM.,Departamento de Anatomía, Producción Animal y Ciencias Clínicas Veterinarias, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Zhen Xu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, China
| | - Irene Salinas
- Department of Biology, Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, NM
| |
Collapse
|
11
|
Ding Z, Quast I, Yan F, Liao Y, Pitt C, O-Donnell K, Robinson MJ, Shi W, Kallies A, Zotos D, Tarlinton DM. CD137L and CD4 T cells limit BCL6-expressing pre-germinal center B cell expansion and BCL6-driven B cell malignancy. Immunol Cell Biol 2022; 100:705-717. [PMID: 35916066 DOI: 10.1111/imcb.12578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/27/2022] [Accepted: 07/30/2022] [Indexed: 01/07/2023]
Abstract
Aberrant expression of the proto-oncogene BCL6 is a driver of tumorigenesis in diffuse large B cell lymphoma (DLBCL). Mice overexpressing BCL6 from the B cell-specific immunoglobulin heavy chain μ intron promoter (Iμ-Bcl6Tg/+ ) develop B cell lymphomas with features typical of human DLBCL. While the development of B cell lymphoma in these mice is tightly controlled by T cells, the mechanisms of this immune surveillance are poorly understood. Here we show that CD4 T cells contribute to the control of lymphoproliferative disease in lymphoma-prone Iμ-Bcl6Tg/+ mice. We reveal that this CD4 T cell immuno-surveillance requires signaling by the co-stimulatory molecule CD137 ligand (CD137L; also known as 4-1BBL), which may promote the transition of pre-malignant B cells with an activated phenotype into the germinal center stage via reverse signaling, preventing their hazardous accumulation. Thus, CD137L-mediated CD4 T cell immuno-surveillance adds another layer of protection against B cell malignancy to that provided by CD8 T cell cytotoxicity.
Collapse
Affiliation(s)
- Zhoujie Ding
- Department of Immunology and Pathology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, VIC, Australia
| | - Isaak Quast
- Department of Immunology and Pathology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, VIC, Australia
| | - Feng Yan
- Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Yang Liao
- Olivia Newton John Cancer Research Institute, Melbourne, VIC, Australia
| | - Catherine Pitt
- Department of Immunology and Pathology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, VIC, Australia
| | - Kristy O-Donnell
- Department of Immunology and Pathology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, VIC, Australia
| | - Marcus J Robinson
- Department of Immunology and Pathology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, VIC, Australia
| | - Wei Shi
- Olivia Newton John Cancer Research Institute, Melbourne, VIC, Australia.,School of Medicine, La Trobe University, Heidelberg, VIC, Australia
| | - Axel Kallies
- The Peter Doherty Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Dimitra Zotos
- Department of Immunology and Pathology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, VIC, Australia
| | - David M Tarlinton
- Department of Immunology and Pathology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
12
|
Zaragoza-Infante L, Junet V, Pechlivanis N, Fragkouli SC, Amprachamian S, Koletsa T, Chatzidimitriou A, Papaioannou M, Stamatopoulos K, Agathangelidis A, Psomopoulos F. IgIDivA: immunoglobulin intraclonal diversification analysis. Brief Bioinform 2022; 23:bbac349. [PMID: 36044248 PMCID: PMC9487589 DOI: 10.1093/bib/bbac349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/14/2022] Open
Abstract
Intraclonal diversification (ID) within the immunoglobulin (IG) genes expressed by B cell clones arises due to ongoing somatic hypermutation (SHM) in a context of continuous interactions with antigen(s). Defining the nature and order of appearance of SHMs in the IG genes can assist in improved understanding of the ID process, shedding light into the ontogeny and evolution of B cell clones in health and disease. Such endeavor is empowered thanks to the introduction of high-throughput sequencing in the study of IG gene repertoires. However, few existing tools allow the identification, quantification and characterization of SHMs related to ID, all of which have limitations in their analysis, highlighting the need for developing a purpose-built tool for the comprehensive analysis of the ID process. In this work, we present the immunoglobulin intraclonal diversification analysis (IgIDivA) tool, a novel methodology for the in-depth qualitative and quantitative analysis of the ID process from high-throughput sequencing data. IgIDivA identifies and characterizes SHMs that occur within the variable domain of the rearranged IG genes and studies in detail the connections between identified SHMs, establishing mutational pathways. Moreover, it combines established and new graph-based metrics for the objective determination of ID level, combined with statistical analysis for the comparison of ID level features for different groups of samples. Of importance, IgIDivA also provides detailed visualizations of ID through the generation of purpose-built graph networks. Beyond the method design, IgIDivA has been also implemented as an R Shiny web application. IgIDivA is freely available at https://bio.tools/igidiva.
Collapse
Affiliation(s)
- Laura Zaragoza-Infante
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
- Hematology Unit, 1st Dept of Internal Medicine, Aristotle University of Thessaloniki, AHEPA Hospital, Thessaloniki
| | - Valentin Junet
- Anaxomics Biotech SL, Barcelona, Spain
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Nikos Pechlivanis
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | | | - Serovpe Amprachamian
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | | | - Anastasia Chatzidimitriou
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Maria Papaioannou
- Hematology Unit, 1st Dept of Internal Medicine, Aristotle University of Thessaloniki, AHEPA Hospital, Thessaloniki
| | - Kostas Stamatopoulos
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Andreas Agathangelidis
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
- Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Fotis Psomopoulos
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| |
Collapse
|
13
|
Chudakov DB, Kotsareva OD, Konovalova MV, Tsaregorodtseva DS, Shevchenko MA, Sergeev AA, Fattakhova GV. Early IgE Production Is Linked with Extrafollicular B- and T-Cell Activation in Low-Dose Allergy Model. Vaccines (Basel) 2022; 10:vaccines10060969. [PMID: 35746576 PMCID: PMC9231339 DOI: 10.3390/vaccines10060969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 06/01/2022] [Accepted: 06/14/2022] [Indexed: 12/23/2022] Open
Abstract
Despite its paramount importance, the predominant association of early IgE production with harmless antigens, via germinal-center B- and T-cell subpopulations or extrafollicular activation, remains unresolved. The aim of this work was to clarify whether the reinforced IgE production following the subcutaneous immunization of BALB/c mice with low antigen doses in withers adipose tissue might be linked with intensified extrafollicular or germinal-center responses. The mice were immunized three times a week for 4 weeks in the withers region, which is enriched in subcutaneous fat and tissue-associated B cells, with high and low OVA doses and via the intraperitoneal route for comparison. During long-term immunization with both low and high antigen doses in the withers region, but not via the intraperitoneal route, we observed a significant accumulation of B220-CD1d-CD5-CD19+ B-2 extrafollicular plasmablasts in the subcutaneous fat and regional lymph nodes but not in the intraperitoneal fat. Only low antigen doses induced a significant accumulation of CXCR4+ CXCR5- CD4+ extrafollicular T helpers in the withers adipose tissue but not in the regional lymph nodes or abdominal fat. Only in subcutaneous fat was there a combination of extrafollicular helper accumulation. In conclusion, extrafollicular B- and T-cell activation are necessary for early IgE class switching.
Collapse
Affiliation(s)
- Dmitrii Borisovich Chudakov
- Laboratory of Cell Interactions, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia; (O.D.K.); (M.V.K.); (M.A.S.); (A.A.S.); (G.V.F.)
- Correspondence: ; Tel.: +7-495-330-4011
| | - Olga Dmitrievna Kotsareva
- Laboratory of Cell Interactions, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia; (O.D.K.); (M.V.K.); (M.A.S.); (A.A.S.); (G.V.F.)
| | - Maryia Vladimirovna Konovalova
- Laboratory of Cell Interactions, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia; (O.D.K.); (M.V.K.); (M.A.S.); (A.A.S.); (G.V.F.)
| | - Daria Sergeevna Tsaregorodtseva
- Faculty of Medical Biology, Sechenov First Moscow State Medical University, 2 Bolshaya Pirogovskaya St., 1194535 Moscow, Russia;
| | - Marina Alexandrovna Shevchenko
- Laboratory of Cell Interactions, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia; (O.D.K.); (M.V.K.); (M.A.S.); (A.A.S.); (G.V.F.)
| | - Anton Andreevich Sergeev
- Laboratory of Cell Interactions, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia; (O.D.K.); (M.V.K.); (M.A.S.); (A.A.S.); (G.V.F.)
| | - Gulnar Vaisovna Fattakhova
- Laboratory of Cell Interactions, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia; (O.D.K.); (M.V.K.); (M.A.S.); (A.A.S.); (G.V.F.)
| |
Collapse
|
14
|
Huang MW, Stock AD, Putterman C. CXCL13 Neutralization Attenuates Neuropsychiatric Manifestations in Lupus-Prone Mice. Front Immunol 2021; 12:763065. [PMID: 34868008 PMCID: PMC8633419 DOI: 10.3389/fimmu.2021.763065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/04/2021] [Indexed: 01/02/2023] Open
Abstract
Neuropsychiatric lupus (NPSLE), the nervous system presentation of systemic lupus erythematosus (SLE), remains challenging to treat due to its unclear pathogenesis and lack of available targeted therapies. A potential contributor to disease progression is brain tertiary lymphoid structures (TLS); these ectopic lymphoid follicles that can develop tissue-targeted antibodies have recently been described in the MRL/lpr lupus mouse strain, a classic model for studying NPSLE. The brains of MRL/lpr mice show a significant increase of CXCL13, an important chemokine in lymphoid follicle formation and retention that may also play a role in the disease progression of NPSLE. The aim of the present study was to inhibit CXCL13 and examine the effect of this intervention on lymphoid formation and the development of neurobehavioral manifestations in lupus mice. Female MRL/lpr mice were injected with an anti-CXCL13 antibody, an IgG1 isotype-matched antibody, or PBS either three times a week for 12 weeks intraperitoneally (IP) starting at 6-8 weeks of age, or continuously intracerebroventricularly (ICV) with an osmotic pump over a two-week period starting at 15 weeks of age. Cognitive dysfunction and depression-like behavior were assessed at the end of treatment. When treatment was delivered IP, anti-CXCL13 treated mice showed significant improvement in cognitive function when compared to control treated mice. Depression-like behavior was attenuated as well. Furthermore, mice that received anti-CXCL13 by the ICV route showed similar beneficial effects. However, the extent of lymphocyte infiltration into the brain and the general composition of the aggregates were not substantively changed by anti-CXCL13 irrespective of the mode of administration. Nevertheless, analysis of brain gene expression in anti-CXCL13 treated mice showed significant differences in key immunological and neuro-inflammatory pathways that most likely explained the improvement in the behavioral phenotype. Our results indicate that CXCL13 affects the behavioral manifestations in the MRL/lpr strain and is important to the pathogenesis of murine NPSLE, suggesting it as a potential therapeutic target.
Collapse
Affiliation(s)
- Michelle W Huang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Ariel D Stock
- Department of Neurological Surgery, Montefiore Medical Center, Bronx, NY, United States
| | - Chaim Putterman
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States.,Division of Rheumatology, Albert Einstein College of Medicine, Bronx, NY, United States.,Azrieli Faculty of Medicine, Bar-Ilan University, Zefat, Israel.,Galilee Medical Center Research Institute, Nahariya, Israel
| |
Collapse
|
15
|
Zhai B, Liu X, Xu Y, Zhu G, Zhou S, He Y, Wang X, Su W, Han G, Wang R. Single-cell atlas of splenocytes reveals a critical role of a novel plasma cell‒specific marker Hspa13 in antibody class-switching recombination and somatic hypermutation. Mol Immunol 2021; 141:79-86. [PMID: 34837777 DOI: 10.1016/j.molimm.2021.11.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/03/2021] [Accepted: 11/19/2021] [Indexed: 11/15/2022]
Abstract
Our previous study had shown that member 13 (Hspa13) of heat shock protein family A (Hsp70) promotes plasma cell (PC) production and antibody secretion. To further explore Hspa13 expression and function, we combined single-cell RNA-sequencing and antigen receptor lineage (BCR) analysis to characterize sheep red cell‒primed splenocytes. The single-cell transcriptional profiles revealed that Hspa13 is specifically and highly expressed in PCs. These results suggest that Hspa13 is a novel PC-specific marker. In terms of its function, we found that the CD19cre-mediated conditional knock-out (cKO) of Hspa13 reduced the expression of Ebi3 and IL-10 in PCs. Ebi3 and IL-10 are important factors in IL-4‒secreting type 2 helper T cell (Th2) activation and differentiation. As expected, we found that the Hspa13 cKO reduced IL‒4-expressing follicular helper T (Tfh2) cells. Finally, the single-cell antigen receptor analysis demonstrated that the Hspa13 cKO reduced the Aicda-mediated antibody class-switching recombination (CSR) and somatic hypermutation (SHM) in germinal centers (GCs) B cells. Altogether, the single-cell atlas of splenocytes revealed a critical indirect role for the novel PC-specific marker Hspa13 in CSR and SHM in GC B cells by promoting Ebi3 and IL-10 expression in PCs to induce IL-4-expressing Tfh2 cells. Further exploration of Hspa13 expression and function will provide valuable clues for how to use Hspa13 in the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Bing Zhai
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China; Department of Geriatric Hematology, Chinese PLA General Hospital, Beijing 100853, China
| | - Xiaoling Liu
- Department of Dermatology, First Medical Centre of Chinese PLA General Hospital, Beijing 100853, China
| | - Yaqi Xu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Gaizhi Zhu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Shan Zhou
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Youdi He
- Department of Neurology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Xiaoqian Wang
- Staidson (Beijing) Biopharmaceuticals Co., Ltd, Beijing 100176, China
| | - Wenting Su
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China.
| | - Gencheng Han
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China.
| | - Renxi Wang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
16
|
Nellore A, Killian JT, Porrett PM. Memory B Cells in Pregnancy Sensitization. Front Immunol 2021; 12:688987. [PMID: 34276679 PMCID: PMC8278195 DOI: 10.3389/fimmu.2021.688987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/10/2021] [Indexed: 11/13/2022] Open
Abstract
Memory B cells play an important role in immunity to pathogens as these cells are poised to rapidly differentiate into antibody-secreting cells upon antigen re-encounter. Memory B cells also develop over the course of HLA-sensitization during pregnancy and transplantation. In this review, we discuss the potential contribution of memory B cells to pregnancy sensitization as well as the impact of these cells on transplant candidacy and outcomes. We start by summarizing how B cell subsets are altered in pregnancy and discuss what is known about HLA-specific B cell responses given our current understanding of fetal antigen availability in maternal secondary lymphoid tissues. We then review the molecular mechanisms governing the generation and maintenance of memory B cells during infection - including the role of T follicular helper cells - and discuss the experimental evidence for the development of these cells during pregnancy. Finally, we discuss how memory B cells impact access to transplantation and transplant outcomes for a range of transplant recipients.
Collapse
Affiliation(s)
- Anoma Nellore
- Department of Medicine, University of Alabama at Birmingham School of Medicine, Birmingham, AL, United States
| | - John T. Killian
- Department of Surgery, University of Alabama at Birmingham School of Medicine, Birmingham, AL, United States
| | - Paige M. Porrett
- Department of Surgery, University of Alabama at Birmingham School of Medicine, Birmingham, AL, United States
| |
Collapse
|
17
|
Xu H, Xu X, Cui G, Fang J, Chen W, Xue M, Jin R, Chen H, Zhang L, Hu Y. Secondary Hemophagocytic Lymphohistiocytosis With Epstein-Barr Virus-Associated Transformed Follicular Lymphoma: A Case Report and Literature Review. Front Oncol 2021; 11:681432. [PMID: 34249725 PMCID: PMC8267377 DOI: 10.3389/fonc.2021.681432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/10/2021] [Indexed: 11/13/2022] Open
Abstract
A 58-year-old male was admitted to our hospital due to lasting fever, progressive lymphadenopathy and bicytopenia, with a previously histological diagnosis of follicular lymphoma grade 3a with Epstein-Barr virus-encoded RNA positive one month ago. A second biopsy of axillary lymph node revealed concurrent diffuse large B-cell lymphoma with Epstein-Barr virus-encoded RNA positive. Another diagnosis of hemophagocytic lymphohistiocytosis secondary to Epstein-Barr virus positive diffuse large B-cell lymphoma was further concluded by clinical manifestation, laboratory test and atypical lymphocytes in peripheral-blood smear. After a pulse of steroid pre-phase treatment, the patient's clinical condition deteriorated and died in two weeks. The presence of Epstein-Barr virus infection in patients with follicular lymphoma is associated with more aggressive clinical course and increased risk of high-grade transformation. Hemophagocytic lymphohistiocytosis in response to Epstein-Barr virus infection or lymphoma remains fatal. Early diagnosis and initiation of treatment may improve the outcome.
Collapse
Affiliation(s)
- Huan Xu
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xia Xu
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guohui Cui
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Fang
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wanxin Chen
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mei Xue
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Runming Jin
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongbo Chen
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lu Zhang
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Hu
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
18
|
Elsner RA, Shlomchik MJ. Germinal Center and Extrafollicular B Cell Responses in Vaccination, Immunity, and Autoimmunity. Immunity 2021; 53:1136-1150. [PMID: 33326765 DOI: 10.1016/j.immuni.2020.11.006] [Citation(s) in RCA: 238] [Impact Index Per Article: 79.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/19/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023]
Abstract
Activated B cells participate in either extrafollicular (EF) or germinal center (GC) responses. Canonical responses are composed of a short wave of plasmablasts (PBs) arising from EF sites, followed by GC producing somatically mutated memory B cells (MBC) and long-lived plasma cells. However, somatic hypermutation (SHM) and affinity maturation can take place at both sites, and a substantial fraction of MBC are produced prior to GC formation. Infection responses range from GC responses that persist for months to persistent EF responses with dominant suppression of GCs. Here, we review the current understanding of the functional output of EF and GC responses and the molecular switches promoting them. We discuss the signals that regulate the magnitude and duration of these responses, and outline gaps in knowledge and important areas of inquiry. Understanding such molecular switches will be critical for vaccine development, interpretation of vaccine efficacy and the treatment for autoimmune diseases.
Collapse
Affiliation(s)
- Rebecca A Elsner
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15216, USA
| | - Mark J Shlomchik
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15216, USA.
| |
Collapse
|
19
|
Oppezzo P, Navarrete M, Chiorazzi N. AID in Chronic Lymphocytic Leukemia: Induction and Action During Disease Progression. Front Oncol 2021; 11:634383. [PMID: 34041018 PMCID: PMC8141630 DOI: 10.3389/fonc.2021.634383] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
The enzyme activation-induced cytidine deaminase (AID) initiates somatic hypermutation (SHM) and class switch recombination (CSR) of immunoglobulin (Ig) genes, critical actions for an effective adaptive immune response. However, in addition to the benefits generated by its physiological roles, AID is an etiological factor for the development of human and murine leukemias and lymphomas. This review highlights the pathological role of AID and the consequences of its actions on the development, progression, and therapeutic refractoriness of chronic lymphocytic leukemia (CLL) as a model disease for mature lymphoid malignancies. First, we summarize pertinent aspects of the expression and function of AID in normal B lymphocytes. Then, we assess putative causes for AID expression in leukemic cells emphasizing the role of an activated microenvironment. Thirdly, we discuss the role of AID in lymphomagenesis, in light of recent data obtained by NGS analyses on the genomic landscape of leukemia and lymphomas, concentrating on the frequency of AID signatures in these cancers and correlating previously described tumor-gene drivers with the presence of AID off-target mutations. Finally, we discuss how these changes could affect tumor suppressor and proto-oncogene targets and how they could be associated with disease progression. Collectively, we hope that these sections will help to better understand the complex paradox between the physiological role of AID in adaptive immunity and its potential causative activity in B-cell malignancies.
Collapse
Affiliation(s)
- Pablo Oppezzo
- Research Laboratory on Chronic Lymphocytic Leukemia, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | | | - Nicholas Chiorazzi
- The Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, New York, NY, United States
| |
Collapse
|
20
|
The dangers of déjà vu: memory B cells as the cells of origin of ABC-DLBCLs. Blood 2021; 136:2263-2274. [PMID: 32932517 DOI: 10.1182/blood.2020005857] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 08/27/2020] [Indexed: 02/06/2023] Open
Abstract
Activated B-cell (ABC)-diffuse large B-cell lymphomas (DLBCLs) are clinically aggressive and phenotypically complex malignancies, whose transformation mechanisms remain unclear. Partially differentiated antigen-secreting cells (plasmablasts) have long been regarded as cells-of-origin for these tumors, despite lack of definitive experimental evidence. Recent DLBCL reclassification based on mutational landscapes identified MCD/C5 tumors as specific ABC-DLBCLs with unfavorable clinical outcome, activating mutations in the signaling adaptors MYD88 and CD79B, and immune evasion through mutation of antigen-presenting genes. MCD/C5s manifest prominent extranodal dissemination and similarities with primary extranodal lymphomas (PENLs). In this regard, recent studies on TBL1XR1, a gene recurrently mutated in MCD/C5s and PENLs, suggest that aberrant memory B cells (MBs), and not plasmablasts, are the true cells-of-origin for these tumors. Moreover, transcriptional and phenotypic profiling suggests that MCD/C5s, as a class, represent bona fide MB tumors. Based on emerging findings we propose herein a generalized stepwise model for MCD/C5 and PENLs pathogenesis, whereby acquisition of founder mutations in activated B cells favors the development of aberrant MBs prone to avoid plasmacytic differentiation on recall and undergo systemic dissemination. Cyclic reactivation of these MBs through persistent antigen exposure favors their clonal expansion and accumulation of mutations, which further facilitate their activation. As a result, MB-like clonal precursors become trapped in an oscillatory state of semipermanent activation and phenotypic sway that facilitates ulterior transformation and accounts for the extranodal clinical presentation and biology of these tumors. In addition, we discuss diagnostic and therapeutic implications of a MB cell-of-origin for these lymphomas.
Collapse
|
21
|
Delgado-Benito V, Berruezo-Llacuna M, Altwasser R, Winkler W, Sundaravinayagam D, Balasubramanian S, Caganova M, Graf R, Rahjouei A, Henke MT, Driesner M, Keller L, Prigione A, Janz M, Akalin A, Di Virgilio M. PDGFA-associated protein 1 protects mature B lymphocytes from stress-induced cell death and promotes antibody gene diversification. J Exp Med 2021; 217:151913. [PMID: 32609329 PMCID: PMC7537392 DOI: 10.1084/jem.20200137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/20/2020] [Accepted: 05/19/2020] [Indexed: 12/13/2022] Open
Abstract
The establishment of protective humoral immunity is dependent on the ability of mature B cells to undergo antibody gene diversification while adjusting to the physiological stressors induced by activation with the antigen. Mature B cells diversify their antibody genes by class switch recombination (CSR) and somatic hypermutation (SHM), which are both dependent on efficient induction of activation-induced cytidine deaminase (AID). Here, we identified PDGFA-associated protein 1 (Pdap1) as an essential regulator of cellular homeostasis in mature B cells. Pdap1 deficiency leads to sustained expression of the integrated stress response (ISR) effector activating transcription factor 4 (Atf4) and induction of the ISR transcriptional program, increased cell death, and defective AID expression. As a consequence, loss of Pdap1 reduces germinal center B cell formation and impairs CSR and SHM. Thus, Pdap1 protects mature B cells against chronic ISR activation and ensures efficient antibody diversification by promoting their survival and optimal function.
Collapse
Affiliation(s)
- Verónica Delgado-Benito
- Laboratory of Genome Diversification and Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Maria Berruezo-Llacuna
- Laboratory of Genome Diversification and Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Robert Altwasser
- Laboratory of Genome Diversification and Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Bioinformatics and Omics Data Science Technology Platform, Berlin Institute of Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Wiebke Winkler
- Laboratory of Immune Regulation and Cancer, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Laboratory of Biology of Malignant Lymphomas, Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité, University Medicine, Berlin, Germany
| | - Devakumar Sundaravinayagam
- Laboratory of Genome Diversification and Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Sandhya Balasubramanian
- Laboratory of Genome Diversification and Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Marieta Caganova
- Laboratory of Immune Regulation and Cancer, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Robin Graf
- Laboratory of Immune Regulation and Cancer, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Ali Rahjouei
- Laboratory of Genome Diversification and Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Marie-Thérèse Henke
- Laboratory of Mitochondria and Cell Fate Reprogramming, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Madlen Driesner
- Laboratory of Genome Diversification and Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Lisa Keller
- Laboratory of Genome Diversification and Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Alessandro Prigione
- Laboratory of Mitochondria and Cell Fate Reprogramming, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital, Heinrich Heine University, Düsseldorf, Germany
| | - Martin Janz
- Laboratory of Biology of Malignant Lymphomas, Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité, University Medicine, Berlin, Germany
| | - Altuna Akalin
- Bioinformatics and Omics Data Science Technology Platform, Berlin Institute of Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Michela Di Virgilio
- Laboratory of Genome Diversification and Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
22
|
The Role of APOBECs in Viral Replication. Microorganisms 2020; 8:microorganisms8121899. [PMID: 33266042 PMCID: PMC7760323 DOI: 10.3390/microorganisms8121899] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/14/2022] Open
Abstract
Apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like (APOBEC) proteins are a diverse and evolutionarily conserved family of cytidine deaminases that provide a variety of functions from tissue-specific gene expression and immunoglobulin diversity to control of viruses and retrotransposons. APOBEC family expansion has been documented among mammalian species, suggesting a powerful selection for their activity. Enzymes with a duplicated zinc-binding domain often have catalytically active and inactive domains, yet both have antiviral function. Although APOBEC antiviral function was discovered through hypermutation of HIV-1 genomes lacking an active Vif protein, much evidence indicates that APOBECs also inhibit virus replication through mechanisms other than mutagenesis. Multiple steps of the viral replication cycle may be affected, although nucleic acid replication is a primary target. Packaging of APOBECs into virions was first noted with HIV-1, yet is not a prerequisite for viral inhibition. APOBEC antagonism may occur in viral producer and recipient cells. Signatures of APOBEC activity include G-to-A and C-to-T mutations in a particular sequence context. The importance of APOBEC activity for viral inhibition is reflected in the identification of numerous viral factors, including HIV-1 Vif, which are dedicated to antagonism of these deaminases. Such viral antagonists often are only partially successful, leading to APOBEC selection for viral variants that enhance replication or avoid immune elimination.
Collapse
|
23
|
Pathogenetic Mechanisms Implicated in Sjögren's Syndrome Lymphomagenesis: A Review of the Literature. J Clin Med 2020; 9:jcm9123794. [PMID: 33255258 PMCID: PMC7759999 DOI: 10.3390/jcm9123794] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/16/2020] [Accepted: 11/21/2020] [Indexed: 02/08/2023] Open
Abstract
Sjögren's Syndrome (SS) is a chronic autoimmune disorder characterized by focal mononuclear cell infiltrates that surround the ducts of the exocrine glands, impairing the function of their secretory units. Compared to other autoimmune disorders, SS is associated with a notably high incidence of non-Hodgkin lymphoma (NHL) and more frequently mucosa associated lymphoid tissue (MALT) lymphoma, leading to increased morbidity and mortality rates. High risk features of lymphoma development include systemic extraepithelial manifestations, low serum levels of complement component C4 and mixed type II cryoglobulinemia. The discrimination between reactive and neoplastic lymphoepithelial lesion (LEL) is challenging, probably reflecting a continuum in the evolution from purely inflammatory lymphoid infiltration to the clonal neoplastic evolution. Early lesions display a predominance of activated T cells, while B cells prevail in severe histologic lesions. This strong B cell infiltration is not only a morphologic phenomenon, but it is also progressively associated with the presence of ectopic germinal centers (GCs). Ectopic formation of GCs in SS represents a complex process regulated by an array of cytokines, adhesion molecules and chemokines. Chronic antigenic stimulation is the major driver of specific B cell proliferation and increases the frequency of their transformation in the ectopic GCs and marginal zone (MZ) equivalents. B cells expressing cell surface rheumatoid factor (RF) are frequently detected in the salivary glands, suggesting that clonal expansion might arise from antigen selection of RF-expressing B cells. Abnormal stimulation and incomplete control mechanisms within ectopic lymphoid structures predispose RF MZ like cells to lymphoma development. Immunoglobulin recombination, somatic mutation and isotype switching during B cell development are events that may increase the translocation of oncogenes to immunoglobulin loci or tumor suppressor gene inactivation, leading to monoclonal B cell proliferation and lymphoma development. Concerning chronic antigenic stimulation, conclusive data is so far lacking. However immune complexes containing DNA or RNA are the most likely candidates. Whether additional molecular oncogenic events contribute to the malignant overgrowth remains to be proved.
Collapse
|
24
|
Kampa F, Mitteldorf C. A review of CD30 expression in cutaneous neoplasms. J Cutan Pathol 2020; 48:495-510. [PMID: 33047376 DOI: 10.1111/cup.13894] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/26/2020] [Accepted: 10/05/2020] [Indexed: 01/05/2023]
Abstract
BACKGROUND The surface protein CD30 is a therapeutic target of monoclonal antibody therapy. Knowledge of the frequency of CD30 expression and its prognostic relevance is therefore interesting, not only in lymphoproliferative disorders (LPD) but also in solid tumors of the skin. METHODS A review was completed in PubMed for all published reports of CD30 expression in cutaneous lymphomas, mastocytosis, epithelial tumors and sarcomas from 1982 to April 2019. Only accessible articles in English and German were considered. Entities with an expected CD30 expression, such as CD30-positive LPD, were not evaluated. RESULTS The electronic research identified 1091 articles and a further 34 articles were obtained from manual bibliographic reference. Overall 91 articles were included that examined CD30 expression in various entities of cutaneous neoplasms and matched the inclusion criteria. CONCLUSION Apart from cutaneous CD30-positive LPD, the best-studied group for CD30 expression was mycosis fungoides (MF). CD30 positivity was found in 32% of classical (patch and plaque stage) and in 59.4% cases of transformed MF. CD30 was also frequently expressed in cutaneous mastocytosis (96.5%). In solid tumors, some single reports describe CD30 expression by tumor cells, but CD30-reactive lymphocytes were frequently observed in the tumor microenvironment (TME), especially in keratoacanthoma (KA).
Collapse
Affiliation(s)
- Franziska Kampa
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, Göttingen, Germany
| | - Christina Mitteldorf
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
25
|
Giltiay NV, Giordano D, Clark EA. The Plasticity of Newly Formed B Cells. THE JOURNAL OF IMMUNOLOGY 2020; 203:3095-3104. [PMID: 31818922 DOI: 10.4049/jimmunol.1900928] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 09/26/2019] [Indexed: 12/21/2022]
Abstract
Newly formed B cells (NF-B cells) that emerge from the bone marrow to the periphery have often been referred to as immature or transitional B cells. However, NF-B cells have several striking characteristics, including a distinct BCR repertoire, high expression of AID, high sensitivity to PAMPs, and the ability to produce cytokines. A number of findings do not support their designation as immature because NF-B cells have the potential to become Ab-producing cells and to undergo class-switch recombination. In this review, we provide a fresh perspective on NF-B cell functions and describe some of the signals driving their activation. We summarize growing evidence supporting a role for NF-B cells in protection against infections and as a potential source of autoantibody-producing cells in autoimmune diseases such as systemic lupus erythematosus.
Collapse
Affiliation(s)
- Natalia V Giltiay
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA 98109; and
| | - Daniela Giordano
- Department of Immunology, University of Washington, Seattle, WA 98109
| | - Edward A Clark
- Department of Immunology, University of Washington, Seattle, WA 98109
| |
Collapse
|
26
|
Abstract
B cells are an essential component of the adaptive immune system. Since the late 1990s biologic drugs targeting B cells have been used to treat not only lymphoproliferative diseases of B-cell lineage cells but also autoimmune diseases, in particular, those associated with autoantibody production. Although some of these agents are relatively safe, they have been associated with serious infections including opportunistic infections. To what extent the infectious complications reported are directly related to the use of the B-cell targeting agent or to previous and/or concomitant immunosuppressive therapies and/or the specific disease being treated is often difficult to ascertain.
Collapse
Affiliation(s)
- Maria J Leandro
- Centre for Rheumatology and Bloomsbury Rheumatology Unit, Division of Medicine, University College London, Rayne Building, 5 University Street, London WC1E 6JF, UK.
| |
Collapse
|
27
|
Steiniger BS, Raimer L, Ecke A, Stuck BA, Cetin Y. Plasma cells, plasmablasts, and AID +/CD30 + B lymphoblasts inside and outside germinal centres: details of the basal light zone and the outer zone in human palatine tonsils. Histochem Cell Biol 2020; 154:55-75. [PMID: 32172287 PMCID: PMC7343761 DOI: 10.1007/s00418-020-01861-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2020] [Indexed: 12/31/2022]
Abstract
Plasma cells (PCs) in human palatine tonsils are predominantly located in the germinal centres (GCs), in the subepithelial space and near the deep connective tissue septa surrounding each crypt. We analysed the location, phenotype, and proliferation of GC PCs by immunohistology comparing them to PCs in the other two locations. Most PCs in GCs were strongly positive for CD38, CD138, CD27, IRF4, and intracellular (ic) IgG. They often accumulated in the basal light zone, but could also be found scattered in the entire light zone. In addition, rows of PCs occurred at the surface of the GC bordering the mantle zone, i.e., in the outer zone, and at the surface of the dark zone. The latter cells were often continuous with PCs in the extrafollicular area. The vast majority of GC PCs were negative for Ki-67. Only a few Ki-67+ plasmablasts, predominantly icIgG+ or icIgM+, were found inside GCs. In certain GCs PCs accumulated around capillaries and the adjacent perikarya of follicular dendritic cells (FDCs). Newly formed PCs might migrate from the basal to the superficial part of the light zone and then back to the dark zone surface to leave the GC. This guarantees an even distribution of secreted Ig for exchange with immune complexes on FDCs. The surface of the dark zone may also be an exit site for Ki-67+CD30+ B lymphoblasts, which seed perifollicular and extrafollicular sites. We speculate that these cells tend to downmodulate CD20 and activation-induced deaminase and further up-regulate CD30 when developing into pre-plasmablasts.
Collapse
Affiliation(s)
- Birte S Steiniger
- Institute of Anatomy and Cell Biology, University of Marburg, Robert-Koch-Str. 8, 35037, Marburg, Germany.
| | - Linda Raimer
- Institute of Anatomy and Cell Biology, University of Marburg, Robert-Koch-Str. 8, 35037, Marburg, Germany
| | - Anja Ecke
- Department of Otorhinolaryngology, University Hospital Marburg, University of Marburg, Marburg, Germany
| | - Boris A Stuck
- Department of Otorhinolaryngology, University Hospital Marburg, University of Marburg, Marburg, Germany
| | - Yalcin Cetin
- Institute of Anatomy and Cell Biology, University of Marburg, Robert-Koch-Str. 8, 35037, Marburg, Germany
| |
Collapse
|
28
|
Shlomchik MJ, Luo W, Weisel F. Linking signaling and selection in the germinal center. Immunol Rev 2019; 288:49-63. [PMID: 30874353 DOI: 10.1111/imr.12744] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 01/24/2019] [Indexed: 12/24/2022]
Abstract
Germinal centers (GC) are sites of rapid B-cell proliferation in response to certain types of immunization. They arise in about 1 week and can persist for several months. In GCs, B cells differentiate in a unique way and begin to undergo somatic mutation of the Ig V regions at a high rate. GC B cells (GCBC) thus undergo clonal diversification that can affect the affinity of the newly mutant B-cell receptor (BCR) for its driving antigen. Through processes that are still poorly understood, GCBC with higher affinity are selectively expanded while those with mutations that inactivate the BCR are lost. In addition, at various times during the extended GC reaction, some GCBC undergo differentiation into either long-lived memory B cells (MBC) or plasma cells. The cellular and molecular signals that govern these fate decisions are not well-understood, but are an active area of research in multiple laboratories. In this review, we cover both the history of this field and focus on recent work that has helped to elucidate the signals and molecules, such as key transcription factors, that coordinate both positive selection as well as differentiation of GCBC.
Collapse
Affiliation(s)
- Mark J Shlomchik
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Wei Luo
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Florian Weisel
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
29
|
Haberman AM, Gonzalez DG, Wong P, Zhang TT, Kerfoot SM. Germinal center B cell initiation, GC maturation, and the coevolution of its stromal cell niches. Immunol Rev 2019; 288:10-27. [PMID: 30874342 DOI: 10.1111/imr.12731] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 11/28/2018] [Indexed: 12/13/2022]
Abstract
Throughout the developing GC response, B cell survival and fate choices made at the single cell level are dependent on signals received largely through interactions with other cells, often with cognate T cells. The type of signals that a given B cell can encounter is dictated by its location within tissue microarchitecture. The focus of this review is on the initiation and evolution of the GC response at the earliest time points. Here, we review the key factors influencing the progression of GC B cell differentiation that are both stage and context dependent. Finally, we describe the coevolution of niches within and surrounding the GC that influence the outcome of the GC response.
Collapse
Affiliation(s)
- Ann M Haberman
- Department of Immunobiology, Yale University, New Haven, Connecticut.,Department of Laboratory Medicine, Yale University, New Haven, Connecticut
| | - David G Gonzalez
- Department of Immunobiology, Yale University, New Haven, Connecticut.,Department of Genetics, Yale University, New Haven, Connecticut
| | - Patrick Wong
- Department of Immunobiology, Yale University, New Haven, Connecticut
| | - Ting-Ting Zhang
- Department of Immunobiology, Yale University, New Haven, Connecticut
| | - Steven M Kerfoot
- Department of Microbiology and Immunology, Western University, London, ON, Canada
| |
Collapse
|
30
|
Chronic CD30 signaling in B cells results in lymphomagenesis by driving the expansion of plasmablasts and B1 cells. Blood 2019; 133:2597-2609. [PMID: 30962205 DOI: 10.1182/blood.2018880138] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 03/08/2019] [Indexed: 01/12/2023] Open
Abstract
CD30 is expressed on a variety of B-cell lymphomas, such as Hodgkin lymphoma, primary effusion lymphoma, and a diffuse large B-cell lymphoma subgroup. In normal tissues, CD30 is expressed on some activated B and T lymphocytes. However, the physiological function of CD30 signaling and its contribution to the generation of CD30+ lymphomas are still poorly understood. To gain a better understanding of CD30 signaling in B cells, we studied the expression of CD30 in different murine B-cell populations. We show that B1 cells expressed higher levels of CD30 than B2 cells and that CD30 was upregulated in IRF4+ plasmablasts (PBs). Furthermore, we generated and analyzed mice expressing a constitutively active CD30 receptor in B lymphocytes. These mice displayed an increase in B1 cells in the peritoneal cavity (PerC) and secondary lymphoid organs as well as increased numbers of plasma cells (PCs). TI-2 immunization resulted in a further expansion of B1 cells and PCs. We provide evidence that the expanded B1 population in the spleen included a fraction of PBs. CD30 signals seemed to enhance PC differentiation by increasing activation of NF-κB and promoting higher levels of phosphorylated STAT3 and STAT6 and nuclear IRF4. In addition, chronic CD30 signaling led to B-cell lymphomagenesis in aged mice. These lymphomas were localized in the spleen and PerC and had a B1-like/plasmablastic phenotype. We conclude that our mouse model mirrors chronic B-cell activation with increased numbers of CD30+ lymphocytes and provides experimental proof that chronic CD30 signaling increases the risk of B-cell lymphomagenesis.
Collapse
|
31
|
Activation-induced deaminase (AID) localizes to the nucleus in brief pulses. PLoS Genet 2019; 15:e1007968. [PMID: 30811383 PMCID: PMC6411215 DOI: 10.1371/journal.pgen.1007968] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 03/11/2019] [Accepted: 01/16/2019] [Indexed: 11/19/2022] Open
Abstract
Activation-induced deaminase (AID) converts C to U and 5-methyl-C to T. These mutagenic activities are critical to immunoglobulin (Ig) gene diversification and epigenetic reprogramming, but they must be tightly controlled to prevent compromising cell fitness. AID acts in the nucleus but localizes predominately to the cytoplasm. To address this apparent paradox, we have carried out time-lapse imaging of AID in single living B cells and fibroblasts. We demonstrate that AID enters the nucleus in brief (30 min) pulses, evident in about 10% of cells in the course of a single cell cycle (24 hr imaging). Pulses do not depend on AID catalytic activity, but they are coordinated with nuclear accumulation of P53. Pulsing may protect cells from pathologic consequences of excess exposure to AID, or enable AID to synchronize its activity with transcription of genes that are AID targets or with nuclear entry of factors that act at sites of AID-catalyzed DNA deamination to promote Ig gene diversification or epigenetic reprogramming.
Collapse
|
32
|
Zaprazna K, Reblova K, Svobodova V, Radova L, Bystry V, Baloun J, Durechova K, Tom N, Loja T, Buresova M, Stranska K, Oltova A, Doubek M, Atchison ML, Trbusek M, Malcikova J, Pospisilova S. Activation-induced deaminase and its splice variants associate with trisomy 12 in chronic lymphocytic leukemia. Ann Hematol 2018; 98:423-435. [PMID: 30368590 DOI: 10.1007/s00277-018-3520-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 10/09/2018] [Indexed: 11/26/2022]
Abstract
Activation-induced cytidine deaminase (AID) is a mutator enzyme essential for somatic hypermutation (SHM) and class switch recombination (CSR) during effective adaptive immune responses. Its aberrant expression and activity have been detected in lymphomas, leukemias, and solid tumors. In chronic lymphocytic leukemia (CLL) increased expression of alternatively spliced AID variants has been documented. We used real-time RT-PCR to quantify the expression of AID and its alternatively spliced transcripts (AIDΔE4a, AIDΔE4, AIDivs3, and AIDΔE3E4) in 149 CLL patients and correlated this expression to prognostic markers including recurrent chromosomal aberrations, the presence of complex karyotype, mutation status of the immunoglobulin heavy chain variable gene, and recurrent mutations. We report a previously unappreciated association between higher AID transcript levels and trisomy of chromosome 12. Functional analysis of AID splice variants revealed loss of their activity with respect to SHM, CSR, and induction of double-strand DNA breaks. In silico modeling provided insight into the molecular interactions and structural dynamics of wild-type AID and a shortened AID variant closely resembling AIDΔE4, confirming its loss-of-function phenotype.
Collapse
MESH Headings
- Aged
- Alternative Splicing
- Animals
- Chromosomes, Human, Pair 12/enzymology
- Chromosomes, Human, Pair 12/genetics
- Computer Simulation
- Cytidine Deaminase/biosynthesis
- Cytidine Deaminase/chemistry
- Cytidine Deaminase/genetics
- Female
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Neoplastic
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/enzymology
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Male
- Mice
- Mice, Knockout
- Middle Aged
- Models, Biological
- Molecular Dynamics Simulation
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/chemistry
- Neoplasm Proteins/genetics
- Trisomy/genetics
- Trisomy/pathology
Collapse
Affiliation(s)
- Kristina Zaprazna
- Central European Institute of Technology, Center of Molecular Medicine, Masaryk University, Kamenice 5/A35, 625 00, Brno, Czech Republic.
| | - Kamila Reblova
- Central European Institute of Technology, Center of Molecular Medicine, Masaryk University, Kamenice 5/A35, 625 00, Brno, Czech Republic
| | - Veronika Svobodova
- Central European Institute of Technology, Center of Molecular Medicine, Masaryk University, Kamenice 5/A35, 625 00, Brno, Czech Republic
| | - Lenka Radova
- Central European Institute of Technology, Center of Molecular Medicine, Masaryk University, Kamenice 5/A35, 625 00, Brno, Czech Republic
| | - Vojtech Bystry
- Central European Institute of Technology, Center of Molecular Medicine, Masaryk University, Kamenice 5/A35, 625 00, Brno, Czech Republic
| | - Jiri Baloun
- Central European Institute of Technology, Center of Molecular Medicine, Masaryk University, Kamenice 5/A35, 625 00, Brno, Czech Republic
| | - Kristina Durechova
- Department of Internal Medicine - Hematology and Oncology, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Nikola Tom
- Central European Institute of Technology, Center of Molecular Medicine, Masaryk University, Kamenice 5/A35, 625 00, Brno, Czech Republic
| | - Tomas Loja
- Central European Institute of Technology, Center of Molecular Medicine, Masaryk University, Kamenice 5/A35, 625 00, Brno, Czech Republic
| | - Martina Buresova
- Central European Institute of Technology, Center of Molecular Medicine, Masaryk University, Kamenice 5/A35, 625 00, Brno, Czech Republic
- Department of Internal Medicine - Hematology and Oncology, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Kamila Stranska
- Central European Institute of Technology, Center of Molecular Medicine, Masaryk University, Kamenice 5/A35, 625 00, Brno, Czech Republic
- Department of Internal Medicine - Hematology and Oncology, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Alexandra Oltova
- Department of Internal Medicine - Hematology and Oncology, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Michael Doubek
- Central European Institute of Technology, Center of Molecular Medicine, Masaryk University, Kamenice 5/A35, 625 00, Brno, Czech Republic
- Department of Internal Medicine - Hematology and Oncology, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Michael L Atchison
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Martin Trbusek
- Department of Internal Medicine - Hematology and Oncology, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Jitka Malcikova
- Central European Institute of Technology, Center of Molecular Medicine, Masaryk University, Kamenice 5/A35, 625 00, Brno, Czech Republic
- Department of Internal Medicine - Hematology and Oncology, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Sarka Pospisilova
- Central European Institute of Technology, Center of Molecular Medicine, Masaryk University, Kamenice 5/A35, 625 00, Brno, Czech Republic.
- Department of Internal Medicine - Hematology and Oncology, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic.
| |
Collapse
|
33
|
Yermanos AD, Dounas AK, Stadler T, Oxenius A, Reddy ST. Tracing Antibody Repertoire Evolution by Systems Phylogeny. Front Immunol 2018; 9:2149. [PMID: 30333820 PMCID: PMC6176079 DOI: 10.3389/fimmu.2018.02149] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/30/2018] [Indexed: 01/03/2023] Open
Abstract
Antibody evolution studies have been traditionally limited to either tracing a single clonal lineage (B cells derived from a single V-(D)-J recombination) over time or examining bulk functionality changes (e.g., tracing serum polyclonal antibody proteins). Studying a single B cell disregards the majority of the humoral immune response, whereas bulk functional studies lack the necessary resolution to analyze the co-existing clonal diversity. Recent advances in high-throughput sequencing (HTS) technologies and bioinformatics have made it possible to examine multiple co-evolving antibody monoclonal lineages within the context of a single repertoire. A plethora of accompanying methods and tools have been introduced in hopes of better understanding how pathogen presence dictates the global evolution of the antibody repertoire. Here, we provide a comprehensive summary of the tremendous progress of this newly emerging field of systems phylogeny of antibody responses. We present an overview encompassing the historical developments of repertoire phylogenetics, state-of-the-art tools, and an outlook on the future directions of this fast-advancing and promising field.
Collapse
Affiliation(s)
- Alexander Dimitri Yermanos
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- Department of Biology, Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Andreas Kevin Dounas
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Tanja Stadler
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Annette Oxenius
- Department of Biology, Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Sai T. Reddy
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| |
Collapse
|
34
|
Weniger MA, Tiacci E, Schneider S, Arnolds J, Rüschenbaum S, Duppach J, Seifert M, Döring C, Hansmann ML, Küppers R. Human CD30+ B cells represent a unique subset related to Hodgkin lymphoma cells. J Clin Invest 2018; 128:2996-3007. [PMID: 29889102 DOI: 10.1172/jci95993] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 04/17/2018] [Indexed: 01/05/2023] Open
Abstract
Very few B cells in germinal centers (GCs) and extrafollicular (EF) regions of lymph nodes express CD30. Their specific features and relationship to CD30-expressing Hodgkin and Reed/Sternberg (HRS) cells of Hodgkin lymphoma are unclear but highly relevant, because numerous patients with lymphoma are currently treated with an anti-CD30 immunotoxin. We performed a comprehensive analysis of human CD30+ B cells. Phenotypic and IgV gene analyses indicated that CD30+ GC B lymphocytes represent typical GC B cells, and that CD30+ EF B cells are mostly post-GC B cells. The transcriptomes of CD30+ GC and EF B cells largely overlapped, sharing a strong MYC signature, but were strikingly different from conventional GC B cells and memory B and plasma cells, respectively. CD30+ GC B cells represent MYC+ centrocytes redifferentiating into centroblasts; CD30+ EF B cells represent active, proliferating memory B cells. HRS cells shared typical transcriptome patterns with CD30+ B cells, suggesting that they originate from these lymphocytes or acquire their characteristic features during lymphomagenesis. By comparing HRS to normal CD30+ B cells we redefined aberrant and disease-specific features of HRS cells. A remarkable downregulation of genes regulating genomic stability and cytokinesis in HRS cells may explain their genomic instability and multinuclearity.
Collapse
Affiliation(s)
| | | | | | - Judith Arnolds
- Department of Otorhinolaryngology, University of Duisburg-Essen, Essen, Germany
| | | | | | - Marc Seifert
- Institute of Cell Biology (Cancer Research), and
| | - Claudia Döring
- Dr. Senckenberg Institute of Pathology, University of Frankfurt/Main, Medical School, Frankfurt, Germany
| | - Martin-Leo Hansmann
- Dr. Senckenberg Institute of Pathology, University of Frankfurt/Main, Medical School, Frankfurt, Germany.,Frankfurt Institute for Advanced Studies, Frankfurt, Germany
| | - Ralf Küppers
- Institute of Cell Biology (Cancer Research), and
| |
Collapse
|
35
|
Renu S, Dhakal S, Kim E, Goodman J, Lakshmanappa YS, Wannemuehler MJ, Narasimhan B, Boyaka PN, Renukaradhya GJ. Intranasal delivery of influenza antigen by nanoparticles, but not NKT-cell adjuvant differentially induces the expression of B-cell activation factors in mice and swine. Cell Immunol 2018; 329:27-30. [PMID: 29665972 DOI: 10.1016/j.cellimm.2018.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/06/2018] [Accepted: 04/10/2018] [Indexed: 10/17/2022]
Abstract
Intranasal vaccination of pigs with poly lactic-co-glycolic acid and polyanhydride nanoparticles delivered inactivated influenza virus provides cross-reactive T-cell response, but not antibody response, resulting in incomplete protection and no reduction in nasal virus shedding. Expression of BAFF and Th2 transcription factor GATA-3 were downregulated in lungs of pigs vaccinated with influenza nanovaccine, but in mice it upregulated the expression of BAFF and cytokine TGFβ in cervical lymph nodes. However, the intranasal iNKT cell adjuvant, α-Galctosylceramide upregulates the expression of BAFF in pig lungs. In conclusion, expression of BAFF is differentially regulated by intranasal nanovaccine and α-Galctosylceramide in pig respiratory tract.
Collapse
Affiliation(s)
- Sankar Renu
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center (OARDC), 1680 Madison Avenue, Wooster, OH 44691, USA; Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Santosh Dhakal
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center (OARDC), 1680 Madison Avenue, Wooster, OH 44691, USA; Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Eunsoo Kim
- The Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, 1900 Coffey Road, Columbus, OH 43210, USA
| | - Jonathan Goodman
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
| | - Yashavanth S Lakshmanappa
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center (OARDC), 1680 Madison Avenue, Wooster, OH 44691, USA; Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Michael J Wannemuehler
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011, USA
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
| | - Prosper N Boyaka
- The Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, 1900 Coffey Road, Columbus, OH 43210, USA
| | - Gourapura J Renukaradhya
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center (OARDC), 1680 Madison Avenue, Wooster, OH 44691, USA; Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
36
|
Maehara T, Mattoo H, Mahajan VS, Murphy SJ, Yuen GJ, Ishiguro N, Ohta M, Moriyama M, Saeki T, Yamamoto H, Yamauchi M, Daccache J, Kiyoshima T, Nakamura S, Stone JH, Pillai S. The expansion in lymphoid organs of IL-4 + BATF + T follicular helper cells is linked to IgG4 class switching in vivo. Life Sci Alliance 2018; 1. [PMID: 29984361 PMCID: PMC6034714 DOI: 10.26508/lsa.201800050] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Distinct T follicular helper (TFH) subsets that influence specific class-switching events are assumed to exist, but the accumulation of isotype-specific TFH subsets in secondary lymphoid organs (SLOs) and tertiary lymphoid organs has not been hitherto demonstrated. IL-4-expressing TFH cells are surprisingly sparse in human SLOs. In contrast, in IgG4-related disease (IgG4-RD), a disorder characterized by polarized Ig class switching, most TFH cells in tertiary and SLOs make IL-4. Human IL-4+ TFH cells do not express GATA-3 but express nuclear BATF, and the transcriptomes of IL-4-secreting TFH cells differ from both PD1hi TFH cells that do not secrete IL-4 and IL-4-secreting non-TFH cells. Unlike IgG4-RD, IL-4+ TFH cells are rarely found in tertiary lymphoid organs in Sjögren's syndrome, a disorder in which IgG4 is not elevated. The proportion of CD4+IL-4+BATF+ T cells and CD4+IL-4+CXCR5+ T cells in IgG4-RD tissues correlates tightly with tissue IgG4 plasma cell numbers and plasma IgG4 levels in patients but not with the total plasma levels of other isotypes. These data describe a disease-related TFH subpopulation in human tertiary lymphoid organs and SLOs that is linked to IgG4 class switching.
Collapse
Affiliation(s)
- Takashi Maehara
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Hamid Mattoo
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Vinay S Mahajan
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Samuel Jh Murphy
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Grace J Yuen
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Noriko Ishiguro
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Miho Ohta
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Masafumi Moriyama
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Takako Saeki
- Department of Internal Medicine, Nagaoka Red Cross Hospital, Nagaoka, Japan
| | - Hidetaka Yamamoto
- Division of Diagnostic Pathology, Kyushu University Hospital, Fukuoka, Japan.,Department of Anatomic Pathology, Kyushu University, Fukuoka, Japan
| | - Masaki Yamauchi
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Joe Daccache
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tamotsu Kiyoshima
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Seiji Nakamura
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - John H Stone
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Shiv Pillai
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
37
|
Seishima N, Kondo S, Wakae K, Wakisaka N, Kobayashi E, Kano M, Moriyama-Kita M, Nakanishi Y, Endo K, Imoto T, Ishikawa K, Sugimoto H, Hatano M, Ueno T, Koura M, Kitamura K, Muramatsu M, Yoshizaki T. Expression and subcellular localisation of AID and APOBEC3 in adenoid and palatine tonsils. Sci Rep 2018; 8:918. [PMID: 29343743 PMCID: PMC5772672 DOI: 10.1038/s41598-017-18732-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 12/15/2017] [Indexed: 11/08/2022] Open
Abstract
Activation-induced cytidine deaminase (AID) and apolipoprotein B mRNA-editing catalytic polypeptide 3 (A3) family are cytidine deaminases that play critical roles in B-cell maturation, antiviral immunity and carcinogenesis. Adenoids and palatine tonsils are secondary lymphoid immune organs, in which AID and A3s are thought to have several physiological or pathological roles. However, the expression of AID or A3s in these organs has not been investigated. Therefore, we investigated the expression profiles of AID and A3s, using 67 samples of adenoids and palatine tonsils from patients, with reverse transcription quantitative polymerase chain reaction (RT-qPCR) and immunohistochemical analyses. AID and A3s expression levels in the adenoids and the palatine tonsils of the same individual significantly correlated with each other. Of note, AID expression level in the adenoids negatively correlated with the age (r = -0.373, P = 0.003). The younger group with adenoid vegetation and tonsillar hypertrophy showed more abundant AID expression than the older group with recurrent tonsillitis and peritonsillar abscesses (P = 0.026). Moreover, immunohistochemical analysis revealed the distribution of AID and A3s in the epithelial cells as well as germinal centres. The localisation of AID expression and its relation to age may contribute to adenoid vegetation and inflammation.
Collapse
Affiliation(s)
- Noriko Seishima
- Division of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Satoru Kondo
- Division of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan.
| | - Kousho Wakae
- Department of Molecular Genetics, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Naohiro Wakisaka
- Division of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Eiji Kobayashi
- Division of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Makoto Kano
- Division of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Makiko Moriyama-Kita
- Division of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Yosuke Nakanishi
- Division of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Kazuhira Endo
- Division of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Tomoko Imoto
- Division of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Kazuya Ishikawa
- Division of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Hisashi Sugimoto
- Division of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Miyako Hatano
- Division of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Takayoshi Ueno
- Division of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Miki Koura
- Department of Molecular Genetics, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Koichi Kitamura
- Department of Molecular Genetics, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Masamichi Muramatsu
- Department of Molecular Genetics, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Tomokazu Yoshizaki
- Division of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| |
Collapse
|
38
|
Arima H, Fujimoto M, Nishikori M, Kitano T, Kishimoto W, Hishizawa M, Kondo T, Yamashita K, Hirata M, Haga H, Takaori-Kondo A. Prognostic impact of activation-induced cytidine deaminase expression for patients with diffuse large B-cell lymphoma. Leuk Lymphoma 2017; 59:2085-2095. [DOI: 10.1080/10428194.2017.1410884] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Hiroshi Arima
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masakazu Fujimoto
- Department of Diagnostic Pathology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Momoko Nishikori
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toshiyuki Kitano
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Wataru Kishimoto
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masakatsu Hishizawa
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tadakazu Kondo
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kouhei Yamashita
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masahiro Hirata
- Department of Diagnostic Pathology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hironori Haga
- Department of Diagnostic Pathology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akifumi Takaori-Kondo
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
39
|
van der Weyden CA, Pileri SA, Feldman AL, Whisstock J, Prince HM. Understanding CD30 biology and therapeutic targeting: a historical perspective providing insight into future directions. Blood Cancer J 2017; 7:e603. [PMID: 28885612 PMCID: PMC5709754 DOI: 10.1038/bcj.2017.85] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/17/2017] [Accepted: 07/20/2017] [Indexed: 12/12/2022] Open
Abstract
CD30 is a member of the tumor necrosis factor receptor superfamily. It is characteristically expressed in certain hematopoietic malignancies, including anaplastic large cell lymphoma and Hodgkin lymphoma, among others. The variable expression of CD30 on both normal and malignant lymphoid cells has focused research efforts on understanding the pathogenesis of CD30 upregulation, its contribution to lymphomagenesis through anti-apoptotic mechanisms, and its effect on cell survival. Given the restriction of CD30 to certain tumor types, the logical extension of this has been to attempt to exploit it as a therapeutic target. The efficacy of naked anti-CD30 antibodies in practice was, however, modest. Moreover, combinations with bacterial toxins and radioimmunoconjugates have also had limited success. The development of the antibody-drug compound brentuximab vedotin (BV), however, has rejuvenated interest in CD30 as a tumor target. Phase I and II clinical trials in Hodgkin lymphoma, peripheral T-cell lymphoma, cutaneous T cell lymphoma, and even CD30-expressing B-cell lymphomas, have shown the compound is well tolerated, but more importantly, able to deliver meaningful disease control even in patients with multiply relapsed or refractory disease. FDA approval has been granted for its use in relapsed Hodgkin lymphoma and systemic anaplastic large cell lymphoma. A recent phase III trial of BV in cutaneous T-cell lymphoma has confirmed its superiority to standard of care therapies. In this manuscript, we explore the history of CD30 as a tumor marker and as a therapeutic target, both in the laboratory and in the clinic, with a view to understanding future avenues for further study.
Collapse
Affiliation(s)
- C A van der Weyden
- Department of Haematology, Peter McCallum Cancer Centre, Melbourne, Victoria, Australia
| | - S A Pileri
- Haematopathology Unit, European Institute of Oncology, Milan, Italy
- Bologna University School of Medicine, Bologna, Italy
| | - A L Feldman
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - J Whisstock
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
| | - H M Prince
- Department of Haematology, Peter McCallum Cancer Centre, Melbourne, Victoria, Australia
- Epworth Healthcare, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
40
|
Behdani E, Bakhtiarizadeh MR. Construction of an integrated gene regulatory network link to stress-related immune system in cattle. Genetica 2017; 145:441-454. [PMID: 28825201 DOI: 10.1007/s10709-017-9980-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 08/14/2017] [Indexed: 01/01/2023]
Abstract
The immune system is an important biological system that is negatively impacted by stress. This study constructed an integrated regulatory network to enhance our understanding of the regulatory gene network used in the stress-related immune system. Module inference was used to construct modules of co-expressed genes with bovine leukocyte RNA-Seq data. Transcription factors (TFs) were then assigned to these modules using Lemon-Tree algorithms. In addition, the TFs assigned to each module were confirmed using the promoter analysis and protein-protein interactions data. Therefore, our integrated method identified three TFs which include one TF that is previously known to be involved in immune response (MYBL2) and two TFs (E2F8 and FOXS1) that had not been recognized previously and were identified for the first time in this study as novel regulatory candidates in immune response. This study provides valuable insights on the regulatory programs of genes involved in the stress-related immune system.
Collapse
Affiliation(s)
- Elham Behdani
- Department of Animal Sciences, College of Agriculture and Natural Resources, Ramin University, Khozestan, Iran
| | | |
Collapse
|
41
|
Bolognesi MM, Manzoni M, Scalia CR, Zannella S, Bosisio FM, Faretta M, Cattoretti G. Multiplex Staining by Sequential Immunostaining and Antibody Removal on Routine Tissue Sections. J Histochem Cytochem 2017; 65:431-444. [PMID: 28692376 PMCID: PMC5533273 DOI: 10.1369/0022155417719419] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Multiplexing, labeling for multiple immunostains in the very same cell or tissue section in situ, has raised considerable interest. The methods proposed include the use of labeled primary antibodies, spectral separation of fluorochromes, bleaching of the fluorophores or chromogens, blocking of previous antibody layers, all in various combinations. The major obstacles to the diffusion of this technique are high costs in custom antibodies and instruments, low throughput, and scarcity of specialized skills or facilities. We have validated a method based on common primary and secondary antibodies and diffusely available fluorescent image scanners. It entails rounds of four-color indirect immunofluorescence, image acquisition, and removal (stripping) of the antibodies, before another stain is applied. The images are digitally registered and the autofluorescence is subtracted. Removal of antibodies is accomplished by disulfide cleavage and a detergent or by a chaotropic salt treatment, this latter followed by antigen refolding. More than 30 different antibody stains can be applied to one single section from routinely fixed and embedded tissue. This method requires a modest investment in hardware and materials and uses freeware image analysis software. Multiplexing on routine tissue sections is a high throughput tool for in situ characterization of neoplastic, reactive, inflammatory, and normal cells.
Collapse
Affiliation(s)
- Maddalena Maria Bolognesi
- Dipartimento di Medicina e Chirurgia, Universitá degli Studi di Milano-Bicocca, Monza, Italy (MMB, MM, CRS, SZ, FMB, GC)
| | - Marco Manzoni
- Dipartimento di Medicina e Chirurgia, Universitá degli Studi di Milano-Bicocca, Monza, Italy (MMB, MM, CRS, SZ, FMB, GC)
| | - Carla Rossana Scalia
- Dipartimento di Medicina e Chirurgia, Universitá degli Studi di Milano-Bicocca, Monza, Italy (MMB, MM, CRS, SZ, FMB, GC)
| | - Stefano Zannella
- Dipartimento di Medicina e Chirurgia, Universitá degli Studi di Milano-Bicocca, Monza, Italy (MMB, MM, CRS, SZ, FMB, GC)
| | - Francesca Maria Bosisio
- Dipartimento di Medicina e Chirurgia, Universitá degli Studi di Milano-Bicocca, Monza, Italy (MMB, MM, CRS, SZ, FMB, GC).,Laboratory of Translational Cell and Tissue Research, KU Leuven, Leuven, Belgium (FMB)
| | - Mario Faretta
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy (MF)
| | - Giorgio Cattoretti
- Dipartimento di Medicina e Chirurgia, Universitá degli Studi di Milano-Bicocca, Monza, Italy (MMB, MM, CRS, SZ, FMB, GC).,Department of Pathology, Azienda Socio-Sanitaria Territoriale Monza, Monza, Italy (GC)
| |
Collapse
|
42
|
Kikuchi K, Inoue H, Miyazaki Y, Ide F, Kojima M, Kusama K. Epstein-Barr virus (EBV)-associated epithelial and non-epithelial lesions of the oral cavity. JAPANESE DENTAL SCIENCE REVIEW 2017; 53:95-109. [PMID: 28725300 PMCID: PMC5501733 DOI: 10.1016/j.jdsr.2017.01.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 12/28/2016] [Accepted: 01/31/2017] [Indexed: 12/12/2022] Open
Abstract
Epstein–Barr virus (EBV) is known to be associated with the development of malignant lymphoma and lymphoproliferative disorders (LPDs) in immunocompromised patients. EBV, a B-lymphotropic gamma-herpesvirus, causes infectious mononucleosis and oral hairy leukoplakia, as well as various pathological types of lymphoid malignancy. Furthermore, EBV is associated with epithelial malignancies such as nasopharyngeal carcinoma (NPC), salivary gland tumor, gastric carcinoma and breast carcinoma. In terms of oral disease, there have been several reports of EBV-related oral squamous cell carcinoma (OSCC) worldwide. However, the role of EBV in tumorigenesis of human oral epithelial or lymphoid tissue is unclear. This review summarizes EBV-related epithelial and non-epithelial tumors or tumor-like lesions of the oral cavity. In addition, we describe EBV latent genes and their expression in normal epithelium, inflamed gingiva, epithelial dysplasia and SCC, as well as considering LPDs (MTX- and age-related) and DLBCLs of the oral cavity.
Collapse
Affiliation(s)
- Kentaro Kikuchi
- Division of Pathology, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283, Japan
| | - Harumi Inoue
- Division of Pathology, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283, Japan
| | - Yuji Miyazaki
- Division of Pathology, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283, Japan
| | - Fumio Ide
- Division of Pathology, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283, Japan
| | - Masaru Kojima
- Department of Anatomic and Diagnostic Pathology, Dokkyo Medical University School of Medicine, 880 Oaza-kitakobayashi, Mibu-machi, Shimotsuga-gun, Tochigi 321-0293, Japan
| | - Kaoru Kusama
- Division of Pathology, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283, Japan
| |
Collapse
|
43
|
Methot S, Di Noia J. Molecular Mechanisms of Somatic Hypermutation and Class Switch Recombination. Adv Immunol 2017; 133:37-87. [DOI: 10.1016/bs.ai.2016.11.002] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
44
|
Abstract
Germinal centers are short-lived microanatomical compartments with essential roles in adaptive immunity. These lymphoid structures can be identified in secondary lymphoid organs using both flow cytometry and immunohistological analyses, but only the latter provides useful architectural and spatial information. Here we describe how to use immunofluorescence and immunohistochemistry with specific antibodies to precisely highlight the cellular and architectural features of germinal centers, both in human and mouse secondary lymphoid organs, and to study their normal development and disturbance in disease.
Collapse
Affiliation(s)
- David Dominguez-Sola
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, Box 1044A, New York, NY, 10029, USA.
- The Tisch Cancer Institute & Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Giorgio Cattoretti
- Dipartimento di Medicina e Chirurgia, Universitá degli Studi di Milano-Bicocca (UNIMIB), Via Cadore 48, 20900, Monza, Italy.
- Anatomia Patologica, Azienda Ospedaliera San Gerardo, Via Pergolesi 33, 20900, Monza, Italy.
| |
Collapse
|
45
|
Wilmore JR, Maue AC, Rochford R. Plasmodium chabaudi infection induces AID expression in transitional and marginal zone B cells. IMMUNITY INFLAMMATION AND DISEASE 2016; 4:497-505. [PMID: 27980783 PMCID: PMC5134720 DOI: 10.1002/iid3.134] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 08/31/2016] [Accepted: 09/30/2016] [Indexed: 11/25/2022]
Abstract
Introduction Endemic Burkitt's lymphoma (eBL) is associated with Epstein–Barr virus and repeated malaria infections. A defining feature of eBL is the translocation of the c‐myc oncogene to the control of the immunoglobulin promoter. Activation‐induced cytidine deaminase (AID) has been shown to be critical for this translocation. Malaria infection induces AID in germinal center B cells, but whether malaria infection more broadly affects AID activation in extrafollicular B cells is unknown. Methods We either stimulated purified B cells from AID‐green fluorescence protein (GFP) reporter mice or infected AID‐GFP mice with Plasmodium chabaudi, AID fluorescence was monitored in B cell subsets by flow cytometry. Results In vitro analysis of B cells from these mice revealed that CpG (a Toll‐like receptor 9 ligand) was a potent inducer of AID in both mature and immature B cell subsets. Infection of AID‐GFP mice with Plasmodium chabaudi demonstrated that AID expression occurs in transitional and marginal zone B cells during acute malaria infection. Transitional B cells were also capable of differentiating into antibody secreting cells when stimulated in vitro with CpG when isolated from a P. chabaudi‐infected mouse. Conclusions These data suggest that P. chabaudi is capable of inducing AID expression in B cell subsets that do not participate in the germinal center reaction, suggesting an alternative role for malaria in the etiology of eBL.
Collapse
Affiliation(s)
- Joel R Wilmore
- Department of Microbiology and Immunology SUNY Upstate Medical University Syracuse New York USA
| | - Alexander C Maue
- Department of Microbiology and Immunology SUNY Upstate Medical University Syracuse New York USA
| | - Rosemary Rochford
- Department of Microbiology and ImmunologySUNY Upstate Medical UniversitySyracuseNew YorkUSA; Department of Immunology and MicrobiologyUniversity of ColoradoAuroraColoradoUSA
| |
Collapse
|
46
|
Abbott RK, Thayer M, Labuda J, Silva M, Philbrook P, Cain DW, Kojima H, Hatfield S, Sethumadhavan S, Ohta A, Reinherz EL, Kelsoe G, Sitkovsky M. Germinal Center Hypoxia Potentiates Immunoglobulin Class Switch Recombination. THE JOURNAL OF IMMUNOLOGY 2016; 197:4014-4020. [PMID: 27798169 DOI: 10.4049/jimmunol.1601401] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 09/16/2016] [Indexed: 11/19/2022]
Abstract
Germinal centers (GCs) are anatomic sites where B cells undergo secondary diversification to produce high-affinity, class-switched Abs. We hypothesized that proliferating B cells in GCs create a hypoxic microenvironment that governs their further differentiation. Using molecular markers, we found GCs to be predominantly hypoxic. Compared to normoxia (21% O2), hypoxic culture conditions (1% O2) in vitro accelerated class switching and plasma cell formation and enhanced expression of GL-7 on B and CD4+ T cells. Reversal of GC hypoxia in vivo by breathing 60% O2 during immunization resulted in reduced frequencies of GC B cells, T follicular helper cells, and plasmacytes, as well as lower expression of ICOS on T follicular helper cells. Importantly, this reversal of GC hypoxia decreased Ag-specific serum IgG1 and reduced the frequency of IgG1+ B cells within the Ag-specific GC. Taken together, these observations reveal a critical role for hypoxia in GC B cell differentiation.
Collapse
Affiliation(s)
- Robert K Abbott
- New England Inflammation and Tissue Protection Institute, Northeastern University, Boston, MA 02115;
| | - Molly Thayer
- New England Inflammation and Tissue Protection Institute, Northeastern University, Boston, MA 02115
| | - Jasmine Labuda
- New England Inflammation and Tissue Protection Institute, Northeastern University, Boston, MA 02115
| | - Murillo Silva
- New England Inflammation and Tissue Protection Institute, Northeastern University, Boston, MA 02115
| | - Phaethon Philbrook
- New England Inflammation and Tissue Protection Institute, Northeastern University, Boston, MA 02115
| | - Derek W Cain
- Department of Immunology and Human Vaccine Institute, Duke University, Durham, NC 27710
| | - Hidefumi Kojima
- Department of Immunology, Dokkyo Medical University School of Medicine, Tochigi 321-0293, Japan; and
| | - Stephen Hatfield
- New England Inflammation and Tissue Protection Institute, Northeastern University, Boston, MA 02115
| | - Shalini Sethumadhavan
- New England Inflammation and Tissue Protection Institute, Northeastern University, Boston, MA 02115
| | - Akio Ohta
- New England Inflammation and Tissue Protection Institute, Northeastern University, Boston, MA 02115
| | - Ellis L Reinherz
- Laboratory of Immunobiology, Department of Medical Oncology, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA 02115
| | - Garnett Kelsoe
- Department of Immunology and Human Vaccine Institute, Duke University, Durham, NC 27710
| | - Michail Sitkovsky
- New England Inflammation and Tissue Protection Institute, Northeastern University, Boston, MA 02115
| |
Collapse
|
47
|
Seifert M, Küppers R. Human memory B cells. Leukemia 2016; 30:2283-2292. [DOI: 10.1038/leu.2016.226] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 06/29/2016] [Accepted: 07/26/2016] [Indexed: 12/20/2022]
|
48
|
Naradikian MS, Hao Y, Cancro MP. Age-associated B cells: key mediators of both protective and autoreactive humoral responses. Immunol Rev 2015; 269:118-29. [DOI: 10.1111/imr.12380] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Martin S. Naradikian
- Department of Pathology and Laboratory Medicine; Perelman School of Medicine at the University of Pennsylvania; Philadelphia PA USA
| | - Yi Hao
- Department of Microbiology; Tongji Medical College; Huazhong University of Science and Technology, Wuhan, China
| | - Michael P. Cancro
- Department of Pathology and Laboratory Medicine; Perelman School of Medicine at the University of Pennsylvania; Philadelphia PA USA
| |
Collapse
|
49
|
Xu H, Chaudhri VK, Wu Z, Biliouris K, Dienger-Stambaugh K, Rochman Y, Singh H. Regulation of bifurcating B cell trajectories by mutual antagonism between transcription factors IRF4 and IRF8. Nat Immunol 2015; 16:1274-81. [DOI: 10.1038/ni.3287] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 08/31/2015] [Indexed: 12/17/2022]
|
50
|
The FOXO1 Transcription Factor Instructs the Germinal Center Dark Zone Program. Immunity 2015; 43:1064-74. [PMID: 26620759 DOI: 10.1016/j.immuni.2015.10.015] [Citation(s) in RCA: 183] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 08/30/2015] [Accepted: 10/22/2015] [Indexed: 12/18/2022]
Abstract
The pathways regulating formation of the germinal center (GC) dark zone (DZ) and light zone (LZ) are unknown. In this study we show that FOXO1 transcription factor expression was restricted to the GC DZ and was required for DZ formation, since its absence in mice led to the loss of DZ gene programs and the formation of LZ-only GCs. FOXO1-negative GC B cells displayed normal somatic hypermutation but defective affinity maturation and class switch recombination. The function of FOXO1 in sustaining the DZ program involved the trans-activation of the chemokine receptor CXCR4, and cooperation with the BCL6 transcription factor in the trans-repression of genes involved in immune activation, DNA repair, and plasma cell differentiation. These results also have implications for the role of FOXO1 in lymphomagenesis because they suggest that constitutive FOXO1 activity might be required for the oncogenic activity of deregulated BCL6 expression.
Collapse
|