1
|
Lang M, Krump C, Meshcheryakova A, Tam-Amersdorfer C, Schwarzenberger E, Passegger C, Connolly S, Mechtcheriakova D, Strobl H. Microenvironmental and cell intrinsic factors governing human cDC2 differentiation and monocyte reprogramming. Front Immunol 2023; 14:1216352. [PMID: 37539048 PMCID: PMC10395083 DOI: 10.3389/fimmu.2023.1216352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/14/2023] [Indexed: 08/05/2023] Open
Abstract
cDC2s occur abundantly in peripheral tissues and arise from circulating blood cDC2s. However, the factors governing cDC2 differentiation in tissues, especially under inflammatory conditions, remained poorly defined. We here found that psoriatic cDC2s express the efferocytosis receptor Axl and exhibit a bone morphogenetic protein (BMP) and p38MAPK signaling signature. BMP7, strongly expressed within the lesional psoriatic epidermis, cooperates with canonical TGF-β1 signaling for inducing Axl+cDC2s from blood cDC2s in vitro. Moreover, downstream induced p38MAPK promotes Axl+cDC2s at the expense of Axl+CD207+ Langerhans cell differentiation from blood cDC2s. BMP7 supplementation allowed to model cDC2 generation and their further differentiation into LCs from CD34+ hematopoietic progenitor cells in defined serum-free medium. Additionally, p38MAPK promoted the generation of another cDC2 subset lacking Axl but expressing the non-classical NFkB transcription factor RelB in vitro. Such RelB+cDC2s occurred predominantly at dermal sites in the inflamed skin. Finally, we found that cDC2s can be induced to acquire high levels of the monocyte lineage identity factor kruppel-like-factor-4 (KLF4) along with monocyte-derived DC and macrophage phenotypic characteristics in vitro. In conclusion, inflammatory and psoriatic epidermal signals instruct blood cDC2s to acquire phenotypic characteristics of several tissue-resident cell subsets.
Collapse
Affiliation(s)
- Magdalena Lang
- Division of Immunology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Corinna Krump
- Division of Immunology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Anastasia Meshcheryakova
- Insitute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Carmen Tam-Amersdorfer
- Division of Immunology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Elke Schwarzenberger
- Division of Immunology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Christina Passegger
- Division of Immunology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Sally Connolly
- Division of Immunology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Diana Mechtcheriakova
- Insitute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Herbert Strobl
- Division of Immunology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| |
Collapse
|
2
|
Wu L, Zhou F, Xin W, Li L, Liu L, Yin X, Xu X, Wang Y, Hua Z. MAGP2 induces tumor progression by enhancing uPAR-mediated cell proliferation. Cell Signal 2021; 91:110214. [PMID: 34915136 DOI: 10.1016/j.cellsig.2021.110214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/03/2021] [Accepted: 12/08/2021] [Indexed: 12/14/2022]
Abstract
Microfibril-associated glycoprotein 2 (MAGP2) plays an important role in regulating cell signaling and acts as a biomarker to predict the prognostic effect of tumor therapy. However, research on MAGP2 mostly focuses on its extracellular signal transmission features, and its potential intracellular function is rarely reported. Here, we reported that intracellular MAGP2 increased the stability of urokinase-type plasminogen activator receptor (uPAR) in the cell by direct interaction which inhibits the lysosomal-mediated degradation of uPAR. Furthermore, with the detection of protein content changes and proteomics analysis, we found that highly expressed MAGP2 promoted the proliferation of tumor cells through uPAR-mediated p38-NF-ĸB signaling axis activation, enhancement of DNA damage repair and reduction of cell stagnation in the S phase of the cell cycle. In the nude mouse xenograft model of colorectal cancer, the upregulation of MAGP2 in tumor cells significantly promoted tumor progression, while the downregulation of uPAR significantly attenuated tumor progression. These studies elucidate the role of MAGP2 inside the cell and provide a new explanation for why patients with higher MAGP2 expression in tumors are associated with a worse prognosis. In addition, we also determined a mechanism for the stable existence of uPAR in the cell, providing information for the development of tumor drugs targeting uPAR.
Collapse
Affiliation(s)
- Leyang Wu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Feng Zhou
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Wenjie Xin
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Lin Li
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Lina Liu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Xingpeng Yin
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Xuebo Xu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Yao Wang
- Division of Critical Care and Surgery, St. George Hospital, University of New South Wales, Sydney, NSW 2217, Australia
| | - Zichun Hua
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China; Changzhou High-Tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc., Changzhou 213164, Jiangsu, China; School of Biopharmacy, China Pharmaceutical University, Nanjing 210023, Jiangsu, China.
| |
Collapse
|
3
|
Liu X, Zhu R, Luo Y, Wang S, Zhao Y, Qiu Z, Zhang Y, Liu X, Yao X, Li X, Li W. Distinct human Langerhans cell subsets orchestrate reciprocal functions and require different developmental regulation. Immunity 2021; 54:2305-2320.e11. [PMID: 34508661 DOI: 10.1016/j.immuni.2021.08.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 05/19/2021] [Accepted: 08/11/2021] [Indexed: 12/22/2022]
Abstract
Langerhans cells (LCs) play a pivotal role in skin homeostasis, and the heterogeneity of LCs has long been considered. In this study, we have identified two steady-state (LC1 and LC2) and two activated LC subsets in the epidermis of human skin and in LCs derived from CD34+ hemopoietic stem cells (HSC-LCs) by utilizing single-cell RNA sequencing and mass cytometry. Analysis of HSC-LCs at multiple time-points during differentiation revealed that EGR1 and Notch signaling were among the top pathways regulating the bifurcation of LC1 and LC2. LC1 were characterized as classical LCs, mainly related to innate immunity and antigen processing. LC2 were similar to monocytes or myeloid dendritic cells, involving in immune responses and leukocyte activation. LC1 remained stable under inflammatory microenvironment, whereas LC2 were prone to being activated and demonstrated elevated expression of immuno-suppressive molecules. We revealed distinct human LC subsets that require different developmental regulation and orchestrate reciprocal functions.
Collapse
Affiliation(s)
- Xiaochun Liu
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Ronghui Zhu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yang Luo
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Shangshang Wang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yi Zhao
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhuoqiong Qiu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yu Zhang
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Xiao Liu
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518052, China
| | - Xu Yao
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China.
| | - Xiao Li
- Gene Editing Laboratory, Texas Heart Institute, Houston, Texas 77030, USA.
| | - Wei Li
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, China.
| |
Collapse
|
4
|
Trakaki A, Wolf P, Weger W, Eichmann TO, Scharnagl H, Stadler JT, Salmhofer W, Knuplez E, Holzer M, Marsche G. Biological anti-psoriatic therapy profoundly affects high-density lipoprotein function. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158943. [PMID: 33862237 DOI: 10.1016/j.bbalip.2021.158943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/24/2021] [Accepted: 04/07/2021] [Indexed: 12/13/2022]
Abstract
Psoriasis is a common chronic inflammatory skin disease linked to increased cardiovascular risk. Functional impairment of high-density lipoprotein (HDL) may contribute to excessive cardiovascular mortality in psoriasis patients. Anti-cytokine therapies with biologics have been efficiently used for the management of psoriasis, however little data is available on the effects of biologic anti-psoriatic therapies on the composition and functionality of HDL. Blood samples were taken from 17 healthy volunteers and from 27 real-world psoriasis patients at baseline (no therapy with biologics) and after short-term (3 to 6 months) and intermediate-term (1 to 2 years) therapy. The biologics used included anti-interleukin (IL)-12/23p40 (ustekinumab), anti-IL17A (secukinumab) or anti-tumor necrosis factor-α (etanercept or adalimumab) antibodies. We observed that in psoriasis patients at baseline, metrics of HDL function including cholesterol efflux capacity of apolipoprotein B-depleted serum (p = 0.021), paraoxonase (p < 0.001) and lecithin-cholesterol acyltransferase (p < 0.001) activities were impaired, when compared to controls. Unexpectedly, we observed that short- and especially intermediate-term therapy with biologics markedly reduced HDL cholesterol efflux capacity (p < 0.001) and rendered HDL pro-inflammatory (p < 0.001), but increased paraoxonase (p = 0.009) and lecithin-cholesterol acyltransferase (p = 0.019) activities. All biologics caused similar changes in HDL composition, subclass distribution and cholesterol efflux capacity. Our results provide evidence that anti-psoriatic therapy with biologic agents is associated with changes in HDL functionality, particle composition and subclass distribution.
Collapse
Affiliation(s)
- Athina Trakaki
- Division of Pharmacology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria
| | - Peter Wolf
- Department of Dermatology and Venereology, Auenbruggerplatz 8, 8036 Graz, Austria.
| | - Wolfgang Weger
- Department of Dermatology and Venereology, Auenbruggerplatz 8, 8036 Graz, Austria
| | - Thomas O Eichmann
- Institute of Molecular Biosciences, University of Graz, Graz, Austria; Center for Explorative Lipidomics, BioTechMed-Graz, Graz, Austria
| | - Hubert Scharnagl
- Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
| | - Julia T Stadler
- Division of Pharmacology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria
| | - Wolfgang Salmhofer
- Department of Dermatology and Venereology, Auenbruggerplatz 8, 8036 Graz, Austria
| | - Eva Knuplez
- Division of Pharmacology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria
| | - Michael Holzer
- Division of Pharmacology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria
| | - Gunther Marsche
- Division of Pharmacology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria; BioTechMed Graz, Mozartgasse 12/II, 8010 Graz, Austria.
| |
Collapse
|
5
|
Salimi A, Jamali Z, Atashbar S, Khezri S, Ghorbanpour AM, Etefaghi N. Pathogenic Mechanisms and Therapeutic Implication in Nickel-Induced Cell Damage. Endocr Metab Immune Disord Drug Targets 2020; 20:968-984. [DOI: 10.2174/1871530320666200214123118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/24/2019] [Accepted: 03/07/2019] [Indexed: 11/22/2022]
Abstract
Background:
Nickel (Ni) is mostly applied in a number of industrial areas such as printing
inks, welding, alloys, electronics and electrical professions. Occupational or environmental exposure to
nickel may lead to cancer, allergy reaction, nephrotoxicity, hepatotoxicity, neurotoxicity, as well as
cell damage, apoptosis and oxidative stress.
Methods:
In here, we focused on published studies about cell death, carcinogenicity, allergy reactions
and neurotoxicity, and promising agents for the prevention and treatment of the toxicity by Ni.
Results:
Our review showed that in the last few years, more researches have focused on reactive oxygen
species formation, oxidative stress, DNA damages, apoptosis, interaction with involving receptors
in allergy and mitochondrial damages in neuron induced by Ni.
Conclusion:
The collected data in this paper provide useful information about the main toxicities induced
by Ni, also, their fundamental mechanisms, and how to discover new ameliorative agents for
prevention and treatment by reviewing agents with protective and therapeutic consequences on Ni
induced toxicity.
Collapse
Affiliation(s)
- Ahmad Salimi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Zhaleh Jamali
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Saman Atashbar
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Saleh Khezri
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Amir M. Ghorbanpour
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Nahid Etefaghi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
6
|
Li M, Hu FC, Qiao F, Du ZY, Zhang ML. Sodium acetate alleviated high-carbohydrate induced intestinal inflammation by suppressing MAPK and NF-κB signaling pathways in Nile tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2020; 98:758-765. [PMID: 31730927 DOI: 10.1016/j.fsi.2019.11.024] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/10/2019] [Accepted: 11/12/2019] [Indexed: 05/20/2023]
Abstract
With the development of aquaculture industry, high-carbohydrate diet is used to stimulate protein-sparing effect and reduce feed cost. However, fish utilize carbohydrates poorly in general, and instead, high level of carbohydrates in the diet influence the growth condition of fish. How to alleviate the side effects of high carbohydrate diet on fish health has attracted more and more attentions. In the present study, Nile tilapia (Oreochromis niloticus) were fed with 25% and 45% of carbohydrate diet for eight weeks. Higher body weight but lower resistance to pathogen was found in 45% carbohydrate diet group. Higher expression level of inflammation cytokines, increased expression of total NF-κB protein and phosphorylated NF-κB protein (p-NF-κB) were detected in higher carbohydrate group. Concentration of short-chain fatty acids (SCFAs) was measured and the results indicated that high-carbohydrate diet decreased acetate content in the intestine. In order to detect the relationship between the decreased concentration of acetate and lower resistance to pathogen in high-carbohydrate group, 45% of carbohydrate diets (HC) supplemented with different concentrations of sodium acetate (HC + LA, 100 mmol/L; HC + MA, 200 mmol/L; HC + HA, 400 mmol/L) were used to raise Nile Tilapia for eight weeks. The results indicated that addition of 200 mmol/L sodium acetate (HC + MA) reduced the mortality when fish were challenged with Aeromonas hydrophila. Furthermore, we also found that addition of 200 mmol/L sodium acetate mainly inhibited p38 mitogen-activated protein kinase (p38MAPK) and NF-κB phosphorylation to decrease the expression level of inflammation cytokines (IL-8, IL-12, TNF-α and IL-1β) in the intestine. The present study indicated that certain concentration of sodium acetate could alleviate high-carbohydrate induced intestinal inflammation mainly by suppressing MAPK activation and NF-κB phosphorylation.
Collapse
Affiliation(s)
- Miao Li
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), College of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Fang-Chao Hu
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), College of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Fang Qiao
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), College of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Zhen-Yu Du
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), College of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Mei-Ling Zhang
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), College of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
7
|
Su YL, Chen JP, Mo ZQ, Zheng JY, Lv SY, Li PH, Wei YS, Liang YL, Wang SW, Yang M, Dan XM, Huang XH, Huang YH, Qin QW, Sun HY. A novel MKK gene (EcMKK6) in Epinephelus coioides: Identification, characterization and its response to Vibrio alginolyticus and SGIV infection. FISH & SHELLFISH IMMUNOLOGY 2019; 92:500-507. [PMID: 31247318 DOI: 10.1016/j.fsi.2019.06.043] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 05/31/2019] [Accepted: 06/23/2019] [Indexed: 06/09/2023]
Abstract
Mitogen-activated protein kinase 6 (MKK6) is one of the major important central regulatory proteins response to environmental and physiological stimuli. In this study, a novel MKK6, EcMKK6, was isolated from Epinephelus coioides, an economically important cultured fish in China and Southeast Asian counties. The open reading frame (ORF) of EcMKK6 is 1077 bp encoding 358 amino acids. EcMKK6 contains a serine/threonine protein kinase (S_TKc) domain, a tyrosine kinase catalytic domain, a conserved dual phosphorylation site in the SVAKT motif and a conserved DVD domain. By in situ hybridization (ISH) with Digoxigenin-labeled probe, EcMKK6 mainly located at the cytoplasm of cells, and a little appears in the nucleus. EcMKK6 mRNA can be detected in all eleven tissues examined, but the expression level is different in these tissues. After challenge with Vibrio alginolyticus and Singapore grouper iridovirus (SGIV), the transcription level of EcMKK6 was apparently up-regulated in the tissues examined. The data demonstrated that the sequence and the characters of EcMKK6 were conserved, EcMKK6 showed tissue-specific expression profiles in healthy grouper, and the expression was significantly varied after pathogen infection, indicating that EcMKK6 may play important roles in E. coioides during pathogen-caused inflammation.
Collapse
Affiliation(s)
- Yu-Ling Su
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong Province, PR China
| | - Jin-Peng Chen
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong Province, PR China
| | - Ze-Quan Mo
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong Province, PR China
| | - Jia-Ying Zheng
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong Province, PR China
| | - Shun-You Lv
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong Province, PR China
| | - Pin-Hong Li
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong Province, PR China
| | - Yu-Si Wei
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong Province, PR China
| | - Yu-Lin Liang
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong Province, PR China
| | - Shao-Wen Wang
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong Province, PR China
| | - Min Yang
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong Province, PR China
| | - Xue-Ming Dan
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong Province, PR China
| | - Xiao-Hong Huang
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong Province, PR China
| | - You-Hua Huang
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong Province, PR China
| | - Qi-Wei Qin
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong Province, PR China.
| | - Hong-Yan Sun
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong Province, PR China.
| |
Collapse
|
8
|
Imatinib stimulates prostaglandin E2 and attenuates cytokine release via EP4 receptor activation. J Allergy Clin Immunol 2019; 143:794-797.e10. [DOI: 10.1016/j.jaci.2018.09.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 09/06/2018] [Accepted: 09/18/2018] [Indexed: 01/30/2023]
|
9
|
Impaired epidermal Langerhans cell maturation in TGFβ-inducible early gene 1 (TIEG1) knockout mice. Oncotarget 2017; 8:112875-112882. [PMID: 29348873 PMCID: PMC5762558 DOI: 10.18632/oncotarget.22843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 11/11/2017] [Indexed: 12/17/2022] Open
Abstract
TGF-β-inducible early gene 1 (TIEG1), also known as Krüppel-like factor 10 (Klf10), represents a major downstream transcription factor of transforming growth factor-β1 (TGF-β1) signaling. Epidermal Langerhans cells (LCs), a unique subpopulation of dendritic cells (DC), essentially mediates immune surveillance and tolerance. TGF-β1 plays a pivotal role in LC maintenance and function after birth, although the underpinning mechanisms remain elusive. Here, we hypothesized that TIEG1 might be involved in TGF-β1-mediated LC homeostasis and function. Utilizing TIEG1 null mice, we discovered that TIEG1 deficiency did not alter LC homeostasis at the steady state and LC repopulation at inflamed-state, as well as their antigen-uptake capacity, but significantly impaired their maturation ability, which was opposite to the fact that loss of TGF-β1 induced spontaneous LC maturation. Moreover, the ablation of TIEG1 enhanced skin contact hypersensitivity response. Our results suggested that TIEG1 is not a key molecule involved in TGF-β1-mediated homeostasis, while TIEG1-related signaling pathways regulate LC maturation and their function.
Collapse
|
10
|
Brutkiewicz RR. Cell Signaling Pathways That Regulate Antigen Presentation. THE JOURNAL OF IMMUNOLOGY 2017; 197:2971-2979. [PMID: 27824592 DOI: 10.4049/jimmunol.1600460] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 07/08/2016] [Indexed: 12/11/2022]
Abstract
Cell signaling pathways regulate much in the life of a cell: from shuttling cargo through intracellular compartments and onto the cell surface, how it should respond to stress, protecting itself from harm (environmental insults or infections), to ultimately, death by apoptosis. These signaling pathways are important for various aspects of the immune response as well. However, not much is known in terms of the participation of cell signaling pathways in Ag presentation, a necessary first step in the activation of innate and adaptive T cells. In this brief review, I discuss the known signaling molecules (and pathways) that regulate how Ags are presented to T cells and the mechanism(s), if identified. Studies in this area have important implications in vaccine development and new treatment paradigms against infectious diseases, autoimmunity, and cancer.
Collapse
Affiliation(s)
- Randy R Brutkiewicz
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| |
Collapse
|
11
|
Jurkin J, Krump C, Köffel R, Fieber C, Schuster C, Brunner PM, Borek I, Eisenwort G, Lim C, Mages J, Lang R, Bauer W, Mechtcheriakova D, Meshcheryakova A, Elbe-Bürger A, Stingl G, Strobl H. Human skin dendritic cell fate is differentially regulated by the monocyte identity factor Kruppel-like factor 4 during steady state and inflammation. J Allergy Clin Immunol 2017; 139:1873-1884.e10. [PMID: 27742396 PMCID: PMC5538449 DOI: 10.1016/j.jaci.2016.09.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/25/2016] [Accepted: 09/09/2016] [Indexed: 11/01/2022]
Abstract
BACKGROUND Langerhans cell (LC) networks play key roles in immunity and tolerance at body surfaces. LCs are established prenatally and can be replenished from blood monocytes. Unlike skin-resident dermal DCs (dDCs)/interstitial-type DCs and inflammatory dendritic epidermal cells appearing in dermatitis/eczema lesions, LCs lack key monocyte-affiliated markers. Inversely, LCs express various epithelial genes critical for their long-term peripheral tissue residency. OBJECTIVE Dendritic cells (DCs) are functionally involved in inflammatory diseases; however, the mechanisms remained poorly understood. METHODS In vitro differentiation models of human DCs, gene profiling, gene transduction, and immunohistology were used to identify molecules involved in DC subset specification. RESULTS Here we identified the monocyte/macrophage lineage identity transcription factor Kruppel-like factor 4 (KLF4) to be inhibited during LC differentiation from human blood monocytes. Conversely, KLF4 is maintained or induced during dermal DC and monocyte-derived dendritic cell/inflammatory dendritic epidermal cell differentiation. We showed that in monocytic cells KLF4 has to be repressed to allow their differentiation into LCs. Moreover, respective KLF4 levels in DC subsets positively correlate with proinflammatory characteristics. We identified epithelial Notch signaling to repress KLF4 in monocytes undergoing LC commitment. Loss of KLF4 in monocytes transcriptionally derepresses Runt-related transcription factor 3 in response to TGF-β1, thereby allowing LC differentiation marked by a low cytokine expression profile. CONCLUSION Monocyte differentiation into LCs depends on activation of Notch signaling and the concomitant loss of KLF4.
Collapse
Affiliation(s)
- Jennifer Jurkin
- Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Corinna Krump
- Institute of Pathophysiology and Immunology, Medical University of Graz, Graz, Austria
| | - René Köffel
- Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Christina Fieber
- Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Christopher Schuster
- Division of Immunology, Allergy and Infectious Diseases, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Patrick M Brunner
- Division of Immunology, Allergy and Infectious Diseases, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Izabela Borek
- Institute of Pathophysiology and Immunology, Medical University of Graz, Graz, Austria
| | - Gregor Eisenwort
- Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Clarice Lim
- Institute of Pathophysiology and Immunology, Medical University of Graz, Graz, Austria; Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Jörg Mages
- Institute of Clinical Microbiology, Immunology and Hygiene, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Roland Lang
- Institute of Clinical Microbiology, Immunology and Hygiene, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Wolfgang Bauer
- Division of Immunology, Allergy and Infectious Diseases, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Diana Mechtcheriakova
- Departments of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Anastasia Meshcheryakova
- Departments of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Adelheid Elbe-Bürger
- Division of Immunology, Allergy and Infectious Diseases, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Georg Stingl
- Division of Immunology, Allergy and Infectious Diseases, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Herbert Strobl
- Institute of Pathophysiology and Immunology, Medical University of Graz, Graz, Austria; Institute of Immunology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
12
|
Liver disease alters high-density lipoprotein composition, metabolism and function. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:630-8. [PMID: 27106140 DOI: 10.1016/j.bbalip.2016.04.013] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 03/03/2016] [Accepted: 04/16/2016] [Indexed: 02/06/2023]
Abstract
High-density lipoproteins (HDL) are important endogenous inhibitors of inflammatory responses. Functional impairment of HDL might contribute to the excess mortality experienced by patients with liver disease, but the effect of cirrhosis on HDL metabolism and function remain elusive. To get an integrated measure of HDL quantity and quality, we assessed several metrics of HDL function using apolipoprotein (apo) B-depleted sera from patients with compensated cirrhosis, patients with acutely decompensated cirrhosis and healthy controls. We observed that sera of cirrhotic patients showed reduced levels of HDL-cholesterol and profoundly suppressed activities of several enzymes involved in HDL maturation and metabolism. Native gel electrophoresis analyses revealed that cirrhotic serum HDL shifts towards the larger HDL2 subclass. Proteomic assessment of isolated HDL identified several proteins, including apoA-I, apoC-III, apoE, paraoxonase 1 and acute phase serum amyloid A to be significantly altered in cirrhotic patients. With regard to function, these alterations in levels, composition and structure of HDL were strongly associated with metrics of function of apoB-depleted sera, including cholesterol efflux capability, paraoxonase activity, the ability to inhibit monocyte production of cytokines and endothelial regenerative activities. Of particular interest, cholesterol efflux capacity appeared to be strongly associated with liver disease mortality. Our findings may be clinically relevant and improve our ability to monitor cirrhotic patients at high risk.
Collapse
|
13
|
Jutz S, Leitner J, Schmetterer K, Doel-Perez I, Majdic O, Grabmeier-Pfistershammer K, Paster W, Huppa JB, Steinberger P. Assessment of costimulation and coinhibition in a triple parameter T cell reporter line: Simultaneous measurement of NF-κB, NFAT and AP-1. J Immunol Methods 2016; 430:10-20. [PMID: 26780292 DOI: 10.1016/j.jim.2016.01.007] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 12/21/2015] [Accepted: 01/13/2016] [Indexed: 12/29/2022]
Abstract
Engagement of the T cell receptor complex reprograms T cells for proliferation, cytokine production and differentiation towards effector cells. This process depends on activating costimulatory signals and is counteracted by coinhibitory molecules. Three transcription factors, namely NF-κB, NFAT and AP-1, have a major role in inducing the transcriptional program that is required for T cell activation and differentiation. Here we describe the generation of a triple parameter reporter based on the human Jurkat T cell line, where response elements for NF-κB, NFAT and AP-1 drive the expression of the fluorescent proteins CFP, eGFP and mCherry, respectively. The emission spectra of these proteins allow simultaneous assessment of NF-κB, NFAT and AP-1 activity in response to stimulation. Ligation of the TCR complex induced moderate reporter activity, which was strongly enhanced upon coengagement of the costimulatory receptors CD2 or CD28. Moreover, we have generated and tested triple parameter reporter cells that harbor costimulatory and inhibitory receptors not endogenously expressed in the Jurkat cells. In these experiments we could show that engagement of the costimulatory molecule 4-1BB enhances NF-κB and AP-1 activity, whereas coinhibition via PD-1 or BTLA strongly reduced the activation of NF-κB and NFAT. Engagement of BTLA significantly inhibited AP-1, whereas PD-1 had little effect on the activation of this transcription factor. Our triple parameter reporter T cell line is an excellent tool to assess the effect of costimulatory and coinhibitory receptors on NF-κB, NFAT and AP-1 activity and has a wide range of applications beyond the evaluation of costimulatory pathways.
Collapse
Affiliation(s)
- Sabrina Jutz
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Judith Leitner
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Klaus Schmetterer
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Iago Doel-Perez
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Otto Majdic
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | | | - Wolfgang Paster
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Johannes B Huppa
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Peter Steinberger
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
14
|
Molecular Mechanisms of Nickel Allergy. Int J Mol Sci 2016; 17:ijms17020202. [PMID: 26848658 PMCID: PMC4783936 DOI: 10.3390/ijms17020202] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 01/29/2016] [Accepted: 01/29/2016] [Indexed: 12/28/2022] Open
Abstract
Allergic contact hypersensitivity to metals is a delayed-type allergy. Although various metals are known to produce an allergic reaction, nickel is the most frequent cause of metal allergy. Researchers have attempted to elucidate the mechanisms of metal allergy using animal models and human patients. Here, the immunological and molecular mechanisms of metal allergy are described based on the findings of previous studies, including those that were recently published. In addition, the adsorption and excretion of various metals, in particular nickel, is discussed to further understand the pathogenesis of metal allergy.
Collapse
|
15
|
Gualdoni GA, Lingscheid T, Schmetterer KG, Hennig A, Steinberger P, Zlabinger GJ. Azithromycin inhibits IL-1 secretion and non-canonical inflammasome activation. Sci Rep 2015; 5:12016. [PMID: 26152605 PMCID: PMC4495566 DOI: 10.1038/srep12016] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 05/29/2015] [Indexed: 12/28/2022] Open
Abstract
Deregulation of inflammasome activation was recently identified to be involved in the pathogenesis of various inflammatory diseases. Although macrolide antibiotics display well described immunomodulatory properties, presumably involved in their clinical effects, their impact on inflammasome activation has not been investigated. We compared the influence of macrolides on cytokine induction in human monocytes. The role of intracellular azithromycin-accumulation was examined by interference with Ca++-dependent uptake. We have also analysed the signalling cascades involved in inflammasome activation, and substantiated the findings in a murine sepsis model. Azithromycin, but not clarithromycin or roxithromycin, specifically inhibited IL-1α and IL-1β secretion upon LPS stimulation. Interference with Ca++-dependent uptake abolished the cytokine-modulatory effect, suggesting a role of intracellular azithromycin accumulation in the modulatory role of this macrolide. Azithromycin’s inhibiting effects were observed upon LPS, but not upon flagellin, stimulation. Consistent with this observation, we found impaired induction of the LPS-sensing caspase-4 whereas NF-κB signalling was unaffected. Furthermore, azithromycin specifically affected IL-1β levels in a murine endotoxin sepsis model. We provide the first evidence of a differential impact of macrolides on the inflammasome/IL-1β axis, which may be of relevance in inflammasome-driven diseases such as chronic obstructive pulmonary disease or asthma.
Collapse
Affiliation(s)
- Guido A Gualdoni
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Tilman Lingscheid
- Department of Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, Germany
| | - Klaus G Schmetterer
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Annika Hennig
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Peter Steinberger
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Gerhard J Zlabinger
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
16
|
Holzer M, Schilcher G, Curcic S, Trieb M, Ljubojevic S, Stojakovic T, Scharnagl H, Kopecky CM, Rosenkranz AR, Heinemann A, Marsche G. Dialysis Modalities and HDL Composition and Function. J Am Soc Nephrol 2015; 26:2267-76. [PMID: 25745027 DOI: 10.1681/asn.2014030309] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 10/21/2015] [Indexed: 01/12/2023] Open
Abstract
Lipid abnormalities may have an effect on clinical outcomes of patients on dialysis. Recent studies have indicated that HDL dysfunction is a hallmark of ESRD. In this study, we compared HDL composition and metrics of HDL functionality in patients undergoing hemodialysis (HD) or peritoneal dialysis (PD) with those in healthy controls. We detected a marked suppression of several metrics of HDL functionality in patients on HD or PD. Compositional analysis revealed that HDL from both dialysis groups shifted toward a more proinflammatory phenotype with profound alterations in the lipid moiety and protein composition. With regard to function, cholesterol efflux and anti-inflammatory and antiapoptotic functions seemed to be more severely suppressed in patients on HD, whereas HDL-associated paraoxonase activity was lowest in patients on PD. Quantification of enzyme activities involved in HDL metabolism suggested that HDL particle maturation and remodeling are altered in patients on HD or PD. In summary, our study provides mechanistic insights into the formation of dysfunctional HDL in patients with ESRD who are on HD or PD.
Collapse
Affiliation(s)
| | - Gernot Schilcher
- Clinical Division of Nephrology, Department of Internal Medicine
| | - Sanja Curcic
- Institute of Experimental and Clinical Pharmacology
| | - Markus Trieb
- Institute of Experimental and Clinical Pharmacology
| | - Senka Ljubojevic
- Clinical Division of Cardiology, Department of Internal Medicine, and
| | - Tatjana Stojakovic
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria; and
| | - Hubert Scharnagl
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria; and
| | - Chantal M Kopecky
- Department of Internal Medicine III, Clinical Division of Nephrology and Dialysis, Medical University of Vienna, Vienna, Austria
| | | | | | | |
Collapse
|
17
|
Monocytic cell differentiation from band-stage neutrophils under inflammatory conditions via MKK6 activation. Blood 2014; 124:2713-24. [PMID: 25214442 DOI: 10.1182/blood-2014-07-588178] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During inflammation, neutrophils are rapidly mobilized from the bone marrow storage pool into peripheral blood (PB) to enter lesional sites, where most rapidly undergo apoptosis. Monocytes constitute a second wave of inflammatory immigrates, giving rise to long-lived macrophages and dendritic cell subsets. According to descriptive immunophenotypic and cell culture studies, neutrophils may directly "transdifferentiate" into monocytes/macrophages. We provide mechanistic data in human and murine models supporting the existence of this cellular pathway. First, the inflammatory signal-induced MKK6-p38MAPK cascade activates a monocyte differentiation program in human granulocyte colony-stimulating factor-dependent neutrophils. Second, adoptively transferred neutrophils isolated from G-CSF-pretreated mice rapidly acquired monocyte characteristics in response to inflammatory signals in vivo. Consistently, inflammatory signals led to the recruitment of osteoclast progenitor cell potential from ex vivo-isolated G-CSF-mobilized human blood neutrophils. Monocytic cell differentiation potential was retained in left-shifted band-stage neutrophils but lost in neutrophils from steady-state PB. MKK6-p38MAPK signaling in HL60 model cells led to diminishment of the transcription factor C/EBPα, which enabled the induction of a monocytic cell differentiation program. Gene profiling confirmed lineage conversion from band-stage neutrophils to monocytic cells. Therefore, inflammatory signals relayed by the MKK6-p38MAPK cascade induce monocytic cell differentiation from band-stage neutrophils.
Collapse
|
18
|
Fortschegger K, Anderl S, Denk D, Strehl S. Functional heterogeneity of PAX5 chimeras reveals insight for leukemia development. Mol Cancer Res 2014; 12:595-606. [PMID: 24435167 DOI: 10.1158/1541-7786.mcr-13-0337] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED PAX5, a transcription factor pivotal for B-cell commitment and maintenance, is one of the most frequent targets of somatic mutations in B-cell precursor acute lymphoblastic leukemia. A number of PAX5 rearrangements result in the expression of in-frame fusion genes encoding chimeric proteins, which at the N-terminus consistently retain the PAX5 DNA-binding paired domain fused to the C-terminal domains of a markedly heterogeneous group of fusion partners. PAX5 fusion proteins are thought to function as aberrant transcription factors, which antagonize wild-type PAX5 activity. To gain mechanistic insight into the role of PAX5 fusion proteins in leukemogenesis, the biochemical and functional properties of uncharacterized fusions: PAX5-DACH1, PAX5-DACH2, PAX5-ETV6, PAX5-HIPK1, and PAX5-POM121 were ascertained. Independent of the subcellular distribution of the wild-type partner proteins, ectopic expression of all PAX5 fusion proteins showed a predominant nuclear localization, and by chromatin immunoprecipitation all of the chimeric proteins exhibited binding to endogenous PAX5 target sequences. Furthermore, consistent with the presence of potential oligomerization motifs provided by the partner proteins, the self-interaction capability of several fusion proteins was confirmed. Remarkably, a subset of the PAX5 fusion proteins conferred CD79A promoter activity; however, in contrast with wild-type PAX5, the fusion proteins were unable to induce Cd79a transcription in a murine plasmacytoma cell line. These data show that leukemia-associated PAX5 fusion proteins share some dominating characteristics such as nuclear localization and DNA binding but also show distinctive features. IMPLICATIONS This comparative study of multiple PAX5 fusion proteins demonstrates both common and unique properties, which likely dictate their function and impact on leukemia development.
Collapse
Affiliation(s)
- Klaus Fortschegger
- Children's Cancer Research Institute (CCRI), St. Anna Kinderkrebsforschung e.V. Zimmermannplatz 10, 1090 Vienna, Austria.
| | | | | | | |
Collapse
|
19
|
Popow I, Leitner J, Grabmeier-Pfistershammer K, Majdic O, Zlabinger GJ, Kundi M, Steinberger P. A comprehensive and quantitative analysis of the major specificities in rabbit antithymocyte globulin preparations. Am J Transplant 2013; 13:3103-13. [PMID: 24168235 DOI: 10.1111/ajt.12514] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 09/04/2013] [Accepted: 09/20/2013] [Indexed: 01/25/2023]
Abstract
Antithymocyte globulin (ATG) preparations are used for treatment and prevention of graft rejection episodes, graft versus host disease and aplastic anemia. The immunomodulatory and immuosuppressive properties of ATGs are mediated by their interaction with a large variety of antigens expressed on immune and nonimmune cell populations. We have conducted a comprehensive analysis on antibody specificities contained in rabbit ATGs in clinical use, ATG-Fresenius (ATG-F) and Thymoglobulin (THG). We have used retroviral expression cloning to identify novel ATG antigens and demonstrate that together with ATG antigens described earlier, these molecules account for the majority of ATG antibodies directed to human cells. Moreover, we have employed cell lines engineered to express antigens at high levels to quantify the antibodies directed to each ATG antigen. We have used cell lines expressing the T cell receptor complex, CD2 and CD28 to remove antibodies to these antigens from ATG preparations and demonstrate that this treatment abrogated the ability of ATGs to induce activation and forkhead box P3 expression in T cells. Comprehensive information and differences on the antigens targeted by ATG-F and THG as well as novel approaches to assess their functional properties are the basis for a better understanding of their immunomodulatory capacities and might eventually translate into improved ATG-based regimen.
Collapse
Affiliation(s)
- I Popow
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University Vienna, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
20
|
Gualdoni GA, Kovarik JJ, Hofer J, Dose F, Pignitter M, Doberer D, Steinberger P, Somoza V, Wolzt M, Zlabinger GJ. Resveratrol enhances TNF-α production in human monocytes upon bacterial stimulation. Biochim Biophys Acta Gen Subj 2013; 1840:95-105. [PMID: 24035785 DOI: 10.1016/j.bbagen.2013.09.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 09/04/2013] [Accepted: 09/06/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND Resveratrol is a key component of red wine that has been reported to have anti-carcinogenic and anti-aging properties. Additional studies conducted in vitro and in animal models suggested anti-inflammatory properties. However, data from primary human immune cells and in vivo studies are limited. METHODS A pilot study was performed including 10 healthy volunteers. Plasma cytokine levels were measured over 48h after oral application of 5g resveratrol. To verify the in vivo findings, cytokine release and gene expression in human peripheral blood mononuclear cells (PBMC) and/or monocytes was assessed after treatment with resveratrol or its metabolites and stimulation with several toll-like receptor (TLR)-agonists. Additionally, the impact on intracellular signaling pathways was analyzed using a reporter cell line and Western blotting. RESULTS Resveratrol treated individuals showed a significant increase in tumor necrosis factor-α (TNF-α) levels 24h after treatment compared to baseline. Studies using human PBMC or isolated monocytes confirmed potentiation of TNF-α production with different TLR agonists, while interleukin (IL)-10 was inhibited. Moreover, we observed significantly enhanced nuclear factor 'kappa-light-chain-enhancer' of activated B-cells (NF-κB) activation using a reporter cell line and found increased phosphorylation of p105, which is indicative of alternative NF-κB pathway activation. GENERAL SIGNIFICANCE By administering resveratrol to healthy humans and utilizing primary immune cells we were able to detect TNF-α enhancing properties of the agent. In parallel, we found enhanced alternative NF-κB activation. We report on a novel pro-inflammatory property of resveratrol which has to be considered in concepts of its biologic activity.
Collapse
Affiliation(s)
- Guido A Gualdoni
- Institute of Immunology, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Watanabe M, Ishimaru N, Ashrin MN, Arakaki R, Yamada A, Ichikawa T, Hayashi Y. A novel DC therapy with manipulation of MKK6 gene on nickel allergy in mice. PLoS One 2011; 6:e19017. [PMID: 21544193 PMCID: PMC3081319 DOI: 10.1371/journal.pone.0019017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 03/14/2011] [Indexed: 01/12/2023] Open
Abstract
Background Although the activation of dermal dendritic cells (DCs) or Langerhans cells (LCs) via p38 mitogen-activated protein kinase (MAPK) plays a crucial role in the pathogenesis of metal allergy, the in vivo molecular mechanisms have not been identified and a possible therapeutic strategy using the control of dermal DCs or LCs has not been established. In this study, we focused on dermal DCs to define the in vivo mechanisms of metal allergy pathogenesis in a mouse nickel (Ni) allergy model. The effects of DC therapy on Ni allergic responses were also investigated. Methods and Finding The activation of dermal DCs via p38 MAPK triggered a T cell-mediated allergic immune response in this model. In the MAPK signaling cascade in DCs, Ni potently phosphorylated MAP kinase kinase 6 (MKK6) following increased DC activation. Ni-stimulated DCs could prime T cell activation to induce Ni allergy. Interestingly, when MKK6 gene-transfected DCs were transferred into the model mice, a more pronounced allergic reaction was observed. In addition, injection of short interfering (si) RNA targeting the MKK6 gene protected against a hypersensitivity reaction after Ni immunization. The cooperative action between T cell activation and MKK6-mediated DC activation by Ni played an important role in the development of Ni allergy. Conclusions DC activation by Ni played an important role in the development of Ni allergy. Manipulating the MKK6 gene in DCs may be a good therapeutic strategy for dermal Ni allergy.
Collapse
Affiliation(s)
- Megumi Watanabe
- Department of Oral Molecular Pathology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
- Department of Oral Maxillofacial Prosthodontics, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | - Naozumi Ishimaru
- Department of Oral Molecular Pathology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
- * E-mail:
| | - Meinar Nur Ashrin
- Department of Oral Molecular Pathology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
- Department of Oral Maxillofacial Prosthodontics, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | - Rieko Arakaki
- Department of Oral Molecular Pathology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | - Akiko Yamada
- Department of Oral Molecular Pathology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | - Tetsuo Ichikawa
- Department of Oral Maxillofacial Prosthodontics, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | - Yoshio Hayashi
- Department of Oral Molecular Pathology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| |
Collapse
|
22
|
Jurkin J, Schichl YM, Koeffel R, Bauer T, Richter S, Konradi S, Gesslbauer B, Strobl H. miR-146a is differentially expressed by myeloid dendritic cell subsets and desensitizes cells to TLR2-dependent activation. THE JOURNAL OF IMMUNOLOGY 2010; 184:4955-65. [PMID: 20375304 DOI: 10.4049/jimmunol.0903021] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Langerhans cells (LCs) in epithelia and interstitial dendritic cells (intDCs) in adjacent connective tissues represent two closely related myeloid-derived DC subsets that exert specialized functions in the immune system and are of clinical relevance for cell therapy. Both subsets arise from monocyte-committed intermediates in response to tissue-associated microenvironmental signals; however, molecular mechanisms underlying myeloid DC subset specification and function remain poorly defined. Using microarray profiling, we identified microRNA (miRNA) miR-146a to be constitutively expressed at higher levels in human LCs compared with intDCs. Moreover, miR-146a levels were low in monocytes and nondetectable in neutrophil granulocytes. Interestingly, constitutive high miR-146a expression in LCs is induced by the transcription factor PU.1 in response to TGF-beta1, a key microenvironmental signal for epidermal LC differentiation. We identified miR-146a as a regulator of monocyte and DC activation but not myeloid/DC subset differentiation. Ectopic miR-146a in monocytes and intDCs interfered with TLR2 downstream signaling and cytokine production, without affecting phenotypic DC maturation. Inversely, silencing of miR-146a in LCs enhanced TLR2-dependent NF-kappaB signaling. We therefore conclude that high constitutive miR-146a levels are induced by microenvironmental signals in the epidermis and might render LCs less susceptible to inappropriate activation by commensal bacterial TLR2 triggers at body surfaces.
Collapse
Affiliation(s)
- Jennifer Jurkin
- Center of Physiology, Pathophysiology and Immunology, Institute of Immunology, Center of Biomolecular Medicine and Pharmacology, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Kagatani S, Sasaki Y, Hirota M, Mizuashi M, Suzuki M, Ohtani T, Itagaki H, Aiba S. Oxidation of Cell Surface Thiol Groups by Contact Sensitizers Triggers the Maturation of Dendritic Cells. J Invest Dermatol 2010; 130:175-83. [DOI: 10.1038/jid.2009.229] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
24
|
Reciprocal role of GATA-1 and vitamin D receptor in human myeloid dendritic cell differentiation. Blood 2009; 114:3813-21. [PMID: 19721012 DOI: 10.1182/blood-2009-03-210484] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Two major pathways of human myeloid dendritic cell (DC) subset differentiation have previously been delineated. Langerhans cells (LCs) reside in epithelia in the steady state, whereas monocytes can provide dendritic cells (DCs) on demand in response to inflammatory signals. Both DC subset pathways arise from shared CD14+ monocyte precursors, which in turn develop from myeloid committed progenitor cells. However, the underlying hematopoietic mechanisms still remain poorly defined. Here, we demonstrate that the vitamin D(3) receptor (VDR) is induced by transforming growth factor beta1 during LC lineage commitment and exerts a positive role during LC generation. In contrast, VDR is repressed during interleukin-4 (IL-4)-dependent monocyte-derived DC (moDC) differentiation. We identified GATA-1 as a repressor of VDR. GATA-1 is induced by IL-4 in moDCs. Forced inducible expression of GATA-1 mimics IL-4 in redirecting moDC differentiation and vice versa, GATA-1 knockdown arrests moDC differentiation at the monocyte stage. Moreover, ectopic GATA-1 expression stabilizes the moDC phenotype under monocyte-promoting conditions in the presence of vitamin D3 (VD3). In summary, human myeloid DC subset differentiation is inversely regulated by GATA-1 and VDR. GATA-1 mediates the repression of VDR and enables IL-4-dependent moDC differentiation. Conversely, VDR is induced downstream of transforming growth factor beta1 and is functionally involved in promoting LC differentiation.
Collapse
|
25
|
Platzer B, Richter S, Kneidinger D, Waltenberger D, Woisetschläger M, Strobl H. Aryl hydrocarbon receptor activation inhibits in vitro differentiation of human monocytes and Langerhans dendritic cells. THE JOURNAL OF IMMUNOLOGY 2009; 183:66-74. [PMID: 19535631 DOI: 10.4049/jimmunol.0802997] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The transcription factor aryl hydrocarbon receptor (AhR) represents a promising therapeutic target in allergy and autoimmunity. AhR signaling induced by the newly described ligand VAF347 inhibits allergic lung inflammation as well as suppresses pancreatic islet allograft rejection. These effects are likely mediated via alterations in dendritic cell (DC) function. Moreover, VAF347 induces tolerogenic DCs. Langerhans cells (LCs) are immediate targets of exogenous AhR ligands at epithelial surfaces; how they respond to AhR ligands remained undefined. We studied AhR expression and function in human LCs and myelopoietic cell subsets using a lineage differentiation and gene transduction model of human CD34(+) hematopoietic progenitors. We found that AhR is highly regulated during myeloid subset differentiation. LCs expressed highest AhR levels followed by monocytes. Conversely, neutrophil granulocytes lacked AhR expression. AhR ligands including VAF347 arrested the differentiation of monocytes and LCs at an early precursor cell stage, whereas progenitor cell expansion or granulopoiesis remained unimpaired. AhR expression was coregulated with the transcription factor PU.1 during myeloid subset differentiation. VAF347 inhibited PU.1 induction during initial monocytic differentiation, and ectopic PU.1 restored monocyte and LC generation in the presence of this compound. AhR ligands failed to interfere with cytokine receptor signaling during LC differentiation and failed to impair LC activation/maturation. VAF347-mediated antiproliferative effect on precursors undergoing LC lineage differentiation occurred in a clinically applicable serum-free culture model and was not accompanied by apoptosis induction. In conclusion, AhR agonist signaling interferes with transcriptional processes leading to monocyte/DC lineage commitment of human myeloid progenitor cells.
Collapse
Affiliation(s)
- Barbara Platzer
- Children's Hospital Boston, Harvard Medical School, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
26
|
Ohtani T, Mizuashi M, Nakagawa S, Sasaki Y, Fujimura T, Okuyama R, Aiba S. TGF-beta1 dampens the susceptibility of dendritic cells to environmental stimulation, leading to the requirement for danger signals for activation. Immunology 2009; 126:485-99. [PMID: 19278421 DOI: 10.1111/j.1365-2567.2008.02919.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
In contrast to its favourable effects on Langerhans cell (LC) differentiation, transforming growth factor (TGF)-beta1 has been reported to prevent dendritic cells from maturing in response to tumour necrosis factor (TNF)-alpha, interleukin (IL)-1beta, or lipopolysaccharide (LPS). We first characterized the effects of TGF-beta1 on dendritic cell function by testing the response of TGF-beta1-treated monocyte-derived dendritic cells (MoDCs) to maturation stimuli that LCs receive in the epidermis, namely, haptens, ATP and ultraviolet (UV). TGF-beta1 treatment, which augmented E-cadherin and down-regulated dendritic cell-specific ICAM3-grabbing non-integrin on MoDCs, significantly suppressed their CD86 expression and hapten-induced expression of IL-1beta and TNF-alpha mRNA and protein. As TGF-beta1-treated MoDCs lacked Langerin expression, we demonstrated the suppressive effects of TGF-beta1 on haematopoietic progenitor cell-derived dendritic cells expressing both CD1a and Langerin. These suppressive effects of TGF-beta1 increased with the duration of treatment. Furthermore, TGF-beta1-treated MoDCs became resistant to apoptosis/necrosis induced by high hapten, ATP or UV doses. This was mainly attributable to dampened activation of p38 mitogen-activated protein kinase (MAPK) in TGF-beta1-treated MoDCs. Notably, although ATP or hapten alone could only induce CD86 expression weakly and could not augment the allogeneic T-cell stimulatory function of TGF-beta1-treated MoDCs, ATP and hapten synergized to stimulate these phenotypic and functional changes. Similarly, 2,4-dinitro, 1-chlorobenzene (DNCB) augmented the maturation of TGF-beta1-treated MoDCs upon co-culture with a keratinocyte cell line, in which ATP released by the hapten-stimulated keratinocytes synergized with the hapten to induce their maturation. These data may suggest that TGF-beta1 protects LCs from being overactivated by harmless environmental stimulation, while maintaining their ability to become activated in response to danger signals released by keratinocytes.
Collapse
Affiliation(s)
- Tomoyuki Ohtani
- Department of Dermatology, Tohoku University Graduate School of Medicine, Seiryo-machi, Aobaku, Sendai, Japan
| | | | | | | | | | | | | |
Collapse
|
27
|
Santegoets SJAM, van den Eertwegh AJM, van de Loosdrecht AA, Scheper RJ, de Gruijl TD. Human dendritic cell line models for DC differentiation and clinical DC vaccination studies. J Leukoc Biol 2008; 84:1364-73. [PMID: 18664532 DOI: 10.1189/jlb.0208092] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Dendritic cells (DC) are increasingly applied in the immunotherapy of cancer. As the development of a standardized DC vaccine product is often hampered by the limited availability of DC precursors and inter- and intra-donor variability, and the preparation of individual vaccines is labor-intensive, it would be preferable to use DC from a readily available and unlimited source, such as cell lines can provide. It has been described that leukemia-derived cell lines are able to differentiate into functional DC, creating possibilities for the development of highly reproducible DC vaccines and providing in vitro model systems for in-depth studies about DC physiology. This review discusses the different human DC cell line differentiation models described so far. Based on the available data, characteristics that determine the ability of leukemia cells to differentiate along the different precursor stages into functional DC will be formulated. In addition, evidence will be provided that the human CD34+ acute myeloid leukemia cell line MUTZ-3 provides DC that exhibit the functional properties that are crucial for the in vivo generation of CTL-mediated immunity and thus, currently, represents the most valuable, sustainable model system for myeloid DC differentiation and clinical DC vaccination studies.
Collapse
Affiliation(s)
- Saskia J A M Santegoets
- Department of Pathology, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|