1
|
Wang J, Zhang Y, Li L, Wang L, Sun S, Wang B, Ge Y, Zhang Z. Nudt15-mediated inflammatory signaling contributes to divergent outcomes in leukemogenesis and hematopoiesis. Leukemia 2024; 38:1958-1970. [PMID: 39025986 DOI: 10.1038/s41375-024-02352-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024]
Abstract
NUDT15 encodes nucleotide triphosphate diphosphatase that is responsible for metabolizing purine analog drugs, and its genetic mutation results in severe side effects from thiopurine therapy. However, the functions of Nudt15 in leukemic stem cells (LSCs) and hematopoietic stem cells (HSCs) remain unknown. Here we reveal the Nudt15-regulating self-renewal of both mouse LSCs and HSCs. Our data show that Nudt15 negatively regulates murine leukemogenesis and its deficiency prolongs the survival of murine AML recipients by impairing LSC self-renewal, while Nudt15 ablation markedly enhances mouse HSC regenerative potential and self-renewal. Mechanistically, Nudt15 modulates inflammatory signaling in mouse LSCs and HSCs, leading to divergent self-renewal outcomes. Nudt15 depletion inhibits mouse LSC self-renewal by downregulating Ifi30, resulting in elevating intracellular ROS level. Gata2, a key regulator, is required for Nudt15-mediating inflammatory signaling in mouse HSCs. Collectively, our results present new crucial roles of Nudt15 in maintaining the functions of mouse LSC and HSC through inflammatory signaling and have a new insight into clinical implications.
Collapse
Affiliation(s)
- Jiachen Wang
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Yu Zhang
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Lei Li
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Liujiao Wang
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Shuainan Sun
- Qianweichang College, Shanghai University, Shanghai, 200444, China
| | - Bowu Wang
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Yanwen Ge
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Zhonghui Zhang
- School of Life Sciences, Shanghai University, Shanghai, 200444, China.
- Shaoxing Institute of Technology, Shanghai University, Shaoxing, 312000, China.
| |
Collapse
|
2
|
Fasouli ES, Katsantoni E. Age-associated myeloid malignancies - the role of STAT3 and STAT5 in myelodysplastic syndrome and acute myeloid leukemia. FEBS Lett 2024. [PMID: 39048534 DOI: 10.1002/1873-3468.14985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/08/2024] [Accepted: 06/17/2024] [Indexed: 07/27/2024]
Abstract
In the last few decades, the increasing human life expectancy has led to the inflation of the elderly population and consequently the escalation of age-related disorders. Biological aging has been associated with the accumulation of somatic mutations in the Hematopoietic Stem Cell (HSC) compartment, providing a fitness advantage to the HSCs leading to clonal hematopoiesis, that includes non-malignant and malignant conditions (i.e. Clonal Hematopoiesis of Indeterminate Potential, Myelodysplastic Syndrome and Acute Myeloid Leukemia). The Janus Kinase-Signal Transducer and Activator of Transcription (JAK-STAT) pathway is a key player in both normal and malignant hematopoiesis. STATs, particularly STAT3 and STAT5, are greatly implicated in normal hematopoiesis, immunity, inflammation, leukemia, and aging. Here, the pleiotropic functions of JAK-STAT pathway in age-associated hematopoietic defects and of STAT3 and STAT5 in normal hematopoiesis, leukemia, and inflammaging are reviewed. Even though great progress has been made in deciphering the role of STATs, further research is required to provide a deeper understanding of the molecular mechanisms of leukemogenesis, as well as novel biomarkers and therapeutic targets for improved management of age-related disorders.
Collapse
Affiliation(s)
- Eirini Sofia Fasouli
- Biomedical Research Foundation, Academy of Athens, Basic Research Center, Athens, Greece
| | - Eleni Katsantoni
- Biomedical Research Foundation, Academy of Athens, Basic Research Center, Athens, Greece
| |
Collapse
|
3
|
Jill N, Bhootra S, Kannanthodi S, Shanmugam G, Rakshit S, Rajak R, Thakkar V, Sarkar K. Interplay between signal transducers and activators of transcription (STAT) proteins and cancer: involvement, therapeutic and prognostic perspective. Clin Exp Med 2023; 23:4323-4339. [PMID: 37775649 DOI: 10.1007/s10238-023-01198-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 09/19/2023] [Indexed: 10/01/2023]
Abstract
Signal transducers and activators of transcription or STAT are proteins that consist of various transcription factors that are responsible for activating genes regarding cell proliferation, differentiation, and apoptosis. They commonly activate several cytokine, growth, or hormone factors via the JAK-STAT signaling pathway by tyrosine phosphorylation which are responsible for giving rise to numerous immune responses. Mutations within the Janus-Kinases (JAKs) or the STATs can set off the commencement of various malfunctions of the immune system of the body; carcinogenesis being an inevitable outcome. STATs are known to act as both oncogenes and tumor suppressor genes which makes it a hot topic of investigation. Various STATs related mechanisms are currently being investigated to analyze its potential of serving as a therapeutic base for numerous immune diseases and cancer; a deeper understanding of the molecular mechanisms involved in the signaling pathways can contribute to the same. This review will throw light upon each STAT member in causing cancer malignancies by affecting subsequent signaling pathways and its genetic and epigenetic associations as well as various inhibitors that could be used to target these pathways thereby devising new treatment options. The review will also focus upon the therapeutic advances made in cancers that most commonly affect people and discuss how STAT genes are identified as prognostic markers.
Collapse
Affiliation(s)
- Nandana Jill
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Sannidhi Bhootra
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Samiyah Kannanthodi
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Geetha Shanmugam
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Sudeshna Rakshit
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Rohit Rajak
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Vidhi Thakkar
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Koustav Sarkar
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India.
| |
Collapse
|
4
|
Lee JC, Liu S, Wang Y, Liang Y, Jablons DM. MK256 is a novel CDK8 inhibitor with potent antitumor activity in AML through downregulation of the STAT pathway. Oncotarget 2022; 13:1217-1236. [PMCID: PMC9629815 DOI: 10.18632/oncotarget.28305] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Acute myeloid leukemia (AML) is the most lethal form of AML due to disease relapse. Cyclin dependent kinase 8 (CDK8) is a serine/threonine kinase that belongs to the family of Cyclin-dependent kinases and is an emerging target for the treatment of AML. MK256, a potent, selective, and orally available CDK8 inhibitor was developed to target AML. We sought to examine the anticancer effect of MK256 on AML. In CD34+/CD38- leukemia stem cells, we found that MK256 induced differentiation and maturation. Treatment of MK256 inhibited proliferation of AML cell lines. Further studies of the inhibitory effect suggested that MK256 not only downregulated phosphorylated STAT1(S727) and STAT5(S726), but also lowered mRNA expressions of MCL-1 and CCL2 in AML cell lines. Efficacy of MK256 was shown in MOLM-14 xenograft models, and the inhibitory effect on phosphorylated STAT1(S727) and STAT5(S726) with treatment of MK256 was observed in vivo. Pharmacologic dynamics study of MK256 in MOLM-14 xenograft models showed dose-dependent inhibition of the STAT pathway. Both in vitro and in vivo studies suggested that MK256 could effectively downregulate the STAT pathway. In vitro ADME, pharmacological kinetics, and toxicity of MK256 were profiled to evaluate the drug properties of MK256. Our results show that MK256 is a novel CDK8 inhibitor with a desirable efficacy and safety profile and has great potential to be a promising drug candidate for AML through regulating the STAT pathway.
Collapse
Affiliation(s)
- Jen-Chieh Lee
- 1Thoracic Oncology, Department of Medicine, University of California, San Francisco, CA 94143, USA,2Touro University, College of Osteopathic Medicine, Vallejo, CA 94592, USA,*These authors contributed equally to this work,Correspondence to:Jen-Chieh Lee, email:
| | - Shu Liu
- 1Thoracic Oncology, Department of Medicine, University of California, San Francisco, CA 94143, USA,*These authors contributed equally to this work,Shu Liu, email:
| | - Yucheng Wang
- 1Thoracic Oncology, Department of Medicine, University of California, San Francisco, CA 94143, USA,*These authors contributed equally to this work
| | - You Liang
- 1Thoracic Oncology, Department of Medicine, University of California, San Francisco, CA 94143, USA
| | - David M. Jablons
- 1Thoracic Oncology, Department of Medicine, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
5
|
Buelow DR, Bhatnagar B, Orwick SJ, Jeon JY, Eisenmann ED, Stromatt JC, Pabla NS, Blachly JS, Baker SD, Blaser BW. BMX kinase mediates gilteritinib resistance in FLT3-mutated AML through microenvironmental factors. Blood Adv 2022; 6:5049-5060. [PMID: 35797240 PMCID: PMC9631628 DOI: 10.1182/bloodadvances.2022007952] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/27/2022] [Indexed: 11/23/2022] Open
Abstract
Despite the clinical benefit associated with gilteritinib in relapsed/refractory acute myeloid leukemia (AML), most patients eventually develop resistance through unknown mechanisms. To delineate the mechanistic basis of resistance to gilteritinib, we performed targeted sequencing and scRNASeq on primary FLT3-ITD-mutated AML samples. Co-occurring mutations in RAS pathway genes were the most common genetic abnormalities, and unresponsiveness to gilteritinib was associated with increased expression of bone marrow-derived hematopoietic cytokines and chemokines. In particular, we found elevated expression of the TEK-family kinase, BMX, in gilteritinib-unresponsive patients pre- and post-treatment. BMX contributed to gilteritinib resistance in FLT3-mutant cell lines in a hypoxia-dependent manner by promoting pSTAT5 signaling, and these phenotypes could be reversed with pharmacological inhibition and genetic knockout. We also observed that inhibition of BMX in primary FLT3-mutated AML samples decreased chemokine secretion and enhanced the activity of gilteritinib. Collectively, these findings indicate a crucial role for microenvironment-mediated factors modulated by BMX in the escape from targeted therapy and have implications for the development of novel therapeutic interventions to restore sensitivity to gilteritinib.
Collapse
Affiliation(s)
- Daelynn R. Buelow
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Bhavana Bhatnagar
- West Virginia University Cancer Institute, Department of Hematology and Medical Oncology, Wheeling, WV; and
| | - Shelley J. Orwick
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Jae Yoon Jeon
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Eric D. Eisenmann
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Jack C. Stromatt
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Navjot Singh Pabla
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - James S. Blachly
- Division of Hematology, College of Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Sharyn D. Baker
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Bradley W. Blaser
- Division of Hematology, College of Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| |
Collapse
|
6
|
Rocchi C, Cinat D, Serrano Martinez P, Bruin ALJD, Baanstra M, Brouwer U, Del Angel Zuivre C, Schepers H, van Os R, Barazzuol L, Coppes RP. The Hippo signaling pathway effector YAP promotes salivary gland regeneration after injury. Sci Signal 2021; 14:eabk0599. [PMID: 34874744 DOI: 10.1126/scisignal.abk0599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Cecilia Rocchi
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen 9713 AV, Netherlands.,Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen 9700 RB, Netherlands
| | - Davide Cinat
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen 9713 AV, Netherlands.,Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen 9700 RB, Netherlands
| | - Paola Serrano Martinez
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen 9713 AV, Netherlands.,Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen 9700 RB, Netherlands
| | - Anne L Jellema-de Bruin
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen 9713 AV, Netherlands.,Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen 9700 RB, Netherlands
| | - Mirjam Baanstra
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen 9713 AV, Netherlands.,Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen 9700 RB, Netherlands
| | - Uilke Brouwer
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen 9713 AV, Netherlands.,Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen 9700 RB, Netherlands
| | - Cinthya Del Angel Zuivre
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen 9713 AV, Netherlands
| | - Hein Schepers
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen 9713 AV, Netherlands
| | - Ronald van Os
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen 9713 AV, Netherlands
| | - Lara Barazzuol
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen 9713 AV, Netherlands.,Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen 9700 RB, Netherlands
| | - Robert P Coppes
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen 9713 AV, Netherlands.,Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen 9700 RB, Netherlands
| |
Collapse
|
7
|
A STAT5B-CD9 axis determines self-renewal in hematopoietic and leukemic stem cells. Blood 2021; 138:2347-2359. [PMID: 34320169 DOI: 10.1182/blood.2021010980] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 07/21/2021] [Indexed: 11/20/2022] Open
Abstract
The transcription factors STAT5A and STAT5B are critical in hematopoiesis and leukemia. They are widely believed to have redundant functions but we describe a unique role for STAT5B in driving the self-renewal of hematopoietic and leukemic stem cells (HSCs/LSCs). We find STAT5B to be specifically activated in HSCs and LSCs, where it induces many genes associated with quiescence and self-renewal, including the surface marker CD9. Levels of CD9 represent a prognostic marker for patients with STAT5-driven leukemia and our findings suggest that anti-CD9 antibodies may be useful in their treatment to target and eliminate LSCs. We show that it is vital to consider STAT5A and STAT5B as distinct entities in normal and malignant hematopoiesis.
Collapse
|
8
|
Expression of RUNX1-JAK2 in Human Induced Pluripotent Stem Cell-Derived Hematopoietic Cells Activates the JAK-STAT and MYC Pathways. Int J Mol Sci 2021; 22:ijms22147576. [PMID: 34299194 PMCID: PMC8304339 DOI: 10.3390/ijms22147576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/07/2021] [Indexed: 12/26/2022] Open
Abstract
A heterogeneous genetic subtype of B-cell precursor acute lymphoblastic leukemia is driven by constitutive kinase-activation, including patients with JAK2 fusions. In our study, we model the impact of a novel JAK2 fusion protein on hematopoietic development in human induced pluripotent stem cells (hiPSCs). We insert the RUNX1-JAK2 fusion into one endogenous RUNX1 allele through employing in trans paired nicking genome editing. Tagging of the fusion with a degron facilitates protein depletion using the heterobifunctional compound dTAG-13. Throughout in vitro hematopoietic differentiation, the expression of RUNX1-JAK2 is driven by endogenous RUNX1 regulatory elements at physiological levels. Functional analysis reveals that RUNX1-JAK2 knock-in cell lines yield fewer hematopoietic progenitors, due to RUNX1 haploinsufficiency. Nevertheless, these progenitors further differentiate toward myeloid lineages to a similar extent as wild-type cells. The expression of the RUNX1-JAK2 fusion protein only elicits subtle effects on myeloid differentiation, and is unable to transform early hematopoietic progenitors. However, phosphoprotein and transcriptome analyses reveal that RUNX1-JAK2 constitutively activates JAK-STAT signaling in differentiating hiPSCs and at the same time upregulates MYC targets—confirming the interaction between these pathways. This proof-of-principle study indicates that conditional expression of oncogenic fusion proteins in combination with hematopoietic differentiation of hiPSCs may be applicable to leukemia-relevant disease modeling.
Collapse
|
9
|
Rodrigues ACBDC, Costa RGA, Silva SLR, Dias IRSB, Dias RB, Bezerra DP. Cell signaling pathways as molecular targets to eliminate AML stem cells. Crit Rev Oncol Hematol 2021; 160:103277. [PMID: 33716201 DOI: 10.1016/j.critrevonc.2021.103277] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/25/2021] [Accepted: 02/27/2021] [Indexed: 02/08/2023] Open
Abstract
Acute myeloid leukemia (AML) remains the most lethal of leukemias and a small population of cells called leukemic stem cells (LSCs) has been associated with disease relapses. Some cell signaling pathways play an important role in AML survival, proliferation and self-renewal properties and are abnormally activated or suppressed in LSCs. This includes the NF-κB, Wnt/β-catenin, Hedgehog, Notch, EGFR, JAK/STAT, PI3K/AKT/mTOR, TGF/SMAD and PPAR pathways. This review aimed to discuss these pathways as molecular targets for eliminating AML LSCs. Herein, inhibitors/activators of these pathways were summarized as a potential new anti-AML therapy capable of eliminating LSCs to guide future researches. The clinical use of cell signaling pathways data can be useful to enhance the anti-AML therapy.
Collapse
Affiliation(s)
| | - Rafaela G A Costa
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| | - Suellen L R Silva
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| | - Ingrid R S B Dias
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| | - Rosane B Dias
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| | - Daniel P Bezerra
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil.
| |
Collapse
|
10
|
Shokouhian M, Bagheri M, Poopak B, Chegeni R, Davari N, Saki N. Altering chromatin methylation patterns and the transcriptional network involved in regulation of hematopoietic stem cell fate. J Cell Physiol 2020; 235:6404-6423. [PMID: 32052445 DOI: 10.1002/jcp.29642] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 01/31/2020] [Indexed: 12/15/2022]
Abstract
Hematopoietic stem cells (HSCs) are quiescent cells with self-renewal capacity and potential multilineage development. Various molecular regulatory mechanisms such as epigenetic modifications and transcription factor (TF) networks play crucial roles in establishing a balance between self-renewal and differentiation of HSCs. Histone/DNA methylations are important epigenetic modifications involved in transcriptional regulation of specific lineage HSCs via controlling chromatin structure and accessibility of DNA. Also, TFs contribute to either facilitation or inhibition of gene expression through binding to enhancer or promoter regions of DNA. As a result, epigenetic factors and TFs regulate the activation or repression of HSCs genes, playing a central role in normal hematopoiesis. Given the importance of histone/DNA methylation and TFs in gene expression regulation, their aberrations, including changes in HSCs-related methylation of histone/DNA and TFs (e.g., CCAAT-enhancer-binding protein α, phosphatase and tensin homolog deleted on the chromosome 10, Runt-related transcription factor 1, signal transducers and activators of transcription, and RAS family proteins) could disrupt HSCs fate. Herewith, we summarize how dysregulations in the expression of genes related to self-renewal, proliferation, and differentiation of HSCs caused by changes in epigenetic modifications and transcriptional networks lead to clonal expansion and leukemic transformation.
Collapse
Affiliation(s)
- Mohammad Shokouhian
- Department of Hematology and Blood Transfusion, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Marziye Bagheri
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Behzad Poopak
- Department of Hematology, Faculty of Paramedical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Rouzbeh Chegeni
- Michener Institute of Education at University Health Network, Toronto, Canada
| | - Nader Davari
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Najmaldin Saki
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
11
|
Brachet-Botineau M, Polomski M, Neubauer HA, Juen L, Hédou D, Viaud-Massuard MC, Prié G, Gouilleux F. Pharmacological Inhibition of Oncogenic STAT3 and STAT5 Signaling in Hematopoietic Cancers. Cancers (Basel) 2020; 12:E240. [PMID: 31963765 PMCID: PMC7016966 DOI: 10.3390/cancers12010240] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 12/14/2022] Open
Abstract
Signal Transducer and Activator of Transcription (STAT) 3 and 5 are important effectors of cellular transformation, and aberrant STAT3 and STAT5 signaling have been demonstrated in hematopoietic cancers. STAT3 and STAT5 are common targets for different tyrosine kinase oncogenes (TKOs). In addition, STAT3 and STAT5 proteins were shown to contain activating mutations in some rare but aggressive leukemias/lymphomas. Both proteins also contribute to drug resistance in hematopoietic malignancies and are now well recognized as major targets in cancer treatment. The development of inhibitors targeting STAT3 and STAT5 has been the subject of intense investigations during the last decade. This review summarizes the current knowledge of oncogenic STAT3 and STAT5 functions in hematopoietic cancers as well as advances in preclinical and clinical development of pharmacological inhibitors.
Collapse
Affiliation(s)
- Marie Brachet-Botineau
- Leukemic Niche and Oxidative metabolism (LNOx), CNRS ERL 7001, University of Tours, 37000 Tours, France;
| | - Marion Polomski
- Innovation Moléculaire et Thérapeutique (IMT), EA 7501, University of Tours, 37000 Tours, France; (M.P.); (L.J.); (D.H.); (M.-C.V.-M.); (G.P.)
| | - Heidi A. Neubauer
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, A-1210 Vienna, Austria;
| | - Ludovic Juen
- Innovation Moléculaire et Thérapeutique (IMT), EA 7501, University of Tours, 37000 Tours, France; (M.P.); (L.J.); (D.H.); (M.-C.V.-M.); (G.P.)
| | - Damien Hédou
- Innovation Moléculaire et Thérapeutique (IMT), EA 7501, University of Tours, 37000 Tours, France; (M.P.); (L.J.); (D.H.); (M.-C.V.-M.); (G.P.)
| | - Marie-Claude Viaud-Massuard
- Innovation Moléculaire et Thérapeutique (IMT), EA 7501, University of Tours, 37000 Tours, France; (M.P.); (L.J.); (D.H.); (M.-C.V.-M.); (G.P.)
| | - Gildas Prié
- Innovation Moléculaire et Thérapeutique (IMT), EA 7501, University of Tours, 37000 Tours, France; (M.P.); (L.J.); (D.H.); (M.-C.V.-M.); (G.P.)
| | - Fabrice Gouilleux
- Leukemic Niche and Oxidative metabolism (LNOx), CNRS ERL 7001, University of Tours, 37000 Tours, France;
| |
Collapse
|
12
|
Lambrechts RA, Schepers H, Yu Y, van der Zwaag M, Autio KJ, Vieira-Lara MA, Bakker BM, Tijssen MA, Hayflick SJ, Grzeschik NA, Sibon OC. CoA-dependent activation of mitochondrial acyl carrier protein links four neurodegenerative diseases. EMBO Mol Med 2019; 11:e10488. [PMID: 31701655 PMCID: PMC6895606 DOI: 10.15252/emmm.201910488] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 10/11/2019] [Accepted: 10/15/2019] [Indexed: 12/21/2022] Open
Abstract
PKAN, CoPAN, MePAN, and PDH‐E2 deficiency share key phenotypic features but harbor defects in distinct metabolic processes. Selective damage to the globus pallidus occurs in these genetic neurodegenerative diseases, which arise from defects in CoA biosynthesis (PKAN, CoPAN), protein lipoylation (MePAN), and pyruvate dehydrogenase activity (PDH‐E2 deficiency). Overlap of their clinical features suggests a common molecular etiology, the identification of which is required to understand their pathophysiology and design treatment strategies. We provide evidence that CoA‐dependent activation of mitochondrial acyl carrier protein (mtACP) is a possible process linking these diseases through its effect on PDH activity. CoA is the source for the 4′‐phosphopantetheine moiety required for the posttranslational 4′‐phosphopantetheinylation needed to activate specific proteins. We show that impaired CoA homeostasis leads to decreased 4′‐phosphopantetheinylation of mtACP. This results in a decrease of the active form of mtACP, and in turn a decrease in lipoylation with reduced activity of lipoylated proteins, including PDH. Defects in the steps of a linked CoA‐mtACP‐PDH pathway cause similar phenotypic abnormalities. By chemically and genetically re‐activating PDH, these phenotypes can be rescued, suggesting possible treatment strategies for these diseases.
Collapse
Affiliation(s)
- Roald A Lambrechts
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Hein Schepers
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Yi Yu
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marianne van der Zwaag
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Kaija J Autio
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Marcel A Vieira-Lara
- Laboratory of Pediatrics, Section Systems Medicine of Metabolism and Signaling, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Barbara M Bakker
- Laboratory of Pediatrics, Section Systems Medicine of Metabolism and Signaling, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marina A Tijssen
- Neurology Department, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Susan J Hayflick
- Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Nicola A Grzeschik
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ody Cm Sibon
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
13
|
Maurer B, Kollmann S, Pickem J, Hoelbl-Kovacic A, Sexl V. STAT5A and STAT5B-Twins with Different Personalities in Hematopoiesis and Leukemia. Cancers (Basel) 2019; 11:E1726. [PMID: 31690038 PMCID: PMC6895831 DOI: 10.3390/cancers11111726] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/25/2019] [Accepted: 11/01/2019] [Indexed: 12/14/2022] Open
Abstract
The transcription factors STAT5A and STAT5B have essential roles in survival and proliferation of hematopoietic cells-which have been considered largely redundant. Mutations of upstream kinases, copy number gains, or activating mutations in STAT5A, or more frequently in STAT5B, cause altered hematopoiesis and cancer. Interfering with their activity by pharmacological intervention is an up-and-coming therapeutic avenue. Precision medicine requests detailed knowledge of STAT5A's and STAT5B's individual functions. Recent evidence highlights the privileged role for STAT5B over STAT5A in normal and malignant hematopoiesis. Here, we provide an overview on their individual functions within the hematopoietic system.
Collapse
Affiliation(s)
- Barbara Maurer
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, 1210 Vienna, Austria.
| | - Sebastian Kollmann
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Judith Pickem
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Andrea Hoelbl-Kovacic
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Veronika Sexl
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, 1210 Vienna, Austria
| |
Collapse
|
14
|
Igelmann S, Neubauer HA, Ferbeyre G. STAT3 and STAT5 Activation in Solid Cancers. Cancers (Basel) 2019; 11:cancers11101428. [PMID: 31557897 PMCID: PMC6826753 DOI: 10.3390/cancers11101428] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/14/2019] [Accepted: 09/18/2019] [Indexed: 02/07/2023] Open
Abstract
The Signal Transducer and Activator of Transcription (STAT)3 and 5 proteins are activated by many cytokine receptors to regulate specific gene expression and mitochondrial functions. Their role in cancer is largely context-dependent as they can both act as oncogenes and tumor suppressors. We review here the role of STAT3/5 activation in solid cancers and summarize their association with survival in cancer patients. The molecular mechanisms that underpin the oncogenic activity of STAT3/5 signaling include the regulation of genes that control cell cycle and cell death. However, recent advances also highlight the critical role of STAT3/5 target genes mediating inflammation and stemness. In addition, STAT3 mitochondrial functions are required for transformation. On the other hand, several tumor suppressor pathways act on or are activated by STAT3/5 signaling, including tyrosine phosphatases, the sumo ligase Protein Inhibitor of Activated STAT3 (PIAS3), the E3 ubiquitin ligase TATA Element Modulatory Factor/Androgen Receptor-Coactivator of 160 kDa (TMF/ARA160), the miRNAs miR-124 and miR-1181, the Protein of alternative reading frame 19 (p19ARF)/p53 pathway and the Suppressor of Cytokine Signaling 1 and 3 (SOCS1/3) proteins. Cancer mutations and epigenetic alterations may alter the balance between pro-oncogenic and tumor suppressor activities associated with STAT3/5 signaling, explaining their context-dependent association with tumor progression both in human cancers and animal models.
Collapse
Affiliation(s)
- Sebastian Igelmann
- Department of Biochemistry and Molecular Medicine, Université de Montréal, C.P. 6128, Succ. Centre-Ville, CRCHUM, Montréal, QC H3C 3J7, Canada.
- CRCHUM, 900 Saint-Denis St, Montréal, QC H2X 0A9, Canada.
| | - Heidi A Neubauer
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna 1210, Austria.
| | - Gerardo Ferbeyre
- Department of Biochemistry and Molecular Medicine, Université de Montréal, C.P. 6128, Succ. Centre-Ville, CRCHUM, Montréal, QC H3C 3J7, Canada.
- CRCHUM, 900 Saint-Denis St, Montréal, QC H2X 0A9, Canada.
| |
Collapse
|
15
|
Transcriptional regulators CITED2 and PU.1 cooperate in maintaining hematopoietic stem cells. Exp Hematol 2019; 73:38-49.e7. [PMID: 30986495 DOI: 10.1016/j.exphem.2019.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/27/2019] [Accepted: 03/13/2019] [Indexed: 12/27/2022]
Abstract
Reduced expression of the transcription factor PU.1 is frequently associated with development of acute myeloid leukemia (AML), whereas elevated levels of CITED2 (CBP/p300-interacting-transactivator-with-an-ED-rich-tail 2) enhance maintenance of both normal and leukemic hematopoietic stem and progenitor cells (HSPCs). Recent findings indicate that PU.1 and CITED2 act in the same gene regulatory network. We therefore examined a potential synergistic effect of simultaneous PU.1 downregulation and CITED2 upregulation on stem cell biology and AML pathogenesis. We found that simultaneous PU.1/CITED2 deregulation in human CD34+ cord blood (CB) cells, as well as CITED2 upregulation in preleukemic murine PU.1-knockdown (PU.1KD/KD) bone marrow cells, significantly increased the maintenance of HSPCs compared with the respective deregulation of either factor alone. Increased replating capacity of PU.1KD/KD/CITED2 cells in in vitro assays eventually resulted in outgrowth of transformed cells, while upregulation of CITED2 in PU.1KD/KD cells enhanced their engraftment in in vivo transplantation studies without affecting leukemic transformation. Transcriptional analysis of CD34+ CB cells with combined PU.1/CITED2 alterations revealed a set of differentially expressed genes that highly correlated with gene signatures found in various AML subtypes. These findings illustrate that combined PU.1/CITED2 deregulation induces a transcriptional program that promotes HSPC maintenance, which might be a prerequisite for malignant transformation.
Collapse
|
16
|
Recio C, Guerra B, Guerra-Rodríguez M, Aranda-Tavío H, Martín-Rodríguez P, de Mirecki-Garrido M, Brito-Casillas Y, García-Castellano JM, Estévez-Braun A, Fernández-Pérez L. Signal transducer and activator of transcription (STAT)-5: an opportunity for drug development in oncohematology. Oncogene 2019; 38:4657-4668. [DOI: 10.1038/s41388-019-0752-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/09/2019] [Accepted: 02/03/2019] [Indexed: 02/08/2023]
|
17
|
Protective Effect of JXT Ethanol Extract on Radiation-Induced Hematopoietic Alteration and Oxidative Stress in the Liver. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:9017835. [PMID: 30510630 PMCID: PMC6230390 DOI: 10.1155/2018/9017835] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/01/2018] [Accepted: 09/04/2018] [Indexed: 01/22/2023]
Abstract
This study aims at investigating the radioprotective effect of ethanol extract from Ji-Xue-Teng (JXT, Spatholobus suberectus) on radiation-induced hematopoietic alteration and oxidative stress in the liver. Mice were exposed to a single acute γ-radiation for the whole body at the dose of 6.0 Gy, then subjected to administration of amifostine (45 mg/kg) or JXT (40 g crude drug/kg) once a day for 28 consecutive days, respectively. Bone marrow cells and hemogram including white cells, red cells, platelet counts, and hemoglobin level were examined. The protein expression levels of pJAK2/JAK2, pSTAT5a/STAT5a, pSTAT5b/STAT5b, and Bcl-2 in bone marrow tissue; levels of reactive oxygen species (ROS); and the activity of superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione peroxidase (GSH-Px) in serum and liver tissue were determined. At the end of the experiment, the effect of JXT on cell viability and G-CSF and G-CSFR levels in NFS-60 cells were tested by CCK-8 assay, ELISA, and flow cytometry. The results showed that the mice exposed to γ-radiation alone exhibited a typical hematopoietic syndrome. In contrast, at the end of the 28-day experiment, irradiated mice subjected to oral administration of JXT showed an obvious improvement on blood profile with reduced leucopenia, thrombocytopenia (platelet counts), RBC, and hemoglobin levels, as well as bone marrow cells. The expression of pJAK2/JAK2, pSTAT5a/STAT5a, and Bcl-2 in bone marrow tissue was increased after JXT treatment. The elevation of ROS was due to radiation-induced toxicity, but JXT significantly reduced the ROS level in serum and liver tissue, elevated endogenous SOD and GSH-PX levels, and reduced the MDA level in the liver. JXT could also increase cell viability and G-CSFR level in NFS-60 cells, which was similar to exogenous G-CSF. Our findings suggested that oral administration of JXT effectively facilitated the recovery of hematopoietic bone marrow damage and oxidative stress of the mice induced by γ-radiation.
Collapse
|
18
|
The Cooperative Relationship between STAT5 and Reactive Oxygen Species in Leukemia: Mechanism and Therapeutic Potential. Cancers (Basel) 2018; 10:cancers10100359. [PMID: 30262727 PMCID: PMC6210354 DOI: 10.3390/cancers10100359] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 09/21/2018] [Accepted: 09/24/2018] [Indexed: 02/07/2023] Open
Abstract
Reactive oxygen species (ROS) are now recognized as important second messengers with roles in many aspects of signaling during leukemogenesis. They serve as critical cell signaling molecules that regulate the activity of various enzymes including tyrosine phosphatases. ROS can induce inactivation of tyrosine phosphatases, which counteract the effects of tyrosine kinases. ROS increase phosphorylation of many proteins including signal transducer and activator of transcription-5 (STAT5) via Janus kinases (JAKs). STAT5 is aberrantly activated through phosphorylation in many types of cancer and this constitutive activation is associated with cell survival, proliferation, and self-renewal. Such leukemic activation of STAT5 is rarely caused by mutation of the STAT5 gene itself but instead by overactive mutant receptors with tyrosine kinase activity as well as JAK, SRC family protein tyrosine kinases (SFKs), and Abelson murine leukemia viral oncogene homolog (ABL) kinases. Interestingly, STAT5 suppresses transcription of several genes encoding antioxidant enzymes while simultaneously enhancing transcription of NADPH oxidase. By doing so, STAT5 activation promotes an overall elevation of ROS level, which acts as a feed-forward loop, especially in high risk Fms-related tyrosine kinase 3 (FLT3) mutant leukemia. Therefore, efforts have been made recently to target ROS in cancer cells. Drugs that are able to either quench ROS production or inversely augment ROS-related signaling pathways both have potential as cancer therapies and may afford some selectivity by activating feedback inhibition of the ROS-STAT5 kinome. This review summarizes the cooperative relationship between ROS and STAT5 and explores the pros and cons of emerging ROS-targeting therapies that are selective for leukemia characterized by persistent STAT5 phosphorylation.
Collapse
|
19
|
Ejtehadifar M, Halabian R, Ghazavi A, Khansarinejad B, Mosayebi G, Imani Fooladi AA. Bone marrow - mesenchymal stem cells impact on the U937 cells in the presence of staphylococcal enterotoxin B (SEB). Clin Exp Pharmacol Physiol 2018; 45:849-858. [PMID: 29655181 DOI: 10.1111/1440-1681.12945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 11/29/2022]
Abstract
The growing resistance against conventional chemotherapy in acute myeloid leukemia (AML) is a noticeable clinical concern. Therefore, many researchers are looking for novel substances to overcome drug resistance in cancer. Staphylococcal enterotoxin B (SEB) is a superantigen (SAg) and a promising compound which has lethal effects on malignant cells. In this unprecedented study, SEB was used against U937 cells in a co-culture system in the presence of human bone marrow-mesenchymal stem cells (hBM-MSCs). The effects of hBM-MSCs on the proliferation and survival of U937 cell line with SEB was assessed using MTT assay and AnnexinV/PI flowcytometry, respectively. Moreover, the expression of IL-6, IL-10, TGF-β, and inhibitor of nuclear factor kappa-B kinase (IKKb) was evaluated by real-time PCR technique. The same experiments were also carried out using hBM-MSCs-conditioned medium (hBM-MSCs-CM). The results showed that SEB reduced the proliferation and survival of U937 cell line, but hBM-MSCs or hBM-MSCs-CM suppressed the effects of SEB. Furthermore, real-timePCR demonstrated that SEB could decrease the expression of IL-6, IL-10, and TGF-β in hBM-MSCs (P < .05), while the production of IKKb was increased in comparison with the control group. These findings help us to have a broader understanding ofthe usage of SEB in the treatment of haematological malignancies, especially if it is targeted against hBM-MSCs to disrupt their supportive effects on malignant cells.
Collapse
Affiliation(s)
- Mostafa Ejtehadifar
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Raheleh Halabian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Ghazavi
- Traditional and Complementary Medicine Research Center (TCMRC), Arak University of Medical Sciences, Arak, Iran.,Department of Microbiology and Immunology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Behzad Khansarinejad
- Department of Microbiology and Immunology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Ghasem Mosayebi
- Department of Microbiology and Immunology, School of Medicine, Arak University of Medical Sciences, Arak, Iran.,Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Rzymski T, Mikula M, Żyłkiewicz E, Dreas A, Wiklik K, Gołas A, Wójcik K, Masiejczyk M, Wróbel A, Dolata I, Kitlińska A, Statkiewicz M, Kuklinska U, Goryca K, Sapała Ł, Grochowska A, Cabaj A, Szajewska-Skuta M, Gabor-Worwa E, Kucwaj K, Białas A, Radzimierski A, Combik M, Woyciechowski J, Mikulski M, Windak R, Ostrowski J, Brzózka K. SEL120-34A is a novel CDK8 inhibitor active in AML cells with high levels of serine phosphorylation of STAT1 and STAT5 transactivation domains. Oncotarget 2018; 8:33779-33795. [PMID: 28422713 PMCID: PMC5464911 DOI: 10.18632/oncotarget.16810] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 03/09/2017] [Indexed: 11/25/2022] Open
Abstract
Inhibition of oncogenic transcriptional programs is a promising therapeutic strategy. A substituted tricyclic benzimidazole, SEL120-34A, is a novel inhibitor of Cyclin-dependent kinase 8 (CDK8), which regulates transcription by associating with the Mediator complex. X-ray crystallography has shown SEL120-34A to be a type I inhibitor forming halogen bonds with the protein's hinge region and hydrophobic complementarities within its front pocket. SEL120-34A inhibits phosphorylation of STAT1 S727 and STAT5 S726 in cancer cells in vitro. Consistently, regulation of STATs- and NUP98-HOXA9- dependent transcription has been observed as a dominant mechanism of action in vivo. Treatment with the compound resulted in a differential efficacy on AML cells with elevated STAT5 S726 levels and stem cell characteristics. In contrast, resistant cells were negative for activated STAT5 and revealed lineage commitment. In vivo efficacy in xenotransplanted AML models correlated with significant repression of STAT5 S726. Favorable pharmacokinetics, confirmed safety and in vivo efficacy provide a rationale for the further clinical development of SEL120-34A as a personalized therapeutic approach in AML.
Collapse
Affiliation(s)
| | - Michał Mikula
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center, Warsaw, Poland
| | | | | | | | | | | | | | - Anna Wróbel
- R&D Department, Selvita S.A., Kraków, Poland
| | | | | | | | - Urszula Kuklinska
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center, Warsaw, Poland
| | - Krzysztof Goryca
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center, Warsaw, Poland
| | | | - Aleksandra Grochowska
- Department of Gastroenterology, Hepatology and Clinical Oncology, Medical Center for Postgraduate Education, Warsaw, Poland
| | - Aleksandra Cabaj
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center, Warsaw, Poland.,Laboratory of Bioinformatics, Nencki Institute of Experimental Biology, Warsaw, Poland
| | | | | | | | | | | | | | | | | | | | - Jerzy Ostrowski
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center, Warsaw, Poland.,Department of Gastroenterology, Hepatology and Clinical Oncology, Medical Center for Postgraduate Education, Warsaw, Poland
| | | |
Collapse
|
21
|
Mattes K, Berger G, Geugien M, Vellenga E, Schepers H. CITED2 affects leukemic cell survival by interfering with p53 activation. Cell Death Dis 2017; 8:e3132. [PMID: 29072699 PMCID: PMC5680917 DOI: 10.1038/cddis.2017.548] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/28/2017] [Accepted: 09/13/2017] [Indexed: 02/07/2023]
Abstract
CITED2 (CBP/p300-interacting-transactivator-with-an-ED-rich-tail 2) is a regulator of the acetyltransferase CBP/p300 and elevated CITED2 levels are shown in a number of acute myeloid leukemia (AML). To study the in vivo role of CITED2 in AML maintenance, AML cells were transduced with a lentiviral construct for RNAi-mediated knockdown of CITED2. Mice transplanted with CITED2-knockdown AML cells (n=4) had a significantly longer survival compared to mice transplanted with control AML cells (P<0.02). In vitro, the reduction of CITED2 resulted in increased p53-mediated apoptosis and CDKN1A expression, whereas BCL2 levels were reduced. The activation of p53 upon CITED2 knockdown is not a direct consequence of increased CBP/p300-activity towards p53, since no increased formation of CBP/p300/p53 complexes was demonstrated and inhibition of CBP/p300-activity could not rescue the phenotype of CITED2-deficient cells. Instead, loss of CITED2 had an inhibitory effect on the AKT-signaling pathway, which was indicated by decreased levels of phosphorylated AKT and altered expression of the AKT-pathway regulators PHLDA3 and SOX4. Notably, simultaneous upregulation of BCL2 or downregulation of the p53-target gene PHLDA3 rescued the apoptotic phenotype in CITED2-knockdown cells. Furthermore, knockdown of CITED2 led to a decreased interaction of p53 with its inhibitor MDM2, which results in increased amounts of total p53 protein. In summary, our data indicate that CITED2 functions in pathways regulating p53 activity and therefore represents an interesting target for AML therapy, since de novo AML cases are characterized by an inactivation of the p53 pathway or deregulation of apoptosis-related genes.
Collapse
Affiliation(s)
- Katharina Mattes
- Department of Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Gerbrig Berger
- Department of Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marjan Geugien
- Department of Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Edo Vellenga
- Department of Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Hein Schepers
- Department of Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
22
|
Murone M, Radpour R, Attinger A, Chessex AV, Huguenin AL, Schürch CM, Banz Y, Sengupta S, Aguet M, Rigotti S, Bachhav Y, Massière F, Ramachandra M, McAllister A, Riether C. The Multi-kinase Inhibitor Debio 0617B Reduces Maintenance and Self-renewal of Primary Human AML CD34 + Stem/Progenitor Cells. Mol Cancer Ther 2017; 16:1497-1510. [PMID: 28468777 DOI: 10.1158/1535-7163.mct-16-0889] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/16/2017] [Accepted: 04/20/2017] [Indexed: 01/05/2023]
Abstract
Acute myelogenous leukemia (AML) is initiated and maintained by leukemia stem cells (LSC). LSCs are therapy-resistant, cause relapse, and represent a major obstacle for the cure of AML. Resistance to therapy is often mediated by aberrant tyrosine kinase (TK) activation. These TKs primarily activate downstream signaling via STAT3/STAT5. In this study, we analyzed the potential to therapeutically target aberrant TK signaling and to eliminate LSCs via the multi-TK inhibitor Debio 0617B. Debio 0617B has a unique profile targeting key kinases upstream of STAT3/STAT5 signaling such as JAK, SRC, ABL, and class III/V receptor TKs. We demonstrate that expression of phospho-STAT3 (pSTAT3) in AML blasts is an independent prognostic factor for overall survival. Furthermore, phospho-STAT5 (pSTAT5) signaling is increased in primary CD34+ AML stem/progenitors. STAT3/STAT5 activation depends on tyrosine phosphorylation, mediated by several upstream TKs. Inhibition of single upstream TKs did not eliminate LSCs. In contrast, the multi-TK inhibitor Debio 0617B reduced maintenance and self-renewal of primary human AML CD34+ stem/progenitor cells in vitro and in xenotransplantation experiments resulting in long-term elimination of human LSCs and leukemia. Therefore, inhibition of multiple TKs upstream of STAT3/5 may result in sustained therapeutic efficacy of targeted therapy in AML and prevent relapses. Mol Cancer Ther; 16(8); 1497-510. ©2017 AACR.
Collapse
Affiliation(s)
| | - Ramin Radpour
- Tumor Immunology, Department of Clinical Research, University of Bern, Bern, Switzerland
| | | | | | - Anne-Laure Huguenin
- Tumor Immunology, Department of Clinical Research, University of Bern, Bern, Switzerland
| | | | - Yara Banz
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Saumitra Sengupta
- Aurigene Discovery Technologies Limited, Bangalore, Karnataka, India
| | - Michel Aguet
- Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | | | | | | | | | | | - Carsten Riether
- Tumor Immunology, Department of Clinical Research, University of Bern, Bern, Switzerland.
- Department of Medical Oncology, Inselspital, University Hospital and University of Bern, Bern, Switzerland
| |
Collapse
|
23
|
|
24
|
Ren Z, Aerts JL, Vandenplas H, Wang JA, Gorbenko O, Chen JP, Giron P, Heirman C, Goyvaerts C, Zacksenhaus E, Minden MD, Stambolic V, Breckpot K, De Grève J. Phosphorylated STAT5 regulates p53 expression via BRCA1/BARD1-NPM1 and MDM2. Cell Death Dis 2016; 7:e2560. [PMID: 28005077 PMCID: PMC5260985 DOI: 10.1038/cddis.2016.430] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 10/18/2016] [Accepted: 10/19/2016] [Indexed: 12/31/2022]
Abstract
Signal transducer and activator of transcription 5 (STAT5) and nucleophosmin (NPM1) are critical regulators of multiple biological and pathological processes. Although a reciprocal regulatory relationship was established between STAT5A and a NPM–ALK fusion protein in T-cell lymphoma, no direct connection between STAT5 and wild-type NPM1 has been documented. Here we demonstrate a mutually regulatory relationship between STAT5 and NPM1. Induction of STAT5 phosphorylation at Y694 (P-STAT5) diminished NPM1 expression, whereas inhibition of STAT5 phosphorylation enhanced NPM1 expression. Conversely, NPM1 not only negatively regulated STAT5 phosphorylation but also preserved unphosphorylated STAT5 level. Mechanistically, we show that NPM1 downregulation by P-STAT5 is mediated by impairing the BRCA1-BARD1 ubiquitin ligase, which controls the stability of NPM1. In turn, decreased NPM1 levels led to suppression of p53 expression, resulting in enhanced cell survival. This study reveals a new STAT5 signaling pathway regulating p53 expression via NPM1 and uncovers new therapeutic targets for anticancer treatment in tumors driven by STAT5 signaling.
Collapse
Affiliation(s)
- Zhuo Ren
- Laboratory of Medical and Molecular Oncology (LMMO), Department of Medical Oncology, Vrije Universiteit Brussel, Brussels, Belgium.,Department of General Surgery, The First People's Hospital of Shanghai, Shanghai Jiaotong University, Shanghai, China.,Department of Medical Oncology, Oncologisch Centrum of the Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium.,Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Joeri L Aerts
- Laboratory of Molecular and Cellular Therapy, Department of Physiology and Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Hugo Vandenplas
- Laboratory of Medical and Molecular Oncology (LMMO), Department of Medical Oncology, Vrije Universiteit Brussel, Brussels, Belgium.,Department of Medical Oncology, Oncologisch Centrum of the Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jiance A Wang
- Department of Medicine and Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Olena Gorbenko
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Jack P Chen
- Department of Medicine and Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Philippe Giron
- Laboratory of Medical and Molecular Oncology (LMMO), Department of Medical Oncology, Vrije Universiteit Brussel, Brussels, Belgium.,Department of Medical Oncology, Oncologisch Centrum of the Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Carlo Heirman
- Laboratory of Molecular and Cellular Therapy, Department of Physiology and Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Cleo Goyvaerts
- Laboratory of Molecular and Cellular Therapy, Department of Physiology and Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Eldad Zacksenhaus
- Department of Medicine and Medical Biophysics, University of Toronto, Toronto, ON, Canada.,Toronto General Research Institute, University Health Network, Toronto, ON, Canada
| | - Mark D Minden
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.,Department of Medicine and Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Vuk Stambolic
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.,Department of Medicine and Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Karine Breckpot
- Laboratory of Molecular and Cellular Therapy, Department of Physiology and Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jacques De Grève
- Laboratory of Medical and Molecular Oncology (LMMO), Department of Medical Oncology, Vrije Universiteit Brussel, Brussels, Belgium.,Department of Medical Oncology, Oncologisch Centrum of the Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
25
|
Fahrenkamp D, Li J, Ernst S, Schmitz-Van de Leur H, Chatain N, Küster A, Koschmieder S, Lüscher B, Rossetti G, Müller-Newen G. Intramolecular hydrophobic interactions are critical mediators of STAT5 dimerization. Sci Rep 2016; 6:35454. [PMID: 27752093 PMCID: PMC5067585 DOI: 10.1038/srep35454] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/28/2016] [Indexed: 11/09/2022] Open
Abstract
STAT5 is an essential transcription factor in hematopoiesis, which is activated through tyrosine phosphorylation in response to cytokine stimulation. Constitutive activation of STAT5 is a hallmark of myeloid and lymphoblastic leukemia. Using homology modeling and molecular dynamics simulations, a model of the STAT5 phosphotyrosine-SH2 domain interface was generated providing first structural information on the activated STAT5 dimer including a sequence, for which no structural information is available for any of the STAT proteins. We identified a novel intramolecular interaction mediated through F706, adjacent to the phosphotyrosine motif, and a unique hydrophobic interface on the surface of the SH2 domain. Analysis of corresponding STAT5 mutants revealed that this interaction is dispensable for Epo receptor-mediated phosphorylation of STAT5 but essential for dimer formation and subsequent nuclear accumulation. Moreover, the herein presented model clarifies molecular mechanisms of recently discovered leukemic STAT5 mutants and will help to guide future drug development.
Collapse
Affiliation(s)
- Dirk Fahrenkamp
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, Aachen, Germany
| | - Jinyu Li
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, Aachen, Germany.,College of Chemistry, Fuzhou University, Fuzhou, China.,Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, Jülich, Germany
| | - Sabrina Ernst
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, Aachen, Germany
| | | | - Nicolas Chatain
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Andrea Küster
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, Aachen, Germany
| | - Steffen Koschmieder
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Bernhard Lüscher
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, Aachen, Germany
| | - Giulia Rossetti
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, Jülich, Germany.,Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.,Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich, Jülich, Germany
| | - Gerhard Müller-Newen
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
26
|
Hilgendorf S, Folkerts H, Schuringa JJ, Vellenga E. Loss of ASXL1 triggers an apoptotic response in human hematopoietic stem and progenitor cells. Exp Hematol 2016; 44:1188-1196.e6. [PMID: 27616637 DOI: 10.1016/j.exphem.2016.08.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/26/2016] [Accepted: 08/29/2016] [Indexed: 12/31/2022]
Abstract
ASXL1 is frequently mutated in myelodysplastic syndrome and other hematological malignancies. It has been reported that a loss of ASXL1 leads to a reduction of H3K27me3 via the polycomb repressive complex 2 (PRC2). To determine the role of ASXL1 loss in normal hematopoietic stem and progenitor cells, cord blood CD34+ cells were transduced with independent small hairpin interfering RNA lentiviral vectors against ASXL1 and cultured under myeloid and erythroid permissive conditions. Knockdown of ASXL1 led to a significant reduction in stem-cell frequency and a reduced cell expansion along the myeloid lineage. Cell expansion along the erythroid lineage was also reduced significantly and was accompanied by an increase in apoptosis of erythroid progenitor cells throughout differentiation and by an accumulation of cells in the G0/G1 phase. Bone marrow stromal cells supported the growth of immature erythroid cells, but did not alter the adverse phenotype of ASXL1 knockdown. Chromatin immunoprecipitation revealed no loss of H3K27me3 in myeloid progenitor cells, but demonstrated a loss of H3K27me3 on the HOXA and the p21 locus in erythroid progenitors. We conclude that ASXL1 is essential for erythroid development and differentiation and that the aberrant differentiation is, at least in part, facilitated via PRC2.
Collapse
Affiliation(s)
- Susan Hilgendorf
- Department of Experimental Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Hendrik Folkerts
- Department of Experimental Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jan Jacob Schuringa
- Department of Experimental Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Edo Vellenga
- Department of Experimental Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
27
|
Wang Z, Medrzycki M, Bunting ST, Bunting KD. Stat5-deficient hematopoiesis is permissive for Myc-induced B-cell leukemogenesis. Oncotarget 2016; 6:28961-72. [PMID: 26338970 PMCID: PMC4745704 DOI: 10.18632/oncotarget.5009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 08/12/2015] [Indexed: 11/28/2022] Open
Abstract
Despite being an attractive molecular target for both lymphoid and myeloid leukemias characterized by activated tyrosine kinases, the molecular and physiological consequences of reduced signal transducer and activator of transcription-5 (Stat5) during leukemogenesis are not well known. Stat5 is a critical regulator of mouse hematopoietic stem cell (HSC) self-renewal and is essential for normal lymphocyte development. We report that pan-hematopoietic deletion in viable adult Vav1-Cre conditional knockout mice as well as Stat5abnull/null fetal liver transplant chimeras generated HSCs with reduced expression of quiescence regulating genes (Tie2, Mpl, Slamf1, Spi1, Cited2) and increased expression of B-cell development genes (Satb1, Dntt, Btla, Flk2). Using a classical murine B-cell acute lymphoblastic leukemia (B-ALL) model, we demonstrate that these HSCs were also poised to produce a burst of B-cell precursors upon expression of Bcl-2 combined with oncogenic Myc. This strong selective advantage for leukemic transformation in the background of Stat5 deficient hematopoiesis was permissive for faster initiation of Myc-induced transformation to B-ALL. However, once established, the B-ALL progression in secondary transplant recipients was Stat5-independent. Overall, these studies suggest that Stat5 can play multiple important roles that not only preserve the HSC compartment but can limit accumulation of potential pre-leukemic lymphoid populations.
Collapse
Affiliation(s)
- Zhengqi Wang
- Department of Pediatrics, Division of Hematology-Oncology-BMT, Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta and Emory University, Atlanta GA, USA
| | - Magdalena Medrzycki
- Department of Pediatrics, Division of Hematology-Oncology-BMT, Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta and Emory University, Atlanta GA, USA
| | - Silvia T Bunting
- Department of Pathology, Children's Healthcare of Atlanta, Atlanta GA, USA
| | - Kevin D Bunting
- Department of Pediatrics, Division of Hematology-Oncology-BMT, Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta and Emory University, Atlanta GA, USA
| |
Collapse
|
28
|
BCR/ABL increases EZH2 levels which regulates XIAP expression via miRNA-219 in chronic myeloid leukemia cells. Leuk Res 2016; 45:24-32. [DOI: 10.1016/j.leukres.2016.03.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 03/10/2016] [Accepted: 03/31/2016] [Indexed: 11/20/2022]
|
29
|
Steinmetz B, Hackl H, Slabáková E, Schwarzinger I, Smějová M, Spittler A, Arbesu I, Shehata M, Souček K, Wieser R. The oncogene EVI1 enhances transcriptional and biological responses of human myeloid cells to all-trans retinoic acid. Cell Cycle 2015; 13:2931-43. [PMID: 25486480 PMCID: PMC4613657 DOI: 10.4161/15384101.2014.946869] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The product of the ecotropic virus integration site 1 (EVI1) gene, whose overexpression is associated with a poor prognosis in myeloid leukemias and some epithelial tumors, regulates gene transcription both through direct DNA binding and through modulation of the activity of other sequence specific transcription factors. Previous results from our laboratory have shown that EVI1 influenced transcription regulation in response to the myeloid differentiation inducing agent, all-trans retinoic acid (ATRA), in a dual manner: it enhanced ATRA induced transcription of the RARβ gene, but repressed the ATRA induction of the EVI1 gene itself. In the present study, we asked whether EVI1 would modulate the ATRA regulation of a larger number of genes, as well as biological responses to this agent, in human myeloid cells. U937 and HL-60 cells ectopically expressing EVI1 through retroviral transduction were subjected to microarray based gene expression analysis, and to assays measuring cellular proliferation, differentiation, and apoptosis. These experiments showed that EVI1 modulated the ATRA response of several dozens of genes, and in fact reinforced it in the vast majority of cases. A particularly strong synergy between EVI1 and ATRA was observed for GDF15, which codes for a member of the TGF-β superfamily of cytokines. In line with the gene expression results, EVI1 enhanced cell cycle arrest, differentiation, and apoptosis in response to ATRA, and knockdown of GDF15 counteracted some of these effects. The potential clinical implications of these findings are discussed.
Collapse
Key Words
- AML, acute myeloid leukemia
- APL, acute promyelocytic leukemia
- ATRA, all-trans retinoic acid
- Ar, ATRA regulation
- DMSO, dimethyl sulfoxide
- EVI1
- Em, EVI1 modulation
- Er, EVI1 regulation
- FBS, fetal bovine serum
- FC, fold change
- FDR, false discovery rate
- GDF15
- GFP, green fluorescent protein
- MDS, myelodysplastic syndrome
- PSG, penicillin streptomycin glutamine
- RAR, retinoic acid receptor
- RARE, retinoic acid response element
- SE, standard error
- all-trans retinoic acid
- apoptosis
- cell cycle
- gene expression profiling
- mcoEvi1, murine codon optimized Evi1
- myeloid differentiation
Collapse
Affiliation(s)
- Birgit Steinmetz
- a Department of Medicine I ; Medical University of Vienna ; Währinger Gürtel, Vienna , Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Nishioka C, Ikezoe T, Takeuchi A, Nobumoto A, Tsuda M, Yokoyama A. The novel function of CD82 and its impact on BCL2L12 via AKT/STAT5 signal pathway in acute myelogenous leukemia cells. Leukemia 2015; 29:2296-306. [PMID: 26260387 DOI: 10.1038/leu.2015.219] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Revised: 07/03/2015] [Accepted: 07/30/2015] [Indexed: 02/07/2023]
Abstract
The aim of this study was to explore the biological functions of a tetraspanin family protein CD82 expressed aberrantly in chemotherapy-resistant CD34(+)/CD38(-) acute myelogenous leukemia (AML) cells. Microarray analysis of patient-isolated CD34(+)/CD38(-) AML cells revealed that the levels of anti-apoptotic protein BCL2L12 were downregulated after CD82 depletion by specific short hairpin RNA (shRNA). Western blot analysis indicated that BCL2L12 was aberrantly expressed in patient-isolated AML cells and AML cell lines. Furthermore, CD82 blockade by a specific antibody downregulated BCL2L12 in parallel with dephosphorylation of signal transducer and activator of transcription 5 (STAT5) and AKT, whereas pharmacological inhibition of STAT5 and AKT activation decreased BCL2L12 expression in leukemia cells. In addition, shRNA-mediated downregulation of BCL2L12 increased the levels of cleaved caspase-3 and suppressed proliferation of leukemia cells, impairing their engraftment in immunodeficient mice. Taken together, our results indicate that CD82 regulated BCL2L12 expression via STAT5A and AKT signaling and stimulated proliferation and engrafting of leukemia cells, suggesting that CD82 and BCL2L12 may be promising therapeutic targets in AML.
Collapse
Affiliation(s)
- C Nishioka
- Department of Hematology and Respiratory Medicine, Kochi University, Nankoku, Japan
| | - T Ikezoe
- Department of Hematology and Respiratory Medicine, Kochi University, Nankoku, Japan
| | - A Takeuchi
- Department of Hematology and Respiratory Medicine, Kochi University, Nankoku, Japan
| | - A Nobumoto
- The Facility for Animal Research, Kochi Medical School, Kochi University, Nankoku, Japan
| | - M Tsuda
- The Facility for Animal Research, Kochi Medical School, Kochi University, Nankoku, Japan
| | - A Yokoyama
- Department of Hematology and Respiratory Medicine, Kochi University, Nankoku, Japan
| |
Collapse
|
31
|
Pelosi E, Castelli G, Testa U. Targeting LSCs through membrane antigens selectively or preferentially expressed on these cells. Blood Cells Mol Dis 2015; 55:336-46. [PMID: 26460257 DOI: 10.1016/j.bcmd.2015.07.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 07/17/2015] [Indexed: 02/08/2023]
Abstract
Studies of xenotransplantation of bone marrow and blood cells of AML patients have supported the existence of rare leukemic stem cells, able to initiate and maintain the leukemic process and bearing the typical leukemic abnormalities. LSCs possess self-renewal capacity and are responsible for the growth of the more differentiated leukemic progeny in the bone marrow and in the blood. These cells are more resistant than bulk leukemic cells to anti-leukemic drugs, thus survive to treatment and are, at a large extent, responsible for leukemia relapse. During the last two decades, considerable progresses have been made in the understanding of the peculiar cellular and molecular properties of LSCs. In this context, particularly relevant was the discovery of several membrane markers, selectively or preferentially expressed on LSCs. These membrane markers offer now unique opportunities to identify LSCs and to distinguish them from normal HSCs, to monitor the response of the various anti-leukemic treatments at the level of the LSC compartment, to identify relevant therapeutic targets. Concerning this last point, the most promising therapeutic targets are CD33 and CD123.
Collapse
Affiliation(s)
- Elvira Pelosi
- Department of Hematology, Oncology and Molecular Medicine, Istituto Suepriore di Sanità, Rome, Italy
| | - Germana Castelli
- Department of Hematology, Oncology and Molecular Medicine, Istituto Suepriore di Sanità, Rome, Italy
| | - Ugo Testa
- Department of Hematology, Oncology and Molecular Medicine, Istituto Suepriore di Sanità, Rome, Italy
| |
Collapse
|
32
|
Increased Oxidative Stress as a Selective Anticancer Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:294303. [PMID: 26273420 PMCID: PMC4529973 DOI: 10.1155/2015/294303] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 02/11/2015] [Indexed: 12/18/2022]
Abstract
Reactive oxygen species (ROS) are closely related to tumorgenesis. Under hypoxic environment, increased levels of ROS induce the expression of hypoxia inducible factors (HIFs) in cancer stem cells (CSCs), resulting in the promotion of the upregulation of CSC markers, and the reduction of intracellular ROS level, thus facilitating CSCs survival and proliferation. Although the ROS level is regulated by powerful antioxidant defense mechanisms in cancer cells, it is observed to remain higher than that in normal cells. Cancer cells may be more sensitive than normal cells to the accumulation of ROS; consequently, it is supposed that increased oxidative stress by exogenous ROS generation therapy has an effect on selectively killing cancer cells without affecting normal cells. This paper reviews the mechanisms of redox regulation in CSCs and the pivotal role of ROS in anticancer treatment.
Collapse
|
33
|
Capala ME, Maat H, Bonardi F, van den Boom V, Kuipers J, Vellenga E, Giepmans BNG, Schuringa JJ. Mitochondrial Dysfunction in Human Leukemic Stem/Progenitor Cells upon Loss of RAC2. PLoS One 2015; 10:e0128585. [PMID: 26016997 PMCID: PMC4446344 DOI: 10.1371/journal.pone.0128585] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 04/28/2015] [Indexed: 11/18/2022] Open
Abstract
Leukemic stem cells (LSCs) reside within bone marrow niches that maintain their relatively quiescent state and convey resistance to conventional treatment. Many of the microenvironmental signals converge on RAC GTPases. Although it has become clear that RAC proteins fulfill important roles in the hematopoietic compartment, little has been revealed about the downstream effectors and molecular mechanisms. We observed that in BCR-ABL-transduced human hematopoietic stem/progenitor cells (HSPCs) depletion of RAC2 but not RAC1 induced a marked and immediate decrease in proliferation, progenitor frequency, cobblestone formation and replating capacity, indicative for reduced self-renewal. Cell cycle analyses showed reduced cell cycle activity in RAC2-depleted BCR-ABL leukemic cobblestones coinciding with an increased apoptosis. Moreover, a decrease in mitochondrial membrane potential was observed upon RAC2 downregulation, paralleled by severe mitochondrial ultrastructural malformations as determined by automated electron microscopy. Proteome analysis revealed that RAC2 specifically interacted with a set of mitochondrial proteins including mitochondrial transport proteins SAM50 and Metaxin 1, and interactions were confirmed in independent co-immunoprecipitation studies. Downregulation of SAM50 also impaired the proliferation and replating capacity of BCR-ABL-expressing cells, again associated with a decreased mitochondrial membrane potential. Taken together, these data suggest an important role for RAC2 in maintaining mitochondrial integrity.
Collapse
Affiliation(s)
- Marta E. Capala
- Department of Experimental Hematology, Cancer Research Center Groningen, Groningen, the Netherlands
| | - Henny Maat
- Department of Experimental Hematology, Cancer Research Center Groningen, Groningen, the Netherlands
| | - Francesco Bonardi
- Department of Experimental Hematology, Cancer Research Center Groningen, Groningen, the Netherlands
| | - Vincent van den Boom
- Department of Experimental Hematology, Cancer Research Center Groningen, Groningen, the Netherlands
| | - Jeroen Kuipers
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Edo Vellenga
- Department of Experimental Hematology, Cancer Research Center Groningen, Groningen, the Netherlands
| | - Ben N. G. Giepmans
- Department of Experimental Hematology, Cancer Research Center Groningen, Groningen, the Netherlands
| | - Jan Jacob Schuringa
- Department of Experimental Hematology, Cancer Research Center Groningen, Groningen, the Netherlands
| |
Collapse
|
34
|
Takeuchi A, Nishioka C, Ikezoe T, Yang J, Yokoyama A. STAT5A regulates DNMT3A in CD34(+)/CD38(-) AML cells. Leuk Res 2015; 39:897-905. [PMID: 26059451 DOI: 10.1016/j.leukres.2015.05.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 04/17/2015] [Accepted: 05/13/2015] [Indexed: 10/23/2022]
Abstract
Signal transducer and activator of transcription 5 (STAT5) is activated in CD34(+)/CD38(-) acute myelogenous leukemia (AML) cells. Inhibition of STAT5 induced apoptosis and sensitized these cells to the growth inhibition mediated by conventional chemotherapeutic agents. The present study attempted to identify molecules that are regulated by STAT5 in CD34(+)/CD38(-) AML cells by utilizing cDNA microarrays, comparing the gene expression profiles of control and STAT5A shRNA-transduced CD34(+)/CD38(-) AML cells. Interestingly, DNA methyltransferase (DNMT) 3A was downregulated after depletion of STAT5A in CD34(+)/CD38(-) AML cells. Reporter gene assays found that an increase in activity of DNMT3A occurred in response to activation of STAT5A in leukemia cells. On the other hand, dephosphorylation of STAT5A by AZ960 decreased this transcriptional activity. Further studies utilizing a chromatin immunoprecipitation assay identified a STAT5A-binding site on the promoter region of DNMT3A gene. Forced expression of STAT5A in leukemia cells caused hypermethylation on the promoter region of the tumor suppressor gene, PTEN, and downregulated its mRNA levels, as measured by methylation-specific and real-time polymerase chain reaction, respectively. Taken together, these data suggest that STAT5A positively regulates levels of DNMT3A, resulting in inactivation of tumor suppressor genes by epigenetic mechanisms in AML cells.
Collapse
Affiliation(s)
- Asako Takeuchi
- Department of Hematology and Respiratory Medicine, Kochi Medical School, Kochi University, Okoh-cho, Nankoku 783-8505, Kochi, Japan.
| | - Chie Nishioka
- Department of Hematology and Respiratory Medicine, Kochi Medical School, Kochi University, Okoh-cho, Nankoku 783-8505, Kochi, Japan
| | - Takayuki Ikezoe
- Department of Hematology and Respiratory Medicine, Kochi Medical School, Kochi University, Okoh-cho, Nankoku 783-8505, Kochi, Japan.
| | - Jing Yang
- Department of Hematology and Respiratory Medicine, Kochi Medical School, Kochi University, Okoh-cho, Nankoku 783-8505, Kochi, Japan
| | - Akihito Yokoyama
- Department of Hematology and Respiratory Medicine, Kochi Medical School, Kochi University, Okoh-cho, Nankoku 783-8505, Kochi, Japan
| |
Collapse
|
35
|
Korthuis PM, Berger G, Bakker B, Rozenveld-Geugien M, Jaques J, de Haan G, Schuringa JJ, Vellenga E, Schepers H. CITED2-mediated human hematopoietic stem cell maintenance is critical for acute myeloid leukemia. Leukemia 2015; 29:625-35. [PMID: 25184385 DOI: 10.1038/leu.2014.259] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 08/01/2014] [Accepted: 08/22/2014] [Indexed: 02/07/2023]
Abstract
As the transcriptional coactivator CITED2 (CBP/p300-interacting-transactivator-with-an ED-rich-tail 2) can be overexpressed in acute myeloid leukemia (AML) cells, we analyzed the consequences of high CITED2 expression in normal and AML cells. CITED2 overexpression in normal CD34(+) cells resulted in enhanced hematopoietic stem and progenitor cell (HSPC) output in vitro, as well as in better hematopoietic stem cell (HSC) engraftability in NSG (NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ) mice. This was because of an enhanced quiescence and maintenance of CD34(+)CD38(-) HSCs, due in part to an increased expression of the cyclin-dependent kinase inhibitor CDKN1A. We demonstrated that PU.1 is a critical regulator of CITED2, as PU.1 repressed CITED2 expression in a DNA methyltransferase 3A/B (DNMT3A/B)-dependent manner in normal CD34(+) cells. CD34(+) cells from a subset of AML patients displayed higher expression levels of CITED2 as compared with normal CD34(+) HSPCs, and knockdown of CITED2 in AML CD34(+) cells led to a loss of long-term expansion, both in vitro and in vivo. The higher CITED2 expression resulted from reduced PU.1 activity and/or dysfunction of mutated DNMT3A/B. Collectively, our data demonstrate that increased CITED2 expression results in better HSC maintenance. In concert with low PU.1 levels, this could result in a perturbed myeloid differentiation program that contributes to leukemia maintenance.
Collapse
MESH Headings
- Animals
- Antigens, CD34/genetics
- Antigens, CD34/metabolism
- Cell Proliferation
- Cyclin-Dependent Kinase Inhibitor p21/genetics
- Cyclin-Dependent Kinase Inhibitor p21/metabolism
- DNA (Cytosine-5-)-Methyltransferases/genetics
- DNA (Cytosine-5-)-Methyltransferases/metabolism
- DNA Methyltransferase 3A
- Female
- Gene Expression Regulation, Leukemic
- Graft Survival
- Hematopoietic Stem Cell Transplantation
- Hematopoietic Stem Cells/metabolism
- Hematopoietic Stem Cells/pathology
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Mice
- Mice, Inbred NOD
- Mutation
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Signal Transduction
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transplantation, Heterologous
- DNA Methyltransferase 3B
Collapse
Affiliation(s)
- P M Korthuis
- Department of Experimental Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - G Berger
- Department of Experimental Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - B Bakker
- Department of Experimental Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - M Rozenveld-Geugien
- Department of Experimental Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - J Jaques
- Department of Experimental Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - G de Haan
- Department of Stem Cell Biology, European Research Institute for the Biology of Aging (ERIBA), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - J J Schuringa
- Department of Experimental Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - E Vellenga
- Department of Experimental Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - H Schepers
- Department of Experimental Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
36
|
STAT activation status differentiates leukemogenic from non-leukemogenic stem cells in AML and is suppressed by arsenic in t(6;9)-positive AML. Genes Cancer 2015; 5:378-92. [PMID: 25568664 PMCID: PMC4279436 DOI: 10.18632/genesandcancer.39] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 10/19/2014] [Indexed: 01/13/2023] Open
Abstract
Acute myeloid leukemia (AML) is characterized by an aberrant self-renewal of hematopoietic stem cells (HSC) and a block in differentiation. The major therapeutic challenge is the characterization of the leukemic stem cell as a target for the eradication of the disease. Until now the biology of AML-associated fusion proteins (AAFPs), such as the t(15;17)-PML/RARα, t(8;21)-RUNX1/RUNX1T1 and t(6;9)-DEK/NUP214, all able to induce AML in mice, was investigated in different models and genetic backgrounds, not directly comparable to each other. To avoid the bias of different techniques and models we expressed these three AML-inducing oncogenes in an identical genetic background and compared their influence on the HSC compartment in vitro and in vivo. These AAFPs exerted differential effects on HSCs and PML/RARα, similar to DEK/NUP214, induced a leukemic phenotype from a small subpopulation of HSCs with a surface marker pattern of long-term HSC and characterized by activated STAT3 and 5. In contrast the established AML occurred from mature populations in the bone marrow. The activation of STAT5 by PML/RARα and DEK/NUP214 was confirmed in t(15;17)(PML/RARα) and t(6;9)(DEK/NUP214)-positive patients as compared to normal CD34+ cells. The activation of STAT5 was reduced upon the exposure to Arsenic which was accompanied by apoptosis in both PML/RARα- and DEK/NUP214-positive leukemic cells. These findings indicate that in AML the activation of STATs plays a decisive role in the biology of the leukemic stem cell. Furthermore we establish exposure to arsenic as a novel concept for the treatment of this high risk t(6;9)-positive AML.
Collapse
|
37
|
Progress in RNAi-mediated Molecular Therapy of Acute and Chronic Myeloid Leukemia. MOLECULAR THERAPY. NUCLEIC ACIDS 2015; 4:e240. [DOI: 10.1038/mtna.2015.13] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 03/26/2015] [Indexed: 02/08/2023]
|
38
|
ELMO1 is upregulated in AML CD34+ stem/progenitor cells, mediates chemotaxis and predicts poor prognosis in normal karyotype AML. PLoS One 2014; 9:e111568. [PMID: 25360637 PMCID: PMC4216115 DOI: 10.1371/journal.pone.0111568] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 10/03/2014] [Indexed: 12/27/2022] Open
Abstract
Both normal as well leukemic hematopoietic stem cells critically depend on their microenvironment in the bone marrow for processes such as self-renewal, survival and differentiation, although the exact pathways that are involved remain poorly understood. We performed transcriptome analysis on primitive CD34+ acute myeloid leukemia (AML) cells (n = 46), their more differentiated CD34- leukemic progeny, and normal CD34+ bone marrow cells (n = 31) and focused on differentially expressed genes involved in adhesion and migration. Thus, Engulfment and Motility protein 1 (ELMO1) was identified amongst the top 50 most differentially expressed genes. ELMO1 is a crucial link in the signaling cascade that leads to activation of RAC GTPases and cytoskeleton rearrangements. We confirmed increased ELMO1 expression at the mRNA and protein level in a panel of AML samples and showed that high ELMO1 expression is an independent negative prognostic factor in normal karyotype (NK) AML in three large independent patient cohorts. Downmodulation of ELMO1 in human CB CD34+ cells did not significantly alter expansion, progenitor frequency or differentiation in stromal co-cultures, but did result in a decreased frequency of stem cells in LTC-IC assays. In BCR-ABL-transduced human CB CD34+ cells depletion of ELMO1 resulted in a mild decrease in proliferation, but replating capacity of progenitors was severely impaired. Downregulation of ELMO1 in a panel of primary CD34+ AML cells also resulted in reduced long-term growth in stromal co-cultures in two out of three cases. Pharmacological inhibition of the ELMO1 downstream target RAC resulted in a severely impaired proliferation and survival of leukemic cells. Finally, ELMO1 depletion caused a marked decrease in SDF1-induced chemotaxis of leukemic cells. Taken together, these data show that inhibiting the ELMO1-RAC axis might be an alternative way to target leukemic cells.
Collapse
|
39
|
PIM inhibitors target CD25-positive AML cells through concomitant suppression of STAT5 activation and degradation of MYC oncogene. Blood 2014; 124:1777-89. [DOI: 10.1182/blood-2014-01-551234] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Key Points
CD25 is a predictive biomarker for sensitivity to PIM inhibitors in AML cells. PIM inhibitors may prolong overall/relapse-free survival through attenuating STAT5 activation and destabilizing MYC in CD25+ AML cells.
Collapse
|
40
|
Schepers H, Wierenga ATJ, Vellenga E, Schuringa JJ. STAT5-mediated self-renewal of normal hematopoietic and leukemic stem cells. JAKSTAT 2014; 1:13-22. [PMID: 24058747 PMCID: PMC3670129 DOI: 10.4161/jkst.19316] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 01/10/2012] [Accepted: 01/11/2012] [Indexed: 01/07/2023] Open
Abstract
The level of transcription factor activity critically regulates cell fate decisions such as hematopoietic stem cell self-renewal and differentiation. The balance between hematopoietic stem cell self-renewal and differentiation needs to be tightly controlled, as a shift toward differentiation might exhaust the stem cell pool, while a shift toward self-renewal might mark the onset of leukemic transformation. A number of transcription factors have been proposed to be critically involved in governing stem cell fate and lineage commitment, such as Hox transcription factors, c-Myc, Notch1, β-catenin, C/ebpα, Pu.1 and STAT5. It is therefore no surprise that dysregulation of these transcription factors can also contribute to the development of leukemias. This review will discuss the role of STAT5 in both normal and leukemic hematopoietic stem cells as well as mechanisms by which STAT5 might contribute to the development of human leukemias.
Collapse
Affiliation(s)
- Hein Schepers
- Department of Experimental Hematology; University Medical Center Groningen; Groningen, The Netherlands ; Department of Stem Cell Biology; University Medical Center Groningen; Groningen, The Netherlands
| | | | | | | |
Collapse
|
41
|
Aging Impairs Long-Term Hematopoietic Regeneration after Autologous Stem Cell Transplantation. Biol Blood Marrow Transplant 2014; 20:865-71. [DOI: 10.1016/j.bbmt.2014.03.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Accepted: 03/01/2014] [Indexed: 01/22/2023]
|
42
|
Sontakke P, Carretta M, Capala M, Schepers H, Schuringa JJ. Ex vivo assays to study self-renewal, long-term expansion, and leukemic transformation of genetically modified human hematopoietic and patient-derived leukemic stem cells. Methods Mol Biol 2014; 1185:195-210. [PMID: 25062630 DOI: 10.1007/978-1-4939-1133-2_13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
With the emergence of the concept of the leukemic stem cell (LSC), assays to study them remain pivotal in understanding (leukemic) stem cell biology. Although the in vivo NOD-SCID or NSG xenotransplantation model is currently still the favored assay of choice in most cases, this system has some limitations as well such as its cost-effectiveness, duration, and lack of engraftability of cells from some acute myeloid leukemia (AML) patients. Here, we describe in vitro assays in which long-term expansion and self-renewal of LSCs isolated from AML patients can be evaluated. We have optimized lentiviral transduction procedures in order to stably express genes of interest or stably downmodulate genes using RNAi in primary AML cells, and these approaches are described in detail here. Also, we describe bone marrow stromal coculture systems in which cobblestone area-forming cell activity, self-renewal, long-term expansion, and in vitro myeloid or lymphoid transformation can be evaluated in human CD34(+) cells of fetal or adult origin that are engineered to express oncogenes. Together, these tools should allow a further molecular elucidation of derailed signal transduction in LSCs.
Collapse
Affiliation(s)
- Pallavi Sontakke
- Department of Experimental Hematology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700RB, Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
43
|
Bystrykh LV, de Haan G, Verovskaya E. Barcoded vector libraries and retroviral or lentiviral barcoding of hematopoietic stem cells. Methods Mol Biol 2014; 1185:345-360. [PMID: 25062640 DOI: 10.1007/978-1-4939-1133-2_23] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Cellular barcoding is a relatively recent technique aimed at clonal analysis of a proliferating cell population of any kind. The method was shown to be particularly successful in monitoring clonal contributions of hematopoietic stem cells (HSCs). An essential step of the method is retroviral or lentiviral labeling of the hematopoietic cells. The unique feature of the method is the generation of a vector library containing specific artificial DNA tags, generally known as barcodes. The library must satisfy multiple essential requirements. Importantly, considering the number of possible variations within the barcode sequence, the actual size of the barcoded vector library, and the number of clonogenic (stem) cells in the given experiment should be in ratios far from saturation. Excessive bias in barcodes frequencies must be avoided, and the library size must be assessed prior to the sequencing analysis. The final sequencing results must undergo statistical filtering. If all requirements are met, the method ensures profound sensitivity and accuracy for monitoring of the clonal fluctuations in a wide range of biological experiments.
Collapse
Affiliation(s)
- Leonid V Bystrykh
- Laboratory of Ageing Biology and Stem Cells, European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Antoninus Deusinglaan 1, Building 3226, 9713 AV, Groningen, The Netherlands,
| | | | | |
Collapse
|
44
|
Aiello FB, Graciotti L, Procopio AD, Keller JR, Durum SK. Stemness of T cells and the hematopoietic stem cells: fate, memory, niche, cytokines. Cytokine Growth Factor Rev 2013; 24:485-501. [PMID: 24231048 PMCID: PMC6390295 DOI: 10.1016/j.cytogfr.2013.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Stem cells are able to generate both cells that differentiate and cells that remain undifferentiated but potentially have the same developmental program. The prolonged duration of the protective immune memory for infectious diseases such as polio, small pox, and measles, suggested that memory T cells may have stem cell properties. Understanding the molecular basis for the life-long persistence of memory T cells may be useful to project targeted therapies for immune deficiencies and infectious diseases and to formulate vaccines. In the last decade evidence from different laboratories shows that memory T cells may share self-renewal pathways with bone marrow hematopoietic stem cells. In stem cells the intrinsic self-renewal activity, which depends on gene expression, is known to be modulated by extrinsic signals from the environment that may be tissue specific. These extrinsic signals for stemness of memory T cells include cytokines such as IL-7 and IL-15 and there are other cytokine signals for maintaining the cytokine signature (TH1, TH2, etc.) of memory T cells. Intrinsic and extrinsic pathways that might be common to bone marrow hematopoietic stem cells and memory T lymphocytes are discussed and related to self-renewal functions.
Collapse
Affiliation(s)
- Francesca B Aiello
- Laboratory of Molecular Immunoregulation, Frederick, MD 21702, USA; Department of Medicine and Aging Sciences, University of Chieti-Pescara, 66013 Chieti, Italy.
| | | | | | | | | |
Collapse
|
45
|
Nishioka C, Ikezoe T, Yang J, Nobumoto A, Kataoka S, Tsuda M, Udaka K, Yokoyama A. CD82 regulates STAT5/IL-10 and supports survival of acute myelogenous leukemia cells. Int J Cancer 2013; 134:55-64. [PMID: 23797738 DOI: 10.1002/ijc.28348] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 05/13/2013] [Accepted: 06/07/2013] [Indexed: 11/08/2022]
Abstract
We recently reported that adhesion molecule CD82 is aberrantly expressed in CD34(+) /CD38(-) leukemia stem cells (LSCs). Here, we report the results of a functional analysis of CD82 in CD34(+) /CD38(-) acute myelogenous leukemia (AML) cells. Short hairpin (sh)RNA-mediated downregulation of CD82 resulted in a decrease in the level of IL-10. In contrast, forced expression of CD82 in CD34(+)/CD38(+) AML cells by transduction with CD82-expressing lentiviral particles resulted in an increase in the levels of IL-10. Notably, exposure of CD34(+)/CD38(-) AML cells to IL-10 stimulated clonogenic growth of these cells. Moreover, downregulation of CD82 by a shRNA dephosphorylated STAT5 in CD34(+)/CD38(-) AML cells. On the other hand, forced expression of CD82 resulted in increase in the levels of p-STAT5 in CD34(+)/CD38(+) AML cells. Chromatin immunoprecipitation (ChIP) assay results indicated that STAT5A binds to the promoter region of the IL-10 gene, while reporter gene assay results indicated stimulation of IL-10 expression at the transcriptional level. These results suggest that CD82 positively regulates the STAT5/IL-10 signaling pathway. Moreover, shRNA-mediated downregulation of CD82 expression in CD34(+)/CD38(-) AML cells dephosphorylated STAT5 in immunodeficient mice. Taken together, our data suggest that the CD82/STAT5/IL-10 signaling pathway is involved in the survival of CD34(+)/CD38(-) AML cells and may thus be a promising therapeutic target for eradication of AML LSCs.
Collapse
Affiliation(s)
- Chie Nishioka
- Department of Immunology, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan; Research Fellow of the Japanese Society for the Promotion of Science (JSPS), Chiyoda-ku, Tokyo, 102-8472, Japan
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Dorritie KA, McCubrey JA, Johnson DE. STAT transcription factors in hematopoiesis and leukemogenesis: opportunities for therapeutic intervention. Leukemia 2013; 28:248-57. [PMID: 23797472 DOI: 10.1038/leu.2013.192] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 05/30/2013] [Accepted: 06/13/2013] [Indexed: 12/14/2022]
Abstract
Signal transducer and activator of transcription (STAT) proteins comprise a family of transcription factors that are activated by cytokines, hormones and growth factors. The activation of STAT proteins plays a key role in the production of mature hematopoietic cells via effects on cellular proliferation, survival and lineage-specific differentiation. Emerging evidence also demonstrates frequent, constitutive activation of STATs in primary leukemia specimens. Moreover, roles for STATs in promoting leukemia development have been delineated in numerous preclinical studies. This review summarizes our current understanding of STAT protein involvement in normal hematopoiesis and leukemogenesis, as well as recent advances in the development and testing of novel STAT inhibitors.
Collapse
Affiliation(s)
- K A Dorritie
- Department of Medicine, University of Pittsburgh and the University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - J A McCubrey
- Department of Microbiology and Immunology, School of Medicine, East Carolina University, Greenville, NC, USA
| | - D E Johnson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh and the University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| |
Collapse
|
47
|
Bosman MCJ, Schuringa JJ, Quax WJ, Vellenga E. Bortezomib sensitivity of acute myeloid leukemia CD34+ cells can be enhanced by targeting the persisting activity of NF-κB and the accumulation of MCL-1. Exp Hematol 2013; 41:530-538.e1. [DOI: 10.1016/j.exphem.2013.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 02/01/2013] [Accepted: 02/05/2013] [Indexed: 10/27/2022]
|
48
|
β2 integrin-derived signals induce cell survival and proliferation of AML blasts by activating a Syk/STAT signaling axis. Blood 2013; 121:3889-99, S1-66. [PMID: 23509157 DOI: 10.1182/blood-2012-09-457887] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Spleen tyrosine kinase (Syk) induces cell survival and proliferation in a high proportion of acute myeloid leukemia (AML) blasts, but the underlying molecular events of Syk signaling have not been investigated. Proteomic techniques have allowed us to identify the multiprotein complex that is nucleated by constitutively active Syk in AML cells. This complex differs from the B-lymphoid Syk interactome with respect to several proteins, especially the integrin receptor Mac-1, the Fc-γ receptor I (FcγRI), and the transcription factors STAT3 and STAT5. We show in several AML cell line models that tonic signals derived from the Fc-γ chain lead to Syk-dependent activation of STAT3 and STAT5, which in turn induces cell survival and proliferation. Moreover, stimulation of Mac-1 or FcγRI intensifies the constitutive Syk-mediated STAT3/5 activation in AML cells, a scenario likely to take place in the bone marrow niche. In accordance with these findings, we observed that β2 integrins, including Mac-1, trigger proliferation of AML cells in an AML cell/stroma coculture model. Taken together, we identified an oncogenic integrin/Syk/STAT3/5 signaling axis that might serve as a therapeutic target of AML in the future.
Collapse
|
49
|
Casetti L, Martin-Lannerée S, Najjar I, Plo I, Augé S, Roy L, Chomel JC, Lauret E, Turhan AG, Dusanter-Fourt I. Differential contributions of STAT5A and STAT5B to stress protection and tyrosine kinase inhibitor resistance of chronic myeloid leukemia stem/progenitor cells. Cancer Res 2013; 73:2052-8. [PMID: 23400594 DOI: 10.1158/0008-5472.can-12-3955] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
STAT5 fulfills essential roles in hematopoietic stem cell (HSC) self-renewal and chronic myeloid leukemia (CML), a prototypical stem cell malignancy. However, the specific contributions of the two related genes STAT5A and STAT5B have not been determined. In this study, we used a RNAi-based strategy to establish participation of these genes to CML disease and persistence following targeted therapy. We showed that STAT5A/STAT5B double-knockdown triggers CML cell apoptosis and suppresses both normal and CML HSC long-term clonogenic potential. STAT5A and STAT5B exhibited similar prosurvival activity, but STAT5A attenuation alone was ineffective at impairing growth of normal and CML CD34(+) cells isolated at diagnosis. In contrast, STAT5A attenuation was sufficient to enhance basal oxidative stress and DNA damage of normal CD34(+) and CML cells. Furthermore, it weakened the ability to manage exogenous oxidative stress, increased p53 (TRP53)/CHK-2 (CHEK2) stress pathway activation, and enhanced prolyl hydroxylase domain (PHD)-3 (EGLN3) mRNA expression. Only STAT5A and its transactivation domain-deficient mutant STAT5AΔ749 specifically rescued these activities. STAT5A attenuation was also active at inhibiting growth of CML CD34(+) cells from patients with acquired resistance to imatinib. Our findings show that STAT5A has a selective role in contributing to stress resistance through unconventional mechanisms, offering new opportunities to eradicate the most primitive and tyrosine kinase inhibitor-resistant CML cells with an additional potential to eradicate persistent stem cell populations.
Collapse
|
50
|
Yamaji D, Kang K, Robinson GW, Hennighausen L. Sequential activation of genetic programs in mouse mammary epithelium during pregnancy depends on STAT5A/B concentration. Nucleic Acids Res 2012; 41:1622-36. [PMID: 23275557 PMCID: PMC3561979 DOI: 10.1093/nar/gks1310] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The transcription factors Signal Transducer and Activator of Transcription (STAT) 5A/B mediate prolactin-induced mammary development during pregnancy. However, it is not clear how the different processes, expansion and maturation of alveolar precursor cells and the differential induction of milk protein genes are regulated on a molecular level. We have used mouse genetics and genome-wide analyses to determine how altering concentrations of STAT5A and STAT5B impacts mammary epithelial development during pregnancy and the regulation of target genes. The presence of only a single Stat5a or Stat5b allele was sufficient for the establishment of histologically undifferentiated alveolar units and two alleles permitted the execution of a differentiation program similar to that found with all four alleles. While one copy of Stat5 induced limited expression of target genes, two copies activated a lactation-like gene signature. Using ChIP-seq analyses on intact tissue under physiological conditions, we found that highly expressed and regulated genes were bound by STAT5 in their promoter proximal regions, whereas upstream binding had minor biological consequences. Remarkably, 80% of the genes bound by STAT5 in vivo were not under STAT5 control. RNA polymerase II intensity was directly proportional to STAT5 concentration only on STAT5 regulated genes providing mechanistic insight by which STAT5 activates mammary specific genes.
Collapse
Affiliation(s)
- Daisuke Yamaji
- Laboratory of Genetics and Physiology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20815, USA
| | | | | | | |
Collapse
|