1
|
Fernández S, Díaz E, Rita CG, Estévez M, Montalbán C, García JF. BET inhibitors induce NF-κB and E2F downregulation in Hodgkin and Reed-Sternberg cells. Exp Cell Res 2023; 430:113718. [PMID: 37468057 DOI: 10.1016/j.yexcr.2023.113718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/21/2023]
Abstract
The prognosis of patients with relapsed and/or refractory classic Hodgkin lymphoma (cHL) continues to be poor. Therefore, there is a continuing need to develop novel therapies and to rationalize the use of target combinations. In recent years there has been growing interest in epigenetic targets for hematological malignancies under the rationale of the presence of common alterations in epigenetic transcriptional regulation. Since Hodgkin and Reed-Sternberg (HRS) cells have frequent inactivating mutations of the CREBBP and EP300 acetyltransferases, bromodomain and extra-terminal (BET) inhibitors can be a rational therapy for cHL. Here we aimed to confirm the efficacy of BET inhibitors (iBETs) using representative cell models and functional experiments, and to further explore biological mechanisms under iBET treatment using whole-transcriptome analyses. Our results reveal cytostatic rather than cytotoxic activity through the induction of G1/S and G2/M cell-cycle arrest, in addition to variable MYC downregulation. Additionally, massive changes in the transcriptome induced by the treatment include downregulation of relevant pathways in cHL disease: NF-kB and E2F, among others. Our findings support the therapeutic use of iBETs in selected cHL patients and reveal previously unknown biological mechanisms and consequences of pan-BET inhibition.
Collapse
Affiliation(s)
- Sara Fernández
- Translational Research Laboratory, MD Anderson Cancer Center Madrid, Spain
| | - Eva Díaz
- Translational Research Laboratory, MD Anderson Cancer Center Madrid, Spain
| | - Claudia G Rita
- Flow Cytometry Unit, Eurofins-Megalab, MD Anderson Cancer Center Madrid, Spain
| | - Mónica Estévez
- Department of Hematology, MD Anderson Cancer Center Madrid, Spain
| | - Carlos Montalbán
- Department of Hematology, MD Anderson Cancer Center Madrid, Spain
| | - Juan F García
- Translational Research Laboratory, MD Anderson Cancer Center Madrid, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain.
| |
Collapse
|
2
|
Cossu F, Camelliti S, Lecis D, Sorrentino L, Majorini MT, Milani M, Mastrangelo E. Structure-based identification of a new IAP-targeting compound that induces cancer cell death inducing NF-κB pathway. Comput Struct Biotechnol J 2021; 19:6366-6374. [PMID: 34938412 PMCID: PMC8649670 DOI: 10.1016/j.csbj.2021.11.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/03/2021] [Accepted: 11/22/2021] [Indexed: 11/30/2022] Open
Abstract
Virtual docking vs type I BIRs of IAPs identified FC2 as a modulator of NF-kB. FC2 is active as a single agent with no toxicity in normal cells. The cytotoxic activity of FC2 is enhanced by TNF and by the Smac-mimetic SM83. FC2 stabilizes XIAP/TAB1 interaction, prolonging the activation of NF-κB.
Inhibitors of apoptosis proteins (IAPs) are validated onco-targets, as their overexpression correlates with cancer onset, progression, diffusion and chemoresistance. IAPs regulate cell death survival pathways, inflammation, and immunity. Targeting IAPs, by impairing their protein–protein interaction surfaces, can affect events occurring at different stages of cancer development. To this purpose, we employed a rational virtual screening approach to identify compounds predicted to interfere with the assembly of pro-survival macromolecular complexes. One of the candidates, FC2, was shown to bind in vitro the BIR1 domains of both XIAP and cIAP2. Moreover, we demonstrated that FC2 can induce cancer cell death as a single agent and, more potently, in combination with the Smac-mimetic SM83 or with the cytokine TNF. FC2 determined a prolonged activation of the NF-κB pathway, accompanied to a stabilization of XIAP-TAB1 complex. This candidate molecule represents a valuable lead compound for the development of a new class of IAP-antagonists for cancer treatment.
Collapse
Affiliation(s)
- Federica Cossu
- CNR-IBF, Consiglio Nazionale delle Ricerche - Istituto di Biofisica, Via Celoria, 26, I-20133 Milan, Italy
| | - Simone Camelliti
- CNR-IBF, Consiglio Nazionale delle Ricerche - Istituto di Biofisica, Via Celoria, 26, I-20133 Milan, Italy.,Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo, 42, I-20133, Milano, Italy
| | - Daniele Lecis
- Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo, 42, I-20133, Milano, Italy
| | - Luca Sorrentino
- CNR-IBF, Consiglio Nazionale delle Ricerche - Istituto di Biofisica, Via Celoria, 26, I-20133 Milan, Italy.,Dipartimento di Chimica, Università di Milano, Via Venezian, 21, I-20133 Milano, Italy
| | - Maria Teresa Majorini
- Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo, 42, I-20133, Milano, Italy
| | - Mario Milani
- CNR-IBF, Consiglio Nazionale delle Ricerche - Istituto di Biofisica, Via Celoria, 26, I-20133 Milan, Italy
| | - Eloise Mastrangelo
- CNR-IBF, Consiglio Nazionale delle Ricerche - Istituto di Biofisica, Via Celoria, 26, I-20133 Milan, Italy
| |
Collapse
|
3
|
Sun D, Wang X, Sui G, Chen S, Yu M, Zhang P. Downregulation of miR-374b-5p promotes chemotherapeutic resistance in pancreatic cancer by upregulating multiple anti-apoptotic proteins. Int J Oncol 2018; 52:1491-1503. [PMID: 29568910 PMCID: PMC5873836 DOI: 10.3892/ijo.2018.4315] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 02/06/2018] [Indexed: 12/15/2022] Open
Abstract
Resistance to first-line chemotherapeutic drugs such as gemcitabine contributes to the poor prognosis of patients with pancreatic cancer. MicroRNAs (miRNA) regulate chemoresistance in pancreatic cancer. By analyzing the miRNA sequencing dataset of pancreatic cancer from The Cancer Genome Atlas, it was demonstrated that miR-374b-5p expression was dramatically reduced in pancreatic cancer tissues compared with adjacent normal tissues, as well as decreased in chemoresistant compared with chemosensitive pancreatic carcinoma tissues. The decreased expression of miR-374-5p was associated with poor overall and progression-free survival in patients with pancreatic cancer. Furthermore, increased expression of miR-374b-5p abrogated, while the silencing miR-374b-5p increased the chemoresistance of pancreatic cancer cells to gemcitabine in vitro. Importantly, the upregulation of miR-374b-5p ameliorated the chemoresistance of pancreatic cancer cells to gemcitabine in vivo. It was also demonstrated that miR-374b-5p targeted several anti-apoptotic proteins, including B-cell lymphoma 2, Baculoviral IAP Repeat Containing 3 and X-linked inhibitor of apoptosis in pancreatic cancer cells, which further attenuated chemo-resistance in pancreatic cancer. Therefore, the results of the current study indicate that miR-374b-5p serves as a potential diagnostic marker. It also suggests that miR-374b-5p sensitizes cells to chemotherapy and may be used in combination with chemotherapeutic agents such as gemcitabine to treat patients with pancreatic cancer.
Collapse
Affiliation(s)
- Di Sun
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Xu Wang
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Guoqing Sui
- Department of Ultrasound, The China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Si Chen
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Miao Yu
- Center for Private Medical Service and Healthcare, The First Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Ping Zhang
- Department of Hepatobiliary and Pancreas Surgery, The First Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| |
Collapse
|
4
|
Hideshima T, Mazitschek R, Qi J, Mimura N, Tseng JC, Kung AL, Bradner JE, Anderson KC. HDAC6 inhibitor WT161 downregulates growth factor receptors in breast cancer. Oncotarget 2017; 8:80109-80123. [PMID: 29113288 PMCID: PMC5655183 DOI: 10.18632/oncotarget.19019] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/08/2017] [Indexed: 02/01/2023] Open
Abstract
We have shown that WT-161, a histone deacetylase 6 (HDAC6) inhibitor, shows remarkable anti-tumor activity in multiple myeloma (MM) in preclinical models. However, its activity in other type of cancers has not yet been shown. In this study, we further evaluated the biologic sequelae of WT161 in breast cancer cell lines. WT161 triggers apoptotic cell death in MCF7, T47D, BT474, and MDA-MB231 cells, associated with decreased expression of EGFR, HER2, and ERα and downstream signaling. However, HDAC6 knockdown shows that cytotoxicity and destabilization of these receptors triggered by WT161 are not dependent on HDAC6 inhibition. Moreover WT161 analog MAZ1793, which lacks HDAC inhibitory effect, similarly triggers cell line growth inhibition and downregulation of these receptors. We also confirm that WT161 significantly inhibits in vivo MCF7 cell growth, associated with downregulation of ERα, in a murine xenograft model. Finally, WT161 synergistically enhances bortezomib-induced cytotoxicity, even in bortezomib-resistant breast cancer cells. Our results therefore provide the rationale to develop a novel class of therapeutic agents targeting growth pathways central to the pathogenesis of breast cancer.
Collapse
Affiliation(s)
- Teru Hideshima
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Ralph Mazitschek
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jun Qi
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Naoya Mimura
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.,Department of Hematology, Chiba University Hospital, Chiba, Japan
| | - Jen-Chieh Tseng
- Lurie Family Imaging Center, Dana-Farber Cancer Institute, Boston, MA, USA.,PerkinElmer Inc., Hopkinton, MA, USA
| | - Andrew L Kung
- Lurie Family Imaging Center, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Pediatric Oncology, Dana-Farber Cancer Institute and Children's Hospital Boston, Boston, MA, USA.,Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - James E Bradner
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.,Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Kenneth C Anderson
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Kaplan GS, Torcun CC, Grune T, Ozer NK, Karademir B. Proteasome inhibitors in cancer therapy: Treatment regimen and peripheral neuropathy as a side effect. Free Radic Biol Med 2017; 103:1-13. [PMID: 27940347 DOI: 10.1016/j.freeradbiomed.2016.12.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/22/2016] [Accepted: 12/04/2016] [Indexed: 01/10/2023]
Abstract
Proteasomal system plays an important role in protein turnover, which is essential for homeostasis of cells. Besides degradation of oxidized proteins, it is involved in the regulation of many different signaling pathways. These pathways include mainly cell differentiation, proliferation, apoptosis, transcriptional activation and angiogenesis. Thus, proteasomal system is a crucial target for treatment of several diseases including neurodegenerative diseases, cystic fibrosis, atherosclerosis, autoimmune diseases, diabetes and cancer. Over the last fifteen years, proteasome inhibitors have been tested to highlight their mechanisms of action and used in the clinic to treat different types of cancer. Proteasome inhibitors are mainly used in combinational therapy along with classical chemo-radiotherapy. Several studies have proved their significant effects but serious side effects such as peripheral neuropathy, limits their use in required effective doses. Recent studies focus on peripheral neuropathy as the primary side effect of proteasome inhibitors. Therefore, it is important to delineate the underlying mechanisms of peripheral neuropathy and develop new inhibitors according to obtained data. This review will detail the role of proteasome inhibition in cancer therapy and development of peripheral neuropathy as a side effect. Additionally, new approaches to prevent treatment-limiting side effects will be discussed in order to help researchers in developing effective strategies to overcome side effects of proteasome inhibitors.
Collapse
Affiliation(s)
- Gulce Sari Kaplan
- Department of Biochemistry, School of Medicine/Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, 34854 Maltepe, Istanbul, Turkey
| | - Ceyda Corek Torcun
- Department of Biochemistry, School of Medicine/Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, 34854 Maltepe, Istanbul, Turkey
| | - Tilman Grune
- Department for Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
| | - Nesrin Kartal Ozer
- Department of Biochemistry, School of Medicine/Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, 34854 Maltepe, Istanbul, Turkey
| | - Betul Karademir
- Department of Biochemistry, School of Medicine/Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, 34854 Maltepe, Istanbul, Turkey.
| |
Collapse
|
6
|
MAO MINZHI, WANG WANCHUN. SerpinE2 promotes multiple cell proliferation and drug resistance in osteosarcoma. Mol Med Rep 2016; 14:881-7. [DOI: 10.3892/mmr.2016.5316] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 04/15/2016] [Indexed: 11/06/2022] Open
|
7
|
Obrist F, Manic G, Kroemer G, Vitale I, Galluzzi L. Trial Watch: Proteasomal inhibitors for anticancer therapy. Mol Cell Oncol 2015; 2:e974463. [PMID: 27308423 PMCID: PMC4904962 DOI: 10.4161/23723556.2014.974463] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Revised: 09/15/2014] [Accepted: 09/17/2014] [Indexed: 01/12/2023]
Abstract
The so-called "ubiquitin-proteasome system" (UPS) is a multicomponent molecular apparatus that catalyzes the covalent attachment of several copies of the small protein ubiquitin to other proteins that are generally (but not always) destined to proteasomal degradation. This enzymatic cascade is crucial for the maintenance of intracellular protein homeostasis (both in physiological conditions and in the course of adaptive stress responses), and regulates a wide array of signaling pathways. In line with this notion, defects in the UPS have been associated with aging as well as with several pathological conditions including cardiac, neurodegenerative, and neoplastic disorders. As transformed cells often experience a constant state of stress (as a result of the hyperactivation of oncogenic signaling pathways and/or adverse microenvironmental conditions), their survival and proliferation are highly dependent on the integrity of the UPS. This rationale has driven an intense wave of preclinical and clinical investigation culminating in 2003 with the approval of the proteasomal inhibitor bortezomib by the US Food and Drug Administration for use in multiple myeloma patients. Another proteasomal inhibitor, carfilzomib, is now licensed by international regulatory agencies for use in multiple myeloma patients, and the approved indications for bortezomib have been extended to mantle cell lymphoma. This said, the clinical activity of bortezomib and carfilzomib is often limited by off-target effects, innate/acquired resistance, and the absence of validated predictive biomarkers. Moreover, the antineoplastic activity of proteasome inhibitors against solid tumors is poor. In this Trial Watch we discuss the contribution of the UPS to oncogenesis and tumor progression and summarize the design and/or results of recent clinical studies evaluating the therapeutic profile of proteasome inhibitors in cancer patients.
Collapse
Affiliation(s)
- Florine Obrist
- Université Paris-Sud/Paris XI; Le Kremlin-Bicêtre, France
- INSERM, U1138; Paris, France
- Equipe 11 labelisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers; Paris, France
- Gustave Roussy Cancer Campus; Villejuif, France
| | | | - Guido Kroemer
- INSERM, U1138; Paris, France
- Equipe 11 labelisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers; Paris, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou; Paris, France
- Metabolomics and Cell Biology Platforms; Gustave Roussy Cancer Campus; Villejuif, France
| | - Ilio Vitale
- Regina Elena National Cancer Institute; Rome, Italy
- Department of Biology, University of Rome “Tor Vergata”
| | - Lorenzo Galluzzi
- INSERM, U1138; Paris, France
- Equipe 11 labelisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers; Paris, France
- Gustave Roussy Cancer Campus; Villejuif, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
| |
Collapse
|
8
|
Abstract
Although most patients with Hodgkin lymphoma (HL) are cured with primary therapy, patients with primary refractory disease or relapse after initial treatment have poor outcomes and represent an unmet medical need. Recent advances in unraveling the biology of HL have yielded a plethora of novel targeted therapies. This review provides an overview of the data behind the hype generated by these advances and addresses the question of whether or not clinically these targeted therapies offer hope for patients with HL.
Collapse
Affiliation(s)
- Catherine Diefenbach
- Assistant Professor of Medicine, New York University School of Medicine, Department of Medicine
| | - Ranjana Advani
- Professor of Medicine, Stanford University Medical Center, Medicine/Oncology
| |
Collapse
|
9
|
Brinkmann K, Hombach A, Seeger JM, Wagner-Stippich D, Klubertz D, Krönke M, Abken H, Kashkar H. Second mitochondria-derived activator of caspase (SMAC) mimetic potentiates tumor susceptibility toward natural killer cell-mediated killing. Leuk Lymphoma 2013; 55:645-51. [PMID: 23697877 DOI: 10.3109/10428194.2013.807925] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Resistance to apoptosis is a hallmark of cancer, and represents an important mechanism of how tumor cells resist immune cell destruction. Mitochondria are the central regulators of the apoptotic machinery by releasing pro-apoptotic factors including cytochrome c and second mitochondria-derived activator of caspase (SMAC) upon mitochondrial outer membrane permeabilization (MOMP). Small molecules activating MOMP such as BH3 mimetics or antagonizers of the inhibitor of apoptosis proteins (IAPs) such as SMAC mimetics have recently engendered new optimism for a more individualized and effective cancer therapy. Here we show that a SMAC mimetic potentiates cancer cell killing by natural killer (NK) cells through reactivation of tumor cell apoptosis. Specifically, the SMAC mimetic enhances the susceptibility of tumor cells toward NK cell-mediated effector mechanisms involving death receptors and cytolytic granules containing perforin and granzymes by relieving caspase activity. Our data highlight for the first time the specific use of SMAC mimetics for boosting immune cell-mediated immunotherapy, representing a novel and promising approach in the treatment of cancer.
Collapse
Affiliation(s)
- Kerstin Brinkmann
- Center for Molecular Medicine Cologne (CMMC), Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Institute for Medical Microbiology, Immunology and Hygiene (IMMIH), University of Cologne , Cologne , Germany
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Tao Y, Gao L, Wu X, Wang H, Yang G, Zhan F, Shi J. Down-regulation of 11β-hydroxysteroid dehydrogenase type 2 by bortezomib sensitizes Jurkat leukemia T cells against glucocorticoid-induced apoptosis. PLoS One 2013; 8:e67067. [PMID: 23826195 PMCID: PMC3691151 DOI: 10.1371/journal.pone.0067067] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 05/13/2013] [Indexed: 02/06/2023] Open
Abstract
11β-hydroxysteroid dehydrogenases type 2 (11β-HSD2), a key regulator for pre-receptor metabolism of glucocorticoids (GCs) by converting active GC, cortisol, to inactive cortisone, has been shown to be present in a variety of tumors. But its expression and roles have rarely been discussed in hematological malignancies. Proteasome inhibitor bortezomib has been shown to not only possess antitumor effects but also potentiate the activity of other chemotherapeutics. In this study, we demonstrated that 11β-HSD2 was highly expressed in two GC-resistant T-cell leukemic cell lines Jurkat and Molt4. In contrast, no 11β-HSD2 expression was found in two GC-sensitive non-hodgkin lymphoma cell lines Daudi and Raji as well as normal peripheral blood T cells. Inhibition of 11β-HSD2 by 11β-HSD inhibitor 18β-glycyrrhetinic acid or 11β-HSD2 shRNA significantly increased cortisol-induced apoptosis in Jurkat cells. Additionally, pretreatment of Jurkat cells with low-dose bortezomib resulted in increased cellular sensitivity to GC as shown by elevated induction of apoptosis, more cells arrested at G1 stage and up-regulation of GC-induced leucine zipper which is an important mediator of GC action. Furthermore, we clarified that bortezomib could dose-dependently inhibit 11β-HSD2 messenger RNA and protein levels as well as activity (cortisol-cortisone conversion) through p38 mitogen-activated protein kinase signaling pathway. Therefore, we suggest 11β-HSD2 is, at least partially if not all, responsible for impaired GC suppression in Jurkat cells and also indicate a novel mechanism by which proteasome inhibitor bortezomib may influence GC action.
Collapse
Affiliation(s)
- Yi Tao
- Department of Hematology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Lu Gao
- Department of Physiology, Second Military Medical University, Shanghai, People’s Republic of China
| | - Xiaosong Wu
- Department of Hematology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Hongmei Wang
- Department of Hematology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Guang Yang
- Department of Hematology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Fenghuang Zhan
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Jumei Shi
- Department of Hematology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
- * E-mail:
| |
Collapse
|
11
|
Simon-Keller K, Paschen A, Hombach AA, Ströbel P, Coindre JM, Eichmüller SB, Vincent A, Gattenlöhner S, Hoppe F, Leuschner I, Stegmaier S, Koscielniak E, Leverkus M, Altieri DC, Abken H, Marx A. Survivin blockade sensitizes rhabdomyosarcoma cells for lysis by fetal acetylcholine receptor-redirected T cells. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:2121-31. [PMID: 23562272 PMCID: PMC5746952 DOI: 10.1016/j.ajpath.2013.02.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 02/21/2013] [Accepted: 02/25/2013] [Indexed: 10/27/2022]
Abstract
Cellular immunotherapy may provide a strategy to overcome the poor prognosis of metastatic and recurrent rhabdomyosarcoma (RMS) under the current regimen of polychemotherapy. Because little is known about resistance mechanisms of RMS to cytotoxic T cells, we investigated RMS cell lines and biopsy specimens for expression and function of immune costimulatory receptors and anti-apoptotic molecules by RT-PCR, Western blot analysis, IHC, and cytotoxicity assays using siRNA or transfection-modified RMS cell lines, together with engineered RMS-directed cytotoxic T cells specific for the fetal acetylcholine receptor. We found that costimulatory CD80 and CD86 were consistently absent from all RMSs tested, whereas inducible T-cell co-stimulator ligand (ICOS-L; alias B7H2) was expressed by a subset of RMSs and was inducible by tumor necrosis factor α in two of five RMS cell lines. Anti-apoptotic survivin, along with other inhibitor of apoptosis (IAP) family members (cIAP1, cIAP2, and X-linked inhibitor of apoptosis protein), was overexpressed by RMS cell lines and biopsy specimens. Down-regulation of survivin by siRNA or pharmacologically in RMS cells increased their susceptibility toward a T-cell attack, whereas induction of ICOS-L did not. Treatment of RMS-bearing Rag(-/-) mice with fetal acetylcholine receptor-specific chimeric T cells delayed xenograft growth; however, this happened without definitive tumor eradication. Combined blockade of survivin and application of chimeric T cells in vivo suppressed tumor proliferation during survivin inhibition. In conclusion, survivin blockade provides a strategy to sensitize RMS cells for T-cell-based therapy.
Collapse
Affiliation(s)
- Katja Simon-Keller
- Institute of Pathology, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| | - Annette Paschen
- Department of Dermatology, University Hospital Essen, Essen, Germany
| | - Andreas A. Hombach
- Center for Molecular Medicine Cologne, University of Cologne, and the Department I for Internal Medicine, University Hospital Cologne, Cologne, Germany
| | - Philipp Ströbel
- Institute of Pathology, University Medical Center Göttingen, University of Göttingen, Göttingen, Germany
| | | | - Stefan B. Eichmüller
- Department of Translational Immunology, German Cancer Research Center, Heidelberg, Germany
| | - Angela Vincent
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, United Kingdom
| | | | - Florian Hoppe
- Otorhinolaryngology-Head and Neck Surgery, Klinikum Oldenburg, Oldenburg, Germany
| | - Ivo Leuschner
- Section for Pediatric Pathology, University Medical Centre Schleswig-Holstein, Kiel, Germany
| | | | | | - Martin Leverkus
- Section for Molecular Dermatology, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| | - Dario C. Altieri
- Prostate Cancer Discovery and Development Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Hinrich Abken
- Center for Molecular Medicine Cologne, University of Cologne, and the Department I for Internal Medicine, University Hospital Cologne, Cologne, Germany
| | - Alexander Marx
- Institute of Pathology, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
12
|
Diefenbach C, Steidl C. New strategies in Hodgkin lymphoma: better risk profiling and novel treatments. Clin Cancer Res 2013; 19:2797-803. [PMID: 23447000 PMCID: PMC3928836 DOI: 10.1158/1078-0432.ccr-12-3064] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recent advances in Hodgkin lymphoma research are expected to prelude a promising new treatment era for patients and their treating physicians. Scientific investigations over the last few years have provided new insights into risk stratification, and, simultaneously, a plethora of novel targeted therapies are emerging for patients with relapsed and refractory disease. These novel therapies will be tested primarily in high-risk patients because 75% of the patients are cured with conventional therapies. The challenges, as Hodgkin lymphoma therapy moves forward, will be using these biologic insights to identify the patients who may benefit earlier in treatment from these novel agents, and tailoring the therapy to the tumor biology of the patient. These dual aims are intertwined; as our therapeutic arsenal increases, these biologic determinants of risk may themselves inform the design of therapies and the choice of treatments for high-risk patients.
Collapse
Affiliation(s)
- Catherine Diefenbach
- Department of Medicine, New York University School of Medicine, NYU Cancer Institute, New York, New York 10016, USA.
| | | |
Collapse
|
13
|
Brinkmann K, Zigrino P, Witt A, Schell M, Ackermann L, Broxtermann P, Schüll S, Andree M, Coutelle O, Yazdanpanah B, Seeger J, Klubertz D, Drebber U, Hacker U, Krönke M, Mauch C, Hoppe T, Kashkar H. Ubiquitin C-Terminal Hydrolase-L1 Potentiates Cancer Chemosensitivity by Stabilizing NOXA. Cell Rep 2013; 3:881-91. [DOI: 10.1016/j.celrep.2013.02.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 12/18/2012] [Accepted: 02/11/2013] [Indexed: 01/09/2023] Open
|
14
|
Tamatani T, Takamaru N, Hara K, Kinouchi M, Kuribayashi N, Ohe G, Uchida D, Fujisawa K, Nagai H, Miyamoto Y. Bortezomib-enhanced radiosensitization through the suppression of radiation-induced nuclear factor-κB activity in human oral cancer cells. Int J Oncol 2013; 42:935-44. [PMID: 23340716 DOI: 10.3892/ijo.2013.1786] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 10/12/2012] [Indexed: 11/05/2022] Open
Abstract
Oral cancer cells have a significantly augmented nuclear factor-κB (NF-κB) activity and the inhibition of this activity suppresses tumor growth. Bortezomib is a proteasome inhibitor and a drug used for molecular-targeted therapy (targets NF-κB). In this study, we investigated whether bortezomib would be effective as an inhibitor of proliferation and a radiosensitizer for the treatment of oral cancer. We demonstrate that bortezomib inhibits NF-κB activity and cell proliferation. The combined treatment with bortezomib and radiation (RT) suppressed NF-κB activity and cell growth in vitro and in vivo compared with RT treatment alone. To investigate the mechanisms by which bortezomib suppresses tumor growth, the expression of signaling molecules downstream of NF-κB were examined by ELISA. The combined treatment significantly inhibited the radiation-induced production of angiogenic factors and decreased the number of blood vessels in the tumor tissues. Although the expression of anti-apoptotic proteins was upregulated by RT, bortezomib downregulated the RT-induced expression of these proteins. Moreover, the expression of cleaved poly(ADP-ribose) polymerase in vitro and in vivo was enhanced by bortezomib, indicating that bortezomib inhibits tumor growth by inducing apoptosis. This study clearly demonstrates that bortezomib significantly inhibits tumor growth and that the combined treatment with bortezomib and RT results in a significant inhibition of tumor growth. The mechanisms underlying the inhibition of tumor growth by bortezomib include the suppression of angiogenesis and the induction of apoptosis. A novel molecular targeting therapy including bortezomib may be effective in the treatment of oral cancer by suppressing NF-κB activity.
Collapse
Affiliation(s)
- Tetsuya Tamatani
- Department of Oral Surgery, Subdivision of Molecular Oral Medicine, Division of Integrated Sciences of Translational Research, Institute of Health Biosciences, the University of Tokushima Graduate School, Tokushima 770-8504, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Foster DM, Stauffer SH, Stone MR, Gookin JL. Proteasome inhibition of pathologic shedding of enterocytes to defend barrier function requires X-linked inhibitor of apoptosis protein and nuclear factor κB. Gastroenterology 2012; 143:133-44.e4. [PMID: 22446197 DOI: 10.1053/j.gastro.2012.03.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 03/07/2012] [Accepted: 03/12/2012] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS Although we are beginning to understand where, when, and how intestinal epithelial cells are shed, physiologically, less is understood about alterations in cell fate during minimally invasive epithelial infections. We used a piglet model of Cryptosporidium parvum infection to determine how elimination of infected enterocytes is balanced with the need to maintain barrier function. METHODS We studied the effects of enterocyte shedding by C parvum-infected ileum on barrier function ex vivo with Ussing chambers. The locations and activities of caspase-3, nuclear factor κB (NF-κB), and inhibitor of apoptosis proteins (IAP) were assayed by enzyme-linked immunosorbent assay, immunoblot, and tissue immunoreactivity analyses and using specific pharmacologic inhibitors. The location, specificity, and magnitude of enterocyte shedding were quantified using special stains and light microscopy. RESULTS Infection with C parvum activated apoptotic signaling pathways in enterocytes that resulted in cleavage of caspase-3. Despite caspase-3 cleavage, enterocyte shedding was confined to villus tips, coincident with apoptosis, and observed more frequently in infected cells. Epithelial expression of X-linked inhibitor of apoptosis protein (XIAP), activation of NF-κB, and proteasome activity were required for control of cell shedding and barrier function. The proteasome blocked activity of caspase-3; this process was mediated by expression of XIAP, which bound to cleaved caspase-3. CONCLUSIONS We have identified a pathway by which villus epithelial cells are maintained during C parvum infection. Loss of barrier function is reduced by active retention of infected enterocytes until they reach the villus tip. These findings might be used to promote clearance of minimally invasive enteropathogens, such as by increasing the rate of migration of epithelial cells from the crypt to the villus tip.
Collapse
Affiliation(s)
- Derek M Foster
- Department of Population Health, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina 27607, USA
| | | | | | | |
Collapse
|
16
|
Abstract
Cancer is one of the most frightful diseases mostly resulting in mortality; it has recently become more possible to overcome with the help of new therapies. In this direction, carcinogenesis is defined as a complicated process that can include several different factors that contribute to its progress. Proteasome is implicated in cancer studies as it is the main degradation system for oxidatively damaged proteins and also for several proteins playing a role in the cell cycle and transcription, which are important for cancer improvement. Because of this crucial role of proteasome in cancer development, myriad in vitro and in vivo studies have focused on the proteasome in different cancer cases. In this chapter, the involvement of proteasome in the degradation of cancer-related proteins is explained with the results of representative studies. Related to these proteins, the use of proteasome inhibitors in cancer treatment is reviewed.
Collapse
|
17
|
Ooi A, Wong JC, Petillo D, Roossien D, Perrier-Trudova V, Whitten D, Min BWH, Tan MH, Zhang Z, Yang XJ, Zhou M, Gardie B, Molinié V, Richard S, Tan PH, Teh BT, Furge KA. An antioxidant response phenotype shared between hereditary and sporadic type 2 papillary renal cell carcinoma. Cancer Cell 2011; 20:511-23. [PMID: 22014576 DOI: 10.1016/j.ccr.2011.08.024] [Citation(s) in RCA: 314] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 06/04/2011] [Accepted: 08/30/2011] [Indexed: 12/21/2022]
Abstract
Fumarate hydratase (FH) mutation causes hereditary type 2 papillary renal cell carcinoma (PRCC2). The main effect of FH mutation is fumarate accumulation. The current paradigm posits that the main consequence of fumarate accumulation is HIF-α stabilization. Paradoxically, FH mutation differs from other HIF-α stabilizing mutations, such as VHL and SDH mutations, in its associated tumor types. We identified that fumarate can directly up-regulate antioxidant response element (ARE)-controlled genes. We demonstrated that aldo-keto reductase family 1 member B10 (AKR1B10) is an ARE-controlled gene and is up-regulated upon FH knockdown as well as in FH null cell lines. AKR1B10 overexpression is also a prominent feature in both hereditary and sporadic PRCC2. This phenotype better explains the similarities between hereditary and sporadic PRCC2.
Collapse
Affiliation(s)
- Aikseng Ooi
- Laboratory of Cancer Genetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Fulda S. Novel insights into the synergistic interaction of Bortezomib and TRAIL: tBid provides the link. Oncotarget 2011; 2:418-21. [PMID: 21789791 PMCID: PMC3248183 DOI: 10.18632/oncotarget.277] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The proteasome inhibitor Bortezomib has been identified as a potent enhancer of TRAIL-induced apoptosis in several human cancers. However, the identification of the underlying molecular mechanisms of this synergistic cell death induction has been ongoing over the last years. A recent study identifies a new mechanism of action for the synergism of TRAIL and Bortezomib.
Collapse
Affiliation(s)
- Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Komturstr. 3a, 60528 Frankfurt, Germany. Simone Fulda.
| |
Collapse
|
19
|
Loughran ST, Campion EM, D'Souza BN, Smith SM, Vrzalikova K, Wen K, Murray PG, Walls D. Bfl-1 is a crucial pro-survival nuclear factor-κB target gene in Hodgkin/Reed-Sternberg cells. Int J Cancer 2011; 129:2787-96. [DOI: 10.1002/ijc.25950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Accepted: 12/30/2010] [Indexed: 11/10/2022]
|
20
|
Banerjee D. Recent Advances in the Pathobiology of Hodgkin's Lymphoma: Potential Impact on Diagnostic, Predictive, and Therapeutic Strategies. Adv Hematol 2011; 2011:439456. [PMID: 21318045 PMCID: PMC3034907 DOI: 10.1155/2011/439456] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 10/04/2010] [Accepted: 11/12/2010] [Indexed: 12/20/2022] Open
Abstract
From its first description by Thomas Hodgkin in 1832, Hodgkin's disease, now called Hodgkin's lymphoma, has continued to be a fascinating neoplasm even to this day. In this review, historical aspects, epidemiology, diagnosis, tumor biology, new observations related to host-microenvironment interactions, gene copy number variation, and gene expression profiling in this complex neoplasm are described, with an exploration of chemoresistance mechanisms and potential novel therapies for refractory disease.
Collapse
Affiliation(s)
- Diponkar Banerjee
- Centre for Translational and Applied Genomics (CTAG), Department of Pathology, British Columbia Cancer Agency (BCCA), 600 West 10th Avenue, Vancouver, British Columbia, Canada V5Z 4E6
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada V6T 2B5
| |
Collapse
|
21
|
Hörnle M, Peters N, Thayaparasingham B, Vörsmann H, Kashkar H, Kulms D. Caspase-3 cleaves XIAP in a positive feedback loop to sensitize melanoma cells to TRAIL-induced apoptosis. Oncogene 2010; 30:575-87. [PMID: 20856198 DOI: 10.1038/onc.2010.434] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Successful treatment of melanoma is still challenging, because metastasis remain chemoresistant and radioresistant. Accordingly, combinational treatments involving death ligands are mandatory. In a recent study from our lab, the majority out of 18 melanoma cell lines remained resistant against treatment with the death ligand TRAIL (tumor necrosis factor related apoptosis inducing ligand). Resistance was shown to be mainly due to incomplete processing of caspase-3 into catalytically inactive p21 by binding of the anti-apoptotic protein X-linked inhibitor of apoptosis protein (XIAP). Co-irradiation with sub-lethal ultraviolet (UV) B caused depletion of XIAP resulting in synergistic sensitization of all but two melanoma cell lines to TRAIL. We show here the XIAP depletion to essentially require initial caspase-mediated cleavage, which promotes proteasomal degradation of XIAP. Utilizing specific caspase inhibitors and small interfering RNA-mediated knockdown, we further identified caspase-3 to be responsible for performing the initial cleavage of XIAP after UVB treatment. Additional evidence suggests an accelerated mitochondrial outer membrane permeabilization in response to co-treatment with TRAIL and UVB, which directs the release of XIAP antagonizing factors including Smac. Distraction of XIAP consequently liberates caspase-3 to autocatalytically process into active p17. Activated caspase-3 cleaves XIAP and further enhances its activation in a positive regulatory feedback loop. The molecular mechanism discovered here appears to have broader implications, because cleavage of XIAP was also shown to accompany cisplatin-induced sensitization of melanoma cells to TRAIL.
Collapse
Affiliation(s)
- M Hörnle
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Baden-Württemberg, Germany
| | | | | | | | | | | |
Collapse
|
22
|
Simon-Keller K, Paschen A, Eichmüller S, Gattenlöhner S, Barth S, Koscielniak E, Leuschner I, Stöbel P, Hombach A, Abken H, Marx A. Adoptive T-Zell-Therapie des Rhabdomyosarkoms. DER PATHOLOGE 2010; 31 Suppl 2:215-20. [PMID: 20730458 DOI: 10.1007/s00292-010-1344-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
23
|
Golovine K, Makhov P, Uzzo RG, Kutikov A, Kaplan DJ, Fox E, Kolenko VM. Cadmium down-regulates expression of XIAP at the post-transcriptional level in prostate cancer cells through an NF-kappaB-independent, proteasome-mediated mechanism. Mol Cancer 2010; 9:183. [PMID: 20618956 PMCID: PMC3044330 DOI: 10.1186/1476-4598-9-183] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 07/09/2010] [Indexed: 01/05/2023] Open
Abstract
Background Cadmium has been classified as a human carcinogen, affecting health through occupational and environmental exposure. Cadmium has a long biological half-life (>25 years), due to the flat kinetics of its excretion. The prostate is one of the organs with highest levels of cadmium accumulation. Importantly, patients with prostate cancer appear to have higher levels of cadmium both in the circulation and in prostatic tissues. Results In the current report, we demonstrate for the first time that cadmium down-regulates expression of the X-linked inhibitor of apoptosis protein (XIAP) in prostate cancer cells. Cadmium-mediated XIAP depletion occurs at the post-transcriptional level via an NF-κB-independent, proteasome-mediated mechanism and coincides with an increased sensitivity of prostate cancer cells to TNF-α-mediated apoptosis. Prolonged treatment with cadmium results in selection of prostate cancer cells with apoptosis-resistant phenotype. Development of apoptosis-resistance coincides with restoration of XIAP expression in cadmium-selected PC-3 cells. Conclusions Selection of cadmium-resistant cells could represent an adaptive survival mechanism that may contribute to progression of prostatic malignancies.
Collapse
Affiliation(s)
- Konstantin Golovine
- Division of Urological Oncology, Department of Surgery, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Background: In various tumour types, elevated expression of the X-linked inhibitor of apoptosis protein (XIAP) has been observed and XIAP targeting in diverse tumour entities enhanced the susceptibility to chemotherapeutic agents. Therefore, XIAP has been described and reviewed repeatedly as a chemoresistance factor in different tumour entities. However, rather than being an adverse prognostic marker, recent data suggest that elevated XIAP expression may be associated with a favourable clinical outcome. These somewhat conflicting findings, and the fact that in early studies XIAP suppressed apoptosis only when expressed transiently at levels far in excess of its physiological concentration, argue that the function of XIAP as an anti-apoptotic factor in tumour cells is both more complex and diverse than previously appreciated. Methods: To better understand the impact of long-term elevated XIAP expression on resistance to chemotherapy, we generated cell lines stably overexpressing XIAP. The role of mitochondria was examined by stable expression of Bcl2 or stable knockdown of second mitochondria-derived activator of caspase (SMAC) in combination with up- or downregulation of XIAP expression. Results: Our data show that long-term expression of XIAP at concentrations comparable to that in tumour cells (two- to five-fold increase) resulted in little or no resistance towards chemotherapeutic drugs. The XIAP overexpression only in conjunction with stable knockdown of a single XIAP-antagonising factor such as SMAC resulted in severe resistance to cytostatic agents demonstrating XIAP as a potent chemoresistance factor only in cells lacking functional XIAP regulatory circuits. Conclusion: Our results demonstrated that elevated XIAP expression alone cannot serve as a predictive marker of chemoresistance. Our data suggest that in order to predict the impact of XIAP on chemosusceptibility for a given tumour entity, the expression levels and functional states of all XIAP modulators need to be taken into account.
Collapse
|
25
|
Lecis D, Drago C, Manzoni L, Seneci P, Scolastico C, Mastrangelo E, Bolognesi M, Anichini A, Kashkar H, Walczak H, Delia D. Novel SMAC-mimetics synergistically stimulate melanoma cell death in combination with TRAIL and Bortezomib. Br J Cancer 2010; 102:1707-16. [PMID: 20461078 PMCID: PMC2883696 DOI: 10.1038/sj.bjc.6605687] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND XIAP (X-linked inhibitor of apoptosis protein) is an anti-apoptotic protein exerting its activity by binding and suppressing caspases. As XIAP is overexpressed in several tumours, in which it apparently contributes to chemoresistance, and because its activity in vivo is antagonised by second mitochondria-derived activator of caspase (SMAC)/direct inhibitor of apoptosis-binding protein with low pI, small molecules mimicking SMAC (so called SMAC-mimetics) can potentially overcome tumour resistance by promoting apoptosis. METHODS Three homodimeric compounds were synthesised tethering a monomeric SMAC-mimetic with different linkers and their affinity binding for the baculoviral inhibitor repeats domains of XIAP measured by fluorescent polarisation assay. The apoptotic activity of these molecules, alone or in combination with tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) and/or Bortezomib, was tested in melanoma cell lines by MTT viability assays and western blot analysis of activated caspases. RESULTS We show that in melanoma cell lines, which are typically resistant to chemotherapeutic agents, XIAP knock-down sensitises cells to TRAIL treatment in vitro, also favouring the accumulation of cleaved caspase-8. We also describe a new series of 4-substituted azabicyclo[5.3.0]alkane monomeric and dimeric SMAC-mimetics that target various members of the IAP family and powerfully synergise at submicromolar concentrations with TRAIL in inducing cell death. Finally, we show that the simultaneous administration of newly developed SMAC-mimetics with Bortezomib potently triggers apoptosis in a melanoma cell line resistant to the combined effect of SMAC-mimetics and TRAIL. CONCLUSION Hence, the newly developed SMAC-mimetics effectively synergise with TRAIL and Bortezomib in inducing cell death. These findings warrant further preclinical studies in vivo to verify the anticancer effectiveness of the combination of these agents.
Collapse
Affiliation(s)
- D Lecis
- Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale Tumori, Via G Venezian 1, 20133 Milano, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Seeger JM, Schmidt P, Brinkmann K, Hombach AA, Coutelle O, Zigrino P, Wagner-Stippich D, Mauch C, Abken H, Krönke M, Kashkar H. The proteasome inhibitor bortezomib sensitizes melanoma cells toward adoptive CTL attack. Cancer Res 2010; 70:1825-34. [PMID: 20179203 DOI: 10.1158/0008-5472.can-09-3175] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Adoptive transfer of tumor-specific cytolytic T lymphocytes (CTL) results in target cell lysis by activating the intrinsic apoptotic cell death program. Not surprisingly, deregulation of the apoptotic machinery is one of the central mechanisms by which tumor cells escape immune destruction despite specific CTL recognition. Here we show that treatment with the proteasome inhibitor bortezomib sensitizes previously resistant tumor cells for cytolytic T-cell attack. Human T cells were redirected toward melanoma cells by engineered expression of an immunoreceptor with binding specificity for high molecular weight-melanoma-associated antigen. Established melanoma cell lines as well as primary melanoma cells from tumor biopsies, which are notoriously resistant toward T-cell lysis, became sensitive upon bortezomib treatment. Detailed analysis of the underlying molecular mechanism revealed that bortezomib treatment induced mitochondrial accumulation of NOXA, which potentiated the release of mitochondrial second mitochondria-derived activator of caspase (SMAC) in response to CTL effector functions, including caspase-8 and granzyme B. Our data indicate that proteasome inhibition increases the sensitivity of tumor cells toward cytolytic T-cell attack by NOXA-mediated enhancement of mitochondrial SMAC release.
Collapse
Affiliation(s)
- Jens Michael Seeger
- Institute for Medical Microbiology, Immunology and Hygiene, Medical Faculty, University of Cologne, Cologne, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Zhang X, Zou T, Rao JN, Liu L, Xiao L, Wang PY, Cui YH, Gorospe M, Wang JY. Stabilization of XIAP mRNA through the RNA binding protein HuR regulated by cellular polyamines. Nucleic Acids Res 2009; 37:7623-37. [PMID: 19825980 PMCID: PMC2794158 DOI: 10.1093/nar/gkp755] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 08/26/2009] [Accepted: 08/27/2009] [Indexed: 12/23/2022] Open
Abstract
The X chromosome-linked inhibitor of apoptosis protein (XIAP) is the most potent intrinsic caspase inhibitor and plays an important role in the maintenance of intestinal epithelial integrity. The RNA binding protein, HuR, regulates the stability and translation of many target transcripts. Here, we report that HuR associated with both the 3'-untranslated region and coding sequence of the mRNA encoding XIAP, stabilized the XIAP transcript and elevated its expression in intestinal epithelial cells. Ectopic HuR overexpression or elevated cytoplasmic levels of endogenous HuR by decreasing cellular polyamines increased [HuR/XIAP mRNA] complexes, in turn promoting XIAP mRNA stability and increasing XIAP protein abundance. Conversely, HuR silencing in normal and polyamine-deficient cells rendered the XIAP mRNA unstable, thus reducing the steady state levels of XIAP. Inhibition of XIAP expression by XIAP silencing or by HuR silencing reversed the resistance of polyamine-deficient cells to apoptosis. Our findings demonstrate that HuR regulates XIAP expression by stabilizing its mRNA and implicates HuR-mediated XIAP in the control of intestinal epithelial apoptosis.
Collapse
Affiliation(s)
- Xian Zhang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore Veterans Affairs Medical Center, Department of Pathology, University of Maryland School of Medicine and Laboratory of Cellular and Molecular Biology, National Institute on Aging-IRP, NIH, Baltimore, MD 21224, USA
| | - Tongtong Zou
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore Veterans Affairs Medical Center, Department of Pathology, University of Maryland School of Medicine and Laboratory of Cellular and Molecular Biology, National Institute on Aging-IRP, NIH, Baltimore, MD 21224, USA
| | - Jaladanki N. Rao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore Veterans Affairs Medical Center, Department of Pathology, University of Maryland School of Medicine and Laboratory of Cellular and Molecular Biology, National Institute on Aging-IRP, NIH, Baltimore, MD 21224, USA
| | - Lan Liu
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore Veterans Affairs Medical Center, Department of Pathology, University of Maryland School of Medicine and Laboratory of Cellular and Molecular Biology, National Institute on Aging-IRP, NIH, Baltimore, MD 21224, USA
| | - Lan Xiao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore Veterans Affairs Medical Center, Department of Pathology, University of Maryland School of Medicine and Laboratory of Cellular and Molecular Biology, National Institute on Aging-IRP, NIH, Baltimore, MD 21224, USA
| | - Peng-Yuan Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore Veterans Affairs Medical Center, Department of Pathology, University of Maryland School of Medicine and Laboratory of Cellular and Molecular Biology, National Institute on Aging-IRP, NIH, Baltimore, MD 21224, USA
| | - Yu-Hong Cui
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore Veterans Affairs Medical Center, Department of Pathology, University of Maryland School of Medicine and Laboratory of Cellular and Molecular Biology, National Institute on Aging-IRP, NIH, Baltimore, MD 21224, USA
| | - Myriam Gorospe
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore Veterans Affairs Medical Center, Department of Pathology, University of Maryland School of Medicine and Laboratory of Cellular and Molecular Biology, National Institute on Aging-IRP, NIH, Baltimore, MD 21224, USA
| | - Jian-Ying Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore Veterans Affairs Medical Center, Department of Pathology, University of Maryland School of Medicine and Laboratory of Cellular and Molecular Biology, National Institute on Aging-IRP, NIH, Baltimore, MD 21224, USA
| |
Collapse
|
28
|
Blum KA, Johnson JL, Niedzwiecki D, Canellos GP, Cheson BD, Bartlett NL. Single agent bortezomib in the treatment of relapsed and refractory Hodgkin lymphoma: Cancer and leukemia Group B protocol 50206. Leuk Lymphoma 2009; 48:1313-9. [PMID: 17613759 DOI: 10.1080/10428190701411458] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Constitutive activation of nuclear factor-kappaB (NF-kappaB) has been described in patient-derived Reed - Sternberg cells and Hodgkin lymphoma (HL) cell lines and contributes to the proliferation and survival of HL. Therapeutic inhibition of the proteasome with bortezomib may inhibit over-expression of nuclear NF-kappaB by preventing degradation of IkappaB, which sequesters NF-kappaB in the cytoplasm. To evaluate this hypothesis, the Cancer and Leukemia Group B (CALGB) conducted a multi-institutional phase II trial of single agent bortezomib in patients with relapsed or refractory classical HL. Thirty patients received bortezomib 1.3 mg/m(2) on days 1, 4, 8, 11 and every 21 days for a median of 2 cycles (range, 1 - 8). Patients were heavily pre-treated with a median of four prior therapies, and 83% were previously transplanted. No responses were observed, 9 patients had stable disease, and 21 progressed. The median progression-free and overall survivals were 1.4 months [95% CI, (1.28, 1.91)] and 14.8 months [95% CI (11.2, 22.3)], respectively. Grade 3 - 4 adverse events, primarily thrombocytopenia, occurred in 15 patients. Therefore, although well tolerated, 1.3 mg/m(2) bortezomib administered biweekly has no single agent activity in relapsed/refractory classical HL.
Collapse
Affiliation(s)
- Kristie A Blum
- Division of Hematology - Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Barr P, Fisher R, Friedberg J. The Role of Bortezomib in the Treatment of Lymphoma. Cancer Invest 2009; 25:766-75. [DOI: 10.1080/07357900701579570] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
30
|
Chen KF, Yeh PY, Hsu C, Hsu CH, Lu YS, Hsieh HP, Chen PJ, Cheng AL. Bortezomib overcomes tumor necrosis factor-related apoptosis-inducing ligand resistance in hepatocellular carcinoma cells in part through the inhibition of the phosphatidylinositol 3-kinase/Akt pathway. J Biol Chem 2009; 284:11121-33. [PMID: 19261616 DOI: 10.1074/jbc.m806268200] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common and aggressive human malignancies. Recombinant tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising anti-tumor agent. However, many HCC cells show resistance to TRAIL-induced apoptosis. In this study, we showed that bortezomib, a proteasome inhibitor, overcame TRAIL resistance in HCC cells, including Huh-7, Hep3B, and Sk-Hep1. The combination of bortezomib and TRAIL restored the sensitivity of HCC cells to TRAIL-induced apoptosis. Comparing the molecular change in HCC cells treated with these agents, we found that down-regulation of phospho-Akt (P-Akt) played a key role in mediating TRAIL sensitization of bortezomib. The first evidence was that bortezomib down-regulated P-Akt in a dose- and time-dependent manner in TRAIL-treated HCC cells. Second, LY294002, a PI3K inhibitor, also sensitized resistant HCC cells to TRAIL-induced apoptosis. Third, knocking down Akt1 by small interference RNA also enhanced TRAIL-induced apoptosis in Huh-7 cells. Finally, ectopic expression of mutant Akt (constitutive active) in HCC cells abolished TRAIL sensitization effect of bortezomib. Moreover, okadaic acid, a protein phosphatase 2A (PP2A) inhibitor, reversed down-regulation of P-Akt in bortezomib-treated cells, and PP2A knockdown by small interference RNA also reduced apoptosis induced by the combination of TRAIL and bortezomib, indicating that PP2A may be important in mediating the effect of bortezomib on TRAIL sensitization. Together, bortezomib overcame TRAIL resistance at clinically achievable concentrations in hepatocellular carcinoma cells, and this effect is mediated at least partly via inhibition of the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Kuen-Feng Chen
- Department of Medical Research, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Thayaparasingham B, Kunz A, Peters N, Kulms D. Sensitization of melanoma cells to TRAIL by UVB-induced and NF-κB-mediated downregulation of xIAP. Oncogene 2008; 28:345-62. [DOI: 10.1038/onc.2008.397] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
32
|
Chen KF, Yeh PY, Yeh KH, Lu YS, Huang SY, Cheng AL. Down-regulation of phospho-Akt is a major molecular determinant of bortezomib-induced apoptosis in hepatocellular carcinoma cells. Cancer Res 2008; 68:6698-707. [PMID: 18701494 DOI: 10.1158/0008-5472.can-08-0257] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bortezomib, a proteasome inhibitor, has been clinically approved for the treatment of myeloma and lymphoma. Here, we report a differential effect of bortezomib on apoptosis in four hepatocellular carcinoma (HCC) cell lines and identify the major molecular event that determines sensitivity. Although bortezomib inhibited proteasome activity to a similar extent in all HCC cell lines, it showed differential effects on their viability: Huh-7 (IC(50) 196 nmol/L), Sk-Hep1 (IC(50) 180 nmol/L), Hep3B (IC(50) 112 nmol/L), and resistant PLC5 (IC(50) >1,000 nmol/L). Bortezomib caused cell cycle arrest at G(2)-M phase in all HCC cells tested whereas apoptotic induction was found only in sensitive cells but not in PLC5 cells. No significant bortezomib-induced NF-kappaB changes were noted in Huh-7 and PLC5. Bortezomib down-regulated phospho-Akt (P-Akt) in a dose- and time-dependent manner in all sensitive HCC cells whereas no alterations of P-Akt were found in PLC5. Down-regulation of Akt1 by small interference RNA overcame the apoptotic resistance to bortezomib in PLC5 cells, but a constitutively activated Akt1 protected Huh-7 cells from bortezomib-induced apoptosis. Furthermore, bortezomib showed suppression of tumor growth with down-regulation of P-Akt in Huh-7 tumors but not in PLC5 tumors. Down-regulation of P-Akt represents a major molecular event of bortezomib-induced apoptosis in HCC cell lines and may be a biomarker for predicting clinical response to HCC treatment. Targeting Akt signaling overcomes drug resistance to bortezomib in HCC cells, which provides a new approach for the combinational therapy of HCC.
Collapse
Affiliation(s)
- Kuen-Feng Chen
- Department of Medical Research, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei
| | | | | | | | | | | |
Collapse
|
33
|
Langemeijer SMC, de Graaf AO, Jansen JH. IAPs as therapeutic targets in haematological malignancies. Expert Opin Ther Targets 2008; 12:981-93. [DOI: 10.1517/14728222.12.8.981] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
34
|
Abstract
Nuclear Factor kappaB (NF-kappaB) transcription factors are central regulators of lymphocyte proliferation, survival and development. Although normally subject to tight control, constitutive activation of NF-kappaB promotes inappropriate lymphocyte survival and proliferation, and is recognised as key pathological feature in various lymphoid malignancies. Inhibition of NF-kappaB may be an attractive therapeutic approach in these diseases. This review focuses on the mechanisms and functional consequences of NF-kappaB activation in lymphoid malignancies and potential therapeutic strategies for inhibition of NF-kappaB.
Collapse
Affiliation(s)
- Graham Packham
- Cancer Research UK Clinical Centre, Cancer Sciences Division, University of Southampton School of Medicine, Southampton General Hospital, Southampton, SO16 6YD, UK.
| |
Collapse
|
35
|
A mitochondrial block and expression of XIAP lead to resistance to TRAIL-induced apoptosis during progression to metastasis of a colon carcinoma. Oncogene 2008; 27:6012-22. [DOI: 10.1038/onc.2008.197] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
36
|
Relapsed and Refractory Hodgkin Lymphoma: Transplantation Strategies and Novel Therapeutic Options. Curr Treat Options Oncol 2008; 8:352-74. [DOI: 10.1007/s11864-007-0046-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
37
|
Martin P, Leonard JP. Targeted therapies for non-Hodgkin lymphoma: rationally designed combinations. ACTA ACUST UNITED AC 2007; 7 Suppl 5:S192-8. [PMID: 17877844 DOI: 10.3816/clm.2007.s.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Non-Hodgkin lymphoma is a diverse group of lymphoid malignancies treated historically with cytotoxic chemotherapy. Recent technologic advances have enabled the development of new therapies specifically targeted to inhibit various pathways involved in disease pathophysiology. Led by the anti-CD20 monoclonal antibody rituximab, these agents are expected to revolutionize patient care. Several new drugs might have limited single-agent activity but could combine with other targeted therapies to produce significant effects. Although the current level of understanding makes this sort of rational combination challenging, there is evidence that certain combinations might be very effective. Examples include the combination of rituximab with other monoclonal antibodies, immunomodulatory drugs, Bcl-2 inhibitors, and bortezomib. All of these agents face the challenge of optimal integration with rituximab. The strategies most likely to produce initial success will be those that incorporate rituximab in sensitive patients, as well as those that target patient populations with rituximab-refractory disease. Ideally, these studies will incorporate biologic correlates, such that the mechanisms of action and the patients most likely to benefit can be better defined. We discuss several combinations, their rationale, and the clinical evidence that justifies further evaluation.
Collapse
Affiliation(s)
- Peter Martin
- Center for Lymphoma and Myeloma, Division of Hematology and Medical Oncology, Weill Medical College of Cornell University and New York Presbyterian Hospital, New York, NY 10021, USA
| | | |
Collapse
|
38
|
Berenson JR. Proteasome inhibitors: closing the garbage can opens up new therapeutic options for patients with B-cell malignancies. ACTA ACUST UNITED AC 2007; 7 Suppl 5:S182-3. [PMID: 17877842 DOI: 10.3816/clm.2007.s.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
39
|
Haubert D, Gharib N, Rivero F, Wiegmann K, Hösel M, Krönke M, Kashkar H. PtdIns(4,5)P-restricted plasma membrane localization of FAN is involved in TNF-induced actin reorganization. EMBO J 2007; 26:3308-21. [PMID: 17599063 PMCID: PMC1933409 DOI: 10.1038/sj.emboj.7601778] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Accepted: 06/06/2007] [Indexed: 11/08/2022] Open
Abstract
The WD-repeat protein factor associated with nSMase activity (FAN) is a member of the family of TNF receptor adaptor proteins that are coupled to specific signaling cascades. However, the precise functional involvement of FAN in specific cellular TNF responses remain unclear. Here, we report the involvement of FAN in TNF-induced actin reorganization and filopodia formation mediated by activation of Cdc42. The pleckstrin-homology (PH) domain of FAN specifically binds to phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P), which targets FAN to the plasma membrane. Site-specific mutagenesis revealed that the ability of FAN to mediate filopodia formation was blunted either by the destruction of the PtdIns(4,5)P binding motif, or by the disruption of intramolecular interactions between the PH domain and the adjacent beige and Chediak-Higashi (BEACH) domain. Furthermore, FAN was shown to interact with the actin cytoskeleton in TNF-stimulated cells via direct filamentous actin (F-actin) binding. The results of this study suggest that PH-mediated plasma membrane targeting of FAN is critically involved in TNF-induced Cdc42 activation and cytoskeleton reorganization.
Collapse
Affiliation(s)
- Dirk Haubert
- Institute for Medical Microbiology, Immunology and Hygiene, Medical Faculty, University of Cologne, Cologne, Germany
| | - Nina Gharib
- Institute for Medical Microbiology, Immunology and Hygiene, Medical Faculty, University of Cologne, Cologne, Germany
| | - Francisco Rivero
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Institute for Biochemistry I, Medical Faculty, University of Cologne, Cologne, Germany
| | - Katja Wiegmann
- Institute for Medical Microbiology, Immunology and Hygiene, Medical Faculty, University of Cologne, Cologne, Germany
| | - Marianna Hösel
- Institute for Medical Microbiology, Immunology and Hygiene, Medical Faculty, University of Cologne, Cologne, Germany
| | - Martin Krönke
- Institute for Medical Microbiology, Immunology and Hygiene, Medical Faculty, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Hamid Kashkar
- Institute for Medical Microbiology, Immunology and Hygiene, Medical Faculty, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Goldenfelsstrasse 19-21, 50935 Köln, Germany. Tel.: +49 221 478 7286; Fax: +49 221 478 7288; E-mail:
| |
Collapse
|
40
|
Gordon GJ, Mani M, Maulik G, Mukhopadhyay L, Yeap BY, Kindler HL, Salgia R, Sugarbaker DJ, Bueno R. Preclinical studies of the proteasome inhibitor bortezomib in malignant pleural mesothelioma. Cancer Chemother Pharmacol 2007; 61:549-58. [PMID: 17522864 DOI: 10.1007/s00280-007-0500-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Accepted: 04/11/2007] [Indexed: 01/28/2023]
Abstract
Malignant pleural mesothelioma (MPM) is a highly lethal neoplasm that is resistant to chemotherapy. Bortezomib is an FDA-approved proteasome inhibitor that is currently under clinical investigation in multiple neoplasms but has not been studied extensively in MPM. In this report, we determine the biological and molecular response of cultured MPM cells to bortezomib alone and in combination with cisplatin or pemetrexed. We used four MPM cell lines (MS589, H28, H2052, JMN), a normal mesothelial cell line (HM3), and a lung cancer cell line (H23) in survival studies utilizing bortezomib, cisplatin, and pemetrexed alone and in combination by administering concurrently or by varying the order of administration. We determined the effect of bortezomib on the cell cycle, apoptosis, and on the expression of cell cycle proteins p21/WAF1 and p27/KIP1 and on apoptosis-related proteins IAP-1, IAP-2, survivin, and XIAP. Bortezomib was highly cytotoxic to MPM cells and induced both G(2)/M and G(1)/S cell cycle arrest. Apoptosis increased in a concentration- and time-dependent manner in 3 of 4 MPM cell lines. Bortezomib stabilized or increased protein levels of p21/WAF1 and IAP-1 and to a lesser degree p27/KIP1, IAP-2, XIAP, and survivin. In combination studies with cisplatin, bortezomib was generally synergistic at high concentrations and antagonistic at low concentrations. Bortezomib increased the cytotoxicity of cisplatin and pemetrexed in a concentration-dependent manner when administered prior to either. Bortezomib may improve outcome in MPM patients alone or in combination with standard chemotherapy but the order of administration is likely to be important. This study justifies further evaluation of bortezomib in MPM.
Collapse
Affiliation(s)
- Gavin J Gordon
- The Thoracic Surgery Oncology Laboratory and the Division of Thoracic Surgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston, MA, 02115, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|