1
|
Jiang B, Weinstock DM, Donovan KA, Sun HW, Wolfe A, Amaka S, Donaldson NL, Wu G, Jiang Y, Wilcox RA, Fischer ES, Gray NS, Wu W. ITK degradation to block T cell receptor signaling and overcome therapeutic resistance in T cell lymphomas. Cell Chem Biol 2023; 30:383-393.e6. [PMID: 37015223 PMCID: PMC10151063 DOI: 10.1016/j.chembiol.2023.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 01/06/2023] [Accepted: 03/13/2023] [Indexed: 04/05/2023]
Abstract
Interleukin (IL)-2-inducible T cell kinase (ITK) is essential for T cell receptor (TCR) signaling and plays an integral role in T cell proliferation and differentiation. Unlike the ITK homolog BTK, no inhibitors of ITK are currently US Food and Drug Administration (FDA) approved. In addition, recent studies have identified mutations within BTK that confer resistance to both covalent and non-covalent inhibitors. Here, as an alternative strategy, we report the development of BSJ-05-037, a potent and selective heterobifunctional degrader of ITK. BSJ-05-037 displayed enhanced anti-proliferative effects relative to its parent inhibitor BMS-509744, blocked the activation of NF-kB/GATA-3 signaling, and increased the sensitivity of T cell lymphoma cells to cytotoxic chemotherapy both in vitro and in vivo. In summary, targeted degradation of ITK is a novel approach to modulate TCR signal strength that could have broad application for the investigation and treatment of T cell-mediated diseases.
Collapse
Affiliation(s)
- Baishan Jiang
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - David M Weinstock
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA
| | - Katherine A Donovan
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Hong-Wei Sun
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital, Jinan University, Zhuhai, China
| | - Ashley Wolfe
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Sam Amaka
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Nicholas L Donaldson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Gongwei Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Yuan Jiang
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Ryan A Wilcox
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Eric S Fischer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Nathanael S Gray
- Department of Chemical and Systems Biology, ChEM-H, Stanford Cancer Institute, School of Medicine, Stanford University, Stanford, CA 94305, USA.
| | - Wenchao Wu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| |
Collapse
|
2
|
Nobari ST, Nojadeh JN, Talebi M. B-cell maturation antigen targeting strategies in multiple myeloma treatment, advantages and disadvantages. J Transl Med 2022; 20:82. [PMID: 35144648 PMCID: PMC8832753 DOI: 10.1186/s12967-022-03285-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/29/2022] [Indexed: 01/02/2023] Open
Abstract
B cell maturation antigen (BCMA), a transmembrane glycoprotein member of the tumor necrosis factor receptor superfamily 17 (TNFRSF17), highly expressed on the plasma cells of Multiple myeloma (MM) patients, as well as the normal population. BCMA is used as a biomarker for MM. Two members of the TNF superfamily proteins, including B-cell activating factor (BAFF) and A proliferation-inducing ligand (APRIL), are closely related to BCMA and play an important role in plasma cell survival and progression of MM. Despite the maximum specificity of the monoclonal antibody technologies, introducing the tumor-specific antigen(s) is not applicable for all malignancies, such as MM that there plenty of relatively specific antigens such as GPCR5D, MUC1, SLAMF7 and etc., but higher expression of BCMA on these cells in comparison with normal ones can be regarded as a relatively exclusive marker. Currently, different monoclonal antibody (mAb) technologies applied in anti-MM therapies such as daratuzumab, SAR650984, GSK2857916, and CAR-T cell therapies are some of these tools that are reviewed in the present manuscript. By the way, the structure, function, and signaling of the BCMA and related molecule(s) role in normal plasma cells and MM development, evaluated as well as the potential side effects of its targeting by different CAR-T cells generations. In conclusion, BCMA can be regarded as an ideal molecule to be targeted in immunotherapeutic methods, regarding lower potential systemic and local side effects.
Collapse
Affiliation(s)
- Shirin Teymouri Nobari
- Department of Medical Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Jafar Nouri Nojadeh
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Talebi
- Department of Applied Cells Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Ghosh G, Wang VYF. Origin of the Functional Distinctiveness of NF-κB/p52. Front Cell Dev Biol 2021; 9:764164. [PMID: 34888310 PMCID: PMC8650618 DOI: 10.3389/fcell.2021.764164] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/05/2021] [Indexed: 11/13/2022] Open
Abstract
The transcription regulators of the NF-κB family have emerged as a critical factor affecting the function of various adult tissues. The NF-κB family transcription factors are homo- and heterodimers made up of five monomers (p50, p52, RelA, cRel and RelB). The family is distinguished by sequence homology in their DNA binding and dimerization domains, which enables them to bind similar DNA response elements and participate in similar biological programs through transcriptional activation and repression of hundreds of genes. Even though the family members are closely related in terms of sequence and function, they all display distinct activities. In this review, we discuss the sequence characteristics, protein and DNA interactions, and pathogenic involvement of one member of family, NF-κB/p52, relative to that of other members. We pinpoint the small sequence variations within the conserved region that are mostly responsible for its distinct functional properties.
Collapse
Affiliation(s)
- Gourisankar Ghosh
- Department of Biochemistry, University of California, San Diego, San Diego, CA, United States
| | - Vivien Ya-Fan Wang
- Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China.,Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| |
Collapse
|
4
|
Edilova MI, Law JC, Zangiabadi S, Ting K, Mbanwi AN, Arruda A, Uehling D, Isaac M, Prakesch M, Al-Awar R, Minden MD, Abdul-Sater AA, Watts TH. The PKN1- TRAF1 signaling axis as a potential new target for chronic lymphocytic leukemia. Oncoimmunology 2021; 10:1943234. [PMID: 34589290 PMCID: PMC8475556 DOI: 10.1080/2162402x.2021.1943234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
TRAF1 is a pro-survival adaptor molecule in TNFR superfamily (TNFRSF) signaling. TRAF1 is overexpressed in many B cell cancers including refractory chronic lymphocytic leukemia (CLL). Little has been done to assess the role of TRAF1 in human cancer. Here we show that the protein kinase C related kinase Protein Kinase N1 (PKN1) is required to protect TRAF1 from cIAP-mediated degradation during constitutive CD40 signaling in lymphoma. We show that the active phospho-Thr774 form of PKN1 is constitutively expressed in CLL but minimally detected in unstimulated healthy donor B cells. Through a screen of 700 kinase inhibitors, we identified two inhibitors, OTSSP167, and XL-228, that inhibited PKN1 in the nanomolar range and induced dose-dependent loss of TRAF1 in RAJI cells. OTSSP167 or XL-228 treatment of primary patient CLL samples led to a reduction in TRAF1, pNF-κB p65, pS6, pERK, Mcl-1 and Bcl-2 proteins, and induction of activated caspase-3. OTSSP167 synergized with venetoclax in inducing CLL death, correlating with loss of TRAF1, Mcl-1, and Bcl-2. Although correlative, these findings suggest the PKN1-TRAF1 signaling axis as a potential new target for CLL. These findings also suggest the use of the orally available inhibitor OTSSP167 in combination treatment with venetoclax for TRAF1 overexpressing CLL.
Collapse
Affiliation(s)
- Maria I Edilova
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Jaclyn C Law
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Safoura Zangiabadi
- School of Kinesiology and Health Science, Muscle Health Research Centre (MHRC), Faculty of Health, York University, Toronto, ON, Canada
| | - Kenneth Ting
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Achire N Mbanwi
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Andrea Arruda
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - David Uehling
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Methvin Isaac
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Michael Prakesch
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Rima Al-Awar
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Mark D Minden
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Ali A Abdul-Sater
- School of Kinesiology and Health Science, Muscle Health Research Centre (MHRC), Faculty of Health, York University, Toronto, ON, Canada
| | - Tania H Watts
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
5
|
Pisano M, Cheng Y, Sun F, Dhakal B, D’Souza A, Chhabra S, Knight JM, Rao S, Zhan F, Hari P, Janz S. Laboratory Mice - A Driving Force in Immunopathology and Immunotherapy Studies of Human Multiple Myeloma. Front Immunol 2021; 12:667054. [PMID: 34149703 PMCID: PMC8206561 DOI: 10.3389/fimmu.2021.667054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/28/2021] [Indexed: 11/13/2022] Open
Abstract
Mouse models of human cancer provide an important research tool for elucidating the natural history of neoplastic growth and developing new treatment and prevention approaches. This is particularly true for multiple myeloma (MM), a common and largely incurable neoplasm of post-germinal center, immunoglobulin-producing B lymphocytes, called plasma cells, that reside in the hematopoietic bone marrow (BM) and cause osteolytic lesions and kidney failure among other forms of end-organ damage. The most widely used mouse models used to aid drug and immunotherapy development rely on in vivo propagation of human myeloma cells in immunodeficient hosts (xenografting) or myeloma-like mouse plasma cells in immunocompetent hosts (autografting). Both strategies have made and continue to make valuable contributions to preclinical myeloma, including immune research, yet are ill-suited for studies on tumor development (oncogenesis). Genetically engineered mouse models (GEMMs), such as the widely known Vκ*MYC, may overcome this shortcoming because plasma cell tumors (PCTs) develop de novo (spontaneously) in a highly predictable fashion and accurately recapitulate many hallmarks of human myeloma. Moreover, PCTs arise in an intact organism able to mount a complete innate and adaptive immune response and tumor development reproduces the natural course of human myelomagenesis, beginning with monoclonal gammopathy of undetermined significance (MGUS), progressing to smoldering myeloma (SMM), and eventually transitioning to frank neoplasia. Here we review the utility of transplantation-based and transgenic mouse models of human MM for research on immunopathology and -therapy of plasma cell malignancies, discuss strengths and weaknesses of different experimental approaches, and outline opportunities for closing knowledge gaps, improving the outcome of patients with myeloma, and working towards a cure.
Collapse
Affiliation(s)
- Michael Pisano
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, United States
| | - Yan Cheng
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Fumou Sun
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Binod Dhakal
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Anita D’Souza
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Saurabh Chhabra
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jennifer M. Knight
- Departments of Psychiatry, Medicine, and Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Sridhar Rao
- Division of Hematology, Oncology and Marrow Transplant, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, United States
| | - Fenghuang Zhan
- Myeloma Center, Department of Internal Medicine and Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Parameswaran Hari
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Siegfried Janz
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
6
|
LMO2 activation by deacetylation is indispensable for hematopoiesis and T-ALL leukemogenesis. Blood 2019; 134:1159-1175. [PMID: 31366618 DOI: 10.1182/blood.2019000095] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 07/01/2019] [Indexed: 12/19/2022] Open
Abstract
Hematopoietic transcription factor LIM domain only 2 (LMO2), a member of the TAL1 transcriptional complex, plays an essential role during early hematopoiesis and is frequently activated in T-cell acute lymphoblastic leukemia (T-ALL) patients. Here, we demonstrate that LMO2 is activated by deacetylation on lysine 74 and 78 via the nicotinamide phosphoribosyltransferase (NAMPT)/sirtuin 2 (SIRT2) pathway. LMO2 deacetylation enables LMO2 to interact with LIM domain binding 1 and activate the TAL1 complex. NAMPT/SIRT2-mediated activation of LMO2 by deacetylation appears to be important for hematopoietic differentiation of induced pluripotent stem cells and blood formation in zebrafish embryos. In T-ALL, deacetylated LMO2 induces expression of TAL1 complex target genes HHEX and NKX3.1 as well as LMO2 autoregulation. Consistent with this, inhibition of NAMPT or SIRT2 suppressed the in vitro growth and in vivo engraftment of T-ALL cells via diminished LMO2 deacetylation. This new molecular mechanism may provide new therapeutic possibilities in T-ALL and may contribute to the development of new methods for in vitro generation of blood cells.
Collapse
|
7
|
Edilova MI, Abdul-Sater AA, Watts TH. TRAF1 Signaling in Human Health and Disease. Front Immunol 2018; 9:2969. [PMID: 30619326 PMCID: PMC6305416 DOI: 10.3389/fimmu.2018.02969] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/03/2018] [Indexed: 12/21/2022] Open
Abstract
Tumor necrosis factor receptor (TNFR) associated factor 1 (TRAF1) is a signaling adaptor first identified as part of the TNFR2 signaling complex. TRAF1 plays a key role in pro-survival signaling downstream of TNFR superfamily members such as TNFR2, LMP1, 4-1BB, and CD40. Recent studies have uncovered another role for TRAF1, independent of its role in TNFR superfamily signaling, in negatively regulating Toll-like receptor and Nod-like receptor signaling, through sequestering the linear ubiquitin assembly complex, LUBAC. TRAF1 has diverse roles in human disease. TRAF1 is overexpressed in many B cell related cancers and single nucleotide polymorphisms (SNPs) in TRAF1 have been linked to non-Hodgkin's lymphoma. Genome wide association studies have identified an association between SNPs in the 5' untranslated region of the TRAF1 gene with increased incidence and severity of rheumatoid arthritis and other rheumatic diseases. The loss of TRAF1 from chronically stimulated CD8 T cells results in desensitization of the 4-1BB signaling pathway, thereby contributing to T cell exhaustion during chronic infection. These apparently opposing roles of TRAF1 as both a positive and negative regulator of immune signaling have led to some confusion in the literature. Here we review the role of TRAF1 as a positive and negative regulator in different signaling pathways. Then we discuss the role of TRAF1 in human disease, attempting to reconcile seemingly contradictory roles based on current knowledge of TRAF1 signaling and biology. We also discuss avenues for future research to further clarify the impact of TRAF1 in human disease.
Collapse
Affiliation(s)
- Maria I Edilova
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Ali A Abdul-Sater
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Tania H Watts
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
8
|
Zapata JM, Perez-Chacon G, Carr-Baena P, Martinez-Forero I, Azpilikueta A, Otano I, Melero I. CD137 (4-1BB) Signalosome: Complexity Is a Matter of TRAFs. Front Immunol 2018; 9:2618. [PMID: 30524423 PMCID: PMC6262405 DOI: 10.3389/fimmu.2018.02618] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 10/24/2018] [Indexed: 12/11/2022] Open
Abstract
CD137 (4-1BB, Tnsfr9) is a member of the TNF-receptor (TNFR) superfamily without known intrinsic enzymatic activity in its cytoplasmic domain. Hence, akin to other members of the TNFR family, it relies on the TNFR-Associated-Factor (TRAF) family of adaptor proteins to build the CD137 signalosome for transducing signals into the cell. Thus, upon CD137 activation by binding of CD137L trimers or by crosslinking with agonist monoclonal antibodies, TRAF1, TRAF2, and TRAF3 are readily recruited to the cytoplasmic domain of CD137, likely as homo- and/or heterotrimers with different configurations, initiating the construction of the CD137 signalosome. The formation of TRAF2-RING dimers between TRAF2 molecules from contiguous trimers would help to establish a multimeric structure of TRAF-trimers that is probably essential for CD137 signaling. In addition, available studies have identified a large number of proteins that are recruited to CD137:TRAF complexes including ubiquitin ligases and proteases, kinases, and modulatory proteins. Working in a coordinated fashion, these CD137-signalosomes will ultimately promote CD137-mediated T cell proliferation and survival and will endow T cells with stronger effector functions. Current evidence allows to envision the molecular events that might take place in the early stages of CD137-signalosome formation, underscoring the key roles of TRAFs and of K63 and K48-ubiquitination of target proteins in the signaling process. Understanding the composition and fine regulation of CD137-signalosomes assembly and disassembly will be key to improve the therapeutic activities of chimeric antigen receptors (CARs) encompassing the CD137 cytoplasmic domain and a new generation of CD137 agonists for the treatment of cancer.
Collapse
Affiliation(s)
- Juan M Zapata
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid, Spain.,Instituto de Investigación Hospital Universitario La Paz, Madrid, Spain
| | - Gema Perez-Chacon
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid, Spain.,Instituto de Investigación Hospital Universitario La Paz, Madrid, Spain
| | - Pablo Carr-Baena
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid, Spain
| | - Ivan Martinez-Forero
- Departamento de Inmunologia and Inmunoterapia, Centro de Investigación Medica Aplicada, Universidad de Navarra, Pamplona, Spain
| | - Arantza Azpilikueta
- Departamento de Inmunologia and Inmunoterapia, Centro de Investigación Medica Aplicada, Universidad de Navarra, Pamplona, Spain
| | - Itziar Otano
- Departamento de Inmunologia and Inmunoterapia, Centro de Investigación Medica Aplicada, Universidad de Navarra, Pamplona, Spain
| | - Ignacio Melero
- Departamento de Inmunologia and Inmunoterapia, Centro de Investigación Medica Aplicada, Universidad de Navarra, Pamplona, Spain.,MSD, London, United Kingdom.,Departamento de Inmunologia e Inmunoterapia, Clinica Universitaria, Universidad de Navarra, Pamplona, Spain.,Instituto de Investigacion Sanitaria de Navarra, Pamplona, Spain.,Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
| |
Collapse
|
9
|
Zhu S, Jin J, Gokhale S, Lu AM, Shan H, Feng J, Xie P. Genetic Alterations of TRAF Proteins in Human Cancers. Front Immunol 2018; 9:2111. [PMID: 30294322 PMCID: PMC6158389 DOI: 10.3389/fimmu.2018.02111] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 08/28/2018] [Indexed: 12/25/2022] Open
Abstract
The tumor necrosis factor receptor (TNF-R)-associated factor (TRAF) family of cytoplasmic adaptor proteins regulate the signal transduction pathways of a variety of receptors, including the TNF-R superfamily, Toll-like receptors (TLRs), NOD-like receptors (NLRs), RIG-I-like receptors (RLRs), and cytokine receptors. TRAF-dependent signaling pathways participate in a diverse array of important cellular processes, including the survival, proliferation, differentiation, and activation of different cell types. Many of these TRAF-dependent signaling pathways have been implicated in cancer pathogenesis. Here we analyze the current evidence of genetic alterations of TRAF molecules available from The Cancer Genome Atlas (TCGA) and the Catalog of Somatic Mutations in Cancer (COSMIC) as well as the published literature, including copy number variations and mutation landscape of TRAFs in various human cancers. Such analyses reveal that both gain- and loss-of-function genetic alterations of different TRAF proteins are commonly present in a number of human cancers. These include pancreatic cancer, meningioma, breast cancer, prostate cancer, lung cancer, liver cancer, head and neck cancer, stomach cancer, colon cancer, bladder cancer, uterine cancer, melanoma, sarcoma, and B cell malignancies, among others. Furthermore, we summarize the key in vivo and in vitro evidence that demonstrates the causal roles of genetic alterations of TRAF proteins in tumorigenesis within different cell types and organs. Taken together, the information presented in this review provides a rationale for the development of therapeutic strategies to manipulate TRAF proteins or TRAF-dependent signaling pathways in different human cancers by precision medicine.
Collapse
Affiliation(s)
- Sining Zhu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ, United States
| | - Juan Jin
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- Department of Pharmacology, Anhui Medical University, Hefei, China
| | - Samantha Gokhale
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ, United States
| | - Angeli M. Lu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
| | - Haiyan Shan
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- Department of Obstetrics and Gynecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Jianjun Feng
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education of the People's Republic of China, Fisheries College of Jimei University, Xiamen, China
| | - Ping Xie
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- Member, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| |
Collapse
|
10
|
Wen X, Wang B, Feng T, Yuan W, Zhou J, Fang T. TNF receptor-associated factor 1 as a biomarker for assessment of non-small cell lung cancer metastasis and overall survival. CLINICAL RESPIRATORY JOURNAL 2018. [PMID: 29528567 DOI: 10.1111/crj.12789] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND AIM Non-small cell lung cancer (NSCLC), which comprises 80%-85% of all lung cancer cases, is one of the most common human malignancies. Despite great improvements in diagnostic technology and the introduction of new therapeutic agents in recent years, the 5-year survival rate of NSCLC is still low. Tumor necrosis factor (TNF) receptor-associated factor 1 (TRAF1) plays an important role in the TNF-related apoptosis-inducing ligand (TRAIL) associated signal pathway. METHODS In this study, we aim to illuminate the function of TRAF1 in NSCLC. Toward that end, TRAF1 expression was detected using immunohistochemistry (IHC) in specimens from 200 NSCLC patients. The function of TRAF1 in the A549 and H1299 cell lines was evaluated by colony formation and MTT assays. RESULTS Our data showed that TRAF1 was significantly upregulated in NSCLC tissues. TRAF1 expression was positively associated with NSCLC lymphatic metastasis and clinical stage and was negatively associated with overall patient survival. TRAF1 promoted NSCLC cell proliferation CONCLUSION: TRAF1 expression was positively associated with NSCLC lymphatic metastasis and histological grade and was negatively associated with overall patient survival. TRAF1 may be an important therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Xiaoxing Wen
- Department of Pulmonary Medicine, Shengli Oilfield Central Hospital, Dongying, Shandong Province, China
| | - Bingping Wang
- Department of Oncology, Shengli Oilfield Central Hospital, Dongying, Shandong Province, China
| | - Tao Feng
- Department of Pulmonary Medicine, Shengli Oilfield Central Hospital, Dongying, Shandong Province, China
| | - Wei Yuan
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Zhou
- Department of Pulmonary Medicine, Research Institute of Respiratory Disease, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tao Fang
- Department of Oncology, Shengli Oilfield Central Hospital, Dongying, Shandong Province, China
| |
Collapse
|
11
|
Gene regulation and suppression of type I interferon signaling by STAT3 in diffuse large B cell lymphoma. Proc Natl Acad Sci U S A 2018; 115:E498-E505. [PMID: 29295936 DOI: 10.1073/pnas.1715118115] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
STAT3 is constitutively activated in many cancers and regulates gene expression to promote cancer cell survival, proliferation, invasion, and migration. In diffuse large B cell lymphoma (DLBCL), activation of STAT3 and its kinase JAK1 is caused by autocrine production of IL-6 and IL-10 in the activated B cell-like subtype (ABC). However, the gene regulatory mechanisms underlying the pathogenesis of this aggressive lymphoma by STAT3 are not well characterized. Here we performed genome-wide analysis and identified 2,251 STAT3 direct target genes, which involve B cell activation, survival, proliferation, differentiation, and migration. Whole-transcriptome profiling revealed that STAT3 acts as both a transcriptional activator and a suppressor, with a comparable number of up- and down-regulated genes. STAT3 regulates multiple oncogenic signaling pathways, including NF-κB, a cell-cycle checkpoint, PI3K/AKT/mTORC1, and STAT3 itself. In addition, STAT3 negatively regulates the lethal type I IFN signaling pathway by inhibiting expression of IRF7, IRF9, STAT1, and STAT2 Inhibition of STAT3 activity by ruxolitinib synergizes with the type I IFN inducer lenalidomide in growth inhibition of ABC DLBCL cells in vitro and in a xenograft mouse model. Therefore, this study provides a mechanistic rationale for clinical trials to evaluate ruxolitinib or a specific JAK1 inhibitor combined with lenalidomide in ABC DLBCL.
Collapse
|
12
|
Zhu S, Jin J, Gokhale S, Lu AM, Shan H, Feng J, Xie P. Genetic Alterations of TRAF Proteins in Human Cancers. Front Immunol 2018. [PMID: 30294322 DOI: 10.3389/fimmu.2018.02111/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
The tumor necrosis factor receptor (TNF-R)-associated factor (TRAF) family of cytoplasmic adaptor proteins regulate the signal transduction pathways of a variety of receptors, including the TNF-R superfamily, Toll-like receptors (TLRs), NOD-like receptors (NLRs), RIG-I-like receptors (RLRs), and cytokine receptors. TRAF-dependent signaling pathways participate in a diverse array of important cellular processes, including the survival, proliferation, differentiation, and activation of different cell types. Many of these TRAF-dependent signaling pathways have been implicated in cancer pathogenesis. Here we analyze the current evidence of genetic alterations of TRAF molecules available from The Cancer Genome Atlas (TCGA) and the Catalog of Somatic Mutations in Cancer (COSMIC) as well as the published literature, including copy number variations and mutation landscape of TRAFs in various human cancers. Such analyses reveal that both gain- and loss-of-function genetic alterations of different TRAF proteins are commonly present in a number of human cancers. These include pancreatic cancer, meningioma, breast cancer, prostate cancer, lung cancer, liver cancer, head and neck cancer, stomach cancer, colon cancer, bladder cancer, uterine cancer, melanoma, sarcoma, and B cell malignancies, among others. Furthermore, we summarize the key in vivo and in vitro evidence that demonstrates the causal roles of genetic alterations of TRAF proteins in tumorigenesis within different cell types and organs. Taken together, the information presented in this review provides a rationale for the development of therapeutic strategies to manipulate TRAF proteins or TRAF-dependent signaling pathways in different human cancers by precision medicine.
Collapse
Affiliation(s)
- Sining Zhu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ, United States
| | - Juan Jin
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- Department of Pharmacology, Anhui Medical University, Hefei, China
| | - Samantha Gokhale
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ, United States
| | - Angeli M Lu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
| | - Haiyan Shan
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- Department of Obstetrics and Gynecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Jianjun Feng
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education of the People's Republic of China, Fisheries College of Jimei University, Xiamen, China
| | - Ping Xie
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- Member, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| |
Collapse
|
13
|
Zhang W, Sun Y, Liu L, Li Z. Prognostic Significance of TNFR-Associated Factor 1 and 2 (TRAF1 and TRAF2) in Glioblastoma. Med Sci Monit 2017; 23:4506-4512. [PMID: 28926524 PMCID: PMC5616136 DOI: 10.12659/msm.903397] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background TNFR-associated factor 1 (TRAF1) and TRAF2 have been demonstrated to inhibit apoptosis and promote cell survival in glioblastoma (GBM) cells with experiments in vitro. However, their clinical and prognostic significance have not been elucidated. Material/Methods In our study, we for the first time investigated the expression of TRAF1 and TRAF2 in 105 GBM tissues. Furthermore, we evaluated their clinical significance, including their association with clinicopathologic factors and prognostic value. The association with clinicopathologic factors was assessed by chi-square test. The relation of TRAF1/2 expression to survival rate was assessed by Kaplan-Meier method and Cox-regression model. Results We demonstrated that TRAF1 expression had no significant prognostic value for GBM. On the contrary, high expression of TRAF2 can predict poorer prognosis of GBM and was identified as an independent biomarker in GBM prognosis. Conclusions High expression of TRAF2 was identified as an independent biomarker in GBM prognosis, indicating TRAF2 as a novel drug target in GBM treatment.
Collapse
Affiliation(s)
- Wenqing Zhang
- Department of Geriatrics, Yidu Central Hospital of Weifang, Weifang, Shandong, China (mainland)
| | - Ying Sun
- Department of Neurology, Yidu Central Hospital of Weifang, Weifang, Shandong, China (mainland)
| | - Lei Liu
- Department of Geriatrics, Yidu Central Hospital of Weifang, Weifang, Shandong, China (mainland)
| | - Zongpeng Li
- Department of Nursing, Linyi People's Hospital, Linyi, Shandong, China (mainland)
| |
Collapse
|
14
|
Wang F, Qu N, Peng J, Yue C, Yuan L, Yuan Y. CagA promotes proliferation and inhibits apoptosis of GES-1 cells by upregulating TRAF1/4-1BB. Mol Med Rep 2017; 16:1262-1268. [PMID: 28627614 PMCID: PMC5561785 DOI: 10.3892/mmr.2017.6757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 03/30/2017] [Indexed: 02/06/2023] Open
Abstract
Cytotoxin-associated gene A (CagA) is one of the most important virulence factors of Helicobacter pylori, and serves a role in H. pylori‑mediated tumorigenesis in gastric cancer. However, the underlying molecular mechanism remains to be elucidated. The present study aimed to investigate the effects of CagA on the proliferation and apoptosis of GES‑1 cells, and the underlying mechanism. A CagA eukaryotic expression plasmid was constructed and transfected into GES‑1 cells. The mRNA and protein levels of CagA, tumor necrosis factor receptor‑associated factor 1 (TRAF1) and tumor necrosis factor receptor superfamily member 9 (4‑1BB) were determined using the reverse transcription‑quantitative polymerase chain reaction and western blot analysis, respectively. Western blot and ELISA analysis was used to detect the release of interleukin (IL)‑8. An MTT assay and flow cytometric analysis was used to assess cell viability and apoptosis, respectively. Ectopic expression of CagA markedly increased TRAF1 and 4‑1BB mRNA and protein levels in GES‑1 cells. CagA increased the expression and release of IL‑8 in GES‑1 cells. The expression of CagA significantly promoted the proliferation (P<0.05) and inhibited the apoptosis (P<0.05) of GES‑1 cells. In conclusion, CagA upregulated TRAF1/4‑1BB, thereby promoting the proliferation and inhibiting the apoptosis of GES-1 cells.
Collapse
Affiliation(s)
- Fen Wang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Nanfang Qu
- Department of Gastroenterology, The Affiliated Hospital of Guilin Medical College, Guilin, Guangxi 541001, P.R. China
| | - Jin Peng
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Chun Yue
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Lingzhi Yuan
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Yi Yuan
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
15
|
Guo X, Koff JL, Moffitt AB, Cinar M, Ramachandiran S, Chen Z, Switchenko JM, Mosunjac M, Neill SG, Mann KP, Bagirov M, Du Y, Natkunam Y, Khoury HJ, Rossi MR, Harris W, Flowers CR, Lossos IS, Boise LH, Dave SS, Kowalski J, Bernal-Mizrachi L. Molecular impact of selective NFKB1 and NFKB2 signaling on DLBCL phenotype. Oncogene 2017; 36:4224-4232. [PMID: 28368397 DOI: 10.1038/onc.2017.90] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 02/15/2017] [Accepted: 02/26/2017] [Indexed: 12/15/2022]
Abstract
Diffuse large B-cell lymphoma (DLBCL) has been categorized into two molecular subtypes that have prognostic significance, namely germinal center B-cell like (GCB) and activated B-cell like (ABC). Although ABC-DLBCL has been associated with NF-κB activation, the relationships between activation of specific NF-κB signals and DLBCL phenotype remain unclear. Application of novel gene expression classifiers identified two new DLBCL categories characterized by selective p100 (NF-κB2) and p105 (NF-κB1) signaling. Interestingly, our molecular studies showed that p105 signaling is predominantly associated with GCB subtype and histone mutations. Conversely, most tumors with p100 signaling displayed ABC phenotype and harbored ABC-associated mutations in genes such as MYD88 and PIM1. In vitro, MYD88 L265P mutation promoted p100 signaling through TAK1/IKKα and GSK3/Fbxw7a pathways, suggesting a novel role for this protein as an upstream regulator of p100. p100 signaling was engaged during activation of normal B cells, suggesting p100's role in ABC phenotype development. Additionally, silencing p100 in ABC-DLBCL cells resulted in a GCB-like phenotype, with suppression of Blimp, IRF4 and XBP1 and upregulation of BCL6, whereas introduction of p52 or p100 into GC cells resulted in differentiation toward an ABC-like phenotype. Together, these findings identify specific roles for p100 and p105 signaling in defining DLBCL molecular subtypes and posit MYD88/p100 signaling as a regulator for B-cell activation.
Collapse
Affiliation(s)
- X Guo
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - J L Koff
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - A B Moffitt
- Duke Institute for Genome Sciences and Policy, Department of Medicine, Duke University, Durham, NC, USA
| | - M Cinar
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - S Ramachandiran
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Z Chen
- Department of Biostatistics and Bioinformatics, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - J M Switchenko
- Department of Biostatistics and Bioinformatics, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - M Mosunjac
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| | - S G Neill
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| | - K P Mann
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| | - M Bagirov
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| | - Y Du
- Department of Pharmacology, Emory University, Atlanta, GA, USA
| | - Y Natkunam
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - H J Khoury
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - M R Rossi
- Department of Radiation Oncology, Emory University, Atlanta, GA, USA
| | - W Harris
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - C R Flowers
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - I S Lossos
- Division of Hematology Oncology and Molecular and Cellular Pharmacology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - L H Boise
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - S S Dave
- Duke Institute for Genome Sciences and Policy, Department of Medicine, Duke University, Durham, NC, USA
| | - J Kowalski
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA.,Department of Biostatistics and Bioinformatics, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - L Bernal-Mizrachi
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| |
Collapse
|
16
|
Tumour necrosis factor receptor-associated factor-1 (TRAF-1) expression is increased in renal cell carcinoma patient serum but decreased in cancer tissue compared with normal: potential biomarker significance. Pathology 2016; 46:518-22. [PMID: 25158810 DOI: 10.1097/pat.0000000000000145] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Renal cell carcinoma (RCC) generally has a poor prognosis because of late diagnosis and metastasis. We have previously described decreased tumour necrosis factor receptor-associated factor-1 (TRAF-1) in RCC compared with paired normal kidney in a patient cohort in Australia. In the present study, TRAF-1 expression in clear cell RCC (ccRCC) and normal kidney was again compared, but in a cohort from University Malaya Medical Centre. Serum TRAF-1 was also evaluated in RCC and normal samples.Immunohistochemistry with automated batch staining and Aperio ImageScope morphometry was used to compare TRAF-1 in 61 ccRCC with paired normal kidney tissue. Serum from 15 newly diagnosed and untreated ccRCC and 15 healthy people was tested for TRAF-1 using ELISA.In this cohort, TRAF-1 was highly expressed in proximal tubular epithelium of normal kidney, and significantly decreased in ccRCC tissue (p < 0.001). Conversely, TRAF-1 in serum from ccRCC patients was significantly increased over control serum (132 ± 30 versus 54 ± 14 pg/mL, respectively; p = 0.013).Decreased TRAF-1 in RCC tissue, reported previously, was confirmed. This, along with significantly increased serum TRAF-1 may indicate the protein is actively secreted during development and progression of ccRCC. Therefore, the increased serum TRAF-1 may be a useful non-invasive indicator of RCC development.
Collapse
|
17
|
Kawase K, Sugiura T, Nagaya Y, Yamada T, Sugimoto M, Ito K, Togawa T, Nagasaki R, Kato T, Kouwaki M, Koyama N, Saitoh S. Single nucleotide polymorphisms in AGTR1, TFAP2B, and TRAF1 are not associated with the incidence of patent ductus arteriosus in Japanese preterm infants. Pediatr Int 2016; 58:461-6. [PMID: 26615960 DOI: 10.1111/ped.12861] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 10/30/2015] [Accepted: 11/16/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND Persistent patent ductus arteriosus (PDA) is a frequent complication in preterm infants. Single nucleotide polymorphisms (SNP) in several genes, including angiotensin II receptor, type 1 (AGTR1), transcription factor AP-2 beta (TFAP2B) and tumor necrosis factor receptor-associated factor 1 (TRAF1), have been reported to be associated with PDA in preterm infants. The aim of this study was to evaluate the relationships between PDA in preterm infants and polymorphisms in AGTR1, TFAP2B and TRAF1 in the Japanese population. METHODS The subjects consisted of 107 preterm infants with gestational age <32 weeks. Extremely low-birthweight infants were treated with prophylactic indomethacin during the first 24 h after birth. Five SNP, namely, rs5186 in AGTR1, rs987237 and rs6930924 in TFAP2B, and rs1056567 and rs10985070 in TRAF1, were genotyped using TaqMan SNP genotyping assays. RESULTS There were no significant differences in the distributions of the genotypes and allele frequencies of all studied SNP between the PDA group (n = 46) and the non-PDA group (n = 61). CONCLUSIONS There were no significant associations between the studied SNP and the incidence of PDA in Japanese preterm infants. These SNP may not be clinically important predisposing factors for PDA in Japanese preterm infants.
Collapse
Affiliation(s)
- Koya Kawase
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Tokio Sugiura
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yoshiaki Nagaya
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takaharu Yamada
- Department of Pediatrics, Toyohashi Municipal Hospital, Aichi, Japan
| | - Mari Sugimoto
- Department of Pediatrics, Toyohashi Municipal Hospital, Aichi, Japan
| | - Koichi Ito
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takao Togawa
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Rika Nagasaki
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takenori Kato
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Masanori Kouwaki
- Department of Pediatrics, Toyohashi Municipal Hospital, Aichi, Japan
| | - Norihisa Koyama
- Department of Pediatrics, Toyohashi Municipal Hospital, Aichi, Japan
| | - Shinji Saitoh
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
18
|
Abstract
B cell neoplasms comprise >50% of blood cancers. However, many types of B cell malignancies remain incurable. Identification and validation of novel genetic risk factors and oncogenic signaling pathways are imperative for the development of new therapeutic strategies. We and others recently identified TRAF3, a cytoplasmic adaptor protein, as a novel tumor suppressor in B lymphocytes. We found that TRAF3 inactivation results in prolonged survival of mature B cells, which eventually leads to spontaneous development of B lymphomas in mice. Corroborating our findings, TRAF3 deletions and inactivating mutations frequently occur in human B cell chronic lymphocytic leukemia, splenic marginal zone lymphoma, mantle cell lymphoma, multiple myeloma, Waldenström’s macroglobulinemia, and Hodgkin lymphoma. In this context, we have been investigating TRAF3 signaling mechanisms in B cells, and are developing new therapeutic strategies to target TRAF3 downstream signaling pathways in B cell neoplasms. Here we discuss our new translational data that demonstrate the therapeutic potential of targeting TRAF3 downstream signaling pathways in B lymphoma and multiple myeloma.
Collapse
Affiliation(s)
- Carissa R Moore
- Department of Cell Biology and Neuroscience, New Jersey, USA
| | - Shanique Ke Edwards
- Department of Cell Biology and Neuroscience, New Jersey, USA ; Graduate Program in Molecular Biosciences, Rutgers University, Piscataway, New Jersey, USA
| | - Ping Xie
- Department of Cell Biology and Neuroscience, New Jersey, USA ; Member, Rutgers Cancer Institute of New Jersey, USA
| |
Collapse
|
19
|
Muhammad K, Alrefai H, Marienfeld R, Pham DAT, Murti K, Patra AK, Avots A, Bukur V, Sahin U, Kondo E, Klein-Hessling S, Serfling E. NF-κB factors control the induction of NFATc1 in B lymphocytes. Eur J Immunol 2014; 44:3392-402. [PMID: 25179582 DOI: 10.1002/eji.201444756] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 07/16/2014] [Accepted: 08/29/2014] [Indexed: 01/06/2023]
Abstract
In peripheral lymphocytes, the transcription factors (TFs) NF-κB, NFAT, and AP-1 are the prime targets of signals that emerge from immune receptors. Upon activation, these TFs induce gene networks that orchestrate the growth, expansion, and effector function of peripheral lymphocytes. NFAT and NF-κB factors share several properties, such as a similar mode of induction and architecture in their DNA-binding domain, and there is a subgroup of κB-like DNA promoter motifs that are bound by both types of TFs. However, unlike NFAT and AP-1 factors that interact and collaborate in binding to DNA, NFAT, and NF-κB seem neither to interact nor to collaborate. We show here that NF-κB1/p50 and c-Rel, the most prominent NF-κB proteins in BCR-induced splenic B cells, control the induction of NFATc1/αA, a prominent short NFATc1 isoform. In part, this is mediated through two composite κB/NFAT-binding sites in the inducible Nfatc1 P1 promoter that directs the induction of NFATc1/αA by BCR signals. In concert with coreceptor signals that induce NF-κB factors, BCR signaling induces a persistent generation of NFATc1/αA. These data suggest a tight connection between NFATc1 and NF-κB induction in B lymphocytes contributing to the effector function of peripheral B cells.
Collapse
Affiliation(s)
- Khalid Muhammad
- Department of Molecular Pathology, Institute of Pathology and Comprehensive Cancer Center Mainfranken, University of Würzburg, Würzburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Vento-Tormo R, Rodríguez-Ubreva J, Lisio LD, Islam ABMMK, Urquiza JM, Hernando H, López-Bigas N, Shannon-Lowe C, Martínez N, Montes-Moreno S, Piris MA, Ballestar E. NF-κB directly mediates epigenetic deregulation of common microRNAs in Epstein-Barr virus-mediated transformation of B-cells and in lymphomas. Nucleic Acids Res 2014; 42:11025-39. [PMID: 25200074 PMCID: PMC4176189 DOI: 10.1093/nar/gku826] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) have negative effects on gene expression and are major players in cell function in normal and pathological conditions. Epstein-Barr virus (EBV) infection of resting B lymphocytes results in their growth transformation and associates with different B cell lymphomas. EBV-mediated B cell transformation involves large changes in gene expression, including cellular miRNAs. We performed miRNA expression analysis in growth transformation of EBV-infected B cells. We observed predominant downregulation of miRNAs and upregulation of a few miRNAs. We observed similar profiles of miRNA expression in B cells stimulated with CD40L/IL-4, and those infected with EBNA-2- and LMP-1-deficient EBV particles, suggesting the implication of the NF-kB pathway, common to all four situations. In fact, the NF-kB subunit p65 associates with the transcription start site (TSS) of both upregulated and downregulated miRNAs following EBV infection This occurs together with changes at histone H3K27me3 and histone H3K4me3. Inhibition of the NF-kB pathway impairs changes in miRNA expression, NF-kB binding and changes at the above histone modifications near the TSS of these miRNA genes. Changes in expression of these miRNAs also occurred in diffuse large B cell lymphomas (DLBCL), which are strongly NF-kB dependent. Our results highlight the relevance of the NF-kB pathway in epigenetically mediated miRNA control in B cell transformation and DLBCL.
Collapse
Affiliation(s)
- Roser Vento-Tormo
- Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Javier Rodríguez-Ubreva
- Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Lorena Di Lisio
- Pathology Department, Hospital Universitario Marques de Valdecilla, Cancer Genomics, IFIMAV, 39008 Santander, Spain
| | - Abul B M M K Islam
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Jose M Urquiza
- Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Henar Hernando
- Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Nuria López-Bigas
- Department of Experimental and Health Sciences, Barcelona Biomedical Research Park, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain Catalan Institution for Research and Advanced Studies (ICREA), 08003 Barcelona, Spain
| | - Claire Shannon-Lowe
- CR-UK Institute for Cancer Studies, University of Birmingham, Birmingham B15 2TT, UK
| | - Nerea Martínez
- Pathology Department, Hospital Universitario Marques de Valdecilla, Cancer Genomics, IFIMAV, 39008 Santander, Spain
| | - Santiago Montes-Moreno
- Pathology Department, Hospital Universitario Marques de Valdecilla, Cancer Genomics, IFIMAV, 39008 Santander, Spain
| | - Miguel A Piris
- Pathology Department, Hospital Universitario Marques de Valdecilla, Cancer Genomics, IFIMAV, 39008 Santander, Spain
| | - Esteban Ballestar
- Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
21
|
Patient samples of renal cell carcinoma show reduced expression of TRAF1 compared with normal kidney and functional studies in vitro indicate TRAF1 promotes apoptosis: potential for targeted therapy. Pathology 2014; 44:453-9. [PMID: 22810054 DOI: 10.1097/pat.0b013e3283557748] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
AIMS The tumour necrosis factor (TNF) receptor-associated factor (TRAF) family of proteins links the TNF receptor superfamily to cell signalling cascades. TRAF1 is involved in regulation of apoptosis, proliferation, differentiation and stress responses. It has a role in development of several malignancies, but no information for renal cell carcinoma (RCC) is available. METHODS Expression profiles for TRAF1 were investigated in 121 samples of human RCC of various subtypes plus paired normal kidney prepared in tissue microarrays, in comparison with apoptosis (morphology, ApopTag) and mitosis (morphology, proliferating cell nuclear antigen/PCNA). TRAF1 function was tested in vitro in RCC ACHN cells. TRAF1 short interfering RNA (siRNA) was used to inhibit expression of TRAF1 in ACHN cells untreated or treated with cancer therapies known to induce apoptosis (20 Gy X-irradiation and/or 500 IU/mL interferon-alpha). RESULTS In patient samples, TRAF1 localised to proximal tubular epithelium in normal kidney and was significantly decreased in clear cell RCC as one group (p < 0.01) and all other RCC subclassifications grouped together (p < 0.05). There was little apoptosis identified in any RCC samples. In vitro, TRAF1 siRNA caused significant reduction in TRAF1 expression and a concurrent decrease in apoptosis and increase in proliferative activity (both p < 0.05) in the ACHN RCC cells treated with radiation and interferon-alpha. CONCLUSION TRAF1 may have a pro-apoptotic, anti-mitotic role in RCC. The low TRAF1 expression in untreated RCC patient samples compared with normal kidney, and the localisation of TRAF1 to the proximal tubular epithelium from which many RCC originate, may indicate a potential for targeted therapy in RCC.
Collapse
|
22
|
Hosseinpour B, Bakhtiarizadeh MR, Mirabbassi SM, Ebrahimie E. Comparison of hematopoietic cancer stem cells with normal stem cells leads to discovery of novel differentially expressed SSRs. Gene 2014; 550:10-7. [PMID: 25084127 DOI: 10.1016/j.gene.2014.07.069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 07/02/2014] [Accepted: 07/29/2014] [Indexed: 11/19/2022]
Abstract
Tandem repeat expansion in the transcriptomics level has been considered as one of the underlying causes of different cancers. Cancer stem cells are a small portion of cancer cells within the main neoplasm and can remain alive during chemotherapy and re-induce tumor growth. The EST-SSR background of cancer stem cells and possible roles of expressed SSRs in altering normal stem cells to cancer ones have not been investigated yet. Here, SSR distributions in hematopoietic normal and cancer stem cells were compared based on the expressed EST-SSR. One hundred eighty nine and 223 EST-SSRs were identified in cancer and normal stem cells, respectively. The EST-SSR expression pattern was significantly different between normal and cancer stem cells. The frequencies of AC/GT and TA/TA EST-SSRs were about 10% higher in cancer than normal stem cells. Remarkably, the number of triplets in cancer stem cells was 1.5 times higher than that in normal stem cells. GAT EST-SSR was frequent in cancer stem cells, but, conversely, normal stem cells did not express GAT EST-SSR. We suggest this EST-SSR as a novel triplet in cancer stem cell induction. Translating EST-SSRs to amino acids demonstrated that Asp and Ile were more abundant in cancer stem cells compared to normal stem cells. Finally, Gene Ontology (GO) enrichment analysis was carried out on genes containing triplet SSRs and showed that SSRs intentionally visit some specific GO classes. Interestingly, a NF-kappa (nuclear factor-kB) binding transcription factor was significantly hit by SSR instability which is a hallmark for leukemia stem cells. NF-kappa is an over represented transcription factor during cancer progression. It seems that there is a crosstalk between the NF-kB transcription factor and expressed GAT tandem repeat which negatively regulate apoptosis. In addition to better understanding of tumorigenesis, the findings of this study offer new DNA markers for diagnostic purposes and identifying at risk populations. In addition, a new approach for gene discovery in cancer by target analysis of differentially expressed EST-SSRs between cancer and normal stem cells is presented here.
Collapse
Affiliation(s)
| | | | | | - Esmaeil Ebrahimie
- Institute of Biotechnology, Shiraz University, Shiraz, Iran; School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, Australia.
| |
Collapse
|
23
|
Carmona Arana JA, Seher A, Neumann M, Lang I, Siegmund D, Wajant H. TNF Receptor-Associated Factor 1 is a Major Target of Soluble TWEAK. Front Immunol 2014; 5:63. [PMID: 24600451 PMCID: PMC3927163 DOI: 10.3389/fimmu.2014.00063] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 02/03/2014] [Indexed: 12/18/2022] Open
Abstract
Soluble tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK), in contrast to membrane TWEAK and TNF, is only a weak activator of the classical NFκB pathway. We observed that soluble TWEAK was regularly more potent than TNF with respect to the induction of TNF receptor-associated factor 1 (TRAF1), a NFκB-controlled signaling protein involved in the regulation of inflammatory signaling pathways. TNF-induced TRAF1 expression was efficiently blocked by inhibition of the classical NFκB pathway using the IKK2 inhibitor, TPCA1. In contrast, in some cell lines, TWEAK-induced TRAF1 production was only partly inhibited by TPCA1. The NEDD8-activating enzyme inhibitor MLN4924, however, which inhibits classical and alternative NFκB signaling, blocked TNF- and TWEAK-induced TRAF1 expression. This suggests that TRAF1 induction by soluble TWEAK is based on the cooperative activity of the two NFκB signaling pathways. We have previously shown that oligomerization of soluble TWEAK results in ligand complexes with membrane TWEAK-like activity. Oligomerization of soluble TWEAK showed no effect on the dose response of TRAF1 induction, but potentiated the ability of soluble TWEAK to trigger production of the classical NFκB-regulated cytokine IL8. Transfectants expressing soluble TWEAK and membrane TWEAK showed similar induction of TRAF1 while only the membrane TWEAK expressing cells robustly stimulated IL8 production. These data indicate that soluble TWEAK may efficiently induce a distinct subset of the membrane TWEAK-targeted genes and argue again for a crucial role of classical NFκB pathway-independent signaling in TWEAK-induced TRAF1 expression. Other TWEAK targets, which can be equally well induced by soluble and membrane TWEAK, remain to be identified and the relevance of the ability of soluble TWEAK to induce such a distinct subset of membrane TWEAK-targeted genes for TWEAK biology will have to be clarified in future studies.
Collapse
Affiliation(s)
- José Antonio Carmona Arana
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg , Würzburg , Germany
| | - Axel Seher
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg , Würzburg , Germany
| | - Manfred Neumann
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg , Würzburg , Germany
| | - Isabell Lang
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg , Würzburg , Germany
| | - Daniela Siegmund
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg , Würzburg , Germany
| | - Harald Wajant
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg , Würzburg , Germany
| |
Collapse
|
24
|
NF-κB and cancer. Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
25
|
Edwards SKE, Moore CR, Liu Y, Grewal S, Covey LR, Xie P. N-benzyladriamycin-14-valerate (AD 198) exhibits potent anti-tumor activity on TRAF3-deficient mouse B lymphoma and human multiple myeloma. BMC Cancer 2013; 13:481. [PMID: 24131623 PMCID: PMC3853153 DOI: 10.1186/1471-2407-13-481] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 10/11/2013] [Indexed: 11/16/2022] Open
Abstract
Background TRAF3, a new tumor suppressor identified in human non-Hodgkin lymphoma (NHL) and multiple myeloma (MM), induces PKCδ nuclear translocation in B cells. The present study aimed to evaluate the therapeutic potential of two PKCδ activators, N-Benzyladriamycin-14-valerate (AD 198) and ingenol-3-angelate (PEP005), on NHL and MM. Methods In vitro anti-tumor activities of AD 198 and PEP005 were determined using TRAF3-/- mouse B lymphoma and human patient-derived MM cell lines as model systems. In vivo therapeutic effects of AD 198 were assessed using NOD SCID mice transplanted with TRAF3-/- mouse B lymphoma cells. Biochemical studies were performed to investigate signaling mechanisms induced by AD 198 or PEP005, including subcellular translocation of PKCδ. Results We found that AD 198 exhibited potent in vitro and in vivo anti-tumor activity on TRAF3-/- tumor B cells, while PEP005 displayed contradictory anti- or pro-tumor activities on different cell lines. Detailed mechanistic investigation revealed that AD 198 did not affect PKCδ nuclear translocation, but strikingly suppressed c-Myc expression and inhibited the phosphorylation of ERK, p38 and JNK in TRAF3-/- tumor B cells. In contrast, PEP005 activated multiple signaling pathways in these cells, including PKCδ, PKCα, PKCϵ, NF-κB1, ERK, JNK, and Akt. Additionally, AD198 also potently inhibited the proliferation/survival and suppressed c-Myc expression in TRAF3-sufficient mouse and human B lymphoma cell lines. Furthermore, we found that reconstitution of c-Myc expression conferred partial resistance to the anti-proliferative/apoptosis-inducing effects of AD198 in human MM cells. Conclusions AD 198 and PEP005 have differential effects on malignant B cells through distinct biochemical mechanisms. Our findings uncovered a novel, PKCδ-independent mechanism of the anti-tumor effects of AD 198, and suggest that AD 198 has therapeutic potential for the treatment of NHL and MM involving TRAF3 inactivation or c-Myc up-regulation.
Collapse
Affiliation(s)
| | | | | | | | | | - Ping Xie
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Nelson Labs Room B336, Piscataway, NJ 08854, USA.
| |
Collapse
|
26
|
Larrubia JR, Lokhande MU, García-Garzón S, Miquel J, Subirá D, Sanz-de-Villalobos E. Role of T cell death in maintaining immune tolerance during persistent viral hepatitis. World J Gastroenterol 2013; 19:1877-1889. [PMID: 23569333 PMCID: PMC3613103 DOI: 10.3748/wjg.v19.i12.1877] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 11/07/2012] [Accepted: 12/27/2012] [Indexed: 02/06/2023] Open
Abstract
Virus-specific T cells play an important role in the resolution of hepatic infection. However, during chronic hepatitis infection these cells lack their effector functions and fail to control the virus. Hepatitis B virus and hepatitis C virus have developed several mechanisms to generate immune tolerance. One of these strategies is the depletion of virus-specific T cells by apoptosis. The immunotolerogenic liver has unique property to retain and activate naïve T cell to avoid the over reactivation of immune response against antigens which is exploited by hepatotropic viruses to persist. The deletion of the virus-specific T cells occurs by intrinsic (passive) apoptotic mechanism. The pro-apoptotic molecule Bcl-2 interacting mediator (Bim) has attracted increasing attention as a pivotal involvement in apoptosis, as a regulator of tissue homeostasis and an enhancer for the viral persistence. Here, we reviewed our current knowledge on the evidence showing critical role of Bim in viral-specific T cell death by apoptotic pathways and helps in the immune tolerance.
Collapse
|
27
|
Sabbagh L, Andreeva D, Laramée GD, Oussa NAE, Lew D, Bisson N, Soumounou Y, Pawson T, Watts TH. Leukocyte-specific protein 1 links TNF receptor-associated factor 1 to survival signaling downstream of 4-1BB in T cells. J Leukoc Biol 2013; 93:713-21. [PMID: 23446150 DOI: 10.1189/jlb.1112579] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
4-1BB is a member of the TNFR superfamily, which contributes to the activation of signaling pathways required for the survival of activated and memory T cells. We have shown previously that TRAF1, an adaptor protein recruited to 4-1BB, is required for 4-1BB-mediated CD8 T cell survival in vivo. With the use of a proteomics approach in primary T cells, we have identified LSP1 as a novel protein recruited to the 4-1BB signaling complex in a TRAF1-dependent manner. Further characterization of the interaction between TRAF1 and LSP1 revealed that LSP1 requires the TRAF-N domain of TRAF1 for direct association. Similarly to TRAF1(-/-) T cells, LSP1(-/-) T cells exhibit impaired ERK activation following stimulation through 4-1BB and consequently, are unable to down-modulate expression of the proapoptotic Bcl-2 family member Bim. Moreover, we demonstrate that the absence of LSP1 expression leads to defective expansion and survival of T cells in response to 4-1BB stimulation. Thus, we have identified LSP1 as a new mediator involved in 4-1BB signaling and T cell survival. Collectively, our work shows that TRAF1 and LSP1 cooperate downstream of 4-1BB to activate ERK signaling and down-modulate the levels of Bim leading to enhanced T cell survival.
Collapse
Affiliation(s)
- Laurent Sabbagh
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, Quebec, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Lovas A, Weidemann A, Albrecht D, Wiechert L, Weih D, Weih F. p100 Deficiency is insufficient for full activation of the alternative NF-κB pathway: TNF cooperates with p52-RelB in target gene transcription. PLoS One 2012; 7:e42741. [PMID: 22880094 PMCID: PMC3412832 DOI: 10.1371/journal.pone.0042741] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 07/12/2012] [Indexed: 01/07/2023] Open
Abstract
Background Constitutive activation of the alternative NF-κB pathway leads to marginal zone B cell expansion and disorganized spleen microarchitecture. Furthermore, uncontrolled alternative NF-κB signaling may result in the development and progression of cancer. Here, we focused on the question how does the constitutive alternative NF-κB signaling exert its effects in these malignant processes. Methodology/Principal Findings To explore the consequences of unrestricted alternative NF-κB activation on genome-wide transcription, we compared gene expression profiles of wild-type and NF-κB2/p100-deficient (p100−/−) primary mouse embryonic fibroblasts (MEFs) and spleens. Microarray experiments revealed only 73 differentially regulated genes in p100−/− vs. wild-type MEFs. Chromatin immunoprecipitation (ChIP) assays showed in p100−/− MEFs direct binding of p52 and RelB to the promoter of the Enpp2 gene encoding ENPP2/Autotaxin, a protein with an important role in lymphocyte homing and cell migration. Gene ontology analysis revealed upregulation of genes with anti-apoptotic/proliferative activity (Enpp2/Atx, Serpina3g, Traf1, Rrad), chemotactic/locomotory activity (Enpp2/Atx, Ccl8), and lymphocyte homing activity (Enpp2/Atx, Cd34). Most importantly, biochemical and gene expression analyses of MEFs and spleen, respectively, indicated a marked crosstalk between classical and alternative NF-κB pathways. Conclusions/Significance Our results show that p100 deficiency alone was insufficient for full induction of genes regulated by the alternative NF-κB pathway. Moreover, alternative NF-κB signaling strongly synergized both in vitro and in vivo with classical NF-κB activation, thereby extending the number of genes under the control of the p100 inhibitor of the alternative NF-κB signaling pathway.
Collapse
Affiliation(s)
- Agnes Lovas
- Research Group Immunology, Leibniz-Institute for Age Research – Fritz-Lipmann-Institute, Jena, Germany
| | - Anja Weidemann
- Research Group Immunology, Leibniz-Institute for Age Research – Fritz-Lipmann-Institute, Jena, Germany
| | | | - Lars Wiechert
- Research Group Immunology, Leibniz-Institute for Age Research – Fritz-Lipmann-Institute, Jena, Germany
| | - Debra Weih
- Research Group Immunology, Leibniz-Institute for Age Research – Fritz-Lipmann-Institute, Jena, Germany
| | - Falk Weih
- Research Group Immunology, Leibniz-Institute for Age Research – Fritz-Lipmann-Institute, Jena, Germany
- Faculty of Biology and Pharmacology, Friedrich-Schiller-University, Jena, Germany
- * E-mail:
| |
Collapse
|
29
|
Pérez-Chacón G, Llobet D, Pardo C, Pindado J, Choi Y, Reed JC, Zapata JM. TNFR-associated factor 2 deficiency in B lymphocytes predisposes to chronic lymphocytic leukemia/small lymphocytic lymphoma in mice. THE JOURNAL OF IMMUNOLOGY 2012; 189:1053-61. [PMID: 22711886 DOI: 10.4049/jimmunol.1200814] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have previously shown that transgenic (tg) mice expressing in B lymphocytes both BCL-2 and a TNFR-associated factor 2 (TRAF2) mutant lacking the really interesting new gene and zinc finger domains (TRAF2DN) develop small lymphocytic lymphoma and chronic lymphocytic leukemia with high incidence (Zapata et al. 2004. Proc. Nat. Acad. Sci. USA 101: 16600-16605). Further analysis of the expression of TRAF2 and TRAF2DN in purified B cells demonstrated that expression of both endogenous TRAF2 and tg TRAF2DN was negligible in Traf2DN-tg B cells compared with wild-type mice. This was the result of proteasome-dependent degradation, and rendered TRAF2DN B cells as bona fide TRAF2-deficient B cells. Similar to B cells with targeted Traf2 deletion, Traf2DN-tg mice show expanded marginal zone B cell population and have constitutive p100 NF-κB2 processing. Also, TRAF3, X-linked inhibitor of apoptosis, and Bcl-X(L) expression levels were increased, whereas cellular inhibitors of apoptosis 1 and 2 levels were drastically reduced compared with those found in wild-type B cells. Moreover, consistent with previous results, we also show that TRAF2 was required for efficient JNK and ERK activation in response to CD40 engagement. However, TRAF2 was deleterious for BCR-mediated activation of these kinases. In contrast, TRAF2 deficiency had no effect on CD40-mediated p38 MAPK activation but significantly reduced BCR-mediated p38 activation. Finally, we further confirm that TRAF2 was required for CD40-mediated proliferation, but its absence relieved B cells of the need for B cell activating factor for survival. Altogether, our results suggest that TRAF2 deficiency cooperates with BCL-2 in promoting chronic lymphocytic leukemia/small lymphocytic lymphoma in mice, possibly by specifically enforcing marginal zone B cell accumulation, increasing X-linked inhibitor of apoptosis expression, and rendering B cells independent of B cell activating factor for survival.
Collapse
|
30
|
McCarthy BA, Yang L, Ding J, Ren M, King W, ElSalanty M, Zakhary I, Sharawy M, Cui H, Ding HF. NF-κB2 mutation targets survival, proliferation and differentiation pathways in the pathogenesis of plasma cell tumors. BMC Cancer 2012; 12:203. [PMID: 22642622 PMCID: PMC3407530 DOI: 10.1186/1471-2407-12-203] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 05/29/2012] [Indexed: 11/29/2022] Open
Abstract
Background Abnormal NF-κB2 activation has been implicated in the pathogenesis of multiple myeloma, a cancer of plasma cells. However, a causal role for aberrant NF-κB2 signaling in the development of plasma cell tumors has not been established. Also unclear is the molecular mechanism that drives the tumorigenic process. We investigated these questions by using a transgenic mouse model with lymphocyte-targeted expression of p80HT, a lymphoma-associated NF-κB2 mutant, and human multiple myeloma cell lines. Methods We conducted a detailed histopathological characterization of lymphomas developed in p80HT transgenic mice and microarray gene expression profiling of p80HT B cells with the goal of identifying genes that drive plasma cell tumor development. We further verified the significance of our findings in human multiple myeloma cell lines. Results Approximately 40% of p80HT mice showed elevated levels of monoclonal immunoglobulin (M-protein) in the serum and developed plasma cell tumors. Some of these mice displayed key features of human multiple myeloma with accumulation of plasma cells in the bone marrow, osteolytic bone lesions and/or diffuse osteoporosis. Gene expression profiling of B cells from M-protein-positive p80HT mice revealed aberrant expression of genes known to be important in the pathogenesis of multiple myeloma, including cyclin D1, cyclin D2, Blimp1, survivin, IL-10 and IL-15. In vitro assays demonstrated a critical role of Stat3, a key downstream component of IL-10 signaling, in the survival of human multiple myeloma cells. Conclusions These findings provide a mouse model for human multiple myeloma with aberrant NF-κB2 activation and suggest a molecular mechanism for NF-κB2 signaling in the pathogenesis of plasma cell tumors by coordinated regulation of plasma cell generation, proliferation and survival.
Collapse
Affiliation(s)
- Brian A McCarthy
- Cancer Center and Department of Pathology, Medical College of Georgia, Georgia Health Sciences University, Augusta, GA 30912, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Rajandram R, Bennett N, Morais C, Johnson D, Gobe G. Renal cell carcinoma: Resistance to therapy, role of apoptosis, and the prognostic and therapeutic target potential of TRAF proteins. Med Hypotheses 2012; 78:330-6. [DOI: 10.1016/j.mehy.2011.11.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 10/17/2011] [Accepted: 11/13/2011] [Indexed: 12/25/2022]
|
32
|
Zou YF, Yuan FL, Feng XL, Tao JH, Ding N, Pan FM, Wang F. Association Between NFKB1 -94ins/delATTG Promoter Polymorphism and Cancer Risk: A Meta-Analysis. Cancer Invest 2010; 29:78-85. [DOI: 10.3109/07357907.2010.535054] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
33
|
Xiao G, Fu J. NF-κB and cancer: a paradigm of Yin-Yang. Am J Cancer Res 2010; 1:192-221. [PMID: 21969033 PMCID: PMC3180046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 12/05/2010] [Indexed: 05/31/2023] Open
Abstract
Recent studies have clearly linked nuclear factor-kappaB (NF-κB), a transcription factor that plays a central role in regulating immune and inflammatory responses, to tumor development, progression, and metastasis as well as tumor therapy resistance. However, it still remains largely unknown on how the tightly regulated NF-κB becomes constitutively activated in tumorigenesis and how the original cancer immunosurveillance function of NF-κB is transformed to be tumorigenic. To address these important issues for cancer prevention and treatment, we discuss current understanding of the molecular mechanisms and molecules involved in the oncogenic activation of NF-κB. We also discuss current understanding of how NF-κB coordinates the inflammatory and malignant cells in tumorigenesis.
Collapse
Affiliation(s)
- Gutian Xiao
- University of Pittsburgh Cancer Institute, Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine Pittsburgh, Pennsylvania 15213, USA
| | | |
Collapse
|
34
|
Keller U, Huber J, Nilsson JA, Fallahi M, Hall MA, Peschel C, Cleveland JL. Myc suppression of Nfkb2 accelerates lymphomagenesis. BMC Cancer 2010; 10:348. [PMID: 20598117 PMCID: PMC2902445 DOI: 10.1186/1471-2407-10-348] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Accepted: 07/02/2010] [Indexed: 02/26/2023] Open
Abstract
Background Deregulated c-Myc expression is a hallmark of several human cancers where it promotes proliferation and an aggressive tumour phenotype. Myc overexpression is associated with reduced activity of Rel/NF-κB, transcription factors that control the immune response, cell survival, and transformation, and that are frequently altered in cancer. The Rel/NF-κB family member NFKB2 is altered by chromosomal translocations or deletions in lymphoid malignancies and deletion of the C-terminal ankyrin domain of NF-κB2 augments lymphocyte proliferation. Methods Precancerous Eμ-Myc-transgenic B cells, Eμ-Myc lymphomas and human Burkitt lymphoma samples were assessed for Nfkb2 expression. The contribution of Nfkb2 to Myc-driven apoptosis, proliferation, and lymphomagenesis was tested genetically in vivo. Results Here we report that the Myc oncoprotein suppresses Nfkb2 expression in vitro in primary mouse fibroblasts and B cells, and in vivo in the Eμ-Myc transgenic mouse model of human Burkitt lymphoma (BL). NFKB2 suppression by Myc was also confirmed in primary human BL. Promoter-reporter assays indicate that Myc-mediated suppression of Nfkb2 occurs at the level of transcription. The contribution of Nfkb2 to Myc-driven lymphomagenesis was tested in vivo, where Nfkb2 loss was shown to accelerate lymphoma development in Eμ-Myc transgenic mice, by impairing Myc's apoptotic response. Conclusions Nfkb2 is suppressed by c-Myc and harnesses Myc-driven lymphomagenesis. These data thus link Myc-driven lymphomagenesis to the non-canonical NF-κB pathway.
Collapse
Affiliation(s)
- Ulrich Keller
- III. Medical Department, Technische Universität München, Munich, Germany.
| | | | | | | | | | | | | |
Collapse
|
35
|
Missiou A, Köstlin N, Varo N, Rudolf P, Aichele P, Ernst S, Münkel C, Walter C, Stachon P, Sommer B, Pfeifer D, Zirlik K, MacFarlane L, Wolf D, Tsitsikov E, Bode C, Libby P, Zirlik A. Tumor necrosis factor receptor-associated factor 1 (TRAF1) deficiency attenuates atherosclerosis in mice by impairing monocyte recruitment to the vessel wall. Circulation 2010; 121:2033-44. [PMID: 20421522 DOI: 10.1161/circulationaha.109.895037] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Members of the tumor necrosis factor superfamily, such as tumor necrosis factor-alpha, potently promote atherogenesis in mice and humans. Tumor necrosis factor receptor-associated factors (TRAFs) are cytoplasmic adaptor proteins for this group of cytokines. METHODS AND RESULTS This study tested the hypothesis that TRAF1 modulates atherogenesis in vivo. TRAF1(-/-)/LDLR(-/-) mice that consumed a high-cholesterol diet for 18 weeks developed significantly smaller atherosclerotic lesions than LDLR(-/-) (LDL receptor-deficient) control animals. As the most prominent change in histological composition, plaques of TRAF1-deficient animals contained significantly fewer macrophages. Bone marrow transplantations revealed that TRAF1 deficiency in both hematopoietic and vascular resident cells contributed to the reduction in atherogenesis observed. Mechanistic studies showed that deficiency of TRAF1 in endothelial cells and monocytes reduced adhesion of inflammatory cells to the endothelium in static and dynamic assays. Impaired adhesion coincided with reduced cell spreading, actin polymerization, and CD29 expression in macrophages, as well as decreased expression of the adhesion molecules intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 in endothelial cells. Small interfering RNA studies in human cells verified these findings. Furthermore, TRAF1 messenger RNA levels were significantly elevated in the blood of patients with acute coronary syndrome. CONCLUSIONS TRAF1 deficiency attenuates atherogenesis in mice, most likely owing to impaired monocyte recruitment to the vessel wall. These data identify TRAF1 as a potential treatment target for atherosclerosis.
Collapse
Affiliation(s)
- Anna Missiou
- Department of Cardiology, University of Freiburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Yang L, Gu L, Li Z, Zhou M. Translation of TRAF1 is regulated by IRES-dependent mechanism and stimulated by vincristine. Nucleic Acids Res 2010; 38:4503-13. [PMID: 20413583 PMCID: PMC2910060 DOI: 10.1093/nar/gkq183] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
TRAF1 is a member of the TRAF family, which plays important roles in signal transduction that mediate cell life and death in the immune response, inflammatory and malignant diseases. It is known that TRAF1 transcription is inducible by various cytokines, but little is known about the regulation of its mRNA translation. In the present study, we demonstrated that the human TRAF1 mRNA has an unusually long 5′-UTR that contains internal ribosome entry segment (IRES) regulating its translation. By performing gene transfection and reporter assays, we revealed that this IRES sequence is located within the 572 nt upstream from the AUG start codon. An element between nt −392 and −322 was essential for the IRES activity. Interestingly, we found that the TRAF1 expression is induced in cancer cells by chemotherapeutic drug vincristine that regulates cytoplasmic localization of polypyrimidine tract binding protein, which may contribute to the IRES-dependent translation of TRAF1 during vincristine treatment. These results indicate that TRAF1 translation is initiated via the IRES and regulated by vincristine, and suggest that regulation of the IRES-dependent translation of TRAF1 may be involved in effecting the cancer cell response to vincristine treatment.
Collapse
Affiliation(s)
- Lin Yang
- Department of Pediatrics, Aflac Cancer Center and Blood Disorders Service, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
37
|
|
38
|
Dagle JM, Lepp NT, Cooper ME, Schaa KL, Kelsey KJP, Orr KL, Caprau D, Zimmerman CR, Steffen KM, Johnson KJ, Marazita ML, Murray JC. Determination of genetic predisposition to patent ductus arteriosus in preterm infants. Pediatrics 2009; 123:1116-23. [PMID: 19336370 PMCID: PMC2734952 DOI: 10.1542/peds.2008-0313] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE Patent ductus arteriosus is a common morbidity associated with preterm birth. The incidence of patent ductus arteriosus increases with decreasing gestational age to approximately 70% in infants born at 25 weeks' gestation. Our major goal was to determine if genetic risk factors play a role in patent ductus arteriosus seen in preterm infants. METHODOLOGY We investigated whether single-nucleotide polymorphisms in genes that regulate smooth muscle contraction, xenobiotic detoxification, inflammation, and other processes are markers for persistent patency of ductus arteriosus. Initially, 377 single-nucleotide polymorphisms from 130 genes of interest were evaluated in DNA samples collected from 204 infants with a gestational age of <32 weeks. A family-based association test was performed on genotyping data to evaluate overtransmission of alleles. RESULTS P values of <.01 were detected for genetic variations found in 7 genes. This prompted additional analysis with an additional set of 162 infants, focusing on the 7 markers with initial P values of <.01, and 1 genetic variant in the angiotensin II type I receptor previously shown to be related to patent ductus arteriosus. Of the initial positive signals, single-nucleotide polymorphisms in the transcription factor AP-2 beta and tumor necrosis factor receptor-associated factor 1 genes remained significant. Additional haplotype analysis revealed genetic variations in prostacyclin synthase to be associated with patent ductus arteriosus. An angiotensin II type I receptor polymorphism previously reported to be associated with patent ductus arteriosus after prophylactic indomethacin administration was not associated with the presence of a patent ductus arteriosus in our population. CONCLUSIONS Overall, our data support a role for genetic variations in transcription factor AP-2 beta, tumor necrosis factor receptor-associated factor 1, and prostacyclin synthase in the persistent patency of the ductus arteriosus seen in preterm infants.
Collapse
Affiliation(s)
- John M Dagle
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA.
| | - Nathan T Lepp
- Department of Pediatrics, University of Iowa, Iowa City, IA. United States 52242
| | - Margaret E Cooper
- Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, PA, United States 15219
| | - Kendra L Schaa
- Department of Pediatrics, University of Iowa, Iowa City, IA. United States 52242
| | - Keegan JP Kelsey
- Department of Pediatrics, University of Iowa, Iowa City, IA. United States 52242
| | - Kristin L Orr
- University of Iowa Carver College of Medicine, University of Iowa, Iowa City, IA. United States 52242
| | - Diana Caprau
- Department of Pediatrics, University of Iowa, Iowa City, IA. United States 52242
| | - Cara R Zimmerman
- University of Iowa Carver College of Medicine, University of Iowa, Iowa City, IA. United States 52242
| | - Katherine M Steffen
- University of Iowa Carver College of Medicine, University of Iowa, Iowa City, IA. United States 52242
| | - Karen J Johnson
- Department of Pediatrics, University of Iowa, Iowa City, IA. United States 52242
| | - Mary L Marazita
- Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, PA, United States 15219,Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States 15219
| | - Jeffrey C Murray
- Department of Pediatrics, University of Iowa, Iowa City, IA. United States 52242
| |
Collapse
|
39
|
Matrix Metalloproteinase-9 gene induction by a truncated oncogenic NF-kappaB2 protein involves the recruitment of MLL1 and MLL2 H3K4 histone methyltransferase complexes. Oncogene 2009; 28:1626-38. [PMID: 19219072 DOI: 10.1038/onc.2009.6] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Constitutive nuclear factor (NF)-kappaB activation in haematological malignancies is caused in several cases by loss of function mutations within the coding sequence of NF-kappaB inhibitory molecules such as IkappaBalpha or p100. Hut-78, a truncated form of p100, constitutively generates p52 and contributes to the development of T-cell lymphomas but the molecular mechanism underlying this oncogenic potential remains unclear. We show here that MMP9 gene expression is induced through the alternative NF-kappaB-activating pathway in fibroblasts and also on Hut-78 or p52 overexpression in fibroblasts as well as in lymphoma cells. p52 is critical for Hut-78-mediated MMP9 gene induction as a Hut-78 mutant as well as other truncated NF-kappaB2 proteins that are not processed into p52 failed to induce the expression of this metalloproteinase. Conversely, MMP9 gene expression is impaired in p52-depleted HUT-78 cells. Interestingly, MLL1 and MLL2 H3K4 methyltransferase complexes are tethered by p52 on the MMP9 but not on the IkappaBalpha promoter, and the H3K4 trimethyltransferase activity recruited on the MMP9 promoter is impaired in p52-depleted HUT-78 cells. Moreover, MLL1 and MLL2 are associated with Hut-78 in a native chromatin-enriched extract. Thus, we identified a molecular mechanism by which the recruitment of a H3K4 histone methyltransferase complex on the promoter of a NF-kappaB-dependent gene induces its expression and potentially the invasive potential of lymphoma cells harbouring constitutive activity of the alternative NF-kappaB-activating pathway.
Collapse
|
40
|
Vogel CFA, Matsumura F. A new cross-talk between the aryl hydrocarbon receptor and RelB, a member of the NF-kappaB family. Biochem Pharmacol 2008; 77:734-45. [PMID: 18955032 DOI: 10.1016/j.bcp.2008.09.036] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 09/19/2008] [Accepted: 09/25/2008] [Indexed: 11/17/2022]
Abstract
The discovery of the new crosstalk between the aryl hydrocarbon receptor (AhR) and the NF-kappaB subunit RelB may extend our understanding of the biological functions of the AhR and at the same time raises a number of questions, which will be addressed in this review. The characteristics of this interaction differ from that of AhR with RelA in that the latter appears to be mostly negative unlike the collaborative interactions of AhR/RelB. The AhR/RelB dimer is capable of binding to DNA response elements including the dioxin response element (DRE) as well as NF-kappaB binding sites supporting the activation of target genes of the AhR as well as NF-kappaB pathway. Further studies show that AhR/RelB complexes can be found not only in lymphoid cells but also in a human hepatoma cell line (HepG2) or breast cancer cell line (MDA-MB-231). RelB has been implicated in carcinogenesis of breast cancer for instance and RelB is known to be a critical factor for the function and differentiation of dendritic cells; interestingly the participation of AhR in both processes has been suggested recently, which offers the great potential to expand the scope of the physiological roles of the AhR. There is evidence indicating that RelB may serve as a pro-survival factor, including its ability to promote "inflammation resolution" besides the association of RelB with inflammatory disorders. Based on such information, a hypothesis has been proposed in this review that AhR together with RelB functions as a coordinator of inflammatory responses.
Collapse
Affiliation(s)
- Christoph F A Vogel
- Department of Environmental Toxicology, University of California Davis, Davis, CA 95616, USA.
| | | |
Collapse
|
41
|
dos Santos NR, Williame M, Gachet S, Cormier F, Janin A, Weih D, Weih F, Ghysdael J. RelB-dependent stromal cells promote T-cell leukemogenesis. PLoS One 2008; 3:e2555. [PMID: 18596915 PMCID: PMC2440518 DOI: 10.1371/journal.pone.0002555] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Accepted: 05/28/2008] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The Rel/NF-kappaB transcription factors are often activated in solid or hematological malignancies. In most cases, NF-kappaB activation is found in malignant cells and results from activation of the canonical NF-kappaB pathway, leading to RelA and/or c-Rel activation. Recently, NF-kappaB activity in inflammatory cells infiltrating solid tumors has been shown to contribute to solid tumor initiation and progression. Noncanonical NF-kappaB activation, which leads to RelB activation, has also been reported in breast carcinoma, prostate cancer, and lymphoid leukemia. METHODOLOGY/PRINCIPAL FINDINGS Here we report a novel role for RelB in stromal cells that promote T-cell leukemogenesis. RelB deficiency delayed leukemia onset in the TEL-JAK2 transgenic mouse model of human T acute lymphoblastic leukemia. Bone marrow chimeric mouse experiments showed that RelB is not required in the hematopoietic compartment. In contrast, RelB plays a role in radio-resistant stromal cells to accelerate leukemia onset and increase disease severity. CONCLUSIONS/SIGNIFICANCE The present results are the first to uncover a role for RelB in the crosstalk between non-hematopoietic stromal cells and leukemic cells. Thus, besides its previously reported role intrinsic to specific cancer cells, the noncanonical NF-kappaB pathway may also play a pro-oncogenic role in cancer microenvironmental cells.
Collapse
Affiliation(s)
- Nuno R. dos Santos
- Institut Curie, Centre de Recherche, Orsay, France
- CNRS UMR146, Orsay, France
| | - Maryvonne Williame
- Institut Curie, Centre de Recherche, Orsay, France
- CNRS UMR146, Orsay, France
| | - Stéphanie Gachet
- Institut Curie, Centre de Recherche, Orsay, France
- CNRS UMR146, Orsay, France
| | - Françoise Cormier
- Institut Curie, Centre de Recherche, Orsay, France
- CNRS UMR146, Orsay, France
| | - Anne Janin
- INSERM Unité 728, Université Paris VII, Hôpital Saint-Louis, Paris, France
| | - Debra Weih
- Leibniz-Institute for Age Research – Fritz-Lipmann-Institute (FLI), Jena, Germany
| | - Falk Weih
- Leibniz-Institute for Age Research – Fritz-Lipmann-Institute (FLI), Jena, Germany
| | - Jacques Ghysdael
- Institut Curie, Centre de Recherche, Orsay, France
- CNRS UMR146, Orsay, France
- * E-mail:
| |
Collapse
|
42
|
Naugler WE, Karin M. NF-kappaB and cancer-identifying targets and mechanisms. Curr Opin Genet Dev 2008; 18:19-26. [PMID: 18440219 DOI: 10.1016/j.gde.2008.01.020] [Citation(s) in RCA: 477] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Revised: 01/26/2008] [Accepted: 01/31/2008] [Indexed: 02/06/2023]
Abstract
A connection between inflammation and carcinogenesis has long been known, but the precise mechanisms are just beginning to be understood. NF-kappaB proteins, transcription factors which integrate stress signals and orchestrate immune responses, have also recently been linked to carcinogenesis. Hallmarks of cancer development include self-sufficiency in growth signals, insensitivity to growth-inhibitors, evasion of apoptosis, limitless replicative potential, tissue invasion and metastasis, and sustained angiogenesis. NF-kappaB signaling has been implicated in each of these hallmarks, and recent experimental studies have illuminated the mechanistic pathways by which NF-kappaB signaling contributes to these aspects of carcinogenesis. This review will focus on recent experimental data supporting the hypothesis that inflammation promotes carcinogenesis, and that NF-kappaB signaling is at the heart of such inflammation.
Collapse
Affiliation(s)
- Willscott E Naugler
- Department of Medicine, Division of Gastroenterology and Hepatology, Oregon Health and Sciences University, Portland, USA
| | | |
Collapse
|
43
|
Wang Z, Zhang B, Yang L, Ding J, Ding HF. Constitutive production of NF-kappaB2 p52 is not tumorigenic but predisposes mice to inflammatory autoimmune disease by repressing Bim expression. J Biol Chem 2008; 283:10698-706. [PMID: 18281283 DOI: 10.1074/jbc.m800806200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Normal development of the immune system requires regulated processing of NF-kappaB2 p100 to p52, which activates NF-kappaB2 signaling. Constitutive production of p52 has been suggested as a major mechanism underlying lymphomagenesis induced by NF-kappaB2 mutations, which occur recurrently in a variety of human lymphoid malignancies. To test the hypothesis, we generated transgenic mice with targeted expression of p52 in lymphocytes. In contrast to their counterparts expressing the tumor-derived NF-kappaB2 mutant p80HT, which develop predominantly B cell tumors, p52 transgenic mice are not prone to lymphomagenesis. However, they are predisposed to inflammatory autoimmune disease characterized by multiorgan infiltration of activated lymphocytes, high levels of autoantibodies in the serum, and immune complex glomerulonephritis. p52, but not p80HT, represses Bim expression, leading to defects in apoptotic processes critical for elimination of autoreactive lymphocytes and control of immune response. These findings reveal distinct signaling pathways for actions of NF-kappaB2 mutants and p52 and suggest a causal role for sustained NF-kappaB2 activation in the pathogenesis of autoimmunity.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Biochemistry and Cancer Biology, College of Medicine, University of Toledo Health Science Campus, Toledo, Ohio 43614, USA
| | | | | | | | | |
Collapse
|