1
|
Kawai H, Oo MW, Takabatake K, Tosa I, Soe Y, Eain HS, Sanou S, Fushimi S, Sukegawa S, Nakano K, Takeshi T, Nagatsuka H. Enzyme-Cleaved Bone Marrow Transplantation Improves the Engraftment of Bone Marrow Mesenchymal Stem Cells. JBMR Plus 2023; 7:e10722. [PMID: 36936364 PMCID: PMC10020919 DOI: 10.1002/jbm4.10722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/27/2022] [Accepted: 01/09/2023] [Indexed: 01/25/2023] Open
Abstract
Mesenchymal stem cell (MSC) therapy is a promising approach to curing bone diseases and disorders. In treating genetic bone disorders, MSC therapy is local or systemic transplantation of isolated and in vitro proliferated MSC rather than bone marrow transplantation. Recent evidence showed that bone marrow MSC engraftment to bone regeneration has been controversial in animal and human studies. Here, our modified bone marrow transplantation (BMT) method solved this problem. Like routine BMT, our modified method involves three steps: (i) isolation of bone marrow cells from the donor, (ii) whole-body lethal irradiation to the recipient, and (iii) injection of isolated bone marrow cells into irradiated recipient mice via the tail vein. The significant modification is imported at the bone marrow isolation step. While the bone marrow cells are flushed out from the bone marrow with the medium in routine BMT, we applied the enzymes' (collagenase type 4 and dispase) integrated medium to wash out the bone marrow cells. Then, cells were incubated in enzyme integrated solution at 37°C for 10 minutes. This modification designated BMT as collagenase-integrated BMT (c-BMT). Notably, successful engraftment of bone marrow MSC to the new bone formation, such as osteoblasts and chondrocytes, occurs in c-BMT mice, whereas routine BMT mice do not recruit bone marrow MSC. Indeed, flow cytometry data showed that c-BMT includes a higher proportion of LepR+, CD51+, or RUNX2+ non-hematopoietic cells than BMT. These findings suggested that c-BMT is a time-efficient and more reliable technique that ensures the disaggregation and collection of bone marrow stem cells and engraftment of bone marrow MSC to the recipient. Hence, we proposed that c-BMT might be a promising approach to curing genetic bone disorders. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Hotaka Kawai
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - May Wathone Oo
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - Kiyofumi Takabatake
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - Ikue Tosa
- Department of Regenerative Science, Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
- Cartilage Biology and Regenerative Medicine Laboratory, College of Dental MedicineColumbia University Irving Medical CenterNew YorkNYUSA
| | - Yamin Soe
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - Htoo Shwe Eain
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - Sho Sanou
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - Shigeko Fushimi
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - Shintaro Sukegawa
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
- Department of Oral and Maxillofacial SurgeryKagawa Prefectural Central HospitalTakamatsuJapan
| | - Keisuke Nakano
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - Takarada Takeshi
- Department of Regenerative Science, Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - Hitoshi Nagatsuka
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| |
Collapse
|
2
|
Review of the Latest Methods of Epidermolysis Bullosa and Other Chronic Wounds Treatment Including BIOOPA Dressing. Dermatol Ther (Heidelb) 2021; 11:1469-1480. [PMID: 34269966 PMCID: PMC8484405 DOI: 10.1007/s13555-021-00578-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Indexed: 11/20/2022] Open
Abstract
Epidermolysis bullosa (EB) is a hereditary genetic skin disorder, classified as a type of genodermatosis, which causes severe, chronic skin blisters associated with painful and potentially life-threatening complications. Currently, there is no effective therapy or cure for EB. However, over the past decade, there have been several important advances in treatment methods, which are now approaching clinical application, including gene therapy, protein replacement therapy, cell therapy (allogeneic fibroblasts, mesenchymal stromal cells), bone marrow stem cell transplant, culture/vaccination of revertant mosaic keratinocytes, gene editing/engineering, and the clinical application of inducible pluripotent stem cells. Tissue engineering scientists are developing materials that mimic the structure and natural healing process to promote skin reconstruction in the event of an incurable injury. Although a cure for EB remains elusive, recent data from animal models and preliminary human clinical trials have raised the expectations of patients, clinicians, and researchers, where modifying the disease and improving patients’ quality of life are now considered attainable goals. In addition, the lessons learned from the treatment of EB may improve the treatment of other genetic diseases.
Collapse
|
3
|
Arthur A, Gronthos S. Clinical Application of Bone Marrow Mesenchymal Stem/Stromal Cells to Repair Skeletal Tissue. Int J Mol Sci 2020; 21:E9759. [PMID: 33371306 PMCID: PMC7767389 DOI: 10.3390/ijms21249759] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022] Open
Abstract
There has been an escalation in reports over the last decade examining the efficacy of bone marrow derived mesenchymal stem/stromal cells (BMSC) in bone tissue engineering and regenerative medicine-based applications. The multipotent differentiation potential, myelosupportive capacity, anti-inflammatory and immune-modulatory properties of BMSC underpins their versatile nature as therapeutic agents. This review addresses the current limitations and challenges of exogenous autologous and allogeneic BMSC based regenerative skeletal therapies in combination with bioactive molecules, cellular derivatives, genetic manipulation, biocompatible hydrogels, solid and composite scaffolds. The review highlights the current approaches and recent developments in utilizing endogenous BMSC activation or exogenous BMSC for the repair of long bone and vertebrae fractures due to osteoporosis or trauma. Current advances employing BMSC based therapies for bone regeneration of craniofacial defects is also discussed. Moreover, this review discusses the latest developments utilizing BMSC therapies in the preclinical and clinical settings, including the treatment of bone related diseases such as Osteogenesis Imperfecta.
Collapse
Affiliation(s)
- Agnieszka Arthur
- Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5001, Australia;
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
| | - Stan Gronthos
- Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5001, Australia;
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
| |
Collapse
|
4
|
Black L, Zorina T. Cell-based immunomodulatory therapy approaches for type 1 diabetes mellitus. Drug Discov Today 2020; 25:380-391. [DOI: 10.1016/j.drudis.2019.11.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/11/2019] [Accepted: 11/30/2019] [Indexed: 12/14/2022]
|
5
|
Takabatake K, Tsujigiwa H, Song Y, Matsuda H, Kawai H, Fujii M, Hamada M, Nakano K, Kawakami T, Nagatsuka H. The Role of Bone Marrow-Derived Cells during Ectopic Bone Formation of Mouse Femoral Muscle in GFP Mouse Bone Marrow Transplantation Model. Int J Med Sci 2018; 15:748-757. [PMID: 30008583 PMCID: PMC6036083 DOI: 10.7150/ijms.24605] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 04/12/2018] [Indexed: 12/18/2022] Open
Abstract
Multipotential ability of bone marrow-derived cells has been clarified, and their involvement in repair and maintenance of various tissues has been reported. However, the role of bone marrow-derived cells in osteogenesis remains unknown. In the present study, bone marrow-derived cells during ectopic bone formation of mouse femoral muscle were traced using a GFP bone marrow transplantation model. Bone marrow cells from C57BL/6-Tg (CAG-EGFP) mice were transplanted into C57BL/6 J wild type mice. After transplantation, insoluble bone matrix (IBM) was implanted into mouse muscle. Ectopic bone formation was histologically assessed at postoperative days 7, 14, and 28. Immunohistochemistry for GFP single staining and GFP-osteocalcin double staining was then performed. Bone marrow transplantation successfully replaced hematopoietic cells with GFP-positive donor cells. Immunohistochemical analyses revealed that osteoblasts and osteocytes involved in ectopic bone formation were GFP-negative, whereas osteoclasts and hematopoietic cells involved in bone formation were GFP-positive. These results indicate that bone marrow-derived cells might not differentiate into osteoblasts. Thus, the main role of bone marrow-derived cells in ectopic osteogenesis may not be to induce bone regeneration by differentiation into osteoblasts, but rather to contribute to microenvironment formation for bone formation by differentiating tissue stem cells into osteoblasts.
Collapse
Affiliation(s)
- Kiyofumi Takabatake
- Department of Oral Pathology and Medicine Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University, Okayama, Japan
| | - Hidetsugu Tsujigiwa
- Department of life science, Faculty of Science, Okayama University of Science, Okayama, Japan
| | - Yu Song
- Department of Oral Pathology and Medicine Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University, Okayama, Japan
| | - Hiroyuki Matsuda
- Department of Oral Pathology and Medicine Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University, Okayama, Japan
| | - Hotaka Kawai
- Department of Oral Pathology and Medicine Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University, Okayama, Japan
| | - Masae Fujii
- Department of Oral Pathology and Medicine Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University, Okayama, Japan
| | - Mei Hamada
- Department of Oral Pathology and Medicine Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University, Okayama, Japan
| | - Keisuke Nakano
- Department of Oral Pathology and Medicine Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University, Okayama, Japan
| | - Toshiyuki Kawakami
- Hard Tissue Pathology Unit, Matsumoto Dental University Graduate School of Oral Medicine, Shiojiri, Japan
| | - Hitoshi Nagatsuka
- Department of Oral Pathology and Medicine Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University, Okayama, Japan
| |
Collapse
|
6
|
Brooks A, Futrega K, Liang X, Hu X, Liu X, Crawford DHG, Doran MR, Roberts MS, Wang H. Concise Review: Quantitative Detection and Modeling the In Vivo Kinetics of Therapeutic Mesenchymal Stem/Stromal Cells. Stem Cells Transl Med 2017; 7:78-86. [PMID: 29210198 PMCID: PMC5746161 DOI: 10.1002/sctm.17-0209] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/02/2017] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) present a promising tool in cell‐based therapy for treatment of various diseases. Currently, optimization of treatment protocols in clinical studies is complicated by the variations in cell dosing, diverse methods used to deliver MSCs, and the variety of methods used for tracking MSCs in vivo. Most studies use a dose escalation approach, and attempt to correlate efficacy with total cell dose. Optimization could be accelerated through specific understanding of MSC distribution in vivo, long‐term viability, as well as their biological fate. While it is not possible to quantitatively detect MSCs in most targeted organs over long time periods after systemic administration in clinical trials, it is increasingly possible to apply pharmacokinetic modeling to predict their distribution and persistence. This Review outlines current understanding of the in vivo kinetics of exogenously administered MSCs, provides a critical analysis of the methods used for quantitative MSC detection in these studies, and discusses the application of pharmacokinetic modeling to these data. Finally, we provide insights on and perspectives for future development of effective therapeutic strategies using pharmacokinetic modeling to maximize MSC therapy and minimize potential side effects. Stem Cells Translational Medicine2018;7:78–86
Collapse
Affiliation(s)
- Anastasia Brooks
- Therapeutics Research Centre, The University of Queensland Diamantina Institute, Brisbane, Australia.,School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - Kathryn Futrega
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Brisbane, Australia
| | - Xiaowen Liang
- Therapeutics Research Centre, The University of Queensland Diamantina Institute, Brisbane, Australia
| | - Xiaoling Hu
- Therapeutics Research Centre, The University of Queensland Diamantina Institute, Brisbane, Australia
| | - Xin Liu
- Therapeutics Research Centre, The University of Queensland Diamantina Institute, Brisbane, Australia
| | - Darrell H G Crawford
- School of Clinical Medicine, The University of Queensland, Gallipoli Medical Research Institute, Greenslopes Private Hospital, Brisbane, Australia
| | - Michael R Doran
- Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia.,Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Brisbane, Australia.,Australian National Centre for the Public Awareness of Science, Australian National University, Canberra, Australia
| | - Michael S Roberts
- Therapeutics Research Centre, The University of Queensland Diamantina Institute, Brisbane, Australia.,School of Pharmacy and Medical Sciences, University of South Australia, Basil Hetzel Institute, Adelaide, Australia
| | - Haolu Wang
- Therapeutics Research Centre, The University of Queensland Diamantina Institute, Brisbane, Australia.,Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
7
|
Tamai K, Uitto J. Stem Cell Therapy for Epidermolysis Bullosa—Does It Work? J Invest Dermatol 2016; 136:2119-2121. [DOI: 10.1016/j.jid.2016.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 07/11/2016] [Indexed: 11/30/2022]
|
8
|
Wang T, Zhang X, Bikle DD. Osteogenic Differentiation of Periosteal Cells During Fracture Healing. J Cell Physiol 2016; 232:913-921. [PMID: 27731505 DOI: 10.1002/jcp.25641] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 10/07/2016] [Indexed: 12/15/2022]
Abstract
Five to ten percent of fractures fail to heal normally leading to additional surgery, morbidity, and altered quality of life. Fracture healing involves the coordinated action of stem cells primarily coming from the periosteum which differentiate into the chondrocytes and osteoblasts, forming first the soft (cartilage) callus followed by the hard (bone) callus. These stem cells are accompanied by a vascular invasion that appears critical for the differentiation process and which may enable the entry of osteoclasts necessary for the remodeling of the callus into mature bone. However, more research is needed to clarify the signaling events that activate the osteochondroprogenitor cells of periosteum and stimulate their differentiation into chondrocytes and osteoblasts. Ultimately a thorough understanding of the mechanisms for differential regulation of these osteochondroprogenitors will aid in the treatment of bone healing and the prevention of delayed union and nonunion of fractures. In this review, evidence supporting the concept that the periosteal cells are the major cell sources of skeletal progenitors for the fracture callus will be discussed. The osteogenic differentiation of periosteal cells manipulated by Wnt/β-catenin, TGF/BMP, Ihh/PTHrP, and IGF-1/PI3K-Akt signaling in fracture repair will be examined. The effect of physical (hypoxia and hyperoxia) and chemical factors (reactive oxygen species) as well as the potential coordinated regulatory mechanisms in the periosteal progenitor cells promoting osteogenic differentiation will also be discussed. Understanding the regulation of periosteal osteochondroprogenitors during fracture healing could provide insight into possible therapeutic targets and thereby help to enhance future fracture healing and bone tissue engineering approaches. J. Cell. Physiol. 232: 913-921, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Tao Wang
- Center for Musculoskeletal Research, School of Medicine and Dentistry, University of Rochester, Rochester, New York.,Endocrine Unit, VA Medical Center and University of California, San Francisco, California
| | - Xinping Zhang
- Center for Musculoskeletal Research, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Daniel D Bikle
- Endocrine Unit, VA Medical Center and University of California, San Francisco, California
| |
Collapse
|
9
|
Dicarlo M, Bianchi N, Ferretti C, Orciani M, Di Primio R, Mattioli-Belmonte M. Evidence Supporting a Paracrine Effect of IGF-1/VEGF on Human Mesenchymal Stromal Cell Commitment. Cells Tissues Organs 2016; 201:333-41. [PMID: 27179123 DOI: 10.1159/000445346] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2016] [Indexed: 11/19/2022] Open
Abstract
Healing of skeletal defects is strictly dependent on osteogenesis and efficient vascularization of engineered scaffolds. Insulin-like growth factor-1 (IGF-1) and vascular endothelial growth factor (VEGF) are both involved in these processes. The in vitro administration of IGF-1 in association with VEGF is able to modulate the osteoblastic or endothelial commitment of mesenchymal stromal cells (MSCs) of different origins (e.g. periosteum and skin). In the present study, in order to deepen a possible paracrine effect of IGF-1 and VEGF on periosteum-derived progenitor cells (PDPCs) and skin-derived MSCs (S-MSCs), a Transwell coculture approach was used. We explored the genes involved in endothelial and osteoblastic differentiation, those modulating mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3'-kinase (PI3K)-AKT signaling pathways as well as genes implicated in stemness (i.e. Sox2, Oct4, and Nanog). Periosteal cells, which are typically committed toward osteoblastogenesis, are driven in the direction of endothelial gene expression when influenced by S-MSCs. The latter, once influenced by PDPCs, lose their endothelial commitment and increase the expression of osteoblast-associated genes. PI3K/AKT and MAPK signaling pathways seem to be markedly involved in this behavior. Our results evidence that paracrine signals between MSCs may differently modulate their commitment in a bone microenvironment, opening stimulating viewpoints for skeletal tissue engineering strategies coupling angiogenesis and osteogenesis processes.
Collapse
Affiliation(s)
- Manuela Dicarlo
- Department of Clinical and Molecular Sciences, Universitx00E0; Politecnica delle Marche, Ancona, Italy
| | | | | | | | | | | |
Collapse
|
10
|
Candini O, Spano C, Murgia A, Grisendi G, Veronesi E, Piccinno MS, Ferracin M, Negrini M, Giacobbi F, Bambi F, Horwitz EM, Conte P, Paolucci P, Dominici M. Mesenchymal progenitors aging highlights a miR-196 switch targeting HOXB7 as master regulator of proliferation and osteogenesis. Stem Cells 2015; 33:939-50. [PMID: 25428821 DOI: 10.1002/stem.1897] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 10/23/2014] [Accepted: 11/01/2014] [Indexed: 12/12/2022]
Abstract
Human aging is associated with a decrease in tissue functions combined with a decline in stem cells frequency and activity followed by a loss of regenerative capacity. The molecular mechanisms behind this senescence remain largely obscure, precluding targeted approaches to counteract aging. Focusing on mesenchymal stromal/stem cells (MSC) as known adult progenitors, we identified a specific switch in miRNA expression during aging, revealing a miR-196a upregulation which was inversely correlated with MSC proliferation through HOXB7 targeting. A forced HOXB7 expression was associated with an improved cell growth, a reduction of senescence, and an improved osteogenesis linked to a dramatic increase of autocrine basic fibroblast growth factor secretion. These findings, along with the progressive decrease of HOXB7 levels observed during skeletal aging in mice, indicate HOXB7 as a master factor driving progenitors behavior lifetime, providing a better understanding of bone senescence and leading to an optimization of MSC performance.
Collapse
Affiliation(s)
- Olivia Candini
- Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Bone transplantation and tissue engineering, part IV. Mesenchymal stem cells: history in orthopedic surgery from Cohnheim and Goujon to the Nobel Prize of Yamanaka. INTERNATIONAL ORTHOPAEDICS 2015; 39:807-17. [PMID: 25750132 DOI: 10.1007/s00264-015-2716-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 02/16/2015] [Indexed: 12/13/2022]
Abstract
In 1867 the German pathologist Cohnheim hypothesized that non-hematopoietic, bone marrow-derived cells could migrate through the blood stream to distant sites of injury and participate in tissue regeneration. In 1868, the French physiologist Goujon studied the osteogenic potential of bone marrow on rabbits. Friedenstein demonstrated the existence of a nonhematopoietic stem cell within bone marrow more than a hundred years later. Since this discovery, the research on mesenchymal stem cell (MSC) has explored their therapeutic potential. The prevalent view during the second century was that mature cells were permanently locked into the differentiated state and could not return to a fully immature, pluripotent stem-cell state. Recently, Japanese scientist (first orthopaedist) Shinya Yamanaka proved that introduction of a small set of transcription factors into a differentiated cell was sufficient to revert the cell to a pluripotent state. Yamanaka shared the Nobel Prize in Physiology or Medicine and opened a new door for potential applications of MSCs. This manuscript describes the concept of MSCs from the period when it was relegated to the imagination to the beginning of the twenty-first century and their application in orthopaedic surgery.
Collapse
|
12
|
Ferretti C, Vozzi G, Falconi M, Orciani M, Gesi M, Di Primio R, Mattioli-Belmonte M. Role of IGF1 and IGF1/VEGF on Human Mesenchymal Stromal Cells in Bone Healing: Two Sources and Two Fates. Tissue Eng Part A 2014; 20:2473-82. [DOI: 10.1089/ten.tea.2013.0453] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Concetta Ferretti
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Giovanni Vozzi
- Faculty of Engineering, Research Centre “E. Piaggio,” University of Pisa, Pisa, Italy
| | - Mirella Falconi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Monia Orciani
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Marco Gesi
- Department of Translational Research and New Technology in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Roberto Di Primio
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Monica Mattioli-Belmonte
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
13
|
Mise-Omata S, Alles N, Fukazawa T, Aoki K, Ohya K, Jimi E, Obata Y, Doi T. NF-κB RELA-deficient bone marrow macrophages fail to support bone formation and to maintain the hematopoietic niche after lethal irradiation and stem cell transplantation. Int Immunol 2014; 26:607-18. [DOI: 10.1093/intimm/dxu062] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
14
|
Matsumoto T, Mugishima H. Non-hematopoietic stem cells in umbilical cord blood. Int J Stem Cells 2014; 2:83-9. [PMID: 24855525 DOI: 10.15283/ijsc.2009.2.2.83] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2009] [Indexed: 01/27/2023] Open
Abstract
Allogeneic umbilical cord blood (UCB) transplantation has been used to treat a variety of malignant and non-malignant diseases. Recent studies show convincing evidence that UCB contains not only hematopoietic progenitors, but also several types of stem and progenitor cells providing a high proliferative capacity and a variety of differentiation potentials. UCB-derived cells offer multiple advantages over adult stem cells from other sources like bone marrow (BM), because UCB can be collected without painful procedure, easily available in virtually unlimited supply, and has not been exposed to immunologic challenge. In addition, cord blood transplantation is now an established field with great potential and no serious ethical issue by establishment of public UCB banks throughout the world. Therefore UCB-derived non-hematopoietic stem cells may provide an attractive cell source for tissue repair and regeneration. It is generally accepted that UCB contains endothelial progenitor cells (EPC), mesenchymal stromal cells (MSC), unrestricted somatic stem cells (USSC), very small embryonic-like stem cells (VSEL), multilineage progenitor cells (MLPC), and neuronal progenitor cells. This review focuses on biological properties of these non-hematopoietic stem/progenitor cells derived from human UCB and their potential use in cell based therapies.
Collapse
Affiliation(s)
- Taro Matsumoto
- Division of Cell Regeneration and Transplantation, School of Medicine, Advanced Medical Research Center, Nihon University, Tokyo, Japan
| | - Hideo Mugishima
- Department of Pediatrics, School of Medicine, Nihon University, Tokyo, Japan
| |
Collapse
|
15
|
Prockop DJ. Further proof for an unpopular concept: a single cell from bone marrow can serve as a stem cell for both hematopoiesis and osteogenesis. Mol Ther 2014; 21:1116-7. [PMID: 23728255 DOI: 10.1038/mt.2013.103] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Darwin J Prockop
- Institute for Regenerative Medicine, Texas A&M Health Science Center, College of Medicine at Scott & White, Temple, Texas 76502, USA.
| |
Collapse
|
16
|
Pathogen-free, plasma-poor platelet lysate and expansion of human mesenchymal stem cells. J Transl Med 2014; 12:28. [PMID: 24467837 PMCID: PMC3918216 DOI: 10.1186/1479-5876-12-28] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 01/23/2014] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Supplements to support clinical-grade cultures of mesenchymal stem cells (MSC) are required to promote growth and expansion of these cells. Platelet lysate (PL) is a human blood component which may replace animal serum in MSC cultures being rich in various growth factors. Here, we describe a plasma poor pathogen-free platelet lysate obtained by pooling 12 platelet (PLT) units, to produce a standardized and safe supplement for clinical-grade expansion of MSC. METHODS PL lots were obtained by combining 2 6-unit PLT pools in additive solution (AS) following a transfusional-based procedure including pathogen inactivation (PI) by Intercept technology and 3 cycles of freezing/thawing, followed by membrane removal. Three PI-PL and 3 control PL lots were produced to compare their ability to sustain bone marrow derived MSC selection and expansion. Moreover, two further PL, subjected to PI or not, were also produced starting from the same initial PLT pools to evaluate the impact of PI on growth factor concentration and capacity to sustain cell growth. Additional PI-PL lots were used for comparison with fetal bovine serum (FBS) on MSC expansion. Immunoregulatory properties of PI-PL-generated MSC were documented in vitro by mixed lymphocyte culture (MLC) and peripheral blood mononuclear cells (PBMC) mitogen induced proliferation. RESULTS PI-PL and PL control lots had similar concentrations of 4 well-described growth factors endowed with MSC stimulating ability. Initial growth and MSC expansion by PI-PL and PL controls were comparable either using different MSC populations or in head to head experiments. Moreover, PI-PL and PL control sustained similar MSC growth of frozen/thawed MSC. Multilineage differentiation of PI-derived and PI-PL-derived MSC were maintained in any MSC cultures as well as their immunoregulatory properties. Finally, no direct impact of PI on growth factor concentration and MSC growth support was observed, whereas the capacity of FBS to sustain MSC expansion in basic medium was irrelevant as compared to PL and PI-PL. CONCLUSION The replacement of animal additives with human supplements is a basic issue in MSC ex vivo production. PI-PL represents a standardized, plasma-poor, human preparation which appears as a safe and good candidate to stimulate MSC growth in clinical-scale cultures.
Collapse
|
17
|
Cohen JA. Mesenchymal stem cell transplantation in multiple sclerosis. J Neurol Sci 2013; 333:43-9. [PMID: 23294498 PMCID: PMC3624046 DOI: 10.1016/j.jns.2012.12.009] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Revised: 12/10/2012] [Accepted: 12/10/2012] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells (MSCs) are pluripotent non-hematopoietic precursor cells that can be isolated from bone marrow and numerous other tissues, culture-expanded to purity, and induced to differentiate in vitro and in vivo into mesodermal derivatives. MSCs exhibit many phenotypic and functional similarities to pericytes. The immunomodulatory, tissue protective, and repair-promoting properties of MSCs demonstrated both in vitro and in animal models make them an attractive potential therapy for MS and other conditions characterized by inflammation and/or tissue injury. Other potential advantages of MSCs as a therapeutic include the relative ease of culture expansion, relative immunoprivilege allowing allogeneic transplantation, and their ability to traffic from blood to areas of tissue allowing intravascular administration. The overall published experience with MSC transplantation in MS is modest, but several small case series and preliminary studies yielded promising results. Several groups, including us, recently initiated formal studies of autologous, culture-expanded, bone marrow-derived MSC transplantation in MS. Although there are several potential safety concerns, to date, the procedure has been well tolerated. Future studies that more definitively assess efficacy also will need to address several technical issues.
Collapse
Affiliation(s)
- Jeffrey A Cohen
- Mellen Center, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, USA.
| |
Collapse
|
18
|
Marino R, Otsuru S, Hofmann TJ, Olson TS, Rasini V, Veronesi E, Boyd K, Gaber MW, Martinez C, Paolucci P, Dominici M, Horwitz EM. Delayed marrow infusion in mice enhances hematopoietic and osteopoietic engraftment by facilitating transient expansion of the osteoblastic niche. Biol Blood Marrow Transplant 2013; 19:1566-73. [PMID: 23916672 DOI: 10.1016/j.bbmt.2013.07.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/26/2013] [Indexed: 01/15/2023]
Abstract
Transplantation of bone marrow cells leads to engraftment of osteopoietic and hematopoietic progenitors. We sought to determine whether the recently described transient expansion of the host osteoblastic niche after marrow radioablation promotes engraftment of both osteopoietic and hematopoietic progenitor cells. Mice infused with marrow cells 24 hours after total body irradiation (TBI) demonstrated significantly greater osteopoietic and hematopoietic progenitor chimerism than did mice infused at 30 minutes or 6 hours. Irradiated mice with a lead shield over 1 hind limb showed greater hematopoietic chimerism in the irradiated limb than in the shielded limb at both the 6- and 24-hour intervals. By contrast, the osteopoietic chimerism was essentially equal in the 2 limbs at each of these intervals, although it significantly increased when cells were infused 24 hours compared with 6 hours after TBI. Similarly, the number of donor phenotypic long-term hematopoietic stem cells was equivalent in the irradiated and shielded limbs after each irradiation-to-infusion interval but was significantly increased at the 24-hour interval. Our findings indicate that a 24-hour delay in marrow cell infusion after TBI facilitates expansion of the endosteal osteoblastic niche, leading to enhanced osteopoietic and hematopoietic engraftment.
Collapse
Affiliation(s)
- Roberta Marino
- Division of Oncology/Blood and Marrow Transplantation, Children's Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Knight MN, Hankenson KD. Mesenchymal Stem Cells in Bone Regeneration. Adv Wound Care (New Rochelle) 2013; 2:306-316. [PMID: 24527352 DOI: 10.1089/wound.2012.0420] [Citation(s) in RCA: 206] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Indexed: 01/14/2023] Open
Abstract
SIGNIFICANCE Mesenchymal stem cells (MSCs) play a key role in fracture repair by differentiating to become bone-forming osteoblasts and cartilage-forming chondrocytes. Cartilage then serves as a template for additional bone formation through the process of endochondral ossification. RECENT ADVANCES Endogenous MSCs that contribute to healing are primarily derived from the periosteum, endosteum, and marrow cavity, but also may be contributed from the overlying muscle or through systemic circulation, depending on the type of injury. A variety of growth factor signaling pathways, including BMP, Wnt, and Notch signaling, influence MSC proliferation and differentiation. These MSCs can be therapeutically manipulated to promote differentiation. Furthermore, MSCs can be harvested, cultivated, and delivered to promote bone healing. CRITICAL ISSUES Pharmacologically manipulating the number and differentiation capacity of endogenous MSCs is one potential therapeutic approach to improve healing; however, ideal agents to influence signaling pathways need to be developed and additional therapeutics that activate endogenous MSCs are needed. Whether isolated and purified, MSCs participate directly in the healing process or serve a bystander effect and indirectly influence healing is not well defined. FUTURE DIRECTIONS Studies must focus on better understanding the regulation of endogenous MSCs durings fracture healing. This will reveal novel molecules and pathways to therapeutically target. Similarly, while animal models have demonstrated efficacy in the delivery of MSCs to promote healing, more research is needed to understand ideal donor cells, cultivation methods, and delivery before stem cell therapy approaches can be utilized to repair bone.
Collapse
Affiliation(s)
- M. Noelle Knight
- Veterinary Medical Scientist Training Program, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kurt D. Hankenson
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
20
|
Hofmann TJ, Otsuru S, Marino R, Rasini V, Veronesi E, Murgia A, Lahti J, Boyd K, Dominici M, Horwitz EM. Transplanted murine long-term repopulating hematopoietic cells can differentiate to osteoblasts in the marrow stem cell niche. Mol Ther 2013; 21:1224-31. [PMID: 23587920 DOI: 10.1038/mt.2013.36] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Bone marrow transplantation (BMT) can give rise to donor-derived osteopoiesis in mice and humans; however, the source of this activity, whether a primitive osteoprogenitor or a transplantable marrow cell with dual hematopoietic and osteogenic potential, has eluded detection. To address this issue, we fractionated whole BM from mice according to cell surface immunophenotype and assayed the hematopoietic and osteopoietic potentials of the transplanted cells. Here, we show that a donor marrow cell capable of robust osteopoiesis possesses a surface phenotype of c-Kit(+) Lin(-) Sca-1(+) CD34(-/lo), identical to that of the long-term repopulating hematopoietic stem cell (LTR-HSC). Secondary BMT studies demonstrated that a single marrow cell able to contribute to hematopoietic reconstitution in primary recipients also drives robust osteopoiesis and LT hematopoiesis in secondary recipients. These findings indicate that LTR-HSC can give rise to progeny that differentiate to osteoblasts after BMT, suggesting a mechanism for prompt restoration of the osteoblastic HSC niche following BM injury, such as that induced by clinical BMT preparative regimens. An understanding of the mechanisms that regulate this differentiation potential may lead to novel treatments for disorders of bone as well as methods for preserving the integrity of endosteal hematopoietic niches.
Collapse
Affiliation(s)
- Ted J Hofmann
- Division of Oncology/Blood and Marrow Transplantation, The Children's Hospital of Philadelphia and The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Tsujigiwa H, Hirata Y, Katase N, Buery RR, Tamamura R, Ito S, Takagi S, Iida S, Nagatsuka H. The role of bone marrow-derived cells during the bone healing process in the GFP mouse bone marrow transplantation model. Calcif Tissue Int 2013; 92:296-306. [PMID: 23263655 DOI: 10.1007/s00223-012-9685-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 11/21/2012] [Indexed: 12/27/2022]
Abstract
Bone healing is a complex and multistep process in which the origin of the cells participating in bone repair is still unknown. The involvement of bone marrow-derived cells in tissue repair has been the subject of recent studies. In the present study, bone marrow-derived cells in bone healing were traced using the GFP bone marrow transplantation model. Bone marrow cells from C57BL/6-Tg (CAG-EGFP) were transplanted into C57BL/6 J wild mice. After transplantation, bone injury was created using a 1.0-mm drill. Bone healing was histologically assessed at 3, 7, 14, and 28 postoperative days. Immunohistochemistry for GFP; double-fluorescent immunohistochemistry for GFP-F4/80, GFP-CD34, and GFP-osteocalcin; and double-staining for GFP and tartrate-resistant acid phosphatase were performed. Bone marrow transplantation successfully replaced the hematopoietic cells into GFP-positive donor cells. Immunohistochemical analyses revealed that osteoblasts or osteocytes in the repair stage were GFP-negative, whereas osteoclasts in the repair and remodeling stages and hematopoietic cells were GFP-positive. The results indicated that bone marrow-derived cells might not differentiate into osteoblasts. The role of bone marrow-derived cells might be limited to adjustment of the microenvironment by differentiating into inflammatory cells, osteoclasts, or endothelial cells in immature blood vessels.
Collapse
Affiliation(s)
- Hidetsugu Tsujigiwa
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Colnot C, Zhang X, Knothe Tate ML. Current insights on the regenerative potential of the periosteum: molecular, cellular, and endogenous engineering approaches. J Orthop Res 2012; 30:1869-78. [PMID: 22778049 PMCID: PMC4620732 DOI: 10.1002/jor.22181] [Citation(s) in RCA: 176] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 06/05/2012] [Indexed: 02/04/2023]
Abstract
While century old clinical reports document the periosteum's remarkable regenerative capacity, only in the past decade have scientists undertaken mechanistic investigations of its regenerative potential. At a Workshop at the 2012 Annual Meeting of Orthopaedic Research Society, we reviewed the molecular, cellular, and tissue scale approaches to elucidate the mechanisms underlying the periosteum's regenerative potential as well as translational therapies engineering solutions inspired by its remarkable regenerative capacity. The entire population of osteoblasts within periosteum, and at endosteal and trabecular bone surfaces within the bone marrow, derives from the embryonic perichondrium. Periosteal cells contribute more to cartilage and bone formation within the callus during fracture healing than do cells of the bone marrow or endosteum, which do not migrate out of the marrow compartment. Furthermore, a current healing paradigm regards the activation, expansion, and differentiation of periosteal stem/progenitor cells as an essential step in building a template for subsequent neovascularization, bone formation, and remodeling. The periosteum comprises a complex, composite structure, providing a niche for pluripotent cells and a repository for molecular factors that modulate cell behavior. The periosteum's advanced, "smart" material properties change depending on the mechanical, chemical, and biological state of the tissue. Understanding periosteum development, progenitor cell-driven initiation of periosteum's endogenous tissue building capacity, and the complex structure-function relationships of periosteum as an advanced material are important for harnessing and engineering ersatz materials to mimic the periosteum's remarkable regenerative capacity.
Collapse
Affiliation(s)
- Céline Colnot
- Institut National de la Santé et de la Recherche Médicale, U781, Hopital Necker Enfants Malades, Paris, France
| | - Xinping Zhang
- The Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, U.S.A
| | - Melissa L. Knothe Tate
- Departments of Biomedical and Mechanical & Aerospace Engineering, Case Western Reserve University, Cleveland, OH, U.S.A
| |
Collapse
|
23
|
Bonig H, Papayannopoulou T. Hematopoietic stem cell mobilization: updated conceptual renditions. Leukemia 2012; 27:24-31. [PMID: 22951944 DOI: 10.1038/leu.2012.254] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Despite its specific clinical relevance, the field of hematopoietic stem cell mobilization has received broad attention, owing mainly to the belief that pharmacologic stem cell mobilization might provide clues as to how stem cells are retained in their natural environment, the bone marrow 'niche'. Inherent to this knowledge is also the desire to optimally engineer stem cells to interact with their target niche (such as after transplantation), or to lure malignant stem cells out of their protective niches (in order to kill them), and in general to decipher the niche's structural components and its organization. Whereas, with the exception of the recent addition of CXCR4 antagonists to the armamentarium for mobilization of patients refractory to granulocyte colony-stimulating factor alone, clinical stem cell mobilization has not changed significantly over the last decade or so, much effort has been made trying to explain the complex mechanism(s) by which hematopoietic stem and progenitor cells leave the marrow. This brief review will report some of the more recent advances about mobilization, with an attempt to reconcile some of the seemingly inconsistent data in mobilization and to interject some commonalities among different mobilization regimes.
Collapse
Affiliation(s)
- H Bonig
- Department of Medicine/Division of Hematology, University of Washington, Seattle, WA 98198-7720, USA
| | | |
Collapse
|
24
|
Mehrotra M, Williams CR, Ogawa M, LaRue AC. Hematopoietic stem cells give rise to osteo-chondrogenic cells. Blood Cells Mol Dis 2012; 50:41-9. [PMID: 22954476 DOI: 10.1016/j.bcmd.2012.08.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Revised: 08/08/2012] [Accepted: 08/08/2012] [Indexed: 12/15/2022]
Abstract
Repair of bone fracture requires recruitment and proliferation of stem cells with the capacity to differentiate to functional osteoblasts. Given the close association of bone and bone marrow (BM), it has been suggested that BM may serve as a source of these progenitors. To test the ability of hematopoietic stem cells (HSCs) to give rise to osteo-chondrogenic cells, we used a single HSC transplantation paradigm in uninjured bone and in conjunction with a tibial fracture model. Mice were lethally irradiated and transplanted with a clonal population of cells derived from a single enhanced green fluorescent protein positive (eGFP+) HSC. Analysis of paraffin sections from these animals showed the presence of eGFP+ osteocytes and hypertrophic chondrocytes. To determine the contribution of HSC-derived cells to fracture repair, non-stabilized tibial fracture was created. Paraffin sections were examined at 7 days, 2 weeks and 2 months after fracture and eGFP+ hypertrophic chondrocytes, osteoblasts and osteocytes were identified at the callus site. These cells stained positive for Runx-2 or osteocalcin and also stained for eGFP demonstrating their origin from the HSC. Together, these findings strongly support the concept that HSCs generate bone cells and suggest therapeutic potentials of HSCs in fracture repair.
Collapse
Affiliation(s)
- Meenal Mehrotra
- Department of Veterans Affairs Medical Center, Ralph H. Johnson VAMC, Medical University of South Carolina, Charleston, SC, USA
| | | | | | | |
Collapse
|
25
|
Transplanted bone marrow mononuclear cells and MSCs impart clinical benefit to children with osteogenesis imperfecta through different mechanisms. Blood 2012; 120:1933-41. [PMID: 22829629 DOI: 10.1182/blood-2011-12-400085] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Transplantation of whole bone marrow (BMT) as well as ex vivo-expanded mesenchymal stromal cells (MSCs) leads to striking clinical benefits in children with osteogenesis imperfecta (OI); however, the underlying mechanism of these cell therapies has not been elucidated. Here, we show that non-(plastic)-adherent bone marrow cells (NABMCs) are more potent osteoprogenitors than MSCs in mice. Translating these findings to the clinic, a T cell-depleted marrow mononuclear cell boost (> 99.99% NABMC) given to children with OI who had previously undergone BMT resulted in marked growth acceleration in a subset of patients, unambiguously indicating the therapeutic potential of bone marrow cells for these patients. Then, in a murine model of OI, we demonstrated that as the donor NABMCs differentiate to osteoblasts, they contribute normal collagen to the bone matrix. In contrast, MSCs do not substantially engraft in bone, but secrete a soluble mediator that indirectly stimulates growth, data which provide the underlying mechanism of our prior clinical trial of MSC therapy for children with OI. Collectively, our data indicate that both NABMCs and MSCs constitute effective cell therapy for OI, but exert their clinical impact by different, complementary mechanisms. The study is registered at www.clinicaltrials.gov as NCT00187018.
Collapse
|
26
|
Norambuena GA, Khoury M, Jorgensen C. Mesenchymal stem cells in osteoarticular pediatric diseases: an update. Pediatr Res 2012; 71:452-8. [PMID: 22430381 DOI: 10.1038/pr.2011.68] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cellular therapy has gained an increasing popularity in recent years. Mesenchymal stem cells (MSCs) have the potential to differentiate into bone, cartilage, or fat tissue. In recent studies, these cells have also shown healing capability by improving angiogenesis and preventing fibrosis, which could have a role in tissue repair and tissue regeneration. Preclinical and clinical orthopedic studies conducted in the adult population support the use of MSCs for bone-healing problems, early stages of osteonecrosis, and local bone defects. Only a few published studies support the use of MSCs in pediatric osteoarticular disorders, probably due to the unknown long-term results of cellular therapy. The purpose of this review is to explain the mechanism by which MSCs could exhibit a therapeutic role in pediatric osteoarticular disorders.
Collapse
|
27
|
Cenni E, Scioscia L, Baldini N. Orthopaedic research in italy: state of the art. Int J Immunopathol Pharmacol 2011; 24:157-78. [PMID: 21669157 DOI: 10.1177/03946320110241s230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The most significant results in experimental and clinical orthopaedic research in Italy within the last three years have been primarily in major congenital diseases, bone tumors, regenerative medicine, joint replacements, spine, tendons and ligaments. The data presented in the following discussion is comparable with leading international results, highlighting Italian orthopaedic research excellemce as well as its shortcomings.
Collapse
Affiliation(s)
- E Cenni
- Istituto Ortopedico Rizzoli, Bologna, Italy
| | | | | |
Collapse
|
28
|
Colnot C. Cell sources for bone tissue engineering: insights from basic science. TISSUE ENGINEERING PART B-REVIEWS 2011; 17:449-57. [PMID: 21902612 DOI: 10.1089/ten.teb.2011.0243] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
One of the goals of bone tissue engineering is to design delivery methods for skeletal stem/progenitor cells to repair or replace bone. Although the materials used to retain cells play a central role in the quality of the constructs, the source of cells is key for bone regeneration. Bone marrow is the most common cell source, but other tissues are now being explored, such as the periosteum, fat, muscle, cord blood, and embryonic or induced pluripotent stem cells. The therapeutic effect of exogenous stem/progenitor cells is accepted, yet their contribution to bone repair is not well defined. The in vitro osteo- and/or chondrogenic potential of these skeletal progenitors do not necessarily predict their differentiation potential in vivo and their function may be affected by their ability to home correctly to bone. This review provides an overview of animal models used to test the efficacy of cell-based approaches. We examine the mechanisms of endogenous cell recruitment during bone repair and compare the role of local versus systemic cell recruitment. We discuss how the normal repair process can help define efficacious cell sources for bone tissue engineering and improve their methods of delivery.
Collapse
Affiliation(s)
- Céline Colnot
- INSERM U781, Tour Lavoisier 2ème étage, Hôpital Necker-Enfants Malades, Paris, France.
| |
Collapse
|
29
|
Gómez-Barrena E, Rosset P, Müller I, Giordano R, Bunu C, Layrolle P, Konttinen YT, Luyten FP. Bone regeneration: stem cell therapies and clinical studies in orthopaedics and traumatology. J Cell Mol Med 2011; 15:1266-86. [PMID: 21251219 PMCID: PMC4373328 DOI: 10.1111/j.1582-4934.2011.01265.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Regenerative medicine seeks to repair or replace damaged tissues or organs, with the goal to fully restore structure and function without the formation of scar tissue. Cell based therapies are promising new therapeutic approaches in regenerative medicine. By using mesenchymal stem cells, good results have been reported for bone engineering in a number of clinical studies, most of them investigator initiated trials with limited scope with respect to controls and outcome. With the implementation of a new regulatory framework for advanced therapeutic medicinal products, the stage is set to improve both the characterization of the cells and combination products, and pave the way for improved controlled and well-designed clinical trials. The incorporation of more personalized medicine approaches, including the use of biomarkers to identify the proper patients and the responders to treatment, will be contributing to progress in the field. Both translational and clinical research will move the boundaries in the field of regenerative medicine, and a coordinated effort will provide the clinical breakthroughs, particularly in the many applications of bone engineering.
Collapse
Affiliation(s)
- Enrique Gómez-Barrena
- Orthopaedic Surgery Service, Hospital Universitario La Paz, Autónoma University of Madrid, Madrid, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Transplantation of whole bone marrow (BMT) leads to engraftment of both osteoprogenitor cells and hematopoietic cells; however, the robust osteopoietic chimerism seen early after BMT decreases with time. Using our established murine model, we demonstrate that a post-BMT regimen of either granulocyte-colony stimulating factor, growth hormone, parathyroid hormone, or stem cell factor each stimulates greater donor osteoblast chimerism at 4 months posttransplantation than saline-treated controls and approximates the robust osteopoietic chimerism seen early after BMT; however, only growth hormone led to significantly more donor-derived osteocytes than controls. Importantly, there were no adverse hematologic consequences of the different treatments. Our data demonstrate that these cytokines can stimulate the differentiation of transplanted donor marrow cells into the osteopoietic lineage after BMT. Post-BMT cytokine therapy may generate durable osteopoietic engraftment, which should lead to sustained clinical benefit and render BMT more applicable to bone disorders.
Collapse
|
31
|
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells that are being clinically explored as a new therapeutic for treating a variety of immune-mediated diseases. First heralded as a regenerative therapy for skeletal tissue repair, MSCs have recently been shown to modulate endogenous tissue and immune cells. Preclinical studies of the mechanism of action suggest that the therapeutic effects afforded by MSC transplantation are short-lived and related to dynamic, paracrine interactions between MSCs and host cells. Therefore, representations of MSCs as drug-loaded particles may allow for pharmacokinetic models to predict the therapeutic activity of MSC transplants as a function of drug delivery mode. By integrating principles of MSC biology, therapy, and engineering, the field is armed to usher in the next generation of stem cell therapeutics.
Collapse
Affiliation(s)
- Biju Parekkadan
- Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Shriners Hospital for Children, and Harvard Medical School, Boston, Massachusetts 02114, USA.
| | | |
Collapse
|
32
|
Osteopoietic engraftment after bone marrow transplantation: effect of inbred strain of mice. Exp Hematol 2010; 38:836-44. [PMID: 20447443 DOI: 10.1016/j.exphem.2010.04.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 04/13/2010] [Accepted: 04/26/2010] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Transplantable osteoprogenitors, as well as hematopoietic progenitors, reside in bone marrow. We previously reported the first clinical trial of bone marrow transplantation (BMT) for a genetic disorder of bone, osteogenesis imperfecta. Although the patients demonstrated striking clinical benefits after transplantation, measured osteopoietic engraftment was low and did not seem to be durable. Therefore, we sought an animal model, which closely reflects the clinical experience, to facilitate development of strategies to improve the efficiency of osteoprogenitor engraftment after BMT. MATERIALS AND METHODS We transplanted unfractionated bone marrow cells from green fluorescent protein-transgenic mice into lethally irradiated recipients in four combinations of inbred mouse strains: from C57BL/6 into C57BL/6 (C-C), from C57BL/6 into FVB/N (C-F), from FVB/N into C57BL/6 (F-C), and from FVB/N into FVB/N (F-F). At 2 weeks after transplantation, we assessed donor hematopoietic and osteopoietic engraftment by flow cytometry, using a novel mean fluorescence assay, and by immunohistochemical staining for green fluorescent protein. RESULTS Hematopoietic reconstitution by donor cells was complete in all four combinations. Although osteopoietic engraftment of the transplanted cells was also documented in all the four groups, the magnitude of osteopoietic engraftment differed markedly among the strains where F-F > C-F > F-C > C-C. CONCLUSION Our findings indicate that the genetic background of inbred mouse strains affects efficiency of osteopoietic engraftment after BMT. Thus, the murine strain must be considered when comparing experimental outcomes. Moreover, comparing the genetic variation among murine strains may lend insight into the factors governing osteopoietic differentiation of transplanted marrow cells.
Collapse
|
33
|
Mehrotra M, Rosol M, Ogawa M, Larue AC. Amelioration of a mouse model of osteogenesis imperfecta with hematopoietic stem cell transplantation: microcomputed tomography studies. Exp Hematol 2010; 38:593-602. [PMID: 20417683 DOI: 10.1016/j.exphem.2010.04.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 04/14/2010] [Accepted: 04/16/2010] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To test the hypothesis that hematopoietic stem cells (HSCs) generate bone cells using bone marrow (BM) cell transplantation in a mouse model of osteogenesis imperfecta (OI). OI is a genetic disorder resulting from abnormal amount and/or structure of type I collagen and is characterized by osteopenia, fragile bones, and skeletal deformities. Homozygous OI murine mice (oim; B6C3Fe a/a-Col1a2(oim)/J) offer excellent recipients for transplantation of normal HSCs, because fast turnover of osteoprogenitors has been shown. MATERIALS AND METHODS We transplanted BM mononuclear cells or 50 BM cells highly enriched for HSCs from transgenic enhanced green fluorescent protein mice into irradiated oim mice and analyzed changes in bone parameters using longitudinal microcomputed tomography. RESULTS Dramatic improvements were observed in three-dimensional microcomputed tomography images of these bones 3 to 6 months post-transplantation when the mice showed high levels of hematopoietic engraftment. Histomorphometric assessment of the bone parameters, such as trabecular structure and cortical width, supported observations from three-dimensional images. There was an increase in bone volume, trabecular number, and trabecular thickness with a concomitant decrease in trabecular spacing. Analysis of a nonengrafted mouse or a mouse that was transplanted with BM cells from oim mice showed continued deterioration in the bone parameters. The engrafted mice gained weight and became less prone to spontaneous fractures while the control mice worsened clinically and eventually developed kyphosis. CONCLUSIONS These findings strongly support the concept that HSCs generate bone cells. Furthermore, they are consistent with observations from clinical transplantation studies and suggest therapeutic potentials of HSCs in OI.
Collapse
Affiliation(s)
- Meenal Mehrotra
- Research Services, Department of Veterans Affairs Medical Center, Charleston, SC 29401-5799, USA
| | | | | | | |
Collapse
|
34
|
Grisendi G, Bussolari R, Cafarelli L, Petak I, Rasini V, Veronesi E, De Santis G, Spano C, Tagliazzucchi M, Barti-Juhasz H, Scarabelli L, Bambi F, Frassoldati A, Rossi G, Casali C, Morandi U, Horwitz EM, Paolucci P, Conte P, Dominici M. Adipose-derived mesenchymal stem cells as stable source of tumor necrosis factor-related apoptosis-inducing ligand delivery for cancer therapy. Cancer Res 2010; 70:3718-29. [PMID: 20388793 DOI: 10.1158/0008-5472.can-09-1865] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Adipose-derived mesenchymal stromal/stem cells (AD-MSC) may offer efficient tools for cell-based gene therapy approaches. In this study, we evaluated whether AD-MSC could deliver proapoptotic molecules for cancer treatment. Human AD-MSCs were isolated and transduced with a retroviral vector encoding full-length human tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), a proapoptotic ligand that induces apoptosis in a variety of human cancers but not normal tissues. Although several studies have documented the antitumor activity of recombinant human TRAIL, its use in vivo is limited by a short half-life in plasma due to a rapid clearance by the kidney. We found that these limitations can be overcome using stably transduced AD-MSC, which could serve as a constant source of TRAIL production. AD-MSC armed with TRAIL targeted a variety of tumor cell lines in vitro, including human cervical carcinoma, pancreatic cancer, colon cancer, and, in combination with bortezomib, TRAIL-resistant breast cancer cells. Killing activity was associated with activation of caspase-8 as expected. When injected i.v. or s.c. into mice, AD-MSC armed with TRAIL localized into tumors and mediated apoptosis without significant apparent toxicities to normal tissues. Collectively, our results provide preclinical support for a model of TRAIL-based cancer therapy relying on the use of adipose-derived mesenchymal progenitors as cellular vectors.
Collapse
Affiliation(s)
- Giulia Grisendi
- Department of Oncology, Hematology and Respiratory Diseases, Plastic Surgery Unit, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Schäfer R, Dominici M, Müller I, Horwitz E, Asahara T, Bulte JWM, Bieback K, Le Blanc K, Bühring HJ, Capogrossi MC, Dazzi F, Gorodetsky R, Henschler R, Handgretinger R, Kajstura J, Kluger PJ, Lange C, Luettichau IV, Mertsching H, Schrezenmeier H, Sievert KD, Strunk D, Verfaillie C, Northoff H. Basic research and clinical applications of non-hematopoietic stem cells, 4-5 April 2008, Tubingen, Germany. Cytotherapy 2009; 11:245-55. [PMID: 19152153 DOI: 10.1080/14653240802582117] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
From 4 to 5 April 2008, international experts met for the second time in Tubingen, Germany, to present and discuss the latest proceedings in research on non-hematopoietic stem cells (NHSC). This report presents issues of basic research including characterization, isolation, good manufacturing practice (GMP)-like production and imaging as well as clinical applications focusing on the regenerative and immunomodulatory capacities of NHSC.
Collapse
Affiliation(s)
- R Schäfer
- Institute of Clinical and Experimental Transfusion Medicine, University Hospital Tubingen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Buchheiser A, Liedtke S, Looijenga LH, Kögler G. Cord blood for tissue regeneration. J Cell Biochem 2009; 108:762-8. [DOI: 10.1002/jcb.22320] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
37
|
Heterogeneity of multipotent mesenchymal stromal cells: from stromal cells to stem cells and vice versa. Transplantation 2009; 87:S36-42. [PMID: 19424002 DOI: 10.1097/tp.0b013e3181a283ee] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Discovered more than 40 years ago, the biological features of multipotent mesenchymal stromal cells (MSC) were progressively compared first with hematopoietic stem cells (HSC) and, more recently, with embryonic stem cells (ESC). Although these comparisons have been crucial in helping to clarify their nature, there is now a robust amount of data indicating that MSC in vitro represent an independent and heterogeneous group of progenitors with distinct self-renewal properties and established differentiation potentials. However, research developments both in humans and animals have progressively revealed the limits that MSC may face in vivo. To recognize these issues and challenge MSC stemness may seem to be a step backward. Nevertheless, it might also represent the beginning of a phase in which the introduction of novel preclinical approaches could provide better characterization and standardization of the in vivo factors influencing cell engraftment and survival, allowing a more successful impact of mesenchymal progenitors in several clinical settings.
Collapse
|
38
|
Abstract
Mesenchymal stem cells (MSC) are multipotent adult stem cells harboring a wide range of differentiations and non-human leukocyte antigen-restricted immunosuppressive properties that lead to an increasing use of MSC in immunomodulation and in regenerative medicine. To produce MSC, definitive standards are still lacking. Whatever the starting material used (e.g., bone marrow, adipose tissue, or cord blood), numerous parameters including cell plating density, number of passages, and culture medium, play a major role in the culture process and have to be determined. To date, the different production processes have been effective, and based on phenotypic analysis and differentiation potential, a first set of simple controls have been defined. However, controls of the final product should provide precise data on efficacy and safety. The next challenge will be to develop production processes that reach good manufacturing practices goals and to define more accurate control methods of cultivated MSC.
Collapse
|
39
|
Tadokoro M, Kanai R, Taketani T, Uchio Y, Yamaguchi S, Ohgushi H. New bone formation by allogeneic mesenchymal stem cell transplantation in a patient with perinatal hypophosphatasia. J Pediatr 2009; 154:924-30. [PMID: 19446101 DOI: 10.1016/j.jpeds.2008.12.021] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Revised: 11/12/2008] [Accepted: 12/05/2008] [Indexed: 01/13/2023]
Abstract
Mesenchymal stem cells (MSCs) can show osteogenic differentiation capability when implanted in vivo, as well as cultured in vitro; therefore we attempted to use allogeneic MSCs for an 8-month-old patient with hypophosphatasia. MSCs were obtained by culture expansion of fresh marrow from the patient's father. Some of the MSCs were further cultured under osteogenic conditions on a culture dish or porous hydroxyapatite ceramics, resulting in cultured osteoblasts and osteogenic constructs, respectively. The MSCs and osteoblasts were injected into the patient, and the constructs were implanted locally. After traditional bone marrow transplantation, the MSCs, osteoblasts, and osteogenic constructs were used for treatment and to improve the patient's respiratory condition and skeletal abnormality. The condition worsened again, and an MSC booster shot was administered. At the same time, the construct was retrieved. The respiratory condition improved, and the retrieved construct showed de novo bone derived from both donor and patient cells. We demonstrated the importance of allogeneic MSC transplantation for hypophosphatasia and the constructs as an alternative to bone fragments that provided further osteogenic capability in the patient.
Collapse
Affiliation(s)
- Mika Tadokoro
- Research Institute for Cell Engineering, National Institute of Advanced Industrial Science and Technology, Hyogo, Japan
| | | | | | | | | | | |
Collapse
|
40
|
Restoration and reversible expansion of the osteoblastic hematopoietic stem cell niche after marrow radioablation. Blood 2009; 114:2333-43. [PMID: 19433859 DOI: 10.1182/blood-2008-10-183459] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Adequate recovery of hematopoietic stem cell (HSC) niches after cytotoxic conditioning regimens is essential to successful bone marrow transplantation. Yet, very little is known about the mechanisms that drive the restoration of these niches after bone marrow injury. Here we describe a profound disruption of the marrow microenvironment after lethal total body irradiation of mice that leads to the generation of osteoblasts restoring the HSC niche, followed by a transient, reversible expansion of this niche. Within 48 hours after irradiation, surviving host megakaryocytes were observed close to the endosteal surface of trabecular bone rather than in their normal parasinusoidal site concomitant with an increased stromal-derived factor-1 level. A subsequent increase in 2 megakaryocyte-derived growth factors, platelet-derived growth factor-beta and basic fibroblast growth factor, induces a 2-fold expansion of the population of N-cadherin-/osteopontin-positive osteoblasts, relative to the homeostatic osteoblast population, and hence, increases the number of potential niches for HSC engraftment. After donor cell engraftment, this expanded microenvironment reverts to its homeostatic state. Our results demonstrate the rapid recovery of osteoblastic stem cell niches after marrow radioablation, provide critical insights into the associated mechanisms, and suggest novel means to manipulate the bone marrow microenvironment to promote HSC engraftment.
Collapse
|
41
|
In utero transplantation of adult bone marrow decreases perinatal lethality and rescues the bone phenotype in the knockin murine model for classical, dominant osteogenesis imperfecta. Blood 2009; 114:459-68. [PMID: 19414862 DOI: 10.1182/blood-2008-12-195859] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Autosomal dominant osteogenesis imperfecta (OI) caused by glycine substitutions in type I collagen is a paradigmatic disorder for stem cell therapy. Bone marrow transplantation in OI children has produced a low engraftment rate, but surprisingly encouraging symptomatic improvements. In utero transplantation (IUT) may hold even more promise. However, systematic studies of both methods have so far been limited to a recessive mouse model. In this study, we evaluated intrauterine transplantation of adult bone marrow into heterozygous BrtlIV mice. Brtl is a knockin mouse with a classical glycine substitution in type I collagen [alpha1(I)-Gly349Cys], dominant trait transmission, and a phenotype resembling moderately severe and lethal OI. Adult bone marrow donor cells from enhanced green fluorescent protein (eGFP) transgenic mice engrafted in hematopoietic and nonhematopoietic tissues differentiated to trabecular and cortical bone cells and synthesized up to 20% of all type I collagen in the host bone. The transplantation eliminated the perinatal lethality of heterozygous BrtlIV mice. At 2 months of age, femora of treated Brtl mice had significant improvement in geometric parameters (P < .05) versus untreated Brtl mice, and their mechanical properties attained wild-type values. Our results suggest that the engrafted cells form bone with higher efficiency than the endogenous cells, supporting IUT as a promising approach for the treatment of genetic bone diseases.
Collapse
|
42
|
Nehlin JO, Barington T. Strategies for future histocompatible stem cell therapy. Biogerontology 2009; 10:339-76. [PMID: 19219637 DOI: 10.1007/s10522-009-9213-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Accepted: 01/19/2009] [Indexed: 02/07/2023]
Abstract
Stem cell therapy based on the safe and unlimited self-renewal of human pluripotent stem cells is envisioned for future use in tissue or organ replacement after injury or disease. A gradual decline of regenerative capacity has been documented among the adult stem cell population in some body organs during the aging process. Recent progress in human somatic cell nuclear transfer and inducible pluripotent stem cell technologies has shown that patient-derived nuclei or somatic cells can be reprogrammed in vitro to become pluripotent stem cells, from which the three germ layer lineages can be generated, genetically identical to the recipient. Once differentiation protocols and culture conditions can be defined and optimized, patient-histocompatible pluripotent stem cells could be directed towards virtually every cell type in the human body. Harnessing this capability to enrich for given cells within a developmental lineage, would facilitate the transplantation of organ/tissue-specific adult stem cells or terminally differentiated somatic cells to improve the function of diseased organs or tissues in an individual. Here, we present an overview of various experimental cell therapy technologies based on the use of patient-histocompatible stem cells, the pending issues needed to be dealt with before clinical trials can be initiated, evidence for the loss and/or aging of the stem cell pool and some of the possible uses of human pluripotent stem cell-derivatives aimed at curing disease and improving health.
Collapse
Affiliation(s)
- Jan O Nehlin
- Center for Stem Cell Treatment, Department of Clinical Immunology, University of Southern Denmark, Denmark.
| | | |
Collapse
|
43
|
|
44
|
|