1
|
Stergiou IE, Papadakos SP, Karyda A, Tsitsilonis OE, Dimopoulos MA, Theocharis S. EPH/Ephrin Signaling in Normal Hematopoiesis and Hematologic Malignancies: Deciphering Their Intricate Role and Unraveling Possible New Therapeutic Targets. Cancers (Basel) 2023; 15:3963. [PMID: 37568780 PMCID: PMC10417178 DOI: 10.3390/cancers15153963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Erythropoietin-producing hepatocellular carcinoma receptors (EPHs) represent the largest family of receptor tyrosine kinases (RTKs). EPH interaction with ephrins, their membrane-bound ligands, holds a pivotal role in embryonic development, while, though less active, it is also implicated in various physiological functions during adult life. In normal hematopoiesis, different patterns of EPH/ephrin expression have been correlated with hematopoietic stem cell (HSC) maintenance and lineage-committed hematopoietic progenitor cell (HPC) differentiation, as well as with the functional properties of their mature offspring. Research in the field of hematologic malignancies has unveiled a rather complex involvement of the EPH/ephrinsignaling pathway in the pathophysiology of these neoplasms. Aberrations in genetic, epigenetic, and protein levels have been identified as possible players implicated both in tumor progression and suppression, while correlations have also been highlighted regarding prognosis and response to treatment. Initial efforts to therapeutically target the EPH/ephrin axis have been undertaken in the setting of hematologic neoplasia but are mainly confined to the preclinical level. To this end, deciphering the complexity of this signaling pathway both in normal and malignant hematopoiesis is necessary.
Collapse
Affiliation(s)
- Ioanna E. Stergiou
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Stavros P. Papadakos
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.P.P.); (A.K.)
| | - Anna Karyda
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.P.P.); (A.K.)
| | - Ourania E. Tsitsilonis
- Flow Cytometry Unit, Department of Biology, School of Science, National and Kapodistrian University of Athens, 15784 Athens, Greece;
| | - Meletios-Athanasios Dimopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Alexandra Hospital, 11528 Athens, Greece
| | - Stamatios Theocharis
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.P.P.); (A.K.)
| |
Collapse
|
2
|
The EphB6 Receptor: Kinase-Dead but Very Much Alive. Int J Mol Sci 2021; 22:ijms22158211. [PMID: 34360976 PMCID: PMC8347583 DOI: 10.3390/ijms22158211] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/24/2021] [Accepted: 07/27/2021] [Indexed: 01/15/2023] Open
Abstract
The Eph receptor tyrosine kinase member EphB6 is a pseudokinase, and similar to other pseudoenzymes has not attracted an equivalent amount of interest as its enzymatically-active counterparts. However, a greater appreciation for the role pseudoenzymes perform in expanding the repertoire of signals generated by signal transduction systems has fostered more interest in the field. EphB6 acts as a molecular switch that is capable of modulating the signal transduction output of Eph receptor clusters. Although the biological effects of EphB6 activity are well defined, the molecular mechanisms of EphB6 function remain enigmatic. In this review, we use a comparative approach to postulate how EphB6 acts as a scaffold to recruit adaptor proteins to an Eph receptor cluster and how this function is regulated. We suggest that the evolutionary repurposing of EphB6 into a kinase-independent molecular switch in mammals has involved repurposing the kinase activation loop into an SH3 domain-binding site. In addition, we suggest that EphB6 employs the same SAM domain linker and juxtamembrane domain allosteric regulatory mechanisms that are used in kinase-positive Eph receptors to regulate its scaffold function. As a result, although kinase-dead, EphB6 remains a strategically active component of Eph receptor signaling.
Collapse
|
3
|
K. Bhanumathy K, Balagopal A, Vizeacoumar FS, Vizeacoumar FJ, Freywald A, Giambra V. Protein Tyrosine Kinases: Their Roles and Their Targeting in Leukemia. Cancers (Basel) 2021; 13:cancers13020184. [PMID: 33430292 PMCID: PMC7825731 DOI: 10.3390/cancers13020184] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Protein phosphorylation is a key regulatory mechanism that controls a wide variety of cellular responses. This process is catalysed by the members of the protein kinase superfamily that are classified into two main families based on their ability to phosphorylate either tyrosine or serine and threonine residues in their substrates. Massive research efforts have been invested in dissecting the functions of tyrosine kinases, revealing their importance in the initiation and progression of human malignancies. Based on these investigations, numerous tyrosine kinase inhibitors have been included in clinical protocols and proved to be effective in targeted therapies for various haematological malignancies. In this review, we provide insights into the role of tyrosine kinases in leukaemia and discuss their targeting for therapeutic purposes with the currently available inhibitory compounds. Abstract Protein kinases constitute a large group of enzymes catalysing protein phosphorylation and controlling multiple signalling events. The human protein kinase superfamily consists of 518 members and represents a complicated system with intricate internal and external interactions. Protein kinases are classified into two main families based on the ability to phosphorylate either tyrosine or serine and threonine residues. Among the 90 tyrosine kinase genes, 58 are receptor types classified into 20 groups and 32 are of the nonreceptor types distributed into 10 groups. Tyrosine kinases execute their biological functions by controlling a variety of cellular responses, such as cell division, metabolism, migration, cell–cell and cell matrix adhesion, cell survival and apoptosis. Over the last 30 years, a major focus of research has been directed towards cancer-associated tyrosine kinases owing to their critical contributions to the development and aggressiveness of human malignancies through the pathological effects on cell behaviour. Leukaemia represents a heterogeneous group of haematological malignancies, characterised by an uncontrolled proliferation of undifferentiated hematopoietic cells or leukaemia blasts, mostly derived from bone marrow. They are usually classified as chronic or acute, depending on the rates of their progression, as well as myeloid or lymphoblastic, according to the type of blood cells involved. Overall, these malignancies are relatively common amongst both children and adults. In malignant haematopoiesis, multiple tyrosine kinases of both receptor and nonreceptor types, including AXL receptor tyrosine kinase (AXL), Discoidin domain receptor 1 (DDR1), Vascular endothelial growth factor receptor (VEGFR), Fibroblast growth factor receptor (FGFR), Mesenchymal–epithelial transition factor (MET), proto-oncogene c-Src (SRC), Spleen tyrosine kinase (SYK) and pro-oncogenic Abelson tyrosine-protein kinase 1 (ABL1) mutants, are implicated in the pathogenesis and drug resistance of practically all types of leukaemia. The role of ABL1 kinase mutants and their therapeutic inhibitors have been extensively analysed in scientific literature, and therefore, in this review, we provide insights into the impact and mechanism of action of other tyrosine kinases involved in the development and progression of human leukaemia and discuss the currently available and emerging treatment options based on targeting these molecules.
Collapse
Affiliation(s)
- Kalpana K. Bhanumathy
- Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (A.B.); (F.J.V.)
- Correspondence: (K.K.B.); (V.G.); Tel.: +1-(306)-716-7456 (K.K.B.); +39-0882-416574 (V.G.)
| | - Amrutha Balagopal
- Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (A.B.); (F.J.V.)
| | - Frederick S. Vizeacoumar
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (F.S.V.); (A.F.)
| | - Franco J. Vizeacoumar
- Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (A.B.); (F.J.V.)
- Cancer Research Department, Saskatchewan Cancer Agency, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - Andrew Freywald
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (F.S.V.); (A.F.)
| | - Vincenzo Giambra
- Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, FG, Italy
- Correspondence: (K.K.B.); (V.G.); Tel.: +1-(306)-716-7456 (K.K.B.); +39-0882-416574 (V.G.)
| |
Collapse
|
4
|
London M, Gallo E. Critical role of EphA3 in cancer and current state of EphA3 drug therapeutics. Mol Biol Rep 2020; 47:5523-5533. [PMID: 32621117 DOI: 10.1007/s11033-020-05571-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 06/05/2020] [Indexed: 12/14/2022]
Abstract
The erythropoietin-producing human hepatocellular (Eph) receptors are transmembrane glycoprotein members of the tyrosine kinase receptors family. The Ephs may bind to various ephrin ligands resulting in the phosphorylation of their tyrosine kinase domain and the activation of the Eph receptor. In this review we focus on EphA3, one receptor of the 14 different Ephs, as it carries out both redundant and restricted functions in the germline development of mammals and in the maintenance of various adult tissues. The loss of EphA3 regulation is correlated with various human malignancies, the most notable being cancer. This receptor is overexpressed and/or mutated in multiple tumors, and is also associated with poor prognosis and decreased survival in patients. Here we highlight the role of EphA3 in normal and malignant tissues that are specific to cancer; these include hematologic disorders, gastric cancer, glioblastoma multiforme, colorectal cancer, lung cancer, renal cell carcinoma, and prostate cancer. Moreover, various anticancer agents against EphA3 have been developed to either inhibit its kinase domain activity or to function as agonists. Thus, we examine the most potent small molecule drugs and mAb-based therapeutics against EphA3 that are currently in pre-clinical or clinical stages.
Collapse
Affiliation(s)
- Max London
- Department of Molecular Genetics, Donnelly Centre, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada
| | - Eugenio Gallo
- Department of Molecular Genetics, Donnelly Centre, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada.
| |
Collapse
|
5
|
Janes PW, Vail ME, Gan HK, Scott AM. Antibody Targeting of Eph Receptors in Cancer. Pharmaceuticals (Basel) 2020; 13:ph13050088. [PMID: 32397088 PMCID: PMC7281212 DOI: 10.3390/ph13050088] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/29/2020] [Accepted: 05/04/2020] [Indexed: 12/20/2022] Open
Abstract
The Eph subfamily of receptor tyrosine kinases mediate cell-cell communication controlling cell and tissue patterning during development. While generally less active in adult tissues, they often re-emerge in cancers, particularly on undifferentiated or progenitor cells in tumors and the tumor microenvironment, associated with tumor initiation, angiogenesis and metastasis. Eph receptors are thus attractive therapeutic targets, and monoclonal antibodies have been commonly developed and tested for anti-cancer activity in preclinical models, and in some cases in the clinic. This review summarizes 20 years of research on various antibody-based approaches to target Eph receptors in tumors and the tumor microenvironment, including their mode of action, tumor specificity, and efficacy in pre-clinical and clinical testing.
Collapse
|
6
|
Arnold LL, Cecchini A, Stark DA, Ihnat J, Craigg RN, Carter A, Zino S, Cornelison D. EphA7 promotes myogenic differentiation via cell-cell contact. eLife 2020; 9:53689. [PMID: 32314958 PMCID: PMC7173967 DOI: 10.7554/elife.53689] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 04/01/2020] [Indexed: 11/13/2022] Open
Abstract
The conversion of proliferating skeletal muscle precursors (myoblasts) to terminally-differentiated myocytes is a critical step in skeletal muscle development and repair. We show that EphA7, a juxtacrine signaling receptor, is expressed on myocytes during embryonic and fetal myogenesis and on nascent myofibers during muscle regeneration in vivo. In EphA7-/- mice, hindlimb muscles possess fewer myofibers at birth, and those myofibers are reduced in size and have fewer myonuclei and reduced overall numbers of precursor cells throughout postnatal life. Adult EphA7-/- mice have reduced numbers of satellite cells and exhibit delayed and protracted muscle regeneration, and satellite cell-derived myogenic cells from EphA7-/- mice are delayed in their expression of differentiation markers in vitro. Exogenous EphA7 extracellular domain will rescue the null phenotype in vitro, and will also enhance commitment to differentiation in WT cells. We propose a model in which EphA7 expression on differentiated myocytes promotes commitment of adjacent myoblasts to terminal differentiation.
Collapse
Affiliation(s)
- Laura L Arnold
- Division of Biological Sciences, University of Missouri, Columbia, United States
| | - Alessandra Cecchini
- Division of Biological Sciences, University of Missouri, Columbia, United States.,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, United States
| | - Danny A Stark
- Division of Biological Sciences, University of Missouri, Columbia, United States
| | - Jacqueline Ihnat
- Division of Biological Sciences, University of Missouri, Columbia, United States
| | - Rebecca N Craigg
- Division of Biological Sciences, University of Missouri, Columbia, United States
| | - Amory Carter
- Division of Biological Sciences, University of Missouri, Columbia, United States
| | - Sammy Zino
- Division of Biological Sciences, University of Missouri, Columbia, United States
| | - Ddw Cornelison
- Division of Biological Sciences, University of Missouri, Columbia, United States.,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, United States
| |
Collapse
|
7
|
Liang LY, Patel O, Janes PW, Murphy JM, Lucet IS. Eph receptor signalling: from catalytic to non-catalytic functions. Oncogene 2019; 38:6567-6584. [PMID: 31406248 DOI: 10.1038/s41388-019-0931-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 12/26/2022]
Abstract
Eph receptors, the largest subfamily of receptor tyrosine kinases, are linked with proliferative disease, such as cancer, as a result of their deregulated expression or mutation. Unlike other tyrosine kinases that have been clinically targeted, the development of therapeutics against Eph receptors remains at a relatively early stage. The major reason is the limited understanding on the Eph receptor regulatory mechanisms at a molecular level. The complexity in understanding Eph signalling in cells arises due to following reasons: (1) Eph receptors comprise 14 members, two of which are pseudokinases, EphA10 and EphB6, with relatively uncharacterised function; (2) activation of Eph receptors results in dimerisation, oligomerisation and formation of clustered signalling centres at the plasma membrane, which can comprise different combinations of Eph receptors, leading to diverse downstream signalling outputs; (3) the non-catalytic functions of Eph receptors have been overlooked. This review provides a structural perspective of the intricate molecular mechanisms that drive Eph receptor signalling, and investigates the contribution of intra- and inter-molecular interactions between Eph receptors intracellular domains and their major binding partners. We focus on the non-catalytic functions of Eph receptors with relevance to cancer, which are further substantiated by exploring the role of the two pseudokinase Eph receptors, EphA10 and EphB6. Throughout this review, we carefully analyse and reconcile the existing/conflicting data in the field, to allow researchers to further the current understanding of Eph receptor signalling.
Collapse
Affiliation(s)
- Lung-Yu Liang
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Onisha Patel
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Peter W Janes
- Olivia Newton-John Cancer Research Institute, 145 Studley Road, Heidelberg, VIC, 3084, Australia
| | - James M Murphy
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia. .,Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia.
| | - Isabelle S Lucet
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia. .,Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia.
| |
Collapse
|
8
|
Teng S, Palmieri A, Maita I, Zheng C, Das G, Park J, Zhou R, Alder J, Thakker-Varia S. Inhibition of EphA/Ephrin-A signaling using genetic and pharmacologic approaches improves recovery following traumatic brain injury in mice. Brain Inj 2019; 33:1385-1401. [DOI: 10.1080/02699052.2019.1641622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Shavonne Teng
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Alicia Palmieri
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Isabella Maita
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Cynthia Zheng
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Gitanjali Das
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
| | - Juyeon Park
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Renping Zhou
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
| | - Janet Alder
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Smita Thakker-Varia
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| |
Collapse
|
9
|
Ghodke-Puranik Y, Imgruet M, Dorschner JM, Shrestha P, McCoy K, Kelly JA, Marion M, Guthridge JM, Langefeld CD, Harley JB, James JA, Sivils KL, Niewold TB. Novel genetic associations with interferon in systemic lupus erythematosus identified by replication and fine-mapping of trait-stratified genome-wide screen. Cytokine 2019; 132:154631. [PMID: 30685201 DOI: 10.1016/j.cyto.2018.12.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/20/2018] [Accepted: 12/24/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND/PURPOSE High serum interferon alpha (IFN-α) is an important heritable phenotype in systemic lupus erythematosus (SLE) which is involved in primary disease pathogenesis. High vs. low levels of IFN-α are associated with disease severity and account for some of the biological heterogeneity between SLE patients. The aim of the study was to replicate and fine-map previously detected genetic associations with serum IFN-α in SLE. METHODS We previously undertook a case-case genome-wide association study of SLE patients stratified by ancestry and extremes of phenotype in serum IFN-α. Single nucleotide polymorphisms (SNPs) in seven loci identified in this screen were selected for follow up in a large independent cohort of 1370 SLE patients (703 European-ancestry, 432 African ancestry, and 235 Amerindian ancestry). Each ancestral background was analyzed separately, and ancestry-informative markers were used to control for ancestry and admixture. RESULTS We find a rare haplotype spanning the promoter region of EFNA5 that is strongly associated with serum IFN-α in both African-American and European-American SLE patients (OR = 3.0, p = 3.7 × 10-6). We also find SNPs in the PPM1H, PTPRM, and NRGN regions associated with IFN-α levels in European-American, Amerindian, and African-American SLE patients respectively. Many of these associations are within regulatory regions of the gene, suggesting an impact on transcription. CONCLUSION This study demonstrates the power of molecular sub-phenotypes to reveal genetic factors involved in complex autoimmune disease. The distinct associations observed in different ancestral backgrounds emphasize the heterogeneity of molecular pathogenesis in SLE.
Collapse
Affiliation(s)
- Yogita Ghodke-Puranik
- Colton Center for Autoimmunity, New York University School of Medicine, New York, NY, USA
| | - Molly Imgruet
- Division of Rheumatology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Kaci McCoy
- Division of Rheumatology, Mayo Clinic, Rochester, MN, USA
| | - Jennifer A Kelly
- Arthritis & Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Miranda Marion
- Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Joel M Guthridge
- Arthritis & Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Carl D Langefeld
- Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - John B Harley
- Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine and Cincinnati VA Medical Center, Cincinnati, OH, USA
| | - Judith A James
- Arthritis & Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Kathy L Sivils
- Arthritis & Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Timothy B Niewold
- Colton Center for Autoimmunity, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
10
|
Spatially modulated ephrinA1:EphA2 signaling increases local contractility and global focal adhesion dynamics to promote cell motility. Proc Natl Acad Sci U S A 2018; 115:E5696-E5705. [PMID: 29866846 DOI: 10.1073/pnas.1719961115] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recent studies have revealed pronounced effects of the spatial distribution of EphA2 receptors on cellular response to receptor activation. However, little is known about molecular mechanisms underlying this spatial sensitivity, in part due to lack of experimental systems. Here, we introduce a hybrid live-cell patterned supported lipid bilayer experimental platform in which the sites of EphA2 activation and integrin adhesion are spatially controlled. Using a series of live-cell imaging and single-molecule tracking experiments, we map the transmission of signals from ephrinA1:EphA2 complexes. Results show that ligand-dependent EphA2 activation induces localized myosin-dependent contractions while simultaneously increasing focal adhesion dynamics throughout the cell. Mechanistically, Src kinase is activated at sites of ephrinA1:EphA2 clustering and subsequently diffuses on the membrane to focal adhesions, where it up-regulates FAK and paxillin tyrosine phosphorylation. EphrinA1:EphA2 signaling triggers multiple cellular responses with differing spatial dependencies to enable a directed migratory response to spatially resolved contact with ephrinA1 ligands.
Collapse
|
11
|
Abstract
This study investigates the role of ephrin receptor A3 (EphA3) in the angiogenesis of Multiple Myeloma (MM) and the effects of a selective target of EphA3 by a specific monoclonal antibody on primary bone marrow endothelial cells (ECs) of MM patients. EphA3 mRNA and protein were evaluated in ECs of MM patients (MMECs), in ECs of patients with monoclonal gammopathies of undetermined significance (MGECs) and in ECs of healthy subjects (control ECs). The effects of EphA3 targeting by mRNA silencing (siRNA) or by the anti EphA3 antibody on the angiogenesis were evaluated. We found that EphA3 is highly expressed in MMECs compared to the other EC types. Loss of function of EphA3 by siRNA significantly inhibited the ability of MMECs to adhere to fibronectin, to migrate and to form tube like structures in vitro, without affecting cell proliferation or viability. In addition, gene expression profiling showed that knockdown of EphA3 down modulated some molecules that regulate adhesion, migration and invasion processes. Interestingly, EphA3 targeting by an anti EphA3 antibody reduced all the MMEC angiogenesis-related functions in vitro. In conclusion, our findings suggest that EphA3 plays an important role in MM angiogenesis.
Collapse
|
12
|
EphA3 targeting reduces in vitro adhesion and invasion and in vivo growth and angiogenesis of multiple myeloma cells. Cell Oncol (Dordr) 2017; 40:483-496. [PMID: 28721629 DOI: 10.1007/s13402-017-0338-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2017] [Indexed: 12/26/2022] Open
Abstract
PURPOSE Multiple myeloma (MM) is a hematologic malignancy characterized by a clonal expansion of plasma cells (PCs) in the bone marrow (BM). Since MM has so far remained incurable, further insights into its pathogenesis and the concomitant identification of new therapeutic targets are urgently needed. The tyrosine kinase receptor EphA3 is known to be involved in various cellular processes including cell viability, cell movement and cell-cell interactions. Recently, EphA3 has emerged as a potential therapeutic target in several hematologic and solid tumors. Here, we aimed to uncover the role of EphA3 in MM. METHODS EphA3 mRNA and protein expression in primary MM bone marrow plasma cells (BMPCs), in MM-derived cell lines and in healthy controls (HCs) was assessed using qRT-PCR, Western blotting and flow cytometry. The effects of siRNA-mediated EphA3 silencing and anti EphA3 antibody (EphA3mAb) treatment on MM PC trafficking and viability were evaluated using in vitro assays. The effects of EphA3mAb treatment were also assessed in two MM-derived mouse xenograft models. RESULTS We found that EphA3 was overexpressed in primary MM BMPCs and MM-derived cell lines compared to HCs. We also found that siRNA-mediated EphA3 silencing and EphA3mAb treatment significantly inhibited the ability of MM PCs to adhere to fibronectin and stromal cells and to invade in vitro, without affecting cell proliferation and viability. Gene expression profiling showed that EphA3 silencing resulted in expression modulation of several molecules that regulate adhesion, migration and invasion processes. Importantly, we found that EphA3mAb treatment significantly inhibited in vivo tumor growth and angiogenesis in two MM-derived mouse xenograft models. CONCLUSIONS Our findings suggest that EphA3 plays an important role in the pathogenesis of MM and provide support for the notion that its targeting may represent a novel therapeutic opportunity for MM.
Collapse
|
13
|
Levesque JP, Winkler IG. Cell Adhesion Molecules in Normal and Malignant Hematopoiesis: from Bench to Bedside. CURRENT STEM CELL REPORTS 2016. [DOI: 10.1007/s40778-016-0066-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Swords RT, Greenberg PL, Wei AH, Durrant S, Advani AS, Hertzberg MS, Jonas BA, Lewis ID, Rivera G, Gratzinger D, Fan AC, Felsher DW, Cortes JE, Watts JM, Yarranton GT, Walling JM, Lancet JE. KB004, a first in class monoclonal antibody targeting the receptor tyrosine kinase EphA3, in patients with advanced hematologic malignancies: Results from a phase 1 study. Leuk Res 2016; 50:123-131. [PMID: 27736729 DOI: 10.1016/j.leukres.2016.09.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/08/2016] [Accepted: 09/10/2016] [Indexed: 01/01/2023]
Abstract
EphA3 is an Ephrin receptor tyrosine kinase that is overexpressed in most hematologic malignancies. We performed a first-in-human multicenter phase I study of the anti-EphA3 monoclonal antibody KB004 in refractory hematologic malignancies in order to determine safety and tolerability, along with the secondary objectives of pharmacokinetics (PK) and pharmacodynamics (PD) assessments, as well as preliminary assessment of efficacy. Patients were enrolled on a dose escalation phase (DEP) initially, followed by a cohort expansion phase (CEP). KB004 was administered by intravenous infusion on days 1, 8, and 15 of each 21-day cycle in escalating doses. A total of 50 patients (AML 39, MDS/MPN 3, MDS 4, DLBCL 1, MF 3) received KB004 in the DEP; an additional 14 patients were treated on the CEP (AML 8, MDS 6). The most common toxicities were transient grade 1 and grade 2 infusion reactions (IRs) in 79% of patients. IRs were dose limiting above 250mg. Sustained exposure exceeding the predicted effective concentration (1ug/mL) and covering the 7-day interval between doses was achieved above 190mg. Responses were observed in patients with AML, MF, MDS/MPN and MDS. In this study, KB004 was well tolerated and clinically active when given as a weekly infusion.
Collapse
Affiliation(s)
- Ronan T Swords
- Leukemia Program, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, FL, United States.
| | | | - Andrew H Wei
- The Alfred Hospital and Monash University, Melbourne, Australia
| | - Simon Durrant
- The Royal Brisbane and Women's Hospital, Brisbane, Australia
| | | | | | - Brian A Jonas
- Department of Internal Medicine, Division of Hematology and Oncology, University of California Davis School of Medicine, UC Davis Comprehensive Cancer Center, United States
| | - Ian D Lewis
- The Royal Adelaide Hospital, Adelaide, Australia
| | | | | | - Alice C Fan
- Stanford Cancer Institute, Stanford, CA, United States
| | | | - Jorge E Cortes
- The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Justin M Watts
- Leukemia Program, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, FL, United States
| | - Geoff T Yarranton
- KaloBios Pharmaceuticals, Inc., South San Francisco, CA, United States
| | - Jackie M Walling
- KaloBios Pharmaceuticals, Inc., South San Francisco, CA, United States
| | - Jeffrey E Lancet
- H Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| |
Collapse
|
15
|
Singh DR, Pasquale EB, Hristova K. A small peptide promotes EphA2 kinase-dependent signaling by stabilizing EphA2 dimers. Biochim Biophys Acta Gen Subj 2016; 1860:1922-8. [PMID: 27281300 DOI: 10.1016/j.bbagen.2016.06.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 05/31/2016] [Accepted: 06/03/2016] [Indexed: 12/01/2022]
Abstract
BACKGROUND The EphA2 receptor tyrosine kinase is known to promote cancer cell malignancy in the absence of activation by ephrin ligands. This behavior depends on high EphA2 phosphorylation on Ser897 and low tyrosine phosphorylation, resulting in increased cell migration and invasiveness. We have previously shown that EphA2 forms dimers in the absence of ephrin ligand binding, and that dimerization of unliganded EphA2 can decrease EphA2 Ser897 phosphorylation. We have also identified a small peptide called YSA, which binds EphA2 and competes with the naturally occurring ephrin ligands. METHODS Here, we investigate the effect of YSA on EphA2 dimer stability and EphA2 function using quantitative FRET techniques, Western blotting, and cell motility assays. RESULTS We find that the YSA peptide stabilizes the EphA2 dimer, increases EphA2 Tyr phosphorylation, and decreases both Ser897 phosphorylation and cell migration. CONCLUSIONS The experiments demonstrate that the small peptide ligand YSA reduces EphA2 Ser897 pro-tumorigenic signaling by stabilizing the EphA2 dimer. GENERAL SIGNIFICANCE This work is a proof-of-principle demonstration that EphA2 homointeractions in the plasma membrane can be pharmacologically modulated to decrease the pro-tumorigenic signaling of the receptor.
Collapse
Affiliation(s)
- Deo R Singh
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 Charles Street, Baltimore, MD 21218, United States
| | - Elena B Pasquale
- Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Road, La Jolla, San Diego, CA 92037, United States
| | - Kalina Hristova
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 Charles Street, Baltimore, MD 21218, United States.
| |
Collapse
|
16
|
Singh DR, Cao Q, King C, Salotto M, Ahmed F, Zhou XY, Pasquale EB, Hristova K. Unliganded EphA3 dimerization promoted by the SAM domain. Biochem J 2015; 471:101-9. [PMID: 26232493 PMCID: PMC4692061 DOI: 10.1042/bj20150433] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 07/28/2015] [Accepted: 07/31/2015] [Indexed: 01/03/2023]
Abstract
The erythropoietin-producing hepatocellular carcinoma A3 (EphA3) receptor tyrosine kinase (RTK) regulates morphogenesis during development and is overexpressed and mutated in a variety of cancers. EphA3 activation is believed to follow a 'seeding mechanism' model, in which ligand binding to the monomeric receptor acts as a trigger for signal-productive receptor clustering. We study EphA3 lateral interactions on the surface of live cells and we demonstrate that EphA3 forms dimers in the absence of ligand binding. We further show that these dimers are stabilized by interactions involving the EphA3 sterile α-motif (SAM) domain. The discovery of unliganded EphA3 dimers challenges the current understanding of the chain of EphA3 activation events and suggests that EphA3 may follow the 'pre-formed dimer' model of activation known to be relevant for other receptor tyrosine kinases. The present work also establishes a new role for the SAM domain in promoting Eph receptor lateral interactions and signalling on the cell surface.
Collapse
Affiliation(s)
- Deo R Singh
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21212, U.S.A
| | - QingQing Cao
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21212, U.S.A
| | - Christopher King
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD 21212, U.S.A
| | - Matt Salotto
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21212, U.S.A
| | - Fozia Ahmed
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21212, U.S.A
| | - Xiang Yang Zhou
- Vaccine Center, The Wistar Institute, Philadelphia, PA 19104, U.S.A
| | - Elena B Pasquale
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, U.S.A
| | - Kalina Hristova
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21212, U.S.A. Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD 21212, U.S.A.
| |
Collapse
|
17
|
Singh DR, Ahmed F, King C, Gupta N, Salotto M, Pasquale EB, Hristova K. EphA2 Receptor Unliganded Dimers Suppress EphA2 Pro-tumorigenic Signaling. J Biol Chem 2015; 290:27271-27279. [PMID: 26363067 DOI: 10.1074/jbc.m115.676866] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Indexed: 01/08/2023] Open
Abstract
The EphA2 receptor tyrosine kinase promotes cell migration and cancer malignancy through a ligand- and kinase-independent distinctive mechanism that has been linked to high Ser-897 phosphorylation and low tyrosine phosphorylation. Here, we demonstrate that EphA2 forms dimers in the plasma membrane of HEK293T cells in the absence of ephrin ligand binding, suggesting that the current seeding mechanism model of EphA2 activation is incomplete. We also characterize a dimerization-deficient EphA2 mutant that shows enhanced ability to promote cell migration, concomitant with increased Ser-897 phosphorylation and decreased tyrosine phosphorylation compared with EphA2 wild type. Our data reveal a correlation between unliganded dimerization and tumorigenic signaling and suggest that EphA2 pro-tumorigenic activity is mediated by the EphA2 monomer. Thus, a therapeutic strategy that aims at the stabilization of EphA2 dimers may be beneficial for the treatment of cancers linked to EphA2 overexpression.
Collapse
Affiliation(s)
- Deo R Singh
- Department of Materials Science and Engineering, The Johns Hopkins University, Baltimore, Maryland 21218
| | - Fozia Ahmed
- Department of Materials Science and Engineering, The Johns Hopkins University, Baltimore, Maryland 21218
| | - Christopher King
- Department of Program in Molecular Biophysics, The Johns Hopkins University, Baltimore, Maryland 21218 and
| | - Nisha Gupta
- Department of Materials Science and Engineering, The Johns Hopkins University, Baltimore, Maryland 21218
| | - Matt Salotto
- Department of Materials Science and Engineering, The Johns Hopkins University, Baltimore, Maryland 21218
| | - Elena B Pasquale
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, San Diego, California 92037
| | - Kalina Hristova
- Department of Materials Science and Engineering, The Johns Hopkins University, Baltimore, Maryland 21218; Department of Program in Molecular Biophysics, The Johns Hopkins University, Baltimore, Maryland 21218 and.
| |
Collapse
|
18
|
Ubiquitination switches EphA2 vesicular traffic from a continuous safeguard to a finite signalling mode. Nat Commun 2015; 6:8047. [PMID: 26292967 PMCID: PMC4560775 DOI: 10.1038/ncomms9047] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 07/11/2015] [Indexed: 01/15/2023] Open
Abstract
Autocatalytic phosphorylation of receptor tyrosine kinases (RTKs) enables diverse, context-dependent responses to extracellular signals but comes at the price of autonomous, ligand-independent activation. Using a conformational biosensor that reports on the kinase activity of the cell guidance ephrin receptor type-A (EphA2) in living cells, we observe that autonomous EphA2 activation is suppressed by vesicular recycling and dephosphorylation by protein tyrosine phosphatases 1B (PTP1B) near the pericentriolar recycling endosome. This spatial segregation of catalytically superior PTPs from RTKs at the plasma membrane is essential to preserve ligand responsiveness. Ligand-induced clustering, on the other hand, promotes phosphorylation of a c-Cbl docking site and ubiquitination of the receptor, thereby redirecting it to the late endosome/lysosome. We show that this switch from cyclic to unidirectional receptor trafficking converts a continuous suppressive safeguard mechanism into a transient ligand-responsive signalling mode.
Collapse
|
19
|
Aharon R, Janes PW, Burgess AW, Hamza K, Klebaner F, Lackmann M. A mathematical model for eph/ephrin-directed segregation of intermingled cells. PLoS One 2014; 9:e111803. [PMID: 25436892 PMCID: PMC4249859 DOI: 10.1371/journal.pone.0111803] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 10/04/2014] [Indexed: 11/19/2022] Open
Abstract
Eph receptors, the largest family of receptor tyrosine kinases, control cell-cell adhesion/de-adhesion, cell morphology and cell positioning through interaction with cell surface ephrin ligands. Bi-directional signalling from the Eph and ephrin complexes on interacting cells have a significant role in controlling normal tissue development and oncogenic tissue patterning. Eph-mediated tissue patterning is based on the fine-tuned balance of adhesion and de-adhesion reactions between distinct Eph- and ephrin-expressing cell populations, and adhesion within like populations (expressing either Eph or ephrin). Here we develop a stochastic, Lagrangian model that is based on Eph/ephrin biology: incorporating independent Brownian motion to describe cell movement and a deterministic term (the drift term) to represent repulsive and adhesive interactions between neighbouring cells. Comparison between the experimental and computer simulated Eph/ephrin cell patterning events shows that the model recapitulates the dynamics of cell-cell segregation and cell cluster formation. Moreover, by modulating the term for Eph/ephrin-mediated repulsion, the model can be tuned to match the actual behaviour of cells with different levels of Eph expression or activity. Together the results of our experiments and modelling suggest that the complexity of Eph/ephrin signalling mechanisms that control cell-cell interactions can be described well by a mathematical model with a single term balancing adhesion and de-adhesion between interacting cells. This model allows reliable prediction of Eph/ephrin-dependent control of cell patterning behaviour.
Collapse
Affiliation(s)
- Rotem Aharon
- School of Mathematical Sciences, Monash University, Clayton, Victoria, Australia
- * E-mail: (RA); (PWJ)
| | - Peter W. Janes
- Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria, Australia
- * E-mail: (RA); (PWJ)
| | - Anthony W. Burgess
- Structural Biology Division, The Walter and Eliza Hall Institute, Parkville, Victoria, Australia
| | - Kais Hamza
- School of Mathematical Sciences, Monash University, Clayton, Victoria, Australia
| | - Fima Klebaner
- School of Mathematical Sciences, Monash University, Clayton, Victoria, Australia
| | - Martin Lackmann
- Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
20
|
Scott AM, Tiganis T. Pioneer of Eph biology and therapeutics: Martin Lackmann (1956-2014). Growth Factors 2014; 32:171-3. [PMID: 25401411 DOI: 10.3109/08977194.2014.983226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Andrew M Scott
- Ludwig Institute for Cancer Research , Melbourne, VIC , Australia
| | | |
Collapse
|
21
|
Abstract
Eph receptor tyrosine kinases control cell-cell interactions during normal and oncogenic development, and are implicated in a range of processes including angiogenesis, stem cell maintenance and metastasis. They are thus of great interest as targets for cancer therapy. EphA3, originally isolated from leukemic and melanoma cells, is presently one of the most promising therapeutic targets, with multiple tumor-promoting roles in a variety of cancer types. This review focuses on EphA3, its functions in controlling cellular behavior, both in normal and pathological development, and most particularly in cancer.
Collapse
Affiliation(s)
- Peter W Janes
- Department of Biochemistry and Molecular Biology, Monash University , Victoria , Australia and
| | | | | | | | | | | |
Collapse
|
22
|
To C, Farnsworth RH, Vail ME, Chheang C, Gargett CE, Murone C, Llerena C, Major AT, Scott AM, Janes PW, Lackmann M. Hypoxia-controlled EphA3 marks a human endometrium-derived multipotent mesenchymal stromal cell that supports vascular growth. PLoS One 2014; 9:e112106. [PMID: 25420155 PMCID: PMC4242616 DOI: 10.1371/journal.pone.0112106] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 10/13/2014] [Indexed: 12/21/2022] Open
Abstract
Eph and ephrin proteins are essential cell guidance cues that orchestrate cell navigation and control cell-cell interactions during developmental tissue patterning, organogenesis and vasculogenesis. They have been extensively studied in animal models of embryogenesis and adult tissue regeneration, but less is known about their expression and function during human tissue and organ regeneration. We discovered the hypoxia inducible factor (HIF)-1α-controlled expression of EphA3, an Eph family member with critical functions during human tumour progression, in the vascularised tissue of regenerating human endometrium and on isolated human endometrial multipotent mesenchymal stromal cells (eMSCs), but not in other highly vascularised human organs. EphA3 affinity-isolation from human biopsy tissue yielded multipotent CD29+/CD73+/CD90+/CD146+ eMSCs that can be clonally propagated and respond to EphA3 agonists with EphA3 phosphorylation, cell contraction, cell-cell segregation and directed cell migration. EphA3 silencing significantly inhibited the ability of transplanted eMSCs to support neovascularisation in immunocompromised mice. In accord with established roles of Eph receptors in mediating interactions between endothelial and perivascular stromal cells during mouse development, our findings suggest that HIF-1α-controlled expression of EphA3 on human MSCs functions during the hypoxia-initiated early stages of adult blood vessel formation.
Collapse
MESH Headings
- Adult
- Animals
- Blotting, Western
- Cell Hypoxia
- Cells, Cultured
- Endometrium/cytology
- Female
- Gene Expression
- Heterografts/blood supply
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Male
- Mesenchymal Stem Cell Transplantation/methods
- Mesenchymal Stem Cells/metabolism
- Mice, Inbred BALB C
- Mice, Nude
- Microscopy, Fluorescence
- Multipotent Stem Cells/metabolism
- Multipotent Stem Cells/transplantation
- Neovascularization, Physiologic
- RNA Interference
- Receptor, EphA3/genetics
- Receptor, EphA3/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Transplantation, Heterologous
- Young Adult
Collapse
Affiliation(s)
- Catherine To
- Department of Biochemistry & Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | - Rae H. Farnsworth
- Department of Biochemistry & Molecular Biology, Monash University, Melbourne, Victoria, Australia
- * E-mail:
| | - Mary E. Vail
- Department of Biochemistry & Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | - Chanly Chheang
- Department of Biochemistry & Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | | | - Carmel Murone
- Ludwig Institute for Cancer Research, Olivia Newton-John Cancer & Wellness Centre, Melbourne, Victoria, Australia
| | - Carmen Llerena
- Department of Biochemistry & Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | - Andrew T. Major
- Department of Anatomy & Developmental Biology, Monash University, Melbourne, Victoria, Australia
| | - Andrew M. Scott
- Ludwig Institute for Cancer Research, Olivia Newton-John Cancer & Wellness Centre, Melbourne, Victoria, Australia
| | - Peter W. Janes
- Department of Biochemistry & Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | - Martin Lackmann
- Department of Biochemistry & Molecular Biology, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
23
|
Gucciardo E, Sugiyama N, Lehti K. Eph- and ephrin-dependent mechanisms in tumor and stem cell dynamics. Cell Mol Life Sci 2014; 71:3685-710. [PMID: 24794629 PMCID: PMC11113620 DOI: 10.1007/s00018-014-1633-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 03/31/2014] [Accepted: 04/17/2014] [Indexed: 01/17/2023]
Abstract
The erythropoietin-producing hepatocellular (Eph) receptors comprise the largest family of receptor tyrosine kinases (RTKs). Initially regarded as axon-guidance and tissue-patterning molecules, Eph receptors have now been attributed with various functions during development, tissue homeostasis, and disease pathogenesis. Their ligands, ephrins, are synthesized as membrane-associated molecules. At least two properties make this signaling system unique: (1) the signal can be simultaneously transduced in the receptor- and the ligand-expressing cell, (2) the signaling outcome through the same molecules can be opposite depending on cellular context. Moreover, shedding of Eph and ephrin ectodomains as well as ligand-dependent and -independent receptor crosstalk with other RTKs, proteases, and adhesion molecules broadens the repertoire of Eph/ephrin functions. These integrated pathways provide plasticity to cell-microenvironment communication in varying tissue contexts. The complex molecular networks and dynamic cellular outcomes connected to the Eph/ephrin signaling in tumor-host communication and stem cell niche are the main focus of this review.
Collapse
Affiliation(s)
- Erika Gucciardo
- Research Programs Unit, Genome-Scale Biology, Biomedicum Helsinki, University of Helsinki, P.O.B. 63, 00014 Helsinki, Finland
| | - Nami Sugiyama
- Research Programs Unit, Genome-Scale Biology, Biomedicum Helsinki, University of Helsinki, P.O.B. 63, 00014 Helsinki, Finland
- Department of Biosystems Science and Bioengineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Kaisa Lehti
- Research Programs Unit, Genome-Scale Biology, Biomedicum Helsinki, University of Helsinki, P.O.B. 63, 00014 Helsinki, Finland
| |
Collapse
|
24
|
Barton WA, Dalton AC, Seegar TCM, Himanen JP, Nikolov DB. Tie2 and Eph receptor tyrosine kinase activation and signaling. Cold Spring Harb Perspect Biol 2014; 6:cshperspect.a009142. [PMID: 24478383 DOI: 10.1101/cshperspect.a009142] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The Eph and Tie cell surface receptors mediate a variety of signaling events during development and in the adult organism. As other receptor tyrosine kinases, they are activated on binding of extracellular ligands and their catalytic activity is tightly regulated on multiple levels. The Eph and Tie receptors display some unique characteristics, including the requirement of ligand-induced receptor clustering for efficient signaling. Interestingly, both Ephs and Ties can mediate different, even opposite, biological effects depending on the specific ligand eliciting the response and on the cellular context. Here we discuss the structural features of these receptors, their interactions with various ligands, as well as functional implications for downstream signaling initiation. The Eph/ephrin structures are already well reviewed and we only provide a brief overview on the initial binding events. We go into more detail discussing the Tie-angiopoietin structures and recognition.
Collapse
Affiliation(s)
- William A Barton
- Department of Biochemistry and Molecular Biology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298
| | | | | | | | | |
Collapse
|
25
|
Keane N, Freeman C, Swords R, Giles FJ. EPHA3 as a novel therapeutic target in the hematological malignancies. Expert Rev Hematol 2014; 5:325-40. [DOI: 10.1586/ehm.12.19] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
26
|
Fagotto F, Winklbauer R, Rohani N. Ephrin-Eph signaling in embryonic tissue separation. Cell Adh Migr 2014; 8:308-26. [PMID: 25482630 PMCID: PMC4594459 DOI: 10.4161/19336918.2014.970028] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 08/19/2014] [Accepted: 08/25/2014] [Indexed: 01/19/2023] Open
Abstract
The physical separation of the embryonic regions that give rise to the tissues and organs of multicellular organisms is a fundamental aspect of morphogenesis. Pioneer experiments by Holtfreter had shown that embryonic cells can sort based on "tissue affinities," which have long been considered to rely on differences in cell-cell adhesion. However, vertebrate embryonic tissues also express a variety of cell surface cues, in particular ephrins and Eph receptors, and there is now firm evidence that these molecules are systematically used to induce local repulsion at contacts between different cell types, efficiently preventing mixing of adjacent cell populations.
Collapse
Affiliation(s)
| | - Rudolf Winklbauer
- Dpt. of Cell and Systems Biology; University of Toronto; Toronto, Canada
| | - Nazanin Rohani
- Dpt. of Biology; McGill University; Montreal, Quebec, Canada
| |
Collapse
|
27
|
|
28
|
Proteins related to early changes in carcinogenesis of hepatic oval cells after treatment with methylnitronitrosoguanidine. ACTA ACUST UNITED AC 2013; 66:139-46. [PMID: 24360059 DOI: 10.1016/j.etp.2013.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 06/19/2013] [Accepted: 11/25/2013] [Indexed: 12/26/2022]
Abstract
Hepatic oval cells are considered as facultative progenitor/stem cells of liver and able to differentiate into either hepatocytes or biliary epithelial cells. The transformed oval cells by carcinogen possess potential to develop carcinomas in animal models. In order to better understand the molecular mechanism in carcinogenetic process, we used a proteomic approach to assess the early changes in protein expression of oval cells (OC3W3-15) initiated by methylnitronitrosoguanidine (MNNG). Meanwhile, we compared cell biologic characteristics of the MNNG treated OC3W3-15 cells and control oval cells by electron microscopy, flow cytometry, karyotype and soft agar assay. The mRNA levels of GGT and GSTP1 determined by real-time PCR were also detected in both cell lines. Our results showed that MNNG-treated OC3W3-15 cells exhibited characteristics of malignant transformation, including growth rate, chromosomal aberrations, abnormal DNA content, and the ability to form colonies. The cells expressed higher levels of the tumor marker AFP, GGT and GSTP1 mRNA than that of control cells. Significant changes of several proteins involved in the malignant transformation process, including cell cycle related proteins, proteins involved in organism development and cell differentiation, are found in OC3W3-15 cells. The proteins may provide early affection in malignant transformation of hepatic oval cells, and yield further insight into mechanism of carcinogenesis of hepatocellular carcinoma.
Collapse
|
29
|
Lisabeth EM, Falivelli G, Pasquale EB. Eph receptor signaling and ephrins. Cold Spring Harb Perspect Biol 2013; 5:5/9/a009159. [PMID: 24003208 DOI: 10.1101/cshperspect.a009159] [Citation(s) in RCA: 301] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The Eph receptors are the largest of the RTK families. Like other RTKs, they transduce signals from the cell exterior to the interior through ligand-induced activation of their kinase domain. However, the Eph receptors also have distinctive features. Instead of binding soluble ligands, they generally mediate contact-dependent cell-cell communication by interacting with surface-associated ligands-the ephrins-on neighboring cells. Eph receptor-ephrin complexes emanate bidirectional signals that affect both receptor- and ephrin-expressing cells. Intriguingly, ephrins can also attenuate signaling by Eph receptors coexpressed in the same cell. Additionally, Eph receptors can modulate cell behavior independently of ephrin binding and kinase activity. The Eph/ephrin system regulates many developmental processes and adult tissue homeostasis. Its abnormal function has been implicated in various diseases, including cancer. Thus, Eph receptors represent promising therapeutic targets. However, more research is needed to better understand the many aspects of their complex biology that remain mysterious.
Collapse
Affiliation(s)
- Erika M Lisabeth
- Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|
30
|
Abstract
Cancer cells rely on intercellular communication throughout the different stages of their transformation and progression into metastasis. They do so by co-opting different processes such as cell-cell junctions, growth factors, receptors, and vesicular release. Initially characterized in neuronal and vascular tissues, Ephs and Ephrins, the largest family of receptor tyrosine kinases, comprised of two classes (i.e., A and B types), is increasingly scrutinized by cancer researchers. These proteins possess the particular features of both the receptors and ligands being membrane-bound which, via mandatory direct cell-cell interactions, undergo a bidirectional signal transduction initiated from both the receptor and the ligand. Following cell-cell interactions, Ephs/Ephrins behave as guidance molecules which trigger both repulsive and attractive signals, so as to direct the movement of cells through their immediate microenvironment. They also direct processes which include sorting and positioning and cytoskeleton rearrangements, thus making them perfect candidates for the control of the metastatic process. In fact, the role of Ephs and Ephrins in cancer progression has been demonstrated for many of the family members and they, surprisingly, have both tumor promoter and suppressor functions in different cellular contexts. They are also able to coordinate between multiple processes including cell survival, proliferation, differentiation, adhesion, motility, and invasion. This review is an attempt to summarize the data available on these Ephs/Ephrins' biological functions which contribute to the onset of aggressive cancers. I will also provide an overview of the factors which could explain the functional differences demonstrated by Ephs and Ephrins at different stages of tumor progression and whose elucidation is warranted for any future therapeutic targeting of this signaling pathway in cancer metastasis.
Collapse
|
31
|
Nievergall E, Lackmann M, Janes PW. Eph-dependent cell-cell adhesion and segregation in development and cancer. Cell Mol Life Sci 2012; 69:1813-42. [PMID: 22204021 PMCID: PMC11114713 DOI: 10.1007/s00018-011-0900-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 11/06/2011] [Accepted: 11/28/2011] [Indexed: 01/23/2023]
Abstract
Numerous studies attest to essential roles for Eph receptors and their ephrin ligands in controlling cell positioning and tissue patterning during normal and oncogenic development. These studies suggest multiple, sometimes contradictory, functions of Eph-ephrin signalling, which under different conditions can promote either spreading and cell-cell adhesion or cytoskeletal collapse, cell rounding, de-adhesion and cell-cell segregation. A principle determinant of the balance between these two opposing responses is the degree of receptor/ligand clustering and activation. This equilibrium is likely altered in cancers and modulated by somatic mutations of key Eph family members that have emerged as candidate cancer markers in recent profiling studies. In addition, cross-talk amongst Ephs and with other signalling pathways significantly modulates cell-cell adhesion, both between and within Eph- and ephrin-expressing cell populations. This review summarises our current understanding of how Eph receptors control cell adhesion and morphology, and presents examples demonstrating the importance of these events in normal development and cancer.
Collapse
Affiliation(s)
- Eva Nievergall
- Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, VIC 3800 Australia
- Present Address: Haematology Department, SA Pathology, Frome Road, Adelaide, SA 5000 Australia
| | - Martin Lackmann
- Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, VIC 3800 Australia
| | - Peter W. Janes
- Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, VIC 3800 Australia
| |
Collapse
|
32
|
Lisabeth EM, Fernandez C, Pasquale EB. Cancer somatic mutations disrupt functions of the EphA3 receptor tyrosine kinase through multiple mechanisms. Biochemistry 2012; 51:1464-75. [PMID: 22242939 DOI: 10.1021/bi2014079] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The Eph receptor tyrosine kinases make up an important family of signal transduction molecules that control many cellular processes, including cell adhesion and movement, cell shape, and cell growth. All of these are important aspects of cancer progression, but the relationship between Eph receptors and cancer is complex and not fully understood. Genetic screens of tumor specimens from cancer patients have revealed somatic mutations in many Eph receptors. The most highly mutated Eph receptor is EphA3, but its functional role in cancer is currently not well established. Here we show that many EphA3 mutations identified in lung, colorectal, and hepatocellular cancers, melanoma, and glioblastoma impair kinase activity or ephrin ligand binding and/or decrease the level of receptor cell surface localization. These results suggest that EphA3 has ephrin- and kinase-dependent tumor suppressing activities, which are disrupted by somatic cancer mutations.
Collapse
Affiliation(s)
- Erika M Lisabeth
- Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, United States
| | | | | |
Collapse
|
33
|
Concepts and consequences of Eph receptor clustering. Semin Cell Dev Biol 2012; 23:43-50. [PMID: 22261642 DOI: 10.1016/j.semcdb.2012.01.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Accepted: 01/04/2012] [Indexed: 12/31/2022]
Abstract
Polymeric receptor-ligand complexes between interacting Eph and ephrin-expressing cells are regarded as dynamic intercellular signalling scaffolds that control cell-to-cell contact: the resulting Eph-ephrin signalling clusters function as positional cues that facilitate cell navigation and tissue patterning during normal and oncogenic development. The considerable complexity of this task, coordinating a multitude of cell movements and cellular interactions, is achieved by accurate translation of spatial information from Eph and ephrin expression gradients into fine-tuned changes in cell-cell adhesion and position. Here we review emerging evidence suggesting that the required combinatorial diversity is not only achieved by the large number of possible Eph-ephrin interactions and selective use of Eph forward and ephrin reverse signals, but in particular through the composition and signal capacity of Eph-ephrin clusters, which is adjusted dynamically to reflect overall Eph and ephrin surface densities on interacting cells. Fine-tuning is provided through multi-layered cluster assembly, where homo- and heterotypic Eph and ephrin interactions define the composition - whilst intracellular signalling feedbacks determine the size and lifetime - of signalling clusters.
Collapse
|
34
|
Singh A, Winterbottom E, Daar IO. Eph/ephrin signaling in cell-cell and cell-substrate adhesion. Front Biosci (Landmark Ed) 2012; 17:473-97. [PMID: 22201756 DOI: 10.2741/3939] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cell-cell and cell-matrix adhesion are critical processes for the formation and maintenance of tissue patterns during development, as well as control of invasion and metastasis of cancer cells. Although great strides have been made regarding our understanding of the processes that play a role in cell adhesion and cell movement, the precise mechanisms by which diverse signaling events regulate cell and tissue architecture are poorly understood. One group of cell surface molecules, Eph receptor tyrosine kinases, and their membrane-bound ligands, ephrins, are key regulators in these processes. It is the ability of Eph/ephrin signaling pathways to regulate cell-cell adhesion and motility that establishes this family as a formidable system for regulating tissue separation and morphogenesis. Moreover, the de-regulation of this signaling system is linked to the promotion of more aggressive and metastatic tumors in humans.
Collapse
Affiliation(s)
- Arvinder Singh
- Laboratory of Cell and Developmental Signaling, National Cancer Institute-Frederick, Frederick, Maryland 21702, USA
| | | | | |
Collapse
|
35
|
Stark DA, Karvas RM, Siegel AL, Cornelison DDW. Eph/ephrin interactions modulate muscle satellite cell motility and patterning. Development 2011; 138:5279-89. [PMID: 22071104 DOI: 10.1242/dev.068411] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
During development and regeneration, directed migration of cells, including neural crest cells, endothelial cells, axonal growth cones and many types of adult stem cells, to specific areas distant from their origin is necessary for their function. We have recently shown that adult skeletal muscle stem cells (satellite cells), once activated by isolation or injury, are a highly motile population with the potential to respond to multiple guidance cues, based on their expression of classical guidance receptors. We show here that, in vivo, differentiated and regenerating myofibers dynamically express a subset of ephrin guidance ligands, as well as Eph receptors. This expression has previously only been examined in the context of muscle-nerve interactions; however, we propose that it might also play a role in satellite cell-mediated muscle repair. Therefore, we investigated whether Eph-ephrin signaling would produce changes in satellite cell directional motility. Using a classical ephrin 'stripe' assay, we found that satellite cells respond to a subset of ephrins with repulsive behavior in vitro; patterning of differentiating myotubes is also parallel to ephrin stripes. This behavior can be replicated in a heterologous in vivo system, the hindbrain of the developing quail, in which neural crest cells are directed in streams to the branchial arches and to the forelimb of the developing quail, where presumptive limb myoblasts emigrate from the somite. We hypothesize that guidance signaling might impact multiple steps in muscle regeneration, including escape from the niche, directed migration to sites of injury, cell-cell interactions among satellite cell progeny, and differentiation and patterning of regenerated muscle.
Collapse
Affiliation(s)
- Danny A Stark
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | | | | | | |
Collapse
|
36
|
Maddigan A, Truitt L, Arsenault R, Freywald T, Allonby O, Dean J, Narendran A, Xiang J, Weng A, Napper S, Freywald A. EphB receptors trigger Akt activation and suppress Fas receptor-induced apoptosis in malignant T lymphocytes. THE JOURNAL OF IMMUNOLOGY 2011; 187:5983-94. [PMID: 22039307 DOI: 10.4049/jimmunol.1003482] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Treatment of hematopoietic malignancies often requires allogeneic bone marrow transplantation, and the subsequent graft-versus-leukemia response is crucial for the elimination of malignant cells. Cytotoxic T lymphocytes and NK cells responsible for the immunoelimination express Fas ligand and strongly rely on the induction of Fas receptor-mediated apoptosis for their action. Although cancer cells are removed successfully by graft-versus-leukemia reactions in myeloid malignancies, their efficiency is low in T cell leukemias. This may be partially because of the ability of malignant T cells to escape apoptosis. Our work shows that Eph family receptor EphB3 is consistently expressed by malignant T lymphocytes, most frequently in combination with EphB6, and that stimulation with their common ligands, ephrin-B1 and ephrin-B2, strongly suppresses Fas-induced apoptosis in these cells. This effect is associated with Akt activation and with the inhibition of the Fas receptor-initiated caspase proteolytic cascade. Akt proved to be crucial for the prosurvival response, because inhibition of Akt, but not of other molecules central to T cell biology, including Src kinases, MEK1 and MEK2, blocked the antiapoptotic effect. Overall, this demonstrates a new role for EphB receptors in the protection of malignant T cells from Fas-induced apoptosis through Akt engagement and prevention of caspase activation. Because Fas-triggered apoptosis is actively involved in the graft-versus-leukemia response and cytotoxic T cells express ephrin-Bs, our observations suggest that EphB receptors are likely to support immunoevasivenes of T cell malignancies and may represent promising targets for therapies, aiming to enhance immunoelimination of cancerous T cells.
Collapse
Affiliation(s)
- Alison Maddigan
- Department of Chemistry and Biochemistry, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Miao H, Wang B. EphA receptor signaling--complexity and emerging themes. Semin Cell Dev Biol 2011; 23:16-25. [PMID: 22040915 DOI: 10.1016/j.semcdb.2011.10.013] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 10/17/2011] [Indexed: 01/09/2023]
Abstract
The impact of Eph and ephrin signaling on cell behavior is complex and highly context dependent. Forward signaling initiated by Eph receptor activation and reverse signaling initiated by ephrin activation often mediate opposite effects. The apparent ligand-independent functions of Eph receptors recognized recently add another layer of complexity. This review will attempt to sort out the information generated recently on signaling by the A subfamily of Eph receptors and ephrin ligands. We will focus on EphA/ephrin-A signaling in the context of several physiological and disease processes, where new progresses have been made lately and unifying themes are emerging amid previous confusions. For more comprehensive survey of literature on Eph/ephrin signaling pathways and networks, readers are referred to outstanding reviews both in this volume and in other recent publications.
Collapse
Affiliation(s)
- Hui Miao
- Rammelkamp Center for Research, MetroHealth Campus, Case Western Reserve University School of Medicine, 2500 MetroHealth Drive, Cleveland, OH 44109, USA.
| | | |
Collapse
|
38
|
Eph/ephrin signaling in epidermal differentiation and disease. Semin Cell Dev Biol 2011; 23:92-101. [PMID: 22040910 DOI: 10.1016/j.semcdb.2011.10.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 10/17/2011] [Indexed: 01/09/2023]
Abstract
Eph receptor tyrosine kinases mediate cell-cell communication by interacting with ephrin ligands residing on adjacent cell surfaces. In doing so, these juxtamembrane signaling complexes provide important contextual information about the cellular microenvironment that helps orchestrate tissue morphogenesis and maintain homeostasis. Eph/ephrin signaling has been implicated in various aspects of mammalian skin physiology, with several members of this large family of receptor tyrosine kinases and their ligands present in the epidermis, hair follicles, sebaceous glands, and underlying dermis. This review focuses on the emerging role of Eph receptors and ephrins in epidermal keratinocytes where they can modulate proliferation, migration, differentiation, and death. The activation of Eph receptors by ephrins at sites of cell-cell contact also appears to play a key role in the maturation of intercellular junctional complexes as keratinocytes move out of the basal layer and differentiate in the suprabasal layers of this stratified, squamous epithelium. Furthermore, alterations in the epidermal Eph/ephrin axis have been associated with cutaneous malignancy, wound healing defects and inflammatory skin conditions. These collective observations suggest that the Eph/ephrin cell-cell communication pathway may be amenable to therapeutic intervention for the purpose of restoring epidermal tissue homeostasis and integrity in dermatological disorders.
Collapse
|
39
|
Wang B. Cancer cells exploit the Eph-ephrin system to promote invasion and metastasis: tales of unwitting partners. Sci Signal 2011; 4:pe28. [PMID: 21632467 DOI: 10.1126/scisignal.2002153] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The Eph subfamily of receptor tyrosine kinases and their membrane-anchored ephrin ligands mediate cell-cell contact signaling and are versatile regulators of cell migration and tissue patterning, which are often exploited by cancer cells during tumor progression. New evidence shows that prostate cancer cells use EphA2 and EphA4 receptors and ephrin-As to mediate homotypic contact inhibition of locomotion while co-opting ephrin-B2 on stromal cells through EphB3 and EphB4 receptors to propel migration. These processes could enhance cancer cell scattering from the primary tumor mass and promote unimpeded migration and invasion through the stromal space. The results provide another example in which Eph receptors are converted into pro-oncogenic proteins, contrary to their often-described tumor suppressor roles in normal tissues.
Collapse
Affiliation(s)
- Bingcheng Wang
- Rammelkamp Center for Research and Department of Medicine, MetroHealth Campus, Case Western Reserve University School of Medicine, 2500 MetroHealth Drive, Cleveland, OH 44109, USA.
| |
Collapse
|
40
|
Xu Y, Karlsson A, Johansson M. Identification of genes associated to 2',2'-difluorodeoxycytidine resistance in HeLa cells with a lentiviral short-hairpin RNA library. Biochem Pharmacol 2011; 82:210-5. [PMID: 21565176 DOI: 10.1016/j.bcp.2011.04.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 04/22/2011] [Accepted: 04/22/2011] [Indexed: 01/28/2023]
Abstract
Resistance to the cytotoxic nucleoside analog 2',2'-diflurodeoxycytidine (dFdC) used in cancer chemotherapy is a frequent cause of treatment failure. Although several molecular mechanisms that cause resistance to dFdC have been identified, many cells acquire dFdC resistance by unknown mechanisms. We have used a short-hairpin RNA (shRNA) library in a lentiviral vector that contains ≈5000 shRNAs designed against genes encoding kinases, phosphatases, tumor suppressors and DNA binding proteins to perform a loss-of-function screen to identify genes causing dFdC resistance in HeLa cells when their expression is decreased. 155 cell lines with shRNA expression were isolated from the screen and several of these cell lines were in repeated experiments verified to show resistance to dFdC compared to wild-type cells. DNA sequencing of the shRNA vector integrated in the cellular genome was used to determine the shRNA expressed in the cells and the putative target genes were identified by sequence analysis. 16 cell lines with putative target genes previously not associated to dFdC resistance were identified. Chemically synthesized short-interfering RNAs (siRNAs) directed against the target genes were used to verify that the decreased expression of the identified genes caused dFdC resistance. Using these techniques we identified two splicing factor proteins, serine/arginine-rich splicing factor 3 (SRSF3) and splicing factor proline/glutamine-rich (SFPQ), that induced resistance to dFdC as well as other pyrimidine nucleoside analogs when their expression was decreased in HeLa cells.
Collapse
Affiliation(s)
- Yunjian Xu
- Department of Laboratory Medicine, Clinical Microbiology F68, Karolinska Institute, Karolinska University Hospital Huddinge, SE-14186 Stockholm, Sweden
| | | | | |
Collapse
|
41
|
Nievergall E, Janes PW, Stegmayer C, Vail ME, Haj FG, Teng SW, Neel BG, Bastiaens PI, Lackmann M. PTP1B regulates Eph receptor function and trafficking. ACTA ACUST UNITED AC 2010; 191:1189-203. [PMID: 21135139 PMCID: PMC3002030 DOI: 10.1083/jcb.201005035] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Changes in protein tyrosine phosphatase 1B expression affect duration and amplitude of EphA3 phosphorylation and cell surface concentration. Eph receptors orchestrate cell positioning during normal and oncogenic development. Their function is spatially and temporally controlled by protein tyrosine phosphatases (PTPs), but the underlying mechanisms are unclear and the identity of most regulatory PTPs are unknown. We demonstrate here that PTP1B governs signaling and biological activity of EphA3. Changes in PTP1B expression significantly affect duration and amplitude of EphA3 phosphorylation and biological function, whereas confocal fluorescence lifetime imaging microscopy (FLIM) reveals direct interactions between PTP1B and EphA3 before ligand-stimulated receptor internalization and, subsequently, on endosomes. Moreover, overexpression of wild-type (w/t) PTP1B and the [D-A] substrate–trapping mutant decelerate ephrin-induced EphA3 trafficking in a dose-dependent manner, which reveals its role in controlling EphA3 cell surface concentration. Furthermore, we provide evidence that in areas of Eph/ephrin-mediated cell–cell contacts, the EphA3–PTP1B interaction can occur directly at the plasma membrane. Our studies for the first time provide molecular, mechanistic, and functional insights into the role of PTP1B controlling Eph/ephrin-facilitated cellular interactions.
Collapse
Affiliation(s)
- Eva Nievergall
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Kariuki SN, Franek BS, Kumar AA, Arrington J, Mikolaitis RA, Utset TO, Jolly M, Crow MK, Skol AD, Niewold TB. Trait-stratified genome-wide association study identifies novel and diverse genetic associations with serologic and cytokine phenotypes in systemic lupus erythematosus. Arthritis Res Ther 2010; 12:R151. [PMID: 20659327 PMCID: PMC2945049 DOI: 10.1186/ar3101] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 05/24/2010] [Accepted: 07/26/2010] [Indexed: 02/06/2023] Open
Abstract
Introduction Systemic lupus erythematosus (SLE) is a highly heterogeneous disorder, characterized by differences in autoantibody profile, serum cytokines, and clinical manifestations. SLE-associated autoantibodies and high serum interferon alpha (IFN-α) are important heritable phenotypes in SLE which are correlated with each other, and play a role in disease pathogenesis. These two heritable risk factors are shared between ancestral backgrounds. The aim of the study was to detect genetic factors associated with autoantibody profiles and serum IFN-α in SLE. Methods We undertook a case-case genome-wide association study of SLE patients stratified by ancestry and extremes of phenotype in serology and serum IFN-α. Single nucleotide polymorphisms (SNPs) in seven loci were selected for follow-up in a large independent cohort of 538 SLE patients and 522 controls using a multi-step screening approach based on novel metrics and expert database review. The seven loci were: leucine-rich repeat containing 20 (LRRC20); protein phosphatase 1 H (PPM1H); lysophosphatidic acid receptor 1 (LPAR1); ankyrin repeat and sterile alpha motif domain 1A (ANKS1A); protein tyrosine phosphatase, receptor type M (PTPRM); ephrin A5 (EFNA5); and V-set and immunoglobulin domain containing 2 (VSIG2). Results SNPs in the LRRC20, PPM1H, LPAR1, ANKS1A, and VSIG2 loci each demonstrated strong association with a particular serologic profile (all odds ratios > 2.2 and P < 3.5 × 10-4). Each of these serologic profiles was associated with increased serum IFN-α. SNPs in both PTPRM and LRRC20 were associated with increased serum IFN-α independent of serologic profile (P = 2.2 × 10-6 and P = 2.6 × 10-3 respectively). None of the SNPs were strongly associated with SLE in case-control analysis, suggesting that the major impact of these variants will be upon subphenotypes in SLE. Conclusions This study demonstrates the power of using serologic and cytokine subphenotypes to elucidate genetic factors involved in complex autoimmune disease. The distinct associations observed emphasize the heterogeneity of molecular pathogenesis in SLE, and the need for stratification by subphenotypes in genetic studies. We hypothesize that these genetic variants play a role in disease manifestations and severity in SLE.
Collapse
Affiliation(s)
- Silvia N Kariuki
- University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
The Eph receptor tyrosine kinases and their ephrin ligands have intriguing expression patterns in cancer cells and tumour blood vessels, which suggest important roles for their bidirectional signals in many aspects of cancer development and progression. Eph gene mutations probably also contribute to cancer pathogenesis. Eph receptors and ephrins have been shown to affect the growth, migration and invasion of cancer cells in culture as well as tumour growth, invasiveness, angiogenesis and metastasis in vivo. However, Eph signalling activities in cancer seem to be complex, and are characterized by puzzling dichotomies. Nevertheless, the Eph receptors are promising new therapeutic targets in cancer.
Collapse
Affiliation(s)
- Elena B Pasquale
- Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
44
|
Lackmann M, Boyd AW. Eph, a protein family coming of age: more confusion, insight, or complexity? Sci Signal 2008; 1:re2. [PMID: 18413883 DOI: 10.1126/stke.115re2] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Since the mid-1980s, Eph receptors have evolved from being regarded as orphan receptors with unknown functions and ligands to becoming one of the most complex "global positioning systems" that regulates cell traffic in multicellular organisms. During this time, there has been an exponentially growing interest in Ephs and ephrin ligands, coinciding with important advances in the way biological function is interrogated through mapping of genomes and manipulation of genes. As a result, many of the original concepts that used to define Eph signaling and function went overboard. Clearly, the need for progress in understanding Eph-ephrin biology and the underlying molecular principles involved has been compelling. Many cell-positioning programs during normal and oncogenic development-in particular, the patterning of skeletal, vascular, and nervous systems-are modulated in some way by Eph-ephrin function. Undeniably, the complexity of the underlying signaling networks is considerable, and it seems probable that systems biology approaches are required to further improve our understanding of Eph function.
Collapse
Affiliation(s)
- Martin Lackmann
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia.
| | | |
Collapse
|