1
|
Li J, Chen M, Zhao W, Lv A, Lin S, Zheng Y, Cai M, Lin N, Xu L, Huang H. The role of miR-129-5p in regulating γ-globin expression and erythropoiesis in β-thalassemia. Hum Mol Genet 2024:ddae180. [PMID: 39657657 DOI: 10.1093/hmg/ddae180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/04/2024] [Accepted: 11/29/2024] [Indexed: 12/12/2024] Open
Abstract
The regulation of γ-globin expression is crucial due to its beneficial effects on diseases like β-thalassemia and sickle cell disease. B-cell lymphoma/leukemia 11A (BCL11A) is a significant suppressor of γ-globin, and microRNAs (miRNAs) targeting BCL11A have been shown to alleviate this suppression. In our previous high-throughput sequencing, we identified an 11.32-fold increase in miR-129-5p expression in β-thalassemia patients. However, the regulatory mechanisms of miR-129-5p in the context of erythroid differentiation remain to be elucidated. Our study aimed to elucidate the role of miR-129-5p in γ-globin regulation and erythropoiesis. We measured miR-129-5p levels in peripheral blood from β-thalassemia major and intermedia patients. Fluorescence in situ hybridization, dual-luciferase reporter assays, miRNA pull down assays and western blot analyses were conducted to examine the effects of miR-129-5p on γ-globin expression and BCL11A repression. Cell proliferation, apoptosis, and erythroid differentiation were assessed using cell counting kit-8, Wright-Giemsa, and benzidine staining, and flow cytometry assays. The expression levels of miR-129-5p were significantly elevated in β-thalassemia patients and positively correlated with γ-globin synthesis while negatively correlating with liver damage. miR-129- 5p enhanced γ-globin gene expression in K562 and HUDEP-2 cells by effectively repressing BCL11A. Overexpression of miR-129-5p inhibited cell proliferation, induced cell cycle arrest at the G1/G0 phase, promoted apoptosis and stimulated erythroid differentiation and maturation. Conversely, inhibition of miR-129-5p produced opposite cellular effects. miR-129-5p acts as a positive regulator of erythroid differentiation and γ-globin synthesis. It offers a promising miRNA target for activating the γ-globin gene and reducing ineffective erythropoiesis in β-thalassemia patients.
Collapse
Affiliation(s)
- Jingmin Li
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, 88 Jiaotong Road, Taijiang District, Fuzhou 350004, China
- Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, 18 Daoshan Road, Gulou District, Fuzhou 350001, China
| | - Meihuan Chen
- Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, 18 Daoshan Road, Gulou District, Fuzhou 350001, China
| | - Wantong Zhao
- Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, 18 Daoshan Road, Gulou District, Fuzhou 350001, China
| | - Aixiang Lv
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, 88 Jiaotong Road, Taijiang District, Fuzhou 350004, China
- Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, 18 Daoshan Road, Gulou District, Fuzhou 350001, China
| | - Siyang Lin
- The School of Medical Technology and Engineering, Fujian Medical University, 1 Xuefu North Road, Minhou District, Fuzhou 350108, China
| | - Yanping Zheng
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, 88 Jiaotong Road, Taijiang District, Fuzhou 350004, China
- Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, 18 Daoshan Road, Gulou District, Fuzhou 350001, China
| | - Meiying Cai
- Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, 18 Daoshan Road, Gulou District, Fuzhou 350001, China
| | - Na Lin
- Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, 18 Daoshan Road, Gulou District, Fuzhou 350001, China
| | - Liangpu Xu
- Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, 18 Daoshan Road, Gulou District, Fuzhou 350001, China
| | - Hailong Huang
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, 88 Jiaotong Road, Taijiang District, Fuzhou 350004, China
- Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, 18 Daoshan Road, Gulou District, Fuzhou 350001, China
| |
Collapse
|
2
|
Penglong T, Pholngam N, Tehyoh N, Tansila N, Buncherd H, Thanapongpichat S, Srinoun K. Expression of microRNA-155 in thalassemic erythropoiesis. PeerJ 2024; 12:e18054. [PMID: 39314840 PMCID: PMC11418816 DOI: 10.7717/peerj.18054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/16/2024] [Indexed: 09/25/2024] Open
Abstract
Background Ineffective erythropoiesis (IE) is the primary cause of anemia and associated pathologies in β-thalassemia. The characterization of IE is imbalance of erythroid proliferation and differentiation, resulting in increased erythroblast proliferation that fails to differentiate and gives rise to enucleate RBCs. MicroRNAs (miRs) are known to play important roles in hematopoiesis. miR-155 is a multifunctional molecule involved in both normal and pathological hematopoiesis, and its upregulation is observed in patients with β-thalassemia/HbE. However, the expression and function of miR-155, especially in β-thalassemia, have not yet been explored. Methods To study miR-155 expression in thalassemia, erythroblast subpopulations, CD45-CD71+Ter-119+ and CD45-CD71-Ter-119+ were collected from β IVSII-654 thalassemic bone marrow. Additionally, a two-phase culture of mouse bone marrow erythroid progenitor cells was performed. Expression of miR-155 and predicted mRNA target genes, c-myc, bach-1 and pu-1, were determined by quantitative reverse transcription (qRT)-polymerase chain reaction (PCR) and normalized to small nucleolar RNA (snoRNA) 202 and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), respectively. To investigate the effect of miR-155 expression, erythroblasts were transfected with miR-inhibitor and -mimic in order to elevate and eliminate miR-155 expression, respectively. Erythroid cell differentiation was evaluated by Wright-Giemsa staining and flow cytometry. Results miR-155 was upregulated, both in vivo and in vitro, during erythropoiesis in β-thalassemic mice. Our study revealed that gain- and loss of function of miR-155 were involved in erythroid proliferation and differentiation, and augmented proliferation and differentiation of thalassemic mouse erythroblasts may be associated with miR-155 upregulation. miR-155 upregulation in β-thalassemic mice significantly increased the percentage of basophilic and polychromatic erythroblasts. Conversely, a significant decrease in percentage of basophilic and polychromatic erythroblasts was observed in β-thalassemic mice transfected with anti-miR-155 inhibitor. We also examined the mRNA targets (c-myc, bach-1 and pu-1) of miR-155, which indicated that c-myc is a valid target gene of miR-155 that regulates erythroid differentiation. Conclusion miR-155 regulates IE in β-thalassemia via c-myc expression controlling erythroblast proliferation and differentiation.
Collapse
Affiliation(s)
- Tipparat Penglong
- Department of Pathology, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Nuttanan Pholngam
- Molecular Medicine Graduate Program, Faculty of Science, Mahidol University, Bangkok, Thailand
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Nasra Tehyoh
- Faculty of Medical Technology, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Natta Tansila
- Faculty of Medical Technology, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Hansuk Buncherd
- Faculty of Medical Technology, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | | | - Kanitta Srinoun
- Faculty of Medical Technology, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| |
Collapse
|
3
|
Castelgrande F, Viola G, Calabrese C, Iozzo M, Massoud R, Pieri M, Minieri M, Adorno G, Bernardini S, Terrinoni A. Characterization and Clinical Assessment of a Peculiar Case of Hemolytic Anemia. J Hematol 2024; 13:108-115. [PMID: 38993732 PMCID: PMC11236363 DOI: 10.14740/jh1204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/05/2024] [Indexed: 07/13/2024] Open
Abstract
Thalassemic diseases are characterized by a reduced (β+) or absent (β0) synthesis of the globin chains of hemoglobin (Hb) due to genetic mutations. β-thalassemia was more frequent in the Mediterranean area, but now it is diffused worldwide. Three possible genetic forms can be distinguished: β0/β0, the most severe (Cooley's disease); β0/β+ of intermediate severity; β+/β+ associated with β-thalassemia intermedia or minor. Recently, a clinical non-genetic classification has been proposed: transfusion-dependent thalassemia (TDT), requiring regular lifetime blood transfusions, and non-transfusion-dependent thalassemia (NTDT), requiring occasional transfusions to manage acute cases. In this report, we studied a patient whose blood count indicated a severe anemia but also showed thrombocytosis, leukocytosis, and an elevated number of nucleated red blood cells (NRBC). These altered blood parameters suggested initially a possible diagnosis of hemoglobinopathy or myeloproliferative syndrome. The molecular and genetic analyses demonstrated the presence of HbF (5.3%) and HbA2 (7.7%) and the presence of the homozygote mutation (IVS1.6T>C) in the β-globin gene. According to these data, a diagnosis of β-thalassemia intermedia form has been proposed. Nevertheless, the clinical condition, the presence of thrombocytosis, leukocytosis, an elevated number of NRBC, and the frequent blood transfusions lead to reclassification of the patient as TDT subject. Consequently, this result suggests that a unique genotype-phenotype correlation is not possible in the presence of β+mutations since other concomitant pathologies can exacerbate the disease.
Collapse
Affiliation(s)
- Fulvio Castelgrande
- School of Laboratory Medicine and Pathology, University of Rome Tor Vergata, Via Cracovia, 00133 Rome, Italy
- These three authors contributed to the study equally
| | - Gemma Viola
- Laboratory Medicine Department, University Hospital of Tor Vergata, Viale Oxford, 1-00133 Rome, Italy
- These three authors contributed to the study equally
| | - Cinzia Calabrese
- School of Laboratory Medicine and Pathology, University of Rome Tor Vergata, Via Cracovia, 00133 Rome, Italy
- These three authors contributed to the study equally
| | - Mariannina Iozzo
- Laboratory Medicine Department, University Hospital of Tor Vergata, Viale Oxford, 1-00133 Rome, Italy
| | - Renato Massoud
- Laboratory Medicine Department, University Hospital of Tor Vergata, Viale Oxford, 1-00133 Rome, Italy
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1-00133 Rome, Italy
| | - Massimo Pieri
- Laboratory Medicine Department, University Hospital of Tor Vergata, Viale Oxford, 1-00133 Rome, Italy
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1-00133 Rome, Italy
| | - Marilena Minieri
- Laboratory Medicine Department, University Hospital of Tor Vergata, Viale Oxford, 1-00133 Rome, Italy
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1-00133 Rome, Italy
| | - Gaspare Adorno
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier, 1-00133 Rome, Italy
| | - Sergio Bernardini
- Laboratory Medicine Department, University Hospital of Tor Vergata, Viale Oxford, 1-00133 Rome, Italy
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1-00133 Rome, Italy
| | - Alessandro Terrinoni
- Laboratory Medicine Department, University Hospital of Tor Vergata, Viale Oxford, 1-00133 Rome, Italy
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1-00133 Rome, Italy
| |
Collapse
|
4
|
Nai A, Cordero-Sanchez C, Tanzi E, Pagani A, Silvestri L, Di Modica SM. Cellular and animal models for the investigation of β-thalassemia. Blood Cells Mol Dis 2024; 104:102761. [PMID: 37271682 DOI: 10.1016/j.bcmd.2023.102761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/06/2023]
Abstract
β-Thalassemia is a genetic form of anemia due to mutations in the β-globin gene, that leads to ineffective and extramedullary erythropoiesis, abnormal red blood cells and secondary iron-overload. The severity of the disease ranges from mild to lethal anemia based on the residual levels of globins production. Despite being a monogenic disorder, the pathophysiology of β-thalassemia is multifactorial, with different players contributing to the severity of anemia and secondary complications. As a result, the identification of effective therapeutic strategies is complex, and the treatment of patients is still suboptimal. For these reasons, several models have been developed in the last decades to provide experimental tools for the study of the disease, including erythroid cell lines, cultures of primary erythroid cells and transgenic animals. Years of research enabled the optimization of these models and led to decipher the mechanisms responsible for globins deregulation and ineffective erythropoiesis in thalassemia, to unravel the role of iron homeostasis in the disease and to identify and validate novel therapeutic targets and agents. Examples of successful outcomes of these analyses include iron restricting agents, currently tested in the clinics, several gene therapy vectors, one of which was recently approved for the treatment of most severe patients, and a promising gene editing strategy, that has been shown to be effective in a clinical trial. This review provides an overview of the available models, discusses pros and cons, and the key findings obtained from their study.
Collapse
Affiliation(s)
- Antonella Nai
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, via Olgettina 60, Milan, Italy; Vita-Salute San Raffaele University, via Olgettina 58, Milan, Italy.
| | - Celia Cordero-Sanchez
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, via Olgettina 60, Milan, Italy
| | - Emanuele Tanzi
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, via Olgettina 60, Milan, Italy
| | - Alessia Pagani
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, via Olgettina 60, Milan, Italy
| | - Laura Silvestri
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, via Olgettina 60, Milan, Italy; Vita-Salute San Raffaele University, via Olgettina 58, Milan, Italy
| | - Simona Maria Di Modica
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, via Olgettina 60, Milan, Italy
| |
Collapse
|
5
|
Liang R, Lin M, Menon V, Qiu J, Menon A, Breda L, Arif T, Rivella S, Ghaffari S. Elevated CDKN1A (P21) mediates β-thalassemia erythroid apoptosis, but its loss does not improve β-thalassemic erythropoiesis. Blood Adv 2023; 7:6873-6885. [PMID: 37672319 PMCID: PMC10685172 DOI: 10.1182/bloodadvances.2022007655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/01/2023] [Accepted: 08/24/2023] [Indexed: 09/07/2023] Open
Abstract
β-thalassemias are common hemoglobinopathies due to mutations in the β-globin gene that lead to hemolytic anemias. Premature death of β-thalassemic erythroid precursors results in ineffective erythroid maturation, increased production of erythropoietin (EPO), expansion of erythroid progenitor compartment, extramedullary erythropoiesis, and splenomegaly. However, the molecular mechanism of erythroid apoptosis in β-thalassemia is not well understood. Using a mouse model of β-thalassemia (Hbbth3/+), we show that dysregulated expression of the FOXO3 transcription factor is implicated in β-thalassemia erythroid apoptosis. In Foxo3-/-/Hbbth3/+ mice, erythroid apoptosis is significantly reduced, whereas erythroid cell maturation, and red blood cell and hemoglobin production are substantially improved even with elevated reactive oxygen species in double-mutant erythroblasts. However, persistence of elevated reticulocytes and splenomegaly suggests that ineffective erythropoiesis is not resolved in Foxo3-/-/Hbbth3/+. We found the cell cycle inhibitor Cdkn1a (cyclin-dependent kinase inhibitor p21), a FOXO3 target gene, is markedly upregulated in both mouse and patient-derived β-thalassemic erythroid precursors. Double-mutant p21/Hbbth3/+ mice exhibited embryonic lethality with only a fraction of mice surviving to weaning. Notably, studies in adult mice displayed greatly reduced apoptosis and circulating Epo in erythroid compartments of surviving p21-/-/Hbbth3/+ mice relative to Hbbth3/+ mice, whereas ineffective erythroid cell maturation, extramedullary erythropoiesis, and splenomegaly were not modified. These combined results suggest that mechanisms that control β-thalassemic erythroid cell survival and differentiation are uncoupled from ineffective erythropoiesis and involve a molecular network including FOXO3 and P21. Overall, these studies provide a new framework for investigating ineffective erythropoiesis in β-thalassemia.
Collapse
Affiliation(s)
- Raymond Liang
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY
- Developmental and Stem Cell Biology Multidisciplinary Training, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Miao Lin
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Vijay Menon
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jiajing Qiu
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Anagha Menon
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY
- Developmental and Stem Cell Biology Multidisciplinary Training, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Laura Breda
- Division of Hematology, Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA
| | - Tasleem Arif
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Stefano Rivella
- Division of Hematology, Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA
| | - Saghi Ghaffari
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY
- Developmental and Stem Cell Biology Multidisciplinary Training, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
6
|
Phannasil P, Sukhuma C, Nauphar D, Nuamsee K, Svasti S. Up-regulation of microRNA 101-3p during erythropoiesis in β-thalassemia/HbE. Blood Cells Mol Dis 2023; 103:102781. [PMID: 37478523 DOI: 10.1016/j.bcmd.2023.102781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/18/2023] [Accepted: 07/14/2023] [Indexed: 07/23/2023]
Abstract
Ineffective erythropoiesis is the main cause of anemia in β-thalassemia. The crucial hallmark of ineffective erythropoiesis is the high proliferation of erythroblast. microRNA (miR/miRNA) involves several biological processes, including cell proliferation and erythropoiesis. miR-101 was widely studied and associated with proliferation in several types of cancer. However, the miR-101-3p has not been studied in β-thalassemia/HbE. Therefore, this study aims to investigate the expression of miR-101-3p during erythropoiesis in β-thalassemia/HbE. The results showed that miR-101-3p was upregulated in the erythroblast of β-thalassemia/HbE patients on day 7, indicating that miR-101-3p may be involved with high proliferation in β-thalassemia/HbE. Therefore, the mRNA targets of miR-101-3p including Rac1, SUB1, TET2, and TRIM44 were investigated to determine the mechanisms involved with high proliferation of β-thalassemia/HbE erythroblasts. Rac1 expression was significantly reduced at day 11 in severe β-thalassemia/HbE compared to normal controls and mild β-thalassemia/HbE. SUB1 gene expression was significantly lower in severe β-thalassemia/HbE compared to normal controls at day 9 of culture. For TET2 and TRIM44 expression, a significant difference was not observed among normal and β-thalassemia/HbE. However, the high expression of miR-101-3p at day 7 and these target genes was not correlated, suggesting that this miRNA may regulate ineffective erythropoiesis in β-thalassemia/HbE via other target genes.
Collapse
Affiliation(s)
- Phatchariya Phannasil
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Chanyanat Sukhuma
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Donny Nauphar
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand; Doctoral Program in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta Pusat 10430, Indonesia; Department of Genetics, Faculty of Medicine, Universitas Swadaya Gunung Jati, Cirebon 45132, West-Java, Indonesia
| | - Khanita Nuamsee
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Saovaros Svasti
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand; Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
7
|
Guerra A, Parhiz H, Rivella S. Novel potential therapeutics to modify iron metabolism and red cell synthesis in diseases associated with defective erythropoiesis. Haematologica 2023; 108:2582-2593. [PMID: 37345473 PMCID: PMC10542825 DOI: 10.3324/haematol.2023.283057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/15/2023] [Indexed: 06/23/2023] Open
Abstract
Under normal conditions, iron metabolism is carefully regulated to sustain normal cellular functions and the production of hemoglobin in erythroid cells. Perturbation to the erythropoiesis-iron metabolism axis can result in iron imbalances and cause anemia or organ toxicity. Various congenital and acquired diseases associated with abnormal red cell production are characterized by aberrant iron absorption. Several recent studies have shown that improvements in red blood cell production also ameliorate iron metabolism and vice versa. Many therapeutics are now under development with the potential to improve a variety of hematologic diseases, from β-thalassemia and iron-refractory iron deficiency anemia to anemia of inflammation and polycythemia vera. This review summarizes selected mechanisms related to red cell production and iron metabolism and describes potential therapeutics and their current uses. We also consider the potential application of the discussed therapeutics on various diseases, alone or in combination. The vast repertoire of drugs under development offers new opportunities to improve the clinical care of patients suffering from congenital or acquired red blood cell disorders with limited or no treatment options.
Collapse
Affiliation(s)
- Amaliris Guerra
- Department of Pediatrics, Division of Hematology, The Children's Hospital of Philadelphia (CHOP), Philadelphia, PA
| | - Hamideh Parhiz
- Department of Pediatrics, Division of Hematology, The Children's Hospital of Philadelphia (CHOP), Philadelphia, PA, USA; RNA Institute, University of Pennsylvania, Philadelphia, PA
| | - Stefano Rivella
- Department of Pediatrics, Division of Hematology, The Children's Hospital of Philadelphia (CHOP), Philadelphia, PA, USA; Department of Pediatrics, Division of Hematology, The Children's Hospital of Philadelphia (CHOP), Philadelphia, PA, USA; RNA Institute, University of Pennsylvania, Philadelphia, PA, USA; Cell and Molecular Biology affinity group (CAMB), University of Pennsylvania, Philadelphia, PA, USA; Raymond G. Perelman Center for Cellular and Molecular Therapeutics-CHOP; Penn Center for Musculoskeletal Disorders, CHOP, Philadelphia, PA, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA.
| |
Collapse
|
8
|
Ginzburg Y, An X, Rivella S, Goldfarb A. Normal and dysregulated crosstalk between iron metabolism and erythropoiesis. eLife 2023; 12:e90189. [PMID: 37578340 PMCID: PMC10425177 DOI: 10.7554/elife.90189] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/06/2023] [Indexed: 08/15/2023] Open
Abstract
Erythroblasts possess unique characteristics as they undergo differentiation from hematopoietic stem cells. During terminal erythropoiesis, these cells incorporate large amounts of iron in order to generate hemoglobin and ultimately undergo enucleation to become mature red blood cells, ultimately delivering oxygen in the circulation. Thus, erythropoiesis is a finely tuned, multifaceted process requiring numerous properly timed physiological events to maintain efficient production of 2 million red blood cells per second in steady state. Iron is required for normal functioning in all human cells, the erythropoietic compartment consuming the majority in light of the high iron requirements for hemoglobin synthesis. Recent evidence regarding the crosstalk between erythropoiesis and iron metabolism sheds light on the regulation of iron availability by erythroblasts and the consequences of insufficient as well as excess iron on erythroid lineage proliferation and differentiation. In addition, significant progress has been made in our understanding of dysregulated iron metabolism in various congenital and acquired malignant and non-malignant diseases. Finally, we report several actual as well as theoretical opportunities for translating the recently acquired robust mechanistic understanding of iron metabolism regulation to improve management of patients with disordered erythropoiesis, such as anemia of chronic inflammation, β-thalassemia, polycythemia vera, and myelodysplastic syndromes.
Collapse
Affiliation(s)
- Yelena Ginzburg
- Division of Hematology and Medical Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Xiuli An
- LFKRI, New York Blood CenterNew YorkUnited States
| | - Stefano Rivella
- Department of Pediatrics, Division of Hematology, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Cell and Molecular Biology affinity group (CAMB), University of PennsylvaniaPhiladelphiaUnited States
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics at the Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Penn Center for Musculoskeletal Disorders at the Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Institute for Regenerative Medicine at University of PennsylvaniaPhiladelphiaUnited States
- RNA Institute at University of PennsylvaniaPhiladelphiaUnited States
| | - Adam Goldfarb
- Department of Pathology, University of VirginiaCharlottesvilleUnited States
| |
Collapse
|
9
|
Saeidnia M, Fazeli P, Farzi A, Atefy Nezhad M, Shabani-Borujeni M, Erfani M, Tamaddon G, Karimi M. An Expert Overview on Therapies in Non-Transfusion-Dependent Thalassemia: Classical to Cutting Edge in Treatment. Hemoglobin 2023:1-15. [PMID: 37325871 DOI: 10.1080/03630269.2022.2158099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 06/17/2023]
Abstract
The thalassemia issue is a growing worldwide health concern that anticipates the number of patients suffering from the disease will soon increase significantly. Patients with β-thalassemia intermedia (β-TI) manifest mild to intermediate levels of anemia, which is a reason for it to be clinically located between thalassemia minor and β-thalassemia major (β-TM). Notably, the determination of the actual rate of β-TI is more complicated than β-TM. The leading cause of this illness could be partial repression of β-globin protein production; accordingly, the rate of β-globin gene repression is different in patients, and the gene repression intensity creates a different clinical status. This review article provides an overview of functional mechanisms, advantages, and disadvantages of the classic to latest new treatments for this group of patients, depending on the disease severity divided into the typical management strategies for patients with β-TI such as fetal hemoglobin (Hb) induction, splenectomy, bone marrow transplantation (BMT), transfusion therapy, and herbal and chemical iron chelators. Recently, novel erythropoiesis-stimulating agents have been added. Novel strategies are subclassified into molecular and cellular interventions. Genome editing is one of the efficient molecular therapies for improving hemoglobinopathies, especially β-TI. It encompasses high-fidelity DNA repair (HDR), base and prime editing, clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 procedure, nuclease-free strategies, and epigenetic modulation. In cellular interventions, we mentioned the approach pattern to improve erythropoiesis impairments in translational models and patients with β-TI that involve activin II receptor traps, Janus-associated kinase 2 (JAK2) inhibitors, and iron metabolism regulation.
Collapse
Affiliation(s)
- Mohammadreza Saeidnia
- Department of Hematology, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
- Clinical Research Development Unit, Emam Khomeini Hospital, Ilam University of Medical Sciences, Ilam, Iran
| | - Pooria Fazeli
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Trauma Research Center, Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Arghavan Farzi
- School of Medicine, International Department Ilam University of Medical Sciences, Ilam, Iran
| | - Maryam Atefy Nezhad
- Department of Biology, Sciences Faculty, Science and Research Branch, Islamic Azad University, of Zarqān, Zarqān, Iran
| | - Mojtaba Shabani-Borujeni
- Department of Pharmacotherapy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehran Erfani
- Department of Laboratory Sciences, Faculty of Para-Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Gholamhossein Tamaddon
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehran Karimi
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
10
|
Abstract
Advances in understanding the underlying pathophysiology of β-thalassemia have enabled efforts toward the development of novel therapeutic modalities. These can be classified into three major categories based on their ability to target different features of the underlying disease pathophysiology: correction of the α/β globin chain imbalance, targeting ineffective erythropoiesis, and targeting iron dysregulation. This article provides an overview of these different emerging therapies that are currently in development for β-thalassemia.
Collapse
Affiliation(s)
- Rayan Bou-Fakhredin
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Kevin H M Kuo
- Division of Hematology, University of Toronto, Toronto, ON, Canada
| | - Ali T Taher
- Division of Hematology-Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon.
| |
Collapse
|
11
|
Bou-Fakhredin R, Rivella S, Cappellini MD, Taher AT. Pathogenic Mechanisms in Thalassemia I: Ineffective Erythropoiesis and Hypercoagulability. Hematol Oncol Clin North Am 2023; 37:341-351. [PMID: 36907607 DOI: 10.1016/j.hoc.2022.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Erythropoiesis is the physiological process that results in the production of red blood cells (RBCs). In conditions of pathologically altered erythropoiesis or ineffective erythropoiesis, as in the case of β-thalassemia, the reduced ability of erythrocytes to differentiate, survive and deliver oxygen stimulates a state of stress that leads to the ineffective production of RBCs. We herein describe the main features of erythropoiesis and its regulation in addition to the mechanisms behind ineffective erythropoiesis development in β-thalassemia. Finally, we review the pathophysiology of hypercoagulability and vascular disease development in β-thalassemia and the currently available prevention and treatment modalities.
Collapse
Affiliation(s)
- Rayan Bou-Fakhredin
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Stefano Rivella
- Division of Hematology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Maria Domenica Cappellini
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy; UOC General Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Ali T Taher
- Division of Hematology-Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon.
| |
Collapse
|
12
|
Chaichompoo P, Nithipongvanitch R, Kheansaard W, Tubsuwan A, Srinoun K, Vadolas J, Fucharoen S, Smith DR, Winichagoon P, Svasti S. Increased autophagy leads to decreased apoptosis during β-thalassaemic mouse and patient erythropoiesis. Sci Rep 2022; 12:18628. [PMID: 36329049 PMCID: PMC9633749 DOI: 10.1038/s41598-022-21249-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022] Open
Abstract
β-Thalassaemia results from defects in β-globin chain production, leading to ineffective erythropoiesis and subsequently to severe anaemia and other complications. Apoptosis and autophagy are the main pathways that regulate the balance between cell survival and cell death in response to diverse cellular stresses. Herein, the death of erythroid lineage cells in the bone marrow from both βIVS2-654-thalassaemic mice and β-thalassaemia/HbE patients was investigated. Phosphatidylserine (PS)-bearing basophilic erythroblasts and polychromatophilic erythroblasts were significantly increased in β-thalassaemia as compared to controls. However, the activation of caspase 8, caspase 9 and caspase 3 was minimal and not different from control in both murine and human thalassaemic erythroblasts. Interestingly, bone marrow erythroblasts from both β-thalassaemic mice and β-thalassaemia/HbE patients had significantly increased autophagy as shown by increased autophagosomes and increased co-localization between LC3 and LAMP-1. Inhibition of autophagy by chloroquine caused significantly increased erythroblast apoptosis. We have demonstrated increased autophagy which led to minimal apoptosis in β-thalassaemic erythroblasts. However, increased PS exposure occurring through other mechanisms in thalassaemic erythroblasts might cause rapid phagocytic removal by macrophages and consequently ineffective erythropoiesis in β-thalassaemia.
Collapse
Affiliation(s)
- Pornthip Chaichompoo
- grid.10223.320000 0004 1937 0490Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok, Thailand ,grid.10223.320000 0004 1937 0490Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170 Thailand
| | - Ramaneeya Nithipongvanitch
- grid.10223.320000 0004 1937 0490Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170 Thailand
| | - Wasinee Kheansaard
- grid.10223.320000 0004 1937 0490Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170 Thailand ,grid.10223.320000 0004 1937 0490Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Alisa Tubsuwan
- grid.10223.320000 0004 1937 0490Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170 Thailand ,grid.10223.320000 0004 1937 0490Stem Cell Research Group, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Kanitta Srinoun
- grid.10223.320000 0004 1937 0490Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170 Thailand ,grid.7130.50000 0004 0470 1162Faculty of Medical Technology, Prince of Songkla University, Songkhla, Thailand
| | - Jim Vadolas
- grid.452824.dCentre for Cancer Research, Hudson Institute of Medical Research, Melbourne, Australia ,grid.1002.30000 0004 1936 7857Department of Molecular and Translational Science, Monash University, Melbourne, Australia
| | - Suthat Fucharoen
- grid.10223.320000 0004 1937 0490Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170 Thailand
| | - Duncan R. Smith
- grid.10223.320000 0004 1937 0490Molecular Pathology Laboratory, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Pranee Winichagoon
- grid.10223.320000 0004 1937 0490Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170 Thailand
| | - Saovaros Svasti
- grid.10223.320000 0004 1937 0490Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170 Thailand ,grid.10223.320000 0004 1937 0490Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
13
|
In Vitro Study of Ineffective Erythropoiesis in Thalassemia: Diverse Intrinsic Pathophysiological Features of Erythroid Cells Derived from Various Thalassemia Syndromes. J Clin Med 2022; 11:jcm11185356. [PMID: 36143003 PMCID: PMC9504363 DOI: 10.3390/jcm11185356] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/30/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Defective hemoglobin production and ineffective erythropoiesis contribute to the pathophysiology of thalassemia syndromes. Previous studies in the field of erythropoiesis mainly focused on the severe forms of thalassemia, such as β-thalassemia major, while mechanisms underlying the pathogenesis of other thalassemia syndromes remain largely unexplored. The current study aimed to investigate the intrinsic pathophysiological properties of erythroid cells derived from the most common forms of thalassemia diseases, including α-thalassemia (hemoglobin H and hemoglobin H-Constant Spring diseases) and β-thalassemia (homozygous β0-thalassemia and β0-thalassemia/hemoglobin E diseases), under an identical in vitro erythroid culture system. Cell proliferation capacity, differentiation velocity, cell death, as well as globin synthesis and the expression levels of erythropoiesis modifying factors were determined. Accelerated expansion was found in erythroblast cells derived from all types of thalassemia, with the highest degree in β0-thalassemia/hemoglobin E. Likewise, all types of thalassemia showed limited erythroid cell differentiation, but each of them manifested varying degrees of erythroid maturation arrest corresponding with the clinical severity. Robust induction of HSP70 transcripts, an erythroid maturation-related factor, was found in both α- and β-thalassemia erythroid cells. Increased cell death was distinctly present only in homozygous β0-thalassemia erythroblasts and associated with the up-regulation of pro-apoptotic (Caspase 9, BAD, and MTCH1) genes and down-regulation of the anti-apoptotic BCL-XL gene.
Collapse
|
14
|
In silico multiscale drug design to discover key structural features of potential JAK2 inhibitors. Future Med Chem 2022; 14:1297-1308. [PMID: 36043391 DOI: 10.4155/fmc-2022-0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: JAK2 inhibitors have been proposed as a new therapeutic option for thalassemia therapy. The objective of this study was to discover the key structural features for improving 2-aminopyrimidine derivatives as potential JAK2 inhibitors. Materials & methods: Quantitative structure-activity relationship (QSAR) approaches (hologram QSAR and comparative molecular similarity indices analysis), molecular dynamics simulations, binding energy calculations and pharmacokinetic predictions were employed. Results: Reliable QSAR models, binding mode and binding interactions of JAK2 inhibitors were obtained and these obtained results were used as the key information for rational design of highly potent JAK2 inhibitors. Conclusion: The concept of new potential JAK2 inhibitors integrated from the obtained results was proved, producing two newly designed compounds, D01 and D02, with potential for use as JAK2 inhibitors.
Collapse
|
15
|
Prime Editor 3 Mediated Beta-Thalassemia Mutations of the HBB Gene in Human Erythroid Progenitor Cells. Int J Mol Sci 2022; 23:ijms23095002. [PMID: 35563395 PMCID: PMC9099916 DOI: 10.3390/ijms23095002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/28/2022] [Accepted: 04/28/2022] [Indexed: 11/17/2022] Open
Abstract
Recently developed Prime Editor 3 (PE3) has been implemented to induce genome editing in various cell types but has not been proven in human hematopoietic stem and progenitor cells. Using PE3, we successfully installed the beta-thalassemia (beta-thal) mutations in the HBB gene in the erythroid progenitor cell line HUDEP-2. We inserted the mCherry reporter gene cassette into editing plasmids, each including the prime editing guide RNA (pegRNA) and nick sgRNA. The plasmids were electroporated into HUDEP-2 cells, and the PE3 modified cells were identified by mCherry expression and collected using fluorescence-activated cell sorting (FACS). Sanger sequencing of the positive cells confirmed that PE3 induced precise beta-thal mutations with editing ratios from 4.55 to 100%. Furthermore, an off-target analysis showed no unintentional edits occurred in the cells. The editing ratios and parameters of pegRNA and nick sgRNA were also analyzed and summarized and will contribute to enhanced PE3 design in future studies. The characterization of the HUDEP-2 beta-thal cells showed typical thalassemia phenotypes, involving ineffective erythropoiesis, abnormal erythroid differentiation, high apoptosis rate, defective alpha-globin colocalization, cell viability deterioration, and ROS resisting deficiency. These HUDEP-2 beta-thal cells could provide ideal models for future beta-thal gene therapy studies.
Collapse
|
16
|
Chauhan W, Shoaib S, Fatma R, Zaka‐ur‐Rab Z, Afzal M. β‐thalassemia, and the advent of new Interventions beyond Transfusion and Iron chelation. Br J Clin Pharmacol 2022; 88:3610-3626. [DOI: 10.1111/bcp.15343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/10/2022] [Accepted: 03/29/2022] [Indexed: 01/19/2023] Open
Affiliation(s)
- Waseem Chauhan
- Human Genetics and Toxicology Laboratory, Department of Zoology Aligarh Muslim University Aligarh India
| | - Shoaib Shoaib
- Department of Biochemistry, JNMC Aligarh Muslim University Aligarh India
| | - Rafat Fatma
- Human Genetics and Toxicology Laboratory, Department of Zoology Aligarh Muslim University Aligarh India
| | - Zeeba Zaka‐ur‐Rab
- Department of Pediatrics, JNMC Aligarh Muslim University Aligarh India
| | - Mohammad Afzal
- Human Genetics and Toxicology Laboratory, Department of Zoology Aligarh Muslim University Aligarh India
| |
Collapse
|
17
|
Suriyun T, Winichagoon P, Fucharoen S, Sripichai O. Impaired Terminal Erythroid Maturation in β 0-Thalassemia/HbE Patients with Different Clinical Severity. J Clin Med 2022; 11:jcm11071755. [PMID: 35407362 PMCID: PMC8999960 DOI: 10.3390/jcm11071755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 02/02/2023] Open
Abstract
Anemia in β-thalassemia is associated with ineffective erythropoiesis and a shortened lifespan of erythroid cells. The limited differentiation of β-thalassemic erythroblasts has been documented, but the characteristic feature of terminal erythroid maturation and its physiological relevance are not clearly described in β-thalassemias. Here, the red blood cell and reticulocyte cellular characteristics were determined in patients with β0-thalassemia/HbE in comparison to patients with iron deficiency anemia and healthy normal subjects. Severely affected β0-thalassemia/HbE patients showed the highest increase in immature reticulocytes, but the number of total erythrocytes was the lowest. Despite similar ranges of hemoglobin levels, β0-thalassemia/HbE patients had a higher number of reticulocytes and a greater proportion of immature fraction than patients with iron deficiency anemia did. In vitro CD34+ hematopoietic progenitor cells' culture and flow cytometry analysis were conducted to investigate the erythroid maturation and mitochondrial clearance in β0-thalassemia/HbE erythroid cells as compared to normal cells. The delayed erythroid maturation and evidence of impaired mitochondria clearance were observed in β0-thalassemia/HbE cells at the terminal stage of differentiation. Additionally, increased transcript levels of genes related to erythroid mitophagy, BNIP3L and PINK1, were revealed in β0-thalassemia/HbE erythroblasts. The findings indicate that the erythroid maturation is physiologically relevant, and that the restoration of terminal maturation represents a potential therapeutic target for β-thalassemias.
Collapse
Affiliation(s)
- Thunwarat Suriyun
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand;
| | - Pranee Winichagoon
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhonpathom 73170, Thailand; (P.W.); (S.F.)
| | - Suthat Fucharoen
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhonpathom 73170, Thailand; (P.W.); (S.F.)
| | - Orapan Sripichai
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhonpathom 73170, Thailand; (P.W.); (S.F.)
- National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi 11000, Thailand
- Correspondence: ; Tel.: +66-2951-0011
| |
Collapse
|
18
|
Ineffective erythropoiesis and its treatment. Blood 2021; 139:2460-2470. [PMID: 34932791 DOI: 10.1182/blood.2021011045] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 01/19/2023] Open
Abstract
The erythroid marrow and circulating red blood cells (RBCs) are the key components of the human erythron. Abnormalities of the erythron that are responsible for anemia can be distinguished into 3 major categories, that is, erythroid hypoproliferation, ineffective erythropoiesis, and peripheral hemolysis. Ineffective erythropoiesis is characterized by erythropoietin-driven expansion of early-stage erythroid precursors, associated with apoptosis of late-stage precursors. This mechanism is primarily responsible for anemia in inherited disorders like β-thalassemia, inherited sideroblastic anemias, and congenital dyserythropoietic anemias, as well as in acquired conditions like some subtypes of myelodysplastic syndromes (MDS). The inherited anemias due to ineffective erythropoiesis are also defined as iron loading anemias because of the associated parenchymal iron loading caused by the release of erythroid factors that suppress hepcidin production. Novel treatments specifically targeting ineffective erythropoiesis are being developed. Iron restriction through enhancement of hepcidin activity or inhibition of ferroportin function has been shown to reduce ineffective erythropoiesis in murine models of β-thalassemia. Luspatercept is a TGF-β ligand trap that inhibits SMAD2/3 signaling. Based on pre-clinical and clinical studies, this compound is now approved for the treatment of anemia in adult patients with β-thalassemia who require regular RBC transfusions. Luspatercept is also approved for the treatment of transfusion-dependent anemia in patients with MDS with ring sideroblasts, most of whom carry a somatic SF3B1mutation. While long-term efficacy and safety of luspatercept need to be evaluated both in β-thalassemia and MDS, defining the molecular mechanisms of ineffective erythropoiesis in different disorders might allow the discovery of new effective compounds.
Collapse
|
19
|
Maggio A. Cell erythroid maturation approach: a new paradigm in the road map towards a cure for β-thalassaemia syndromes. Br J Haematol 2021; 196:806-808. [PMID: 34825367 DOI: 10.1111/bjh.17948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 10/26/2021] [Indexed: 11/30/2022]
Affiliation(s)
- Aurelio Maggio
- Campus of Haematology Franco and Piera Cutino, AOR Villa Sofia-Vincenzo Cervello, Palermo, Italy
| |
Collapse
|
20
|
Taneja K, Verma C, Mahajan A. Can ruxolitinib avert splenectomy in patients with thalassaemia: a short term case series. Br J Haematol 2021; 196:1111-1113. [PMID: 34799847 DOI: 10.1111/bjh.17871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/19/2021] [Indexed: 11/27/2022]
Affiliation(s)
- Kushagra Taneja
- Pediatric Hematology Oncology, Indraprastha Apollo Hospital, New Delhi, India
| | - Chandrika Verma
- Pediatric Hematology Oncology, Indraprastha Apollo Hospital, New Delhi, India
| | - Amita Mahajan
- Department of Advanced Paediatrics, Indraprastha Apollo Hospital, New Delhi, India
| |
Collapse
|
21
|
Madan U, Bhasin H, Dewan P, Madan J. Improving Ineffective Erythropoiesis in Thalassemia: A Hope on the Horizon. Cureus 2021; 13:e18502. [PMID: 34754662 PMCID: PMC8567967 DOI: 10.7759/cureus.18502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2021] [Indexed: 01/19/2023] Open
Abstract
Beta-thalassemia is an inherited hemoglobinopathy characterized by the impaired synthesis of beta-globin chains of hemoglobin leading to chronic hemolytic anemia. The mainstay of treatment for most patients remains regular blood transfusions and iron chelation. This conventional therapy has many limitations and challenges. Allogeneic hematopoietic stem cell transplant (HSCT) is the only available curative treatment but the availability of a suitable donor, financial constraints, and a need for specialist physicians can be limiting factors. Gene therapy is an upcoming curative therapeutic modality. An increased understanding of the underlying pathophysiology and molecular mechanisms of thalassemia has paved the way for novel pharmacological agents targeting ineffective erythropoiesis. These drugs act by decreasing transfusion requirements and hence decrease transfusion-related complications. The present review intends to provide an insight into the recent advances in pharmacological agents targeting ineffective erythropoiesis. Literature was searched and relevant articles evaluating newer drugs in thalassemia were collected from databases, including Pubmed, Scopus, Prospero, Clinicaltrials.gov, Google Scholar, and the Google search engine. We used the following keywords: thalassemia, novel, treatment, drugs, and ineffective erythropoiesis during the initial search. Relevant titles and abstracts were screened to choose relevant articles. Further, the full-text articles were retrieved and relevant cross-references were scanned to collect information for the present review.
Collapse
Affiliation(s)
- Ujjwal Madan
- Pediatrics, University College of Medical Sciences, Delhi, IND
| | - Himani Bhasin
- Pediatrics, University College of Medical Sciences, Delhi, IND
| | - Pooja Dewan
- Pediatrics, University College of Medical Sciences, Delhi, IND
| | - Jyotsna Madan
- Pathology, Super Speciality Pediatric Hospital and Post Graduate Teaching Institute, Noida, Uttar Pradesh, IND
| |
Collapse
|
22
|
Ovsyannikova G, Balashov D, Demina I, Shelikhova L, Pshonkin A, Maschan M, Novichkova G, Maschan A, Smetanina N. Efficacy and safety of ruxolitinib in ineffective erythropoiesis suppression as a pretransplantation treatment for pediatric patients with beta-thalassemia major. Pediatr Blood Cancer 2021; 68:e29338. [PMID: 34520107 DOI: 10.1002/pbc.29338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 11/12/2022]
Abstract
BACKGROUND Ineffective erythropoiesis (IE) is the most prominent feature of transfusion-dependent beta-thalassemia (TDT), which leads to extramedullary hemopoiesis. The rejection rate in allogeneic hematopoietic stem cell transplantation (HSCT) is high in heavily transfused patients with TDT accompanied by prominent IE. Therefore, a pretransplantation treatment bridging to HSCT is often used to reduce allosensitization and IE. Ruxolitinib is a JAK-1/JAK-2 inhibitor and has showed its efficacy in suppressing IE and the immune system. A previously published study on RUX in adult patients with TDT has revealed that this treatment significantly reduces spleen size and is well tolerated. PROCEDURE Ten patients (5-14 years old) with TDT and an enlarged spleen were enrolled. The dose of ruxolitinib was adjusted for age: for patients <11 years: 40-100 mg/m2 total daily dose and for patients >11 years: 20-30 mg/m2 total daily dose. HSCT was performed in 8 of 10 patients. RESULTS After the first 3 months of ruxolitinib therapy, spleen volume decreased in 9 of 10 cases by 9.1%-67.5% (M = 35.4%) compared with the initial size (P = 0.003). The adverse events of ruxolitinib (infectious complications, moderate thrombocytopenia, and headache) were successfully managed by reducing the dose. The outcomes of HSCT were favorable in seven of eight cases. CONCLUSION Ruxolitinib is promising as a short-term pre-HSCT treatment for pediatric patients with TDT and pronounced IE.
Collapse
Affiliation(s)
- Galina Ovsyannikova
- Department of Pediatric Hematology and Oncology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Dmitry Balashov
- Department of Hematopoietic Stem Cell Transplantation, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Irina Demina
- Laboratory for Immunophenotyping of Hemoblastosis, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Larisa Shelikhova
- Department of Hematopoietic Stem Cell Transplantation, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Alexey Pshonkin
- Department of Pediatric Hematology and Oncology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Michael Maschan
- Department of Hematopoietic Stem Cell Transplantation, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Galina Novichkova
- Department of Pediatric Hematology and Oncology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Alexey Maschan
- Department of Hematopoietic Stem Cell Transplantation, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Nataliya Smetanina
- Department of Pediatric Hematology and Oncology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| |
Collapse
|
23
|
Musallam KM, Bou‐Fakhredin R, Cappellini MD, Taher AT. 2021 update on clinical trials in β-thalassemia. Am J Hematol 2021; 96:1518-1531. [PMID: 34347889 DOI: 10.1002/ajh.26316] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 01/19/2023]
Abstract
The treatment landscape for patients with β-thalassemia is witnessing a swift evolution, yet several unmet needs continue to persist. Patients with transfusion-dependent β-thalassemia (TDT) primarily rely on regular transfusion and iron chelation therapy, which can be associated with considerable treatment burden and cost. Patients with non-transfusion-dependent β-thalassemia (NTDT) are also at risk of significant morbidity due to the underlying anemia and iron overload, but treatment options in this patient subgroup are limited. In this review, we provide updates on clinical trials of novel therapies targeting the underlying pathology in β-thalassemia, including the α/non-α-globin chain imbalance, ineffective erythropoiesis, and iron dysregulation.
Collapse
Affiliation(s)
- Khaled M. Musallam
- Thalassemia Center, Burjeel Medical City Abu Dhabi United Arab Emirates
- International Network of Hematology London UK
| | - Rayan Bou‐Fakhredin
- Department of Internal Medicine American University of Beirut Medical Center Beirut Lebanon
| | - Maria Domenica Cappellini
- Department of Clinical Sciences and Community University of Milan, Ca’ Granda Foundation IRCCS Maggiore Policlinico Hospital Milan Italy
| | - Ali T. Taher
- Department of Internal Medicine American University of Beirut Medical Center Beirut Lebanon
| |
Collapse
|
24
|
Chen N, Li Z, Huang Y, Xiao C, Shen X, Pan S, Su Q, Wang Z. Iron parameters in pregnant women with beta-thalassaemia minor combined with iron deficiency anaemia compared to pregnant women with iron deficiency anaemia alone demonstrate the safety of iron supplementation in beta-thalassaemia minor during pregnancy. Br J Haematol 2021; 196:390-396. [PMID: 34562018 DOI: 10.1111/bjh.17827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/29/2022]
Abstract
In patients with beta-thalassaemia intermedia or major, hepcidin induces iron overload by continuously promoting iron absorption. There have been no studies in pregnant women with beta-thalassaemia minor combined with iron deficiency anaemia (IDA), examining whether hepcidin is inhibited by GDF15, as may occur in patients with beta-thalassaemia intermedia or major, or whether the iron metabolism characteristics and the effect of iron supplementation are consistent with simple IDA in pregnancy. We compared and analysed routine blood parameters, iron metabolism parameters, the GDF15 levels, and the hepcidin levels among four groups, namely the beta-thalassaemia (β) + IDA, β, IDA, and normal groups. In addition, the β + IDA and IDA groups received iron supplementation for four weeks. We found no statistically significant correlation between hepcidin and GDF15 in any group, but a positive correlation was observed between hepcidin and ferritin. After iron supplementation, the routine blood parameters and iron metabolism parameters in the β + IDA group were improved, and the hepcidin content was significantly increased. These results suggest that in pregnant women with beta-thalassaemia minor, hepcidin functions normally to maintain iron homeostasis, and that iron supplementation is effective and safe.
Collapse
Affiliation(s)
- Niankun Chen
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Zhongjun Li
- Department of Obstetrics and Gynecology, Dongguan People's Hospital of Southern Medical University, Dongguan, China
| | - Yingying Huang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chaoqun Xiao
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xinyang Shen
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shumin Pan
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qiongqiong Su
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhijian Wang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
25
|
Suriyun T, Kaewsakulthong W, Khamphikham P, Chumchuen S, Hongeng S, Fucharoen S, Sripichai O. Association of the Degree of Erythroid Expansion and Maturation Arrest with the Clinical Severity of β0-Thalassemia/Hemoglobin E Patients. Acta Haematol 2021; 144:660-671. [PMID: 34535581 DOI: 10.1159/000518310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/05/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION β-Thalassemia/hemoglobin E represents one-half of all the clinically severe β-thalassemias worldwide. Despite similar genetic backgrounds, patients show clinical heterogeneity ranging from nearly asymptomatic to transfusion-dependent thalassemia. The underlying disease modifying factors remain largely obscure. METHODS To elucidate the correlation between ineffective erythropoiesis and β0-thalassemia/hemoglobin E (HbE) disease severity, in vitro culture of erythroid cells derived from patients with different clinical symptoms was established. Cell proliferation, viability, and differentiation were investigated. To identify potential molecular mechanisms leading to the arrested erythroid maturation, the expression levels of erythropoiesis modifying factors were measured. RESULTS The β0-thalassemia/HbE cells exhibited enhanced proliferation, limited differentiation, and impaired erythroid terminal maturation but did not show accelerated erythroblast differentiation and increased cell death. Erythroblasts derived from mild patients showed the highest proliferation rate with a faster cell division time, while erythroblasts derived from severe patients displayed extremely delayed erythroid maturation. Downregulation of growth differentiation factor 11 and FOXO3a was observed in mild β0-thalassemia/HbE erythroblasts, while upregulation of heat shock protein 70 and activin receptor 2A was revealed in severe erythroblasts. DISCUSSION/CONCLUSION The degree of erythroid expansion and maturation arrest contributes to the severity of β0-thalassemia/HbE patients, accounting for the disease heterogeneity. The findings suggest a restoration of erythroid maturation as a promising targeted therapy for severe patients.
Collapse
Affiliation(s)
- Thunwarat Suriyun
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Woratree Kaewsakulthong
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pinyaphat Khamphikham
- Institute of Molecular Biosciences, Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhonpathom, Thailand
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Sukanya Chumchuen
- Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Suradej Hongeng
- Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Suthat Fucharoen
- Institute of Molecular Biosciences, Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhonpathom, Thailand
| | - Orapan Sripichai
- Institute of Molecular Biosciences, Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhonpathom, Thailand
- National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| |
Collapse
|
26
|
Sun J, Wang J, Zheng D, Hu X. Advances in therapeutic application of CRISPR-Cas9. Brief Funct Genomics 2021; 19:164-174. [PMID: 31769791 DOI: 10.1093/bfgp/elz031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/04/2019] [Accepted: 10/03/2019] [Indexed: 02/06/2023] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (Cas9) is one of the most versatile and efficient gene editing technologies, which is derived from adaptive immune strategies for bacteria and archaea. With the remarkable development of programmable nuclease-based genome engineering these years, CRISPR-Cas9 system has developed quickly in recent 5 years and has been widely applied in countless areas, including genome editing, gene function investigation and gene therapy both in vitro and in vivo. In this paper, we briefly introduce the mechanisms of CRISPR-Cas9 tool in genome editing. More importantly, we review the recent therapeutic application of CRISPR-Cas9 in various diseases, including hematologic diseases, infectious diseases and malignant tumor. Finally, we discuss the current challenges and consider thoughtfully what advances are required in order to further develop the therapeutic application of CRISPR-Cas9 in the future.
Collapse
Affiliation(s)
- Jinyu Sun
- Sparkfire Scientific Research Group, Nanjing Medical University, China
| | - Jianchu Wang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, No. 18 Zhongshan Road, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Donghui Zheng
- Department of Nephrology, Huai'an Second People's Hospital and The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Xiaorong Hu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
27
|
Ineffective Erythropoiesis in β-Thalassaemia: Key Steps and Therapeutic Options by Drugs. Int J Mol Sci 2021; 22:ijms22137229. [PMID: 34281283 PMCID: PMC8268821 DOI: 10.3390/ijms22137229] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 01/19/2023] Open
Abstract
β-thalassaemia is a rare genetic condition caused by mutations in the β-globin gene that result in severe iron-loading anaemia, maintained by a detrimental state of ineffective erythropoiesis (IE). The role of multiple mechanisms involved in the pathophysiology of the disease has been recently unravelled. The unbalanced production of α-globin is a major source of oxidative stress and membrane damage in red blood cells (RBC). In addition, IE is tightly linked to iron metabolism dysregulation, and the relevance of new players of this pathway, i.e., hepcidin, erythroferrone, matriptase-2, among others, has emerged. Advances have been made in understanding the balance between proliferation and maturation of erythroid precursors and the role of specific factors in this process, such as members of the TGF-β superfamily, and their downstream effectors, or the transcription factor GATA1. The increasing understanding of IE allowed for the development of a broad set of potential therapeutic options beyond the current standard of care. Many candidates of disease-modifying drugs are currently under clinical investigation, targeting the regulation of iron metabolism, the production of foetal haemoglobin, the maturation process, or the energetic balance and membrane stability of RBC. Overall, they provide tools and evidence for multiple and synergistic approaches that are effectively moving clinical research in β-thalassaemia from bench to bedside.
Collapse
|
28
|
Vadolas J, Ng GZ, Kysenius K, Crouch PJ, Dames S, Eisermann M, Nualkaew T, Vilcassim S, Schaeper U, Grigoriadis G. SLN124, a GalNac-siRNA targeting transmembrane serine protease 6, in combination with deferiprone therapy reduces ineffective erythropoiesis and hepatic iron-overload in a mouse model of β-thalassaemia. Br J Haematol 2021; 194:200-210. [PMID: 33942901 PMCID: PMC8359948 DOI: 10.1111/bjh.17428] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/02/2021] [Indexed: 02/06/2023]
Abstract
Beta‐thalassaemia is an inherited blood disorder characterised by ineffective erythropoiesis and anaemia. Consequently, hepcidin expression is reduced resulting in increased iron absorption and primary iron overload. Hepcidin is under the negative control of transmembrane serine protease 6 (TMPRSS6) via cleavage of haemojuvelin (HJV), a co‐receptor for the bone morphogenetic protein (BMP)‐mothers against decapentaplegic homologue (SMAD) signalling pathway. Considering the central role of the TMPRSS6/HJV/hepcidin axis in iron homeostasis, the inhibition of TMPRSS6 expression represents a promising therapeutic strategy to increase hepcidin production and ameliorate anaemia and iron overload in β‐thalassaemia. In the present study, we investigated a small interfering RNA (siRNA) conjugate optimised for hepatic targeting of Tmprss6 (SLN124) in β‐thalassaemia mice (Hbbth3/+). Two subcutaneous injections of SLN124 (3 mg/kg) were sufficient to normalise hepcidin expression and reduce anaemia. We also observed a significant improvement in erythroid maturation, which was associated with a significant reduction in splenomegaly. Treatment with the iron chelator, deferiprone (DFP), did not impact any of the erythroid parameters. However, the combination of SLN124 with DFP was more effective in reducing hepatic iron overload than either treatment alone. Collectively, we show that the combination therapy can ameliorate several disease symptoms associated with chronic anaemia and iron overload, and therefore represents a promising pharmacological modality for the treatment of β‐thalassaemia and related disorders.
Collapse
Affiliation(s)
- Jim Vadolas
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia.,Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Garrett Z Ng
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Australia
| | - Kai Kysenius
- Department of Pharmacology and Therapeutics, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Peter J Crouch
- Department of Pharmacology and Therapeutics, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | | | | | - Tiwaporn Nualkaew
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Shahla Vilcassim
- School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | | | - George Grigoriadis
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia.,School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| |
Collapse
|
29
|
Motta I, Bou-Fakhredin R, Taher AT, Cappellini MD. Beta Thalassemia: New Therapeutic Options Beyond Transfusion and Iron Chelation. Drugs 2021; 80:1053-1063. [PMID: 32557398 PMCID: PMC7299245 DOI: 10.1007/s40265-020-01341-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Hemoglobinopathies are among the most common monogenic diseases worldwide. Approximately 1–5% of the global population are carriers for a genetic thalassemia mutation. The thalassemias are characterized by autosomal recessive inherited defects in the production of hemoglobin. They are highly prevalent in the Mediterranean, Middle East, Indian subcontinent, and East and Southeast Asia. Due to recent migrations, however, the thalassemias are now becoming more common in Europe and North America, making this disease a global health concern. Currently available conventional therapies in thalassemia have many challenges and limitations. A better understanding of the pathophysiology of β-thalassemia in addition to key developments in optimizing transfusion programs and iron-chelation therapy has led to an increase in the life span of thalassemia patients and paved the way for new therapeutic strategies. These can be classified into three categories based on their efforts to address different features of the underlying pathophysiology of β-thalassemia: correction of the globin chain imbalance, addressing ineffective erythropoiesis, and improving iron overload. In this review, we provide an overview of the novel therapeutic approaches that are currently in development for β-thalassemia.
Collapse
Affiliation(s)
- Irene Motta
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Rayan Bou-Fakhredin
- Division of Hematology and Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Ali T Taher
- Division of Hematology and Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Maria Domenica Cappellini
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy. .,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| |
Collapse
|
30
|
Feola M, Zamperone A, Moskop D, Chen H, Casu C, Lama D, Di Martino J, Djedaini M, Papa L, Martinez MR, Choesang T, Bravo-Cordero JJ, MacKay M, Zumbo P, Brinkman N, Abrams CS, Rivella S, Hattangadi S, Mason CE, Hoffman R, Ji P, Follenzi A, Ginzburg YZ. Pleckstrin-2 is essential for erythropoiesis in β-thalassemic mice, reducing apoptosis and enhancing enucleation. Commun Biol 2021; 4:517. [PMID: 33941818 PMCID: PMC8093212 DOI: 10.1038/s42003-021-02046-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 03/23/2021] [Indexed: 02/03/2023] Open
Abstract
Erythropoiesis involves complex interrelated molecular signals influencing cell survival, differentiation, and enucleation. Diseases associated with ineffective erythropoiesis, such as β-thalassemias, exhibit erythroid expansion and defective enucleation. Clear mechanistic determinants of what make erythropoiesis effective are lacking. We previously demonstrated that exogenous transferrin ameliorates ineffective erythropoiesis in β-thalassemic mice. In the current work, we utilize transferrin treatment to elucidate a molecular signature of ineffective erythropoiesis in β-thalassemia. We hypothesize that compensatory mechanisms are required in β-thalassemic erythropoiesis to prevent apoptosis and enhance enucleation. We identify pleckstrin-2-a STAT5-dependent lipid binding protein downstream of erythropoietin-as an important regulatory node. We demonstrate that partial loss of pleckstrin-2 leads to worsening ineffective erythropoiesis and pleckstrin-2 knockout leads to embryonic lethality in β-thalassemic mice. In addition, the membrane-associated active form of pleckstrin-2 occurs at an earlier stage during β-thalassemic erythropoiesis. Furthermore, membrane-associated activated pleckstrin-2 decreases cofilin mitochondrial localization in β-thalassemic erythroblasts and pleckstrin-2 knockdown in vitro induces cofilin-mediated apoptosis in β-thalassemic erythroblasts. Lastly, pleckstrin-2 enhances enucleation by interacting with and activating RacGTPases in β-thalassemic erythroblasts. This data elucidates the important compensatory role of pleckstrin-2 in β-thalassemia and provides support for the development of targeted therapeutics in diseases of ineffective erythropoiesis.
Collapse
Affiliation(s)
- Maria Feola
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- University of Piemonte Orientale, Amedeo Avogadro, Novara, Italy
| | - Andrea Zamperone
- Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA
| | - Daniel Moskop
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Huiyong Chen
- Erythropoiesis Laboratory, New York Blood Center, New York, NY, USA
- Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, China
| | - Carla Casu
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Dechen Lama
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Julie Di Martino
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mansour Djedaini
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Luena Papa
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marc Ruiz Martinez
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tenzin Choesang
- Erythropoiesis Laboratory, New York Blood Center, New York, NY, USA
| | | | | | - Paul Zumbo
- Weill Cornell Medical College, New York, NY, USA
| | | | - Charles S Abrams
- Perelman Center for Advanced Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | | | | | - Ronald Hoffman
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Peng Ji
- Northwestern University, Chicago, IL, USA
| | - Antonia Follenzi
- University of Piemonte Orientale, Amedeo Avogadro, Novara, Italy
| | - Yelena Z Ginzburg
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
31
|
Grzywa TM, Justyniarska M, Nowis D, Golab J. Tumor Immune Evasion Induced by Dysregulation of Erythroid Progenitor Cells Development. Cancers (Basel) 2021; 13:870. [PMID: 33669537 PMCID: PMC7922079 DOI: 10.3390/cancers13040870] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer cells harness normal cells to facilitate tumor growth and metastasis. Within this complex network of interactions, the establishment and maintenance of immune evasion mechanisms are crucial for cancer progression. The escape from the immune surveillance results from multiple independent mechanisms. Recent studies revealed that besides well-described myeloid-derived suppressor cells (MDSCs), tumor-associated macrophages (TAMs) or regulatory T-cells (Tregs), erythroid progenitor cells (EPCs) play an important role in the regulation of immune response and tumor progression. EPCs are immature erythroid cells that differentiate into oxygen-transporting red blood cells. They expand in the extramedullary sites, including the spleen, as well as infiltrate tumors. EPCs in cancer produce reactive oxygen species (ROS), transforming growth factor β (TGF-β), interleukin-10 (IL-10) and express programmed death-ligand 1 (PD-L1) and potently suppress T-cells. Thus, EPCs regulate antitumor, antiviral, and antimicrobial immunity, leading to immune suppression. Moreover, EPCs promote tumor growth by the secretion of growth factors, including artemin. The expansion of EPCs in cancer is an effect of the dysregulation of erythropoiesis, leading to the differentiation arrest and enrichment of early-stage EPCs. Therefore, anemia treatment, targeting ineffective erythropoiesis, and the promotion of EPC differentiation are promising strategies to reduce cancer-induced immunosuppression and the tumor-promoting effects of EPCs.
Collapse
Affiliation(s)
- Tomasz M. Grzywa
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (T.M.G.); (M.J.)
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
- Laboratory of Experimental Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Magdalena Justyniarska
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (T.M.G.); (M.J.)
| | - Dominika Nowis
- Laboratory of Experimental Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Jakub Golab
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (T.M.G.); (M.J.)
| |
Collapse
|
32
|
Elghobashy YA, Assar MFA, Mahmoud AA, Monem A Eltorgoman A, Elmasry S. The relation between mitogen activated protein kinase (MAPK) pathway and different genes expression in patients with beta Thalassemia. Biochem Biophys Rep 2020; 24:100836. [PMID: 33195827 PMCID: PMC7644576 DOI: 10.1016/j.bbrep.2020.100836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND β-thalassemia is an inherited hemoglobinopathy resulting in quantitative changes in the β-globin chain. Understanding the molecular basis of that disorder requires studying the expression of genes controlling the pathways that affect the erythropoietic homeostasis especially the MAPK pathway. The MAPKs are a family of serine/threonine kinases that play an essential role in connecting cell-surface receptors to DNA in the nucleus of the cell. AIM to study the effect of expression of GNAI2, DUSP5 and ARRB1 genes on MAPK signaling pathway in pediatric patients with beta thalassemia. METHODS Forty children with beta thalassemia major (TM), forty children with beta thalassemia intermedia (TI) and forty age and gender matched healthy controls were enrolled in this study. Detection of GNAI2, DUSP5 and ARRB1 mRNA expression was done by real time polymerase chain reaction (RT-PCR). RESULTS revealed increased expression of ARRB1 (Arrestin Beta 1) gene, and decreased expression of both GNAI2 (Guanine nucleotide-binding protein G (i) subunit alpha-2) and DUSP5 (Dual specificity protein phosphatase 5) genes in both patient groups than control groups respectively. CONCLUSIONS Change in the rate of expression of ARRB1, GNAI2 and DUSP5 may have a role in the pathogenesis of abnormal hematopoiesis in cases of β thalassemia through affecting the MAPK pathway.
Collapse
Affiliation(s)
- Yasser AbdElsattar Elghobashy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Menoufia University, Shebin Elkom, Egypt
| | - Mohamed FA. Assar
- Biochemistry Division of Chemistry Department, Faculty of Science, Menoufia University, Shebin Elkom, Egypt
| | - Asmaa A. Mahmoud
- Department of Pediatrics, Faculty of Medicine, Menoufia University, Shebin Elkom, Egypt
| | | | - Saher Elmasry
- Biochemistry Division of Chemistry Department, Faculty of Science, Menoufia University, Shebin Elkom, Egypt
| |
Collapse
|
33
|
Ranjbaran R, Abbasi M, Rahimian E, Dehbidi GR, Seyyedi N, Zare F, Behzad-Behbahani A. GDF-15 negatively regulates excess erythropoiesis and its overexpression is involved in erythroid hyperplasia. Exp Cell Res 2020; 397:112346. [PMID: 33164866 DOI: 10.1016/j.yexcr.2020.112346] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/21/2020] [Accepted: 10/24/2020] [Indexed: 01/28/2023]
Abstract
Growth differentiation factor-15 (GDF-15) is a member of TGF-β superfamily. Among hematopoietic cells, this factor is mainly produced by erythroid series and is recently considered a biomarker of ineffective erythropoiesis (IE). Whether IE induces enhanced GDF-15 expression or is prompted by it, has remained elusive. In this study we investigated how high levels of GDF-15 contribute to IE-associated erythroid dysplasia. We assessed mRNA levels of GDF-15 during erythroid maturation as well as in patients with IE using qRT-PCR. Later, the erythroid colony-forming capacity of GDF-15-treated hematopoietic stem cells (HSCs) was evaluated by CFC assay. Any effect of elevated levels of GDF-15 on erythroid maturation was ultimately examined by expression analysis of erythroid-associated transcription factors and flow cytometry analysis of CD235a expression. GDF-15 mRNA expression increased during erythroid differentiation and also in β-thalassemia and MDS patients which was directly correlated with erythropoiesis severity. Treating the cells with high GDF-15 concentration (50 ng/ml) resulted in an approximate 30% decline in the capacity of erythroid colony formation of HSCs and CD235a positive cells. Additionally, erythroid-specific transcription factors showed significant down-regulation in the early stages of erythroid differentiation. According to the expression level of GDF-15 and the role it plays in the erythroid system, high-levels of this factor could be an auto-modulatory mechanism to control the excessive production of erythroid cells.
Collapse
Affiliation(s)
- Reza Ranjbaran
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mojdeh Abbasi
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran; Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia.
| | - Elahe Rahimian
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Gholamreza Rafiei Dehbidi
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Noorossadat Seyyedi
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Farahnaz Zare
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Abbas Behzad-Behbahani
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
34
|
Ghoti H, Ackerman S, Rivella S, Casu C, Nadir Y. Heparanase Level and Procoagulant Activity Are Increased in Thalassemia and Attenuated by Janus Kinase 2 Inhibition. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:2146-2154. [PMID: 32745462 DOI: 10.1016/j.ajpath.2020.07.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/05/2020] [Accepted: 07/07/2020] [Indexed: 01/30/2023]
Abstract
Patients with thalassemia exhibit an increased risk of thrombotic events that is augmented after splenectomy. Heparanase protein enhances cancer progression, angiogenesis, and inflammation; it also activates the coagulation system through direct interaction with tissue factor (TF). Additionally, erythropoietin, which is elevated in anemic patients, up-regulates heparanase expression via the Janus kinase 2 (JAK-2) pathway. This study aimed was to explore the heparanase profile in thalassemia. Coagulation factors were analyzed via immunostaining, enzyme-linked immunosorbent assay, and heparanase procoagulant activity assay. In spleen specimens of thalassemia major patients, a higher level of heparanase staining was observed compared with control spleens resected after trauma (P < 0.001). Higher heparanase levels, heparanase and TF procoagulant activity, and erythropoietin levels were found in the plasma of 67 thalassemia major patients compared with 29 control subjects. No difference was found in pediatric patients (23 of 67) compared with adults or splenectomized versus nonsplenectomized patients. Higher levels of heparanase, TF, TF pathway inhibitor, and TF pathway inhibitor-2 were observed in liver, spleen, heart, and kidney tissues of thalassemia intermedia mice (Hbbth3/+). These protein levels significantly reduced when mice were treated with the JAK-2 inhibitor ruxolitinib (P < 0.0001). In summary, heparanase levels are elevated in thalassemia, which may contribute to thrombotic phenomena in these patients. Inhibition of heparanase or the JAK-2 pathway may reduce thrombotic risk in thalassemia.
Collapse
Affiliation(s)
- Hussam Ghoti
- European Center for Cancer and Cell Therapy (ECCT), Nicosia, Cyprus
| | - Shanny Ackerman
- Thrombosis and Hemostasis Unit, Rambam Health Care Campus, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Stefano Rivella
- Department of Pediatrics, Division of Hematology, Children's Hospital of Philadelphia (CHOP), Philadelphia, Pennsylvania
| | - Carla Casu
- Department of Pediatrics, Division of Hematology, Children's Hospital of Philadelphia (CHOP), Philadelphia, Pennsylvania
| | - Yona Nadir
- Thrombosis and Hemostasis Unit, Rambam Health Care Campus, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel.
| |
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW Erythropoiesis is a complex multistep process going from committed erythroid progenitors to mature red cells. Although recent advances allow the characterization of some components of erythropoiesis, much still remains to be investigated particularly on stress erythropoiesis. This review summarizes recent progresses made to understand the impact of oxidative stress on normal and pathologic erythropoiesis. RECENT FINDINGS During erythroid maturation, reactive oxygen species might function as second messenger through either transient oxidation of cysteine residues on signaling targets or modulation of intracellular signaling pathways. Thus, in erythropoiesis, efficient cytoprotective systems are required to limit possible reactive oxygen species-related toxic effects especially in stress erythropoiesis characterized by severe oxidation such as β-thalassemia. In addition, prolonged or severe oxidative stress impairs autophagy, which might contribute to the block of erythroid maturation in stress erythropoiesis. Understanding the functional role of cytoprotective systems such as peroxiredoxin-2 or classical molecular chaperones such as the heat shock proteins will contribute to develop innovative therapeutic strategies for ineffective erythropoiesis. SUMMARY We provide an update on cytoprotective mechanisms against oxidation in normal and stress erythropoiesis. We discuss the role of oxidative sensors involved in modulation of intracellular signaling during erythroid maturation process in normal and stress erythropoiesis.
Collapse
|
36
|
Yang X, Chen D, Long H, Zhu B. The mechanisms of pathological extramedullary hematopoiesis in diseases. Cell Mol Life Sci 2020; 77:2723-2738. [PMID: 31974657 PMCID: PMC11104806 DOI: 10.1007/s00018-020-03450-w] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 12/24/2019] [Accepted: 01/02/2020] [Indexed: 02/06/2023]
Abstract
Extramedullary hematopoiesis (EMH) is the expansion and differentiation of hematopoietic stem and progenitor cells outside of the bone marrow. In postnatal life, as a compensatory mechanism for ineffective hematopoiesis of the bone marrow, pathological EMH is triggered by hematopoietic disorders, insufficient hematopoietic compensation, and other pathological stress conditions, such as infection, advanced tumors, anemia, and metabolic stress. Pathological EMH has been reported in many organs, and the sites of pathological EMH may be related to reactivation of the embryonic hematopoietic structure in these organs. As a double-edged sword (blood and immune cell supplementation as well as clinical complications), pathological EMH has been widely studied in recent years. In particular, pathological EMH induced by late-stage tumors contributes to tumor immunosuppression. Thus, a deeper understanding of the mechanism of pathological EMH may be conducive to the development of therapies against the pathological processes that induce EMH. This article reviews the recent progress of research on the cellular and molecular mechanisms of pathological EMH in specific diseases.
Collapse
Affiliation(s)
- Xinxin Yang
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Degao Chen
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Haixia Long
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China.
| | - Bo Zhu
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China.
- Chongqing Key Laboratory of Immunotherapy, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China.
| |
Collapse
|
37
|
Al-Hakeim HK, Najm AH, Al-Dujaili AH, Maes M. Major Depression in Children with Transfusion-Dependent Thalassemia Is Strongly Associated with the Combined Effects of Blood Transfusion Rate, Iron Overload, and Increased Pro-inflammatory Cytokines. Neurotox Res 2020; 38:228-241. [DOI: 10.1007/s12640-020-00193-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 03/06/2020] [Accepted: 03/12/2020] [Indexed: 02/02/2023]
|
38
|
Bou-Fakhredin R, Tabbikha R, Daadaa H, Taher AT. Emerging therapies in β-thalassemia: toward a new era in management. Expert Opin Emerg Drugs 2020; 25:113-122. [DOI: 10.1080/14728214.2020.1752180] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Rayan Bou-Fakhredin
- Division of Hematology and Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Rami Tabbikha
- Division of Hematology and Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Hisham Daadaa
- Division of Hematology and Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Ali T. Taher
- Division of Hematology and Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
39
|
Tahannejad Asadi Z, Yarahmadi R, Saki N, Jalali MT, Amin Asnafi A, Tangestani R. Investigation of JAK2V617F Mutation Prevalence in Patients with Beta Thalassemia Major. Lab Med 2020; 51:176-180. [PMID: 31495895 DOI: 10.1093/labmed/lmz045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Beta (β)-thalassemia major is a genetic disorder with anemia and an increased level of erythropoietin by Janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling pathway. JAK plays an important role in cell signaling, and the common mutation in the JAK2 gene in myeloid disorders is called JAK2V617F. METHODS A total of 75 patients with beta (β)-thalassemia major patients, including 34 males (45%) and 41 females (55%), were enrolled in this study. The presence of the JAK2V617F mutation was assessed using the amplification-refractory mutation-polymerase chain reaction (ARMS-PCR) technique. RESULTS Among the 75 patients, 14 patients (19%) tested positive and 61 patients (81%) tested negative for JAK2V617F mutation. We observed no statistically significant difference in sex, age, genotype, and JAK2V617F mutation among patients (P> .05). However, a significant difference between blood-transfusion frequency and JAK2V617F mutation was observed (P <.05). CONCLUSION Due to the low prevalence of JAK2V617F mutation in thalassemia, using a larger population of the patients to investigate this mutation in ineffective erythropoiesis can be useful.
Collapse
Affiliation(s)
- Zari Tahannejad Asadi
- Health Research Institute, Thalassemia & Hemoglobinopathy Research Center.,Department of Laboratory Sciences, Faculty of Paramedicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Yarahmadi
- Health Research Institute, Thalassemia & Hemoglobinopathy Research Center
| | - Najmaldin Saki
- Health Research Institute, Thalassemia & Hemoglobinopathy Research Center
| | - Mohammad Taha Jalali
- Department of Laboratory Sciences, Faculty of Paramedicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Amin Asnafi
- Health Research Institute, Thalassemia & Hemoglobinopathy Research Center
| | - Raheleh Tangestani
- Health Research Institute, Thalassemia & Hemoglobinopathy Research Center
| |
Collapse
|
40
|
Heme-regulated eIF2α kinase in erythropoiesis and hemoglobinopathies. Blood 2020; 134:1697-1707. [PMID: 31554636 DOI: 10.1182/blood.2019001915] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 09/11/2019] [Indexed: 12/12/2022] Open
Abstract
As essential components of hemoglobin, iron and heme play central roles in terminal erythropoiesis. The impairment of this process in iron/heme deficiency results in microcytic hypochromic anemia, the most prevalent anemia globally. Heme-regulated eIF2α kinase, also known as heme-regulated inhibitor (HRI), is a key heme-binding protein that senses intracellular heme concentrations to balance globin protein synthesis with the amount of heme available for hemoglobin production. HRI is activated during heme deficiency to phosphorylate eIF2α (eIF2αP), which simultaneously inhibits the translation of globin messenger RNAs (mRNAs) and selectively enhances the translation of activating transcription factor 4 (ATF4) mRNA to induce stress response genes. This coordinated translational regulation is a universal hallmark across the eIF2α kinase family under various stress conditions and is termed the integrated stress response (ISR). Inhibition of general protein synthesis by HRI-eIF2αP in erythroblasts is necessary to prevent proteotoxicity and maintain protein homeostasis in the cytoplasm and mitochondria. Additionally, the HRI-eIF2αP-ATF4 pathway represses mechanistic target of rapamycin complex 1 (mTORC1) signaling, specifically in the erythroid lineage as a feedback mechanism of erythropoietin-stimulated erythropoiesis during iron/heme deficiency. Furthermore, ATF4 target genes are most highly activated during iron deficiency to maintain mitochondrial function and redox homeostasis, as well as to enable erythroid differentiation. Thus, heme and translation regulate erythropoiesis through 2 key signaling pathways, ISR and mTORC1, which are coordinated by HRI to circumvent ineffective erythropoiesis (IE). HRI-ISR is also activated to reduce the severity of β-thalassemia intermedia in the Hbbth1/th1 murine model. Recently, HRI has been implicated in the regulation of human fetal hemoglobin production. Therefore, HRI-ISR has emerged as a potential therapeutic target for hemoglobinopathies.
Collapse
|
41
|
Casu C, Chessa R, Liu A, Gupta R, Drakesmith H, Fleming R, Ginzburg YZ, MacDonald B, Rivella S. Minihepcidins improve ineffective erythropoiesis and splenomegaly in a new mouse model of adult β-thalassemia major. Haematologica 2019; 105:1835-1844. [PMID: 31582543 PMCID: PMC7327634 DOI: 10.3324/haematol.2018.212589] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 09/26/2019] [Indexed: 01/11/2023] Open
Abstract
Minihepcidins are hepcidin agonists that have been previously shown to reverse iron overload and improve erythropoiesis in mice affected by non-transfusion-dependent thalassemia. Given the extreme anemia that occurred with the previous model of transfusion-dependent thalassemia, that model was inadequate for investigating whether minihepcidins can improve red blood cell quality, lifespan and ineffective erythropoiesis. To overcome this limitation, we generated a new murine model of transfusion-dependent thalassemia with severe anemia and splenomegaly, but sufficient red cells and hemoglobin production to test the effect of minihepcidins. Furthermore, this new model demonstrates cardiac iron overload for the first time. In the absence of transfusions, minihepcidins improved red blood cell morphology and lifespan as well as ineffective erythropoiesis. Administration of a minihepcidin in combination with chronic red blood cell transfusion further improved the ineffective erythropoiesis and splenomegaly and reversed cardiac iron overload. These studies indicate that drugs such as minihepcidins have therapeutic potential for patients with transfusion-dependent thalassemia.
Collapse
Affiliation(s)
- Carla Casu
- Department of Pediatrics, Division of Hematology, The Children's Hospital of Philadelphia (CHOP), Philadelphia, PA, USA
| | - Roberta Chessa
- Department of Pediatrics, Division of Hematology, The Children's Hospital of Philadelphia (CHOP), Philadelphia, PA, USA
| | - Alison Liu
- Department of Pediatrics, Division of Hematology, The Children's Hospital of Philadelphia (CHOP), Philadelphia, PA, USA
| | - Ritama Gupta
- Department of Pediatrics, Division of Hematology, The Children's Hospital of Philadelphia (CHOP), Philadelphia, PA, USA
| | - Hal Drakesmith
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Robert Fleming
- Department of Pediatrics, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Yelena Z Ginzburg
- Division of Hematology and Medical Oncology, Tisch Cancer Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Stefano Rivella
- Department of Pediatrics, Division of Hematology, The Children's Hospital of Philadelphia (CHOP), Philadelphia, PA, USA
| |
Collapse
|
42
|
Abstract
Cell oxidative status, which represents the balance between oxidants and antioxidants, is involved in normal functions. Under pathological conditions, there is a shift toward the oxidants, leading to oxidative stress, which is cytotoxic, causing oxidation of cellular components that result in cell death and organ damage. Thalassemia is a hereditary hemolytic anemia caused by mutations in globin genes that cause reduced or complete absence of specific globin chains (commonly, α or β). Although oxidative stress is not the primary etiology of thalassemia, it mediates several of its pathologies. The main causes of oxidative stress in thalassemia are the degradation of the unstable hemoglobin and iron overload-both stimulate the production of excess free radicals. The symptoms aggravated by oxidative stress include increased hemolysis, ineffective erythropoiesis and functional failure of vital organs such as the heart and liver. The oxidative status of each patient is affected by multiple internal and external factors, including genetic makeup, health conditions, nutrition, physical activity, age, and the environment (e.g., air pollution, radiation). In addition, oxidative stress is influenced by the clinical manifestations of the disease (unpaired globin chains, iron overload, anemia, etc.). Application of personalized (theranostics) medicine principles, including diagnostic tests for selecting targeted therapy, is therefore important for optimal treatment of the oxidative stress of these patients. We summarize the role of oxidative stress and the current and potential antioxidative therapeutics in β-thalassemia and describe some methodologies, mostly cellular, that might be helpful for application of a theranostics approach to therapy.
Collapse
Affiliation(s)
- Eitan Fibach
- Department of Hematology, Hadassah-Hebrew University Medical Center, Ein-Kerem, POB 12,000, 91120, Jerusalem, Israel.
| | - Mutaz Dana
- Department of Hematology, Hadassah-Hebrew University Medical Center, Ein-Kerem, POB 12,000, 91120, Jerusalem, Israel
| |
Collapse
|
43
|
El-Beshlawy A, El-Ghamrawy M. Recent trends in treatment of thalassemia. Blood Cells Mol Dis 2019; 76:53-58. [DOI: 10.1016/j.bcmd.2019.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 01/12/2023]
|
44
|
Khandros E, Kwiatkowski JL. Beta Thalassemia: Monitoring and New Treatment Approaches. Hematol Oncol Clin North Am 2019; 33:339-353. [PMID: 31030806 DOI: 10.1016/j.hoc.2019.01.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Beta thalassemias are a significant global health problem. Globin chain imbalance leads to a complex physiologic cascade of hemolytic anemia, ineffective erythropoiesis, and iron overload. Management of the broad spectrum of phenotypes requires the careful use of red blood transfusions, supportive care, monitoring, and management of iron overload. In this article, the authors discuss recommendations for monitoring of individuals with thalassemia, as well as ongoing preclinical and clinical trials of therapies targeting different aspects of thalassemia pathophysiology.
Collapse
Affiliation(s)
- Eugene Khandros
- Division of Hematology, Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Colket Translational Research Building, Room 11024, Philadelphia, PA 19104, USA; Department of Pediatrics, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA
| | - Janet L Kwiatkowski
- Division of Hematology, Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Colket Translational Research Building, Room 11024, Philadelphia, PA 19104, USA; Department of Pediatrics, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
45
|
Comparative Proteome-Wide Analysis of Bone Marrow Microenvironment of β-Thalassemia/Hemoglobin E. Proteomes 2019; 7:proteomes7010008. [PMID: 30813444 PMCID: PMC6473223 DOI: 10.3390/proteomes7010008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/16/2019] [Accepted: 02/19/2019] [Indexed: 12/17/2022] Open
Abstract
β-thalassemia/Hb E is a global health issue, which is characterized by a range of clinical symptoms from a mild and asymptomatic anemia to severe disorders that require transfusions from infancy. Pathological mechanisms of the disease involve the excess of unmatched alpha globin and iron overload, leading to ineffective erythropoiesis and ultimately to the premature death of erythroid precursors in bone marrow (BM) and peripheral organs. However, it is unclear as to how BM microenvironment factors contribute to the defective erythropoiesis in β-thalassemia/Hb E patients. Here, we employed mass spectrometry-based comparative proteomics to analyze BM plasma that was collected from six β-thalassemia/Hb E patients and four healthy donors. We identified that the differentially expressed proteins are enriched in secretory or exosome-associated proteins, many of which have putative functions in the oxidative stress response. Using Western blot assay, we confirmed that atypical lipoprotein, Apolipoprotein D (APOD), belonging to the Lipocalin transporter superfamily, was significantly decreased in BM plasma of the tested pediatric β-thalassemia/Hb E patients. Our results highlight that the disease condition of ineffective erythropoiesis and oxidative stress found in BM microenvironment of β-thalassemia/Hb E patients is associated with the impaired expression of APOD protein.
Collapse
|
46
|
Barbarani G, Fugazza C, Strouboulis J, Ronchi AE. The Pleiotropic Effects of GATA1 and KLF1 in Physiological Erythropoiesis and in Dyserythropoietic Disorders. Front Physiol 2019; 10:91. [PMID: 30809156 PMCID: PMC6379452 DOI: 10.3389/fphys.2019.00091] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/25/2019] [Indexed: 01/19/2023] Open
Abstract
In the last few years, the advent of new technological approaches has led to a better knowledge of the ontogeny of erythropoiesis during development and of the journey leading from hematopoietic stem cells (HSCs) to mature red blood cells (RBCs). Our view of a well-defined hierarchical model of hematopoiesis with a near-homogeneous HSC population residing at the apex has been progressively challenged in favor of a landscape where HSCs themselves are highly heterogeneous and lineages separate earlier than previously thought. The coordination of these events is orchestrated by transcription factors (TFs) that work in a combinatorial manner to activate and/or repress their target genes. The development of next generation sequencing (NGS) has facilitated the identification of pathological mutations involving TFs underlying hematological defects. The examples of GATA1 and KLF1 presented in this review suggest that in the next few years the number of TF mutations associated with dyserythropoietic disorders will further increase.
Collapse
Affiliation(s)
- Gloria Barbarani
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi Milano-Bicocca, Milan, Italy
| | - Cristina Fugazza
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi Milano-Bicocca, Milan, Italy
| | - John Strouboulis
- School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Antonella E Ronchi
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi Milano-Bicocca, Milan, Italy
| |
Collapse
|
47
|
Rivella S. Iron metabolism under conditions of ineffective erythropoiesis in β-thalassemia. Blood 2019; 133:51-58. [PMID: 30401707 PMCID: PMC6318430 DOI: 10.1182/blood-2018-07-815928] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 08/06/2018] [Indexed: 12/24/2022] Open
Abstract
β-Thalassemia (BT) is an inherited genetic disorder that is characterized by ineffective erythropoiesis (IE), leading to anemia and abnormal iron metabolism. IE is an abnormal expansion of the number of erythroid progenitor cells with unproductive synthesis of enucleated erythrocytes, leading to anemia and hypoxia. Anemic patients affected by BT suffer from iron overload, even in the absence of chronic blood transfusion, suggesting the presence of ≥1 erythroid factor with the ability to modulate iron metabolism and dietary iron absorption. Recent studies suggest that decreased erythroid cell differentiation and survival also contribute to IE, aggravating the anemia in BT. Furthermore, hypoxia can also affect and increase iron absorption. Understanding the relationship between iron metabolism and IE could provide important insights into the BT condition and help to develop novel treatments. In fact, genetic or pharmacological manipulations of iron metabolism or erythroid cell differentiation and survival have been shown to improve IE, iron overload, and anemia in animal models of BT. Based on those findings, new therapeutic approaches and drugs have been proposed; clinical trials are underway that have the potential to improve erythrocyte production, as well as to reduce the iron overload and organ toxicity in BT and in other disorders characterized by IE.
Collapse
Affiliation(s)
- Stefano Rivella
- Division of Hematology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA; and Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
48
|
Transferrin receptor 2 is a potential novel therapeutic target for β-thalassemia: evidence from a murine model. Blood 2018; 132:2286-2297. [PMID: 30209118 DOI: 10.1182/blood-2018-05-852277] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/31/2018] [Indexed: 12/15/2022] Open
Abstract
β-thalassemias are genetic disorders characterized by anemia, ineffective erythropoiesis, and iron overload. Current treatment of severe cases is based on blood transfusion and iron chelation or allogeneic bone marrow (BM) transplantation. Novel approaches are explored for nontransfusion-dependent patients (thalassemia intermedia) who develop anemia and iron overload. Here, we investigated the erythropoietin (EPO) receptor partner, transferrin receptor 2 (TFR2), as a novel potential therapeutic target. We generated a murine model of thalassemia intermedia specifically lacking BM Tfr2: because their erythroid cells are more susceptible to EPO stimulation, mice show improved erythropoiesis and red blood cell morphology as well as partial correction of anemia and iron overload. The beneficial effects become attenuated over time, possibly due to insufficient iron availability to sustain the enhanced erythropoiesis. Germ line deletion of Tfr2, including haploinsufficiency, had a similar effect in the thalassemic model. Because targeting TFR2 enhances EPO-mediated effects exclusively in cells expressing both receptors, this approach may have advantages over erythropoiesis-stimulating agents in the treatment of other anemias.
Collapse
|
49
|
Levin C, Koren A, Rebibo-Sabbah A, Koifman N, Brenner B, Aharon A. Extracellular Vesicle Characteristics in β-thalassemia as Potential Biomarkers for Spleen Functional Status and Ineffective Erythropoiesis. Front Physiol 2018; 9:1214. [PMID: 30214417 PMCID: PMC6125348 DOI: 10.3389/fphys.2018.01214] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 08/13/2018] [Indexed: 12/27/2022] Open
Abstract
β-thalassemia major (β-TM) is a therapeutically challenging chronic disease in which ineffective erythropoiesis is a main pathophysiological factor. Extracellular vesicles (EVs) are membrane-enclosed vesicles released by cells into biological fluids; they are involved in intercellular communication and in multiple physiological and pathological processes. The chaperone heat-shock protein 70 (HSP70), which is released from cells via EVs, aggravates ineffective erythropoiesis in β-TM. We propose that β-TM EVs may show specific signatures, reflecting disease mechanisms, stages and severity. Our study aims were to define EV profiles in β-TM patients, investigate the influence of hypersplenism and splenectomy on EV features, and explore the association of circulating EVs with ineffective erythropoiesis and iron-overload parameters. We characterized circulating EVs in 35 transfusion-dependent β-thalassemia patients and 35 controls using several techniques. Nanoparticle-tracking analysis revealed increased EV concentration in patients vs. controls (P = 0.0036), with smaller EV counts and sizes in patients with hypersplenism. Flow cytometry analysis showed lower levels of RBC and monocyte EVs in patients vs. controls. RBC-EV levels correlated with patient hematocrit, reflecting degree of anemia. The procoagulant potential of the EVs evaluated by flow cytometry revealed lower levels of endothelial protein C receptor-labeled EVs in patients vs. controls, and increased tissue factor-to-tissue factor pathway inhibitor-labeled EV ratio in splenectomized patients, suggesting a hypercoagulable state. Protein content, evaluated in EV pellets, showed increased levels of HSP70 in patients (P = 0.0018), inversely correlated with transfusion requirement and hemoglobin levels, and positively correlated with reticulocyte, erythropoietin and lactate dehydrogenase levels. This first description of EVs in patients with hypersplenism reveals the spleen’s importance in EV physiology and clearance. Circulating EV-HSP70 levels were associated with markers of ineffective erythropoiesis, hemolysis and hematological disease severity. EV analysis in β-TM—reflecting spleen status, hypercoagulability state and ineffective erythropoiesis—may serve as a biomarker of disease dynamics, supporting both anticipation of the risk of complications and optimizing treatment.
Collapse
Affiliation(s)
- Carina Levin
- Pediatric Hematology Unit, Emek Medical Center, Afula, Israel.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Ariel Koren
- Pediatric Hematology Unit, Emek Medical Center, Afula, Israel.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Annie Rebibo-Sabbah
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, Haifa, Israel
| | - Naama Koifman
- Department of Chemical Engineering and The Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Benjamin Brenner
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.,Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, Haifa, Israel
| | - Anat Aharon
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.,Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, Haifa, Israel
| |
Collapse
|
50
|
A paradigm shift on beta-thalassaemia treatment: How will we manage this old disease with new therapies? Blood Rev 2018; 32:300-311. [DOI: 10.1016/j.blre.2018.02.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/05/2018] [Accepted: 02/09/2018] [Indexed: 01/19/2023]
|