1
|
Duan H, Zhang Y, Otis MR, Drolet DW, Geisbrecht BV. The Inhibitory Effects of a Factor B-Binding DNA Aptamer Family Supersede the Gain of Function of Factor B Variants Associated with Atypical Hemolytic Uremic Syndrome. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1691-1702. [PMID: 39431879 PMCID: PMC11573645 DOI: 10.4049/jimmunol.2400420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/30/2024] [Indexed: 10/22/2024]
Abstract
Aptamers are short, single-stranded oligonucleotides that selectively bind to target biomolecules. Although they generally exhibit good binding specificity, their affinities are often limited because of the relative lack of hydrophobic groups in nucleic acids. Chemically modified nucleotides incorporating hydrophobic structures into uracil have been synthesized to address this obstacle. Modified DNA aptamers containing such nonstandard nucleotides have been developed for >20 different complement proteins. These modified aptamers show increased affinity and enhanced serum stability and have potential value as therapeutic agents. We recently conducted a structure/function study on a family of modified DNA aptamers that bind specifically to complement Factor B (FB). This work revealed that these aptamers selectively inhibit the complement alternative pathway (AP) by preventing the formation of the AP complement component C3 (C3) proconvertase complex, C3bB. Certain patients with atypical hemolytic uremic syndrome express gain-of-function variants of FB that enhance the formation of the proconvertase complex and/or decrease the efficacy of endogenous regulators against the C3 convertases they form. To investigate whether these FB-binding aptamers could override the effects of disease-causing mutations in FB, we examined how they interacted with several FB variants, including D279G, F286L, K323E, and K350N, in various assays of complement function. We found that the inhibitory effect of the FB-binding aptamers superseded the gain-of-function mutations in FB, although the aptamers could not dissociate preformed C3 convertases. These findings suggest that FB-binding aptamers could be further developed as a potential treatment for certain atypical hemolytic uremic syndrome patients or those with other diseases characterized by excessive complement activity.
Collapse
Affiliation(s)
- Huiquan Duan
- Department of Biochemistry & Molecular Biophysics, Kansas State University; Manhattan, KS 66506 U.S.A
| | - Ying Zhang
- Department of Biochemistry & Molecular Biophysics, Kansas State University; Manhattan, KS 66506 U.S.A
| | | | | | - Brian V. Geisbrecht
- Department of Biochemistry & Molecular Biophysics, Kansas State University; Manhattan, KS 66506 U.S.A
| |
Collapse
|
2
|
Obata S, Hullekes F, Riella LV, Cravedi P. Recurrent complement-mediated Hemolytic uremic syndrome after kidney transplantation. Transplant Rev (Orlando) 2024; 38:100857. [PMID: 38749097 DOI: 10.1016/j.trre.2024.100857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 06/16/2024]
Abstract
Hereditary forms of hemolytic uremic syndrome (HUS), formerly known as atypical HUS, typically involve mutations in genes encoding for components of the alternative pathway of complement, therefore they are often referred to as complement-mediated HUS (cHUS). This condition has a high risk of recurrence in the transplanted kidney, leading to accelerated graft loss. The availability of anti-complement component C5 antibody eculizumab has enabled successful transplantation with a notably reduced recurrence rate and improved prognosis. Open questions are related to the potential for complement inhibitor discontinuation, ideal timing of treatment withdrawal, and patient selection based on genetic abnormalities. Our review delves into the pathophysiology, classification, genetic predispositions, and management strategies for cHUS in the native and transplant kidneys.
Collapse
Affiliation(s)
- Shota Obata
- Precision Immunology Institute, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Frank Hullekes
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Leonardo V Riella
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America; Department of Medicine, Nephrology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Paolo Cravedi
- Precision Immunology Institute, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America.
| |
Collapse
|
3
|
Aradottir SS, Kristoffersson AC, Linnér E, Karpman D. Complement dysregulation associated with a genetic variant in factor H-related protein 5 in atypical hemolytic uremic syndrome. Pediatr Nephrol 2024; 39:1105-1111. [PMID: 37955705 PMCID: PMC10899364 DOI: 10.1007/s00467-023-06184-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND Atypical hemolytic uremic syndrome (aHUS) can be associated with mutations, deletions, or hybrid genes in factor H-related (FHR) proteins. METHODS A child with aHUS was investigated. Genetics was assessed by Sanger and next generation sequencing. Serum FHR5 was evaluated by immunoblotting, ELISA, and by induction of rabbit red blood cell hemolysis in the presence/absence of recombinant human rFHR5. Mutagenesis was performed in HEK cells. RESULTS A heterozygous genetic variant in factor H-related protein 5 (CFHR5), M514R, was found in the child, who also had a homozygous deletion of CFHR3/CFHR1, and antibodies to factor H, as well as low levels of C3. Patient serum exhibited low levels of FHR5. In the presence of rabbit red blood cells, patient serum induced hemolysis which decreased when rFHR5 was added at physiological concentrations. Similar results were obtained using serum from the father, bearing the CFHR5 variant without factor H antibodies. Patient FHR5 formed normal dimers. The CFHR5 M514R variant was expressed in HEK cells and minimal secretion was detected whereas the protein level was elevated in cell lysates. CONCLUSIONS Decreased secretion of the product of the mutant allele could explain the low FHR5 levels in patient serum. Reduced hemolysis when rFHR5 was added to serum suggests a regulatory role regarding complement activation on red blood cells. As such, low levels of FHR5, as demonstrated in the patient, may contribute to complement activation.
Collapse
Affiliation(s)
| | | | - Erik Linnér
- Department of Pediatrics, Clinical Sciences Lund, Lund University, 22185, Lund, Sweden
| | - Diana Karpman
- Department of Pediatrics, Clinical Sciences Lund, Lund University, 22185, Lund, Sweden.
| |
Collapse
|
4
|
Bendapudi PK, Nazeen S, Ryu J, Söylemez O, Robbins A, Rouaisnel B, O’Neil JK, Pokhriyal R, Yang M, Colling M, Pasko B, Bouzinier M, Tomczak L, Collier L, Barrios D, Ram S, Toth-Petroczy A, Krier J, Fieg E, Dzik WH, Hudspeth JC, Pozdnyakova O, Nardi V, Knight J, Maas R, Sunyaev S, Losman JA. Low-frequency inherited complement receptor variants are associated with purpura fulminans. Blood 2024; 143:1032-1044. [PMID: 38096369 PMCID: PMC10950473 DOI: 10.1182/blood.2023021231] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/15/2023] [Indexed: 03/16/2024] Open
Abstract
ABSTRACT Extreme disease phenotypes can provide key insights into the pathophysiology of common conditions, but studying such cases is challenging due to their rarity and the limited statistical power of existing methods. Herein, we used a novel approach to pathway-based mutational burden testing, the rare variant trend test (RVTT), to investigate genetic risk factors for an extreme form of sepsis-induced coagulopathy, infectious purpura fulminans (PF). In addition to prospective patient sample collection, we electronically screened over 10.4 million medical records from 4 large hospital systems and identified historical cases of PF for which archived specimens were available to perform germline whole-exome sequencing. We found a significantly increased burden of low-frequency, putatively function-altering variants in the complement system in patients with PF compared with unselected patients with sepsis (P = .01). A multivariable logistic regression analysis found that the number of complement system variants per patient was independently associated with PF after controlling for age, sex, and disease acuity (P = .01). Functional characterization of PF-associated variants in the immunomodulatory complement receptors CR3 and CR4 revealed that they result in partial or complete loss of anti-inflammatory CR3 function and/or gain of proinflammatory CR4 function. Taken together, these findings suggest that inherited defects in CR3 and CR4 predispose to the maladaptive hyperinflammation that characterizes severe sepsis with coagulopathy.
Collapse
Affiliation(s)
- Pavan K. Bendapudi
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Boston, MA
- Division of Hematology and Blood Transfusion Service, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Sumaiya Nazeen
- Harvard Medical School, Boston, MA
- Division of Genomic Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Justine Ryu
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Boston, MA
- Harvard Medical School, Boston, MA
| | - Onuralp Söylemez
- Harvard Medical School, Boston, MA
- Division of Genomic Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Alissa Robbins
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Betty Rouaisnel
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Jillian K. O’Neil
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Ruchika Pokhriyal
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Moua Yang
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Boston, MA
- Harvard Medical School, Boston, MA
| | - Meaghan Colling
- Division of Hematology and Blood Transfusion Service, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Bryce Pasko
- Department of Pathology, University of Colorado School of Medicine, Aurora, CO
| | - Michael Bouzinier
- Harvard Medical School, Boston, MA
- Division of Genomic Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Lindsay Tomczak
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Boston, MA
| | - Lindsay Collier
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Boston, MA
| | - David Barrios
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Boston, MA
- Harvard Medical School, Boston, MA
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA
| | - Agnes Toth-Petroczy
- Harvard Medical School, Boston, MA
- Division of Genomic Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Joel Krier
- Harvard Medical School, Boston, MA
- Division of Genomic Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Elizabeth Fieg
- Division of Genomic Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Walter H. Dzik
- Division of Hematology and Blood Transfusion Service, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - James C. Hudspeth
- Department of Medicine, Boston Medical Center, Boston, MA
- Boston University School of Medicine, Boston, MA
| | - Olga Pozdnyakova
- Harvard Medical School, Boston, MA
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA
| | - Valentina Nardi
- Harvard Medical School, Boston, MA
- Department of Pathology, Massachusetts General Hospital, Boston, MA
| | - James Knight
- Yale Center for Genome Analysis, Yale University, New Haven, CT
| | - Richard Maas
- Harvard Medical School, Boston, MA
- Division of Genomic Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Shamil Sunyaev
- Harvard Medical School, Boston, MA
- Division of Genomic Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Julie-Aurore Losman
- Harvard Medical School, Boston, MA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Division of Hematology, Brigham and Women’s Hospital, Boston, MA
| |
Collapse
|
5
|
Song JY, Oh SH, Kim Y. Life-Threatening Diffuse Alveolar Hemorrhage and Graft Failure in Atypical Hemolytic Uremic Syndrome with C3 Gene Mutation following Kidney Transplant. Nephron Clin Pract 2023; 148:474-479. [PMID: 38008090 PMCID: PMC11216361 DOI: 10.1159/000535192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 11/01/2023] [Indexed: 11/28/2023] Open
Abstract
INTRODUCTION Atypical hemolytic uremic syndrome (aHUS) is a thrombotic microangiopathy (TMA) disease entity primarily attributed to genetic or acquired abnormalities in the alternative complement pathway. TMA can manifest in kidney transplant (KT) recipients owing to various factors, resulting in diverse clinical presentations. Given its adverse effects on allograft function and patient prognosis, genetic diagnostic approaches for aHUS are essential. Although rarely associated with diffuse alveolar hemorrhage, only a few mild cases have been reported to date. In this report, we present a case of the patient who experienced recurrent and life-threatening diffuse alveolar hemorrhage shortly after KT accompanied by graft failure. CASE PRESENTATION An 18-year-old girl who underwent deceased donor KT developed recurrent diffuse alveolar hemorrhage with acute kidney injury, leading to graft failure. Microangiopathic hemolytic anemia, thrombocytopenia, and schistocytes in blood smears suggested the presence of TMA. The patient underwent therapeutic plasma exchange, and clinical condition improved during the procedure. Genetic testing confirmed a heterozygous c.1273C>T mutation in C3 gene, leading to the diagnosis of aHUS. However, after discontinuing the plasma exchange, the patient experienced seizures, recurrent pulmonary hemorrhage, and oliguria with recurring TMA features. The patient subsequently underwent eculizumab treatment, which resulted in complete remission, although hemodialysis was continued after graft nephrectomy. CONCLUSION In patients presenting with unexplained pulmonary hemorrhage and kidney injury following KT, genetic aHUS should be considered as a potential differential diagnosis for TMA.
Collapse
Affiliation(s)
- Ji Yeon Song
- Department of Pediatrics, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan, South Korea
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, South Korea
| | - Seung Hwan Oh
- Department of Laboratory Medicine, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan, South Korea
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, South Korea
| | - Younga Kim
- Department of Pediatrics, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan, South Korea
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, South Korea
| |
Collapse
|
6
|
Brocklebank V, Walsh PR, Smith-Jackson K, Hallam TM, Marchbank KJ, Wilson V, Bigirumurame T, Dutt T, Montgomery EK, Malina M, Wong EKS, Johnson S, Sheerin NS, Kavanagh D. Atypical hemolytic uremic syndrome in the era of terminal complement inhibition: an observational cohort study. Blood 2023; 142:1371-1386. [PMID: 37369098 PMCID: PMC10651868 DOI: 10.1182/blood.2022018833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 05/11/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
Historically, the majority of patients with complement-mediated atypical hemolytic uremic syndrome (CaHUS) progress to end-stage kidney disease (ESKD). Single-arm trials of eculizumab with a short follow-up suggested efficacy. We prove, for the first time to our knowledge, in a genotype matched CaHUS cohort that the 5-year cumulative estimate of ESKD-free survival improved from 39.5% in a control cohort to 85.5% in the eculizumab-treated cohort (hazard ratio, 4.95; 95% confidence interval [CI], 2.75-8.90; P = .000; number needed to treat, 2.17 [95% CI, 1.81-2.73]). The outcome of eculizumab treatment is associated with the underlying genotype. Lower serum creatinine, lower platelet count, lower blood pressure, and younger age at presentation as well as shorter time between presentation and the first dose of eculizumab were associated with estimated glomerular filtration rate >60 ml/min at 6 months in multivariate analysis. The rate of meningococcal infection in the treated cohort was 550 times greater than the background rate in the general population. The relapse rate upon eculizumab withdrawal was 1 per 9.5 person years for patients with a pathogenic mutation and 1 per 10.8 person years for those with a variant of uncertain significance. No relapses were recorded in 67.3 person years off eculizumab in those with no rare genetic variants. Eculizumab was restarted in 6 individuals with functioning kidneys in whom it had been stopped, with no individual progressing to ESKD. We demonstrated that biallelic pathogenic mutations in RNA-processing genes, including EXOSC3, encoding an essential part of the RNA exosome, cause eculizumab nonresponsive aHUS. Recessive HSD11B2 mutations causing apparent mineralocorticoid excess may also present with thrombotic microangiopathy.
Collapse
Affiliation(s)
- Vicky Brocklebank
- National Renal Complement Therapeutics Centre, Newcastle upon Tyne Hospitals National Health Service Foundation Trust, Newcastle upon Tyne, United Kingdom
- Complement Therapeutics Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Patrick R. Walsh
- National Renal Complement Therapeutics Centre, Newcastle upon Tyne Hospitals National Health Service Foundation Trust, Newcastle upon Tyne, United Kingdom
- Complement Therapeutics Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Kate Smith-Jackson
- National Renal Complement Therapeutics Centre, Newcastle upon Tyne Hospitals National Health Service Foundation Trust, Newcastle upon Tyne, United Kingdom
- Complement Therapeutics Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Thomas M. Hallam
- Complement Therapeutics Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Kevin J. Marchbank
- National Renal Complement Therapeutics Centre, Newcastle upon Tyne Hospitals National Health Service Foundation Trust, Newcastle upon Tyne, United Kingdom
- Complement Therapeutics Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Valerie Wilson
- National Renal Complement Therapeutics Centre, Newcastle upon Tyne Hospitals National Health Service Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Theophile Bigirumurame
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Tina Dutt
- Department of Haematology, Royal Liverpool University Hospital, Liverpool, United Kingdom
| | - Emma K. Montgomery
- National Renal Complement Therapeutics Centre, Newcastle upon Tyne Hospitals National Health Service Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Michal Malina
- National Renal Complement Therapeutics Centre, Newcastle upon Tyne Hospitals National Health Service Foundation Trust, Newcastle upon Tyne, United Kingdom
- Complement Therapeutics Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Great North Children's Hospital, Sir James Spence Institute, Royal Victoria Infirmary, Newcastle, United Kingdom
| | - Edwin K. S. Wong
- National Renal Complement Therapeutics Centre, Newcastle upon Tyne Hospitals National Health Service Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Sally Johnson
- National Renal Complement Therapeutics Centre, Newcastle upon Tyne Hospitals National Health Service Foundation Trust, Newcastle upon Tyne, United Kingdom
- Great North Children's Hospital, Sir James Spence Institute, Royal Victoria Infirmary, Newcastle, United Kingdom
| | - Neil S. Sheerin
- National Renal Complement Therapeutics Centre, Newcastle upon Tyne Hospitals National Health Service Foundation Trust, Newcastle upon Tyne, United Kingdom
- Complement Therapeutics Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - David Kavanagh
- National Renal Complement Therapeutics Centre, Newcastle upon Tyne Hospitals National Health Service Foundation Trust, Newcastle upon Tyne, United Kingdom
- Complement Therapeutics Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- National Institute for Health and Care Research Newcastle Biomedical Research Centre, Biomedical Research Building, Campus for Ageing and Vitality, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
7
|
Rydberg V, Aradottir SS, Kristoffersson AC, Svitacheva N, Karpman D. Genetic investigation of Nordic patients with complement-mediated kidney diseases. Front Immunol 2023; 14:1254759. [PMID: 37744338 PMCID: PMC10513385 DOI: 10.3389/fimmu.2023.1254759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
Background Complement activation in atypical hemolytic uremic syndrome (aHUS), C3 glomerulonephropathy (C3G) and immune complex-mediated membranoproliferative glomerulonephritis (IC-MPGN) may be associated with rare genetic variants. Here we describe gene variants in the Swedish and Norwegian populations. Methods Patients with these diagnoses (N=141) were referred for genetic screening. Sanger or next-generation sequencing were performed to identify genetic variants in 16 genes associated with these conditions. Nonsynonymous genetic variants are described when they have a minor allele frequency of <1% or were previously reported as being disease-associated. Results In patients with aHUS (n=94, one also had IC-MPGN) 68 different genetic variants or deletions were identified in 60 patients, of which 18 were novel. Thirty-two patients had more than one genetic variant. In patients with C3G (n=40) 29 genetic variants, deletions or duplications were identified in 15 patients, of which 9 were novel. Eight patients had more than one variant. In patients with IC-MPGN (n=7) five genetic variants were identified in five patients. Factor H variants were the most frequent in aHUS and C3 variants in C3G. Seventeen variants occurred in more than one condition. Conclusion Genetic screening of patients with aHUS, C3G and IC-MPGN is of paramount importance for diagnostics and treatment. In this study, we describe genetic assessment of Nordic patients in which 26 novel variants were found.
Collapse
Affiliation(s)
| | | | | | | | - Diana Karpman
- Department of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden
| |
Collapse
|
8
|
Kirsanova TV, Balakireva AI, Fedorova TA, Pyregov AV, Rogachevskiy OV. [Various phenotypes of postpartum atypical hemolytic uremic syndrome: the role of genetic testing in determining prognosis. Case report]. TERAPEVT ARKH 2023; 95:511-515. [PMID: 38158972 DOI: 10.26442/00403660.2023.06.202233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 08/14/2023] [Indexed: 01/03/2024]
Abstract
We report a case of atypical hemolytic uremic syndrome (aHUS) that occurred after childbirth in a patient with a history of numerous recurrent episodes of TMA with nephrotic proteinuria and impaired renal function. At 33 weeks of the first spontaneous pregnancy, proteinuria up to 0.8 g/l was first registered, at 38 weeks she was hospitalized with proteinuria, reaching a maximum of 13 g/l, she was delivered promptly, after which progressive thrombocytopenia was noted over the next few days (up to 44×109/l) and anemia and severe arterial hypertension, which could not be corrected by several groups of antihypertensive drugs. Initiated plasma therapy had no effect. After exclusion of all other causes of TMA, therapy with eculizumab was initiated, which made it possible to quickly and completely stop the phenomena of TMA. The presented observation demonstrates the successful treatment of recurrent course of aHUS with eculizumab with the achievement of complete recovery of kidney function in a patient with a homozygous mutation in the MCP gene. It is worth noting the importance of genetic research even in those situations where clinically aHUS is beyond doubt.
Collapse
Affiliation(s)
- T V Kirsanova
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology
| | | | - T A Fedorova
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology
| | - A V Pyregov
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology
| | - O V Rogachevskiy
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology
| |
Collapse
|
9
|
Yerigeri K, Kadatane S, Mongan K, Boyer O, Burke LLG, Sethi SK, Licht C, Raina R. Atypical Hemolytic-Uremic Syndrome: Genetic Basis, Clinical Manifestations, and a Multidisciplinary Approach to Management. J Multidiscip Healthc 2023; 16:2233-2249. [PMID: 37560408 PMCID: PMC10408684 DOI: 10.2147/jmdh.s245620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/26/2023] [Indexed: 08/11/2023] Open
Abstract
Hemolytic uremic syndrome (HUS) is a thrombotic microangiopathy (TMA) defined by the triad of hemolytic anemia, thrombocytopenia, and acute kidney injury. Microthrombi develop in the glomerular capillaries secondary to endothelial damage and exert shear stress on red blood cells, consume platelets, and contribute to renal dysfunction and failure. Per current understanding of pathophysiology, HUS is classified into infectious, secondary, and atypical disease. The most common etiology is infectious sequelae of Shiga toxin-producing Escherichia coli (STEC); other causative organisms include shigella and salmonella. Secondary HUS arises from cancer, chemotherapy, solid organ and hematopoietic stem cell transplant, pregnancy, or autoimmune disorders. Primary atypical hemolytic-uremic syndrome (aHUS) is associated with genetic mutations in complement and complement regulatory proteins. Under physiologic conditions, complement regulators keep the alternative complement system continuously active at low levels. In times of inflammation, mutations in complement-related proteins lead to uncontrolled complement activity. The hyperactive inflammatory state leads to glomerular endothelial damage, activation of the coagulation cascade, and TMA findings. Atypical hemolytic-uremic syndrome is a rare disorder with a prevalence of 2.21 to 9.4 per million people aged 20 years or younger; children between the ages of 0 and 4 are most affected. Multidisciplinary health care is necessary for timely management of its extra-renal manifestations. These include vascular disease of the heart, brain, and skin, pulmonary hypertension and hemorrhage, and pregnancy complications. Adequate screening is required to monitor for sequelae. First-line treatment is the monoclonal antibody eculizumab, but several organ systems may require specialized interventions and coordination of care with sub-specialists.
Collapse
Affiliation(s)
- Keval Yerigeri
- Department of Internal Medicine-Pediatrics, Case Western Reserve University/The MetroHealth System, Cleveland, OH, USA
| | - Saurav Kadatane
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kai Mongan
- Northeast Ohio Medical University, Rootstown, OH, USA
| | - Olivia Boyer
- Department of Pediatric Nephrology, Dialysis and Transplantation, Necker-Enfants Malades Hospital, MARHEA reference Center, Imagine Institute, Paris Cité University, Paris, France
| | - Linda L G Burke
- aHUS Global Advocate with aHUS Alliance, Cape Elizabeth, ME, USA
| | - Sidharth Kumar Sethi
- Department of Pediatric Nephrology and Pediatric Renal Transplant Medicine, Kidney and Urology Institute, Medanta, The Medicity, Gurgaon, Haryana, India
| | - Christoph Licht
- Department of Paediatrics, Division of Nephrology, University of Toronto, Toronto, ON, Canada
| | - Rupesh Raina
- Division of Pediatric Nephrology, Akron Children’s Hospital, Akron, OH, USA
| |
Collapse
|
10
|
Donadelli R, Sinha A, Bagga A, Noris M, Remuzzi G. HUS and TTP: traversing the disease and the age spectrum. Semin Nephrol 2023; 43:151436. [PMID: 37949684 DOI: 10.1016/j.semnephrol.2023.151436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Hemolytic uremic syndrome (HUS) and thrombotic thrombocytopenia purpura (TTP) are rare diseases sharing a common pathological feature, thrombotic microangiopathy (TMA). TMA is characterized by microvascular thrombosis with consequent thrombocytopenia, microangiopathic hemolytic anemia and/or multiorgan dysfunction. In the past, the distinction between HUS and TTP was predominantly based on clinical grounds. However, clinical presentation of the two syndromes often overlaps and, the differential diagnosis is broad. Identification of underlying pathogenic mechanisms has enabled the classification of these syndromes on a molecular basis: typical HUS caused by Shiga toxin-producing Escherichia coli (STEC-HUS); atypical HUS or complement-mediated TMA (aHUS/CM-TMA) associated with genetic or acquired defects leading to dysregulation of the alternative pathway (AP) of complement; and TTP that results from a severe deficiency of the von Willebrand Factor (VWF)-cleaving protease, ADAMTS13. The etiology of TMA differs between pediatric and adult patients. Childhood TMA is chiefly caused by STEC-HUS, followed by CM-TMA and pneumococcal HUS (Sp-HUS). Rare conditions such as congenital TTP (cTTP), vitamin B12 metabolism defects, and coagulation disorders (diacylglycerol epsilon mutation) present as TMA chiefly in children under 2 years of age. In contrast secondary causes and acquired ADAMT13 deficiency are more common in adults. In adults, compared to children, diagnostic delays are more frequent due to the wide range of differential diagnoses. In this review we focus on the three major forms of TMA, STEC-HUS, aHUS and TTP, outlining the clinical presentation, diagnosis and management of the affected patients, to help highlight the salient features and the differences between adult and pediatric patients which are relevant for management.
Collapse
Affiliation(s)
- Roberta Donadelli
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Clinical Research Center for Rare Diseases Aldo e Cele Daccò, Ranica, Italy
| | - Aditi Sinha
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi
| | - Arvind Bagga
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi
| | - Marina Noris
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Clinical Research Center for Rare Diseases Aldo e Cele Daccò, Ranica, Italy
| | - Giuseppe Remuzzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Clinical Research Center for Rare Diseases Aldo e Cele Daccò, Ranica, Italy.
| |
Collapse
|
11
|
Ariceta G. Pharmacological and clinical profile of ravulizumab 100 mg/mL formulation for paroxysmal nocturnal hemoglobinuria and atypical hemolytic uremic syndrome. Expert Rev Clin Pharmacol 2023; 16:401-410. [PMID: 37128905 DOI: 10.1080/17512433.2023.2209317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
INTRODUCTION Paroxysmal nocturnal hemoglobinuria (PNH) and atypical hemolytic uremic syndrome (aHUS) are two rare and severe conditions caused by chronic complement (C') system dysregulation. Treatment with eculizumab, a recombinant, humanized monoclonal antibody against complement C5, changed the natural history of both diseases inducing remission and improving patient outcome. Ravulizumab, a new long-acting next-generation C5 inhibitor has been recently approved for treatment of PNH and aHUS. AREAS COVERED Main characteristics of ravulizumab are described: composition, dosing, efficacy and safety profile. Further, an overview of seminal studies and clinical trials using ravulizumab to treat PNH and aHUS in children and adults is detailed. Literature review was performed using the following key words: paroxysmal nocturnal hemoglobinuria, atypical hemolytic uremic syndrome, and ravulizumab. EXPERT OPINION Ravulizumab profile to treat PNH and aHUS is equivalent to eculizumab in efficacy and safety but allows extended dosing interval to every 4-8 weeks based on patient weight, and requires reduced infusion time. Less travels to infusion centers and medical visits and decreasing job and school absences, significantly increases patient and families' QoL, while reducing cost. Further infusion time is reduced Ravulizumab will possibly become the treatment of choice for patients with PNH and aHUS on chronic C5 inhibition.
Collapse
Affiliation(s)
- Gema Ariceta
- Pediatric Nephrology, Hospital Universitari Vall d'Hebron. Universitat Autonoma Barcelona, Spain
| |
Collapse
|
12
|
Tseng MH, Lin SH, Tsai JD, Wu MS, Tsai IJ, Chen YC, Chang MC, Chou WC, Chiou YH, Huang CC. Atypical hemolytic uremic syndrome: Consensus of diagnosis and treatment in Taiwan. J Formos Med Assoc 2023; 122:366-375. [PMID: 36323601 DOI: 10.1016/j.jfma.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/03/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022] Open
Abstract
Atypical hemolytic uremic syndrome (aHUS), characterized by microangiopathic hemolytic anemia, thrombocytopenia, and acute kidney injury, is a rare but life-threatening systemic disorder caused by the dysregulation of the complement pathway. Current advances in molecular analysis and pathogenesis have facilitated the establishment of diagnosis and development of effective complement blockade. Based on this recent consensus, we provide suggestions regarding the diagnosis and management of aHUS in Taiwan. The diagnosis of aHUS is made by the presence of TMA with normal ADAMTS13 activity without known secondary causes. Although only 60% of patients with aHUS have mutations in genes involving the compliment and coagulation systems, molecular analysis is suggestive for helping establish diagnosis, clarifying the underlying pathophysiology, guiding the treatment decision-making, predicting the prognosis, and deciding renal transplantation. Complement blockade, anti-C5 monoclonal antibody, is the first-line therapy for patients with aHUS. Plasma therapy should be considered for removing autoantibody in patients with atypical HUS caused by anti-CFH or complement inhibitor is unavailable.
Collapse
Affiliation(s)
- Min-Hua Tseng
- Division of Nephrology, Department of Pediatrics, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Shih-Hua Lin
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Jeng-Daw Tsai
- Division of Nephrology, Department of Pediatrics, MacKay Children's Hospital, Taipei, Taiwan
| | - Mai-Szu Wu
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University Shuang Ho Hospital, New Taipei City, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - I-Jung Tsai
- Division of Nephrology, Department of Pediatrics, National Taiwan University Children Hospital, Taipei, Taiwan
| | - Yeu-Chin Chen
- Division of Hematology/Oncology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Min-Chih Chang
- Division of Hematology/Oncology, Department of Internal Medicine, MacKay Children's Hospital, Taipei, Taiwan
| | - Wen-Chien Chou
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yee-Hsuan Chiou
- Department of Pediatrics, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.
| | - Chiu-Ching Huang
- Division of Nephrology and the Kidney Institute, Department of Internal Medicine, China Medical University and Hospital, Taichung, Taiwan.
| |
Collapse
|
13
|
Turner NA, Moake JL. Heat-inactivated Factor B inhibits alternative pathway fluid-phase activation and convertase formation on endothelial cell-secreted ultra-large von Willebrand factor strings. Sci Rep 2023; 13:5764. [PMID: 37031266 PMCID: PMC10082794 DOI: 10.1038/s41598-023-33007-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/05/2023] [Indexed: 04/10/2023] Open
Abstract
Defective regulation of the alternative complement pathway (AP) causes excessive activation and promotes the inflammation and renal injury observed in atypical hemolytic-uremic syndrome (aHUS). The usefulness of heat-inactivated Factor B (HFB) in reducing AP activation was evaluated in: fluid-phase reactions, using purified complement proteins and Factor H (FH)-depleted serum; and in surface-activated reactions using human endothelial cells (ECs). C3a and Ba levels, measured by quantitative Western blots, determined the extent of fluid-phase activation. In reactions using C3, FB, and Factor D proteins, HFB addition (2.5-fold FB levels), reduced C3a levels by 60% and Ba levels by 45%. In reactions using FH-depleted serum (supplemented with FH at 12.5% normal levels), Ba levels were reduced by 40% with HFB added at 3.5-fold FB levels. The effectiveness of HFB in limiting AP convertase formation on activated surfaces was evaluated using stimulated ECs. Fluorescent microscopy was used to quantify endogenously released C3, FB, and C5 attached to EC-secreted ultra-large VWF strings. HFB addition reduced attachment of C3b by 2.7-fold, FB by 1.5-fold and C5 by fourfold. Our data indicate that HFB may be of therapeutic value in preventing AP-mediated generation of C3a and C5a, and the associated inflammation caused by an overactive AP.
Collapse
Affiliation(s)
- Nancy A Turner
- Department of Bioengineering, Rice University, Houston, TX, USA.
| | - Joel L Moake
- Department of Bioengineering, Rice University, Houston, TX, USA
| |
Collapse
|
14
|
Glover EK, Smith-Jackson K, Brocklebank V, Wilson V, Walsh PR, Montgomery EK, Wong EKS, Johnson S, Malina M, Kavanagh D, Sheerin NS. Assessing the Impact of Prophylactic Eculizumab on Renal Graft Survival in Atypical Hemolytic Uremic Syndrome. Transplantation 2023; 107:994-1003. [PMID: 36413152 PMCID: PMC10065821 DOI: 10.1097/tp.0000000000004355] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/22/2022] [Accepted: 08/10/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Atypical hemolytic uremic syndrome (aHUS) is a rare cause of end-stage kidney disease and associated with poor outcomes after kidney transplantation from early disease recurrence. Prophylactic eculizumab treatment at the time of transplantation is used in selected patients with aHUS. We report a retrospective case note review describing transplant outcomes in patients with aHUS transplanted between 1978 and 2017, including those patients treated with eculizumab. METHODS The National Renal Complement Therapeutics Centre database identified 118 kidney transplants in 86 recipients who had a confirmed diagnosis of aHUS. Thirty-eight kidney transplants were performed in 38 recipients who received prophylactic eculizumab. The cohort not treated with eculizumab comprised 80 transplants in 60 recipients and was refined to produce a comparable cohort of 33 transplants in 32 medium and high-risk recipients implanted since 2002. Complement pathway genetic screening was performed. Graft survival was censored for graft function at last follow-up or patient death. Graft survival without eculizumab treatment is described by complement defect status and by Kidney Disease: Improving Global Outcomes risk stratification. RESULTS Prophylactic eculizumab treatment improved renal allograft survival ( P = 0.006) in medium and high-risk recipients with 1-y survival of 97% versus 64% in untreated patients. Our data supports the risk stratification advised by Kidney Disease: Improving Global Outcomes. CONCLUSIONS Prophylactic eculizumab treatment dramatically improves graft survival making transplantation a viable therapeutic option in aHUS.
Collapse
Affiliation(s)
- Emily K Glover
- National Renal Complement Therapeutics Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Kate Smith-Jackson
- National Renal Complement Therapeutics Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
- NIHR Newcastle Biomedical Research Centre, Biomedical Research Building, Campus for Ageing and Vitality, Newcastle upon Tyne, UK
| | - Vicky Brocklebank
- National Renal Complement Therapeutics Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
- NIHR Newcastle Biomedical Research Centre, Biomedical Research Building, Campus for Ageing and Vitality, Newcastle upon Tyne, UK
| | - Valerie Wilson
- National Renal Complement Therapeutics Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Patrick R Walsh
- National Renal Complement Therapeutics Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Emma K Montgomery
- National Renal Complement Therapeutics Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Edwin K S Wong
- National Renal Complement Therapeutics Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Sally Johnson
- National Renal Complement Therapeutics Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
- NIHR Newcastle Biomedical Research Centre, Biomedical Research Building, Campus for Ageing and Vitality, Newcastle upon Tyne, UK
- Great North Children's Hospital, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Michal Malina
- National Renal Complement Therapeutics Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
- Great North Children's Hospital, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - David Kavanagh
- National Renal Complement Therapeutics Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
- NIHR Newcastle Biomedical Research Centre, Biomedical Research Building, Campus for Ageing and Vitality, Newcastle upon Tyne, UK
| | - Neil S Sheerin
- National Renal Complement Therapeutics Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
- NIHR Newcastle Biomedical Research Centre, Biomedical Research Building, Campus for Ageing and Vitality, Newcastle upon Tyne, UK
| |
Collapse
|
15
|
Rodríguez de Córdoba S. Genetic variability shapes the alternative pathway complement activity and predisposition to complement-related diseases. Immunol Rev 2023; 313:71-90. [PMID: 36089777 PMCID: PMC10086816 DOI: 10.1111/imr.13131] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The implementation of next-generation sequencing technologies has provided a sharp picture of the genetic variability in the components and regulators of the alternative pathway (AP) of the complement system and has revealed the association of many AP variants with different rare and common diseases. An important finding that has emerged from these analyses is that each of these complement-related diseases associate with genetic variants altering specific aspects of the activation and regulation of the AP. These genotype-phenotype correlations have provided valuable insights into their pathogenic mechanisms with important diagnostic and therapeutic implications. While genetic variants in coding regions and structural variants are reasonably well characterized and occasionally have been instrumental to uncover unknown features of the complement proteins, data about complement expressed quantitative trait loci are still very limited. A crucial task for future studies will be to identify these quantitative variations and to determine their impact in the overall activity of the AP. This is fundamental as it is now clear that the consequences of genetic variants in the AP are additive and that susceptibility or resistance to disease is the result of specific combinations of genetic variants in different complement components and regulators ("complotypes").
Collapse
|
16
|
Zarantonello A, Revel M, Grunenwald A, Roumenina LT. C3-dependent effector functions of complement. Immunol Rev 2023; 313:120-138. [PMID: 36271889 PMCID: PMC10092904 DOI: 10.1111/imr.13147] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
C3 is the central effector molecule of the complement system, mediating its multiple functions through different binding sites and their corresponding receptors. We will introduce the C3 forms (native C3, C3 [H2 O], and intracellular C3), the C3 fragments C3a, C3b, iC3b, and C3dg/C3d, and the C3 expression sites. To highlight the important role that C3 plays in human biological processes, we will give an overview of the diseases linked to C3 deficiency and to uncontrolled C3 activation. Next, we will present a structural description of C3 activation and of the C3 fragments generated by complement regulation. We will proceed by describing the C3a interaction with the anaphylatoxin receptor, followed by the interactions of opsonins (C3b, iC3b, and C3dg/C3d) with complement receptors, divided into two groups: receptors bearing complement regulatory functions and the effector receptors without complement regulatory activity. We outline the molecular architecture of the receptors, their binding sites on the C3 activation fragments, the cells expressing them, the diversity of their functions, and recent advances. With this review, we aim to give an up-to-date analysis of the processes triggered by C3 activation fragments on different cell types in health and disease contexts.
Collapse
Affiliation(s)
- Alessandra Zarantonello
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Margot Revel
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Anne Grunenwald
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Lubka T Roumenina
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| |
Collapse
|
17
|
Abstract
Dysregulation and accelerated activation of the alternative pathway (AP) of complement is known to cause or accentuate several pathologic conditions in which kidney injury leads to the appearance of hematuria and proteinuria and ultimately to the development of chronic renal failure. Multiple genetic and acquired defects involving plasma- and membrane-associated proteins are probably necessary to impair the protection of host tissues and to confer a significant predisposition to AP-mediated kidney diseases. This review aims to explore how our current understanding will make it possible to identify the mechanisms that underlie AP-mediated kidney diseases and to discuss the available clinical evidence that supports complement-directed therapies. Although the value of limiting uncontrolled complement activation has long been recognized, incorporating complement-targeted treatments into clinical use has proved challenging. Availability of anti-complement therapy has dramatically transformed the outcome of atypical hemolytic uremic syndrome, one of the most severe kidney diseases. Innovative drugs that directly counteract AP dysregulation have also opened new perspectives for the management of other kidney diseases in which complement activation is involved. However, gained experience indicates that the choice of drug should be tailored to each patient's characteristics, including clinical, histologic, genetic, and biochemical parameters. Successfully treating patients requires further research in the field and close collaboration between clinicians and researchers who have special expertise in the complement system.
Collapse
Affiliation(s)
- Erica Daina
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Monica Cortinovis
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Giuseppe Remuzzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| |
Collapse
|
18
|
Hallam TM, Cox TE, Smith-Jackson K, Brocklebank V, Baral AJ, Tzoumas N, Steel DH, Wong EKS, Shuttleworth VG, Lotery AJ, Harris CL, Marchbank KJ, Kavanagh D. A novel method for real-time analysis of the complement C3b:FH:FI complex reveals dominant negative CFI variants in age-related macular degeneration. Front Immunol 2022; 13:1028760. [PMID: 36643920 PMCID: PMC9832388 DOI: 10.3389/fimmu.2022.1028760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/14/2022] [Indexed: 12/29/2022] Open
Abstract
Age-related macular degeneration (AMD) is linked to 2 main disparate genetic pathways: a chromosome 10 risk locus and the alternative pathway (AP) of complement. Rare genetic variants in complement factor H (CFH; FH) and factor I (CFI; FI) are associated with AMD. FH acts as a soluble cofactor to facilitate FI's cleavage and inactivation of the central molecule of the AP, C3b. For personalised treatment, sensitive assays are required to define the functional significance of individual AP genetic variants. Generation of recombinant FI for functional analysis has thus far been constrained by incomplete processing resulting in a preparation of active and inactive protein. Using an internal ribosomal entry site (IRES)-Furin-CFI expression vector, fully processed FI was generated with activity equivalent to serum purified FI. By generating FI with an inactivated serine protease domain (S525A FI), a real-time surface plasmon resonance assay of C3b:FH:FI complex formation for characterising variants in CFH and CFI was developed and correlated well with standard assays. Using these methods, we further demonstrate that patient-associated rare genetic variants lacking enzymatic activity (e.g. CFI I340T) may competitively inhibit the wild-type FI protein. The dominant negative effect identified in inactive factor I variants could impact on the pharmacological replacement of FI currently being investigated for the treatment of dry AMD.
Collapse
Affiliation(s)
- Thomas M. Hallam
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom,National Renal Complement Therapeutics Centre, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom
| | - Thomas E. Cox
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom,National Renal Complement Therapeutics Centre, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom
| | - Kate Smith-Jackson
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom,National Renal Complement Therapeutics Centre, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom
| | - Vicky Brocklebank
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom,National Renal Complement Therapeutics Centre, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom
| | - April J. Baral
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom,National Renal Complement Therapeutics Centre, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom
| | - Nikolaos Tzoumas
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom,National Renal Complement Therapeutics Centre, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom
| | - David H. Steel
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom,Sunderland Eye Infirmary, Sunderland, United Kingdom,Biosciences Institute, Newcastle University, International Centre for Life, Newcastle upon Tyne, United Kingdom
| | - Edwin K. S. Wong
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom,National Renal Complement Therapeutics Centre, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom
| | - Victoria G. Shuttleworth
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom,National Renal Complement Therapeutics Centre, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom
| | - Andrew J. Lotery
- Clinical and Experimental Sciences, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
| | - Claire L. Harris
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom,National Renal Complement Therapeutics Centre, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom
| | - Kevin J. Marchbank
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom,National Renal Complement Therapeutics Centre, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom
| | - David Kavanagh
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom,National Renal Complement Therapeutics Centre, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom,National Institute for Health and Care Research (NIHR) Newcastle Biomedical Research Centre, Biomedical Research Building, Newcastle upon Tyne, United Kingdom,*Correspondence: David Kavanagh,
| |
Collapse
|
19
|
Abstract
Besides conventional medical therapies, therapeutic apheresis has become an important adjunctive or alternative therapeutic option to immunosuppressive agents for primary or secondary kidney diseases and kidney transplantation. The available therapeutic apheresis techniques used in kidney diseases, including plasma exchange, double-filtration plasmapheresis, immunoadsorption, and low-density lipoprotein apheresis. Plasma exchange is still the leading extracorporeal therapy. Recently, growing evidence supports the potential benefits of double-filtration plasmapheresis and immunoadsorption for more specific and effective clearance of pathogenic antibodies with fewer side effects. However, more randomized controlled trials are still needed. Low-density lipoprotein apheresis is also an important supplementary therapy used in patients with recurrent focal segmental glomerulosclerosis. This review collects the latest evidence from recent studies, focuses on the specific advantages and disadvantages of these techniques, and compares the discrepancy among them to determine the optimal therapeutic regimens for certain kidney diseases.
Collapse
Affiliation(s)
- Yi-Yuan Chen
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Sun
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Huang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang-Fang He
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
20
|
Shchagina O, Fedotov V, Markova T, Shatokhina O, Ryzhkova O, Fedotova T, Polyakov A. Palmoplantar Keratoderma: A Molecular Genetic Analysis of Family Cases. Int J Mol Sci 2022; 23:ijms23179576. [PMID: 36076978 PMCID: PMC9455982 DOI: 10.3390/ijms23179576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/14/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
Palmoplantar keratoderma is a clinically polymorphic disorder with a heterogeneous etiology characterized by marked hyperkeratotic lesions on the surface of palms and soles. Hereditary forms of palmoplantar keratoderma usually have autosomal dominant inheritance and are caused by mutations in dozens of genes, most of which belong to the keratin family. We carried out clinical and molecular genetic analysis of the affected and healthy members of four families with autosomal dominant palmoplantar keratoderma. In three out of four family cases of autosomal dominant palmoplantar keratoderma, the following molecular genetic causes were established: in two families—previously non-described missense mutations in the AQP5 gene (NM_001651.4): c.369C>G (p.(Asn123Lys)) and c.103T>G (p.(Trp35Gly)); in one family—a described splice site mutation in the KRT9 gene (NM_000226.4): c.31T>G. In one family, the possible cause of palmoplantar keratoderma was detected—a variant in the KRT1 gene (NM_006121.4): c.931G>A (p.(Glu311Lys)).
Collapse
Affiliation(s)
- Olga Shchagina
- Research Centre for Medical Genetics, Moskvorechye St., 1, 115522 Moscow, Russia
- Correspondence:
| | - Valeriy Fedotov
- Voronezh Regional Clinical Hospital №1, Moscow Avenue, 151, 394066 Voronezh, Russia
| | - Tatiana Markova
- Research Centre for Medical Genetics, Moskvorechye St., 1, 115522 Moscow, Russia
| | - Olga Shatokhina
- Research Centre for Medical Genetics, Moskvorechye St., 1, 115522 Moscow, Russia
| | - Oksana Ryzhkova
- Research Centre for Medical Genetics, Moskvorechye St., 1, 115522 Moscow, Russia
| | - Tatiana Fedotova
- Voronezh Regional Clinical Hospital №1, Moscow Avenue, 151, 394066 Voronezh, Russia
| | - Aleksander Polyakov
- Research Centre for Medical Genetics, Moskvorechye St., 1, 115522 Moscow, Russia
| |
Collapse
|
21
|
Sullivan KE. The yin and the yang of early classical pathway complement disorders. Clin Exp Immunol 2022; 209:151-160. [PMID: 35648651 PMCID: PMC9390844 DOI: 10.1093/cei/uxac056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/13/2022] [Accepted: 05/31/2022] [Indexed: 11/12/2022] Open
Abstract
The classical pathway of the complement cascade has been recognized as a key activation arm, partnering with the lectin activation arm and the alternative pathway to cleave C3 and initiate the assembly of the terminal components. While deficiencies of classical pathway components have been recognized since 1966, only recently have gain-of-function variants been described for some of these proteins. Loss-of-function variants in C1, C4, and C2 are most often associated with lupus and systemic infections with encapsulated bacteria. C3 deficiency varies slightly from this phenotypic class with membranoproliferative glomerulonephritis and infection as the dominant phenotypes. The gain-of-function variants recently described for C1r and C1s lead to periodontal Ehlers Danlos syndrome, a surprisingly structural phenotype. Gain-of-function in C3 and C2 are associated with endothelial manifestations including hemolytic uremic syndrome and vasculitis with C2 gain-of-function variants thus far having been reported in patients with a C3 glomerulopathy. This review will discuss the loss-of-function and gain-of-function phenotypes and place them within the larger context of complement deficiencies.
Collapse
Affiliation(s)
- Kathleen E Sullivan
- Division of Allergy Immunology, The Children’s Hospital of Philadelphia, 3615 Civic Center Blvd., Philadelphia, PA 19104, USA
| |
Collapse
|
22
|
Xiao H, Hildebrandt F. Whole exome sequencing identifies monogenic forms of nephritis in a previously unsolved cohort of children with steroid-resistant nephrotic syndrome and hematuria. Pediatr Nephrol 2022; 37:1567-1574. [PMID: 34762194 PMCID: PMC10043783 DOI: 10.1007/s00467-021-05312-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/20/2021] [Accepted: 09/14/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Alport syndrome (AS), atypical hemolytic-uremic syndrome (aHUS), and fibronectin-glomerulopathy (FG) are rare forms of glomerular diseases that manifest in a combination of proteinuria, hematuria, and hypertension, referred to as nephritic syndrome. Due to phenotypic overlays, steroid-resistant nephrotic syndrome (SRNS) and nephritic syndrome have been difficult to discern diagnostically. SRNS is more common than nephritic syndrome and is the second leading cause of childhood-onset CKD. Fourteen monogenic causes of AS, aHUS, and FG and 60 monogenic causes of SRNS have been identified. As whole exome sequencing (WES) allows for unequivocal molecular genetic diagnostics, we hypothesize to be able to identify causative mutations in genes known to cause nephritic syndrome in patient cohorts with a clinical diagnosis of SRNS. METHODS We identified patients with hematuria and steroid-resistant proteinuria in an international patient cohort that we had submitted to WES and who were unsolved for known monogenic causes of SRNS. These 70 patients from 65 individual families were subsequently analyzed for causative mutations in 14 AS, aHUS, or FG causing genes. WES data were compared to a control cohort of 76 patients from 75 families that were diagnosed with nephronophthisis-related ciliopathies (NPHP-RC) and to a control cohort of 83 individuals from 75 families with SRNS, but without hematuria. RESULTS We detected likely pathogenic genetic variants in 3 of 65 families (4.6%) in 2 of the 14 genes analyzed. CONCLUSIONS We confirmed that in cohorts of childhood-onset SRNS, patients with nephritic syndrome can be discerned by WES. The findings highlight the importance of clinical genetic testing for therapeutic and preventative measures in patients with proteinuria. A higher resolution version of the Graphical abstract is available as Supplementary information.
Collapse
Affiliation(s)
- Hongbo Xiao
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
- Division of Nephrology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Friedhelm Hildebrandt
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA.
| |
Collapse
|
23
|
Prével R, Delmas Y, Guillotin V, Gruson D, Rivière E. Complement Blockade Is a Promising Therapeutic Approach in a Subset of Critically Ill Adult Patients with Complement-Mediated Hemolytic Uremic Syndromes. J Clin Med 2022; 11:jcm11030790. [PMID: 35160242 PMCID: PMC8837052 DOI: 10.3390/jcm11030790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 02/04/2023] Open
Abstract
Thrombotic microangiopathy (TMA) gathers consumptive thrombocytopenia, mechanical haemolytic anemia, and organ damage. Hemolytic uremic syndromes (HUS) are historically classified as primary or secondary to another disease once thrombotic thrombocytopenic purpura (TTP), Shiga-toxin HUS, and cobalamin C-related HUS have been ruled out. Complement genetics studies reinforced the link between complement dysregulation and primary HUS, contributing to reclassifying some pregnancy- and/or post-partum-associated HUS and to revealing complement involvement in severe and/or refractory hypertensive emergencies. By contrast, no firm evidence allows a plausible association to be drawn between complement dysregulation and Shiga-toxin HUS or other secondary HUS. Nevertheless, rare complement gene variants are prevalent in healthy individuals, thus providing an indication that an investigation into complement dysregulation should be carefully balanced and that the results should be cautiously interpreted with the help of a trained geneticist. Several authors have suggested reclassifying HUS in two entities, regardless of they are complement-mediated or not, since the use of eculizumab, an anti-C5 antibody, dramatically lowers the proportion of patients who die or suffer from end-stage renal disease within the year following diagnosis. Safety and the ideal timing of eculizumab discontinuation is currently under investigation, and the long-term consequences of HUS should be closely monitored over time once patients exit emergency departments.
Collapse
Affiliation(s)
- Renaud Prével
- CHU Bordeaux, Medical Intensive Care Unit, F-33000 Bordeaux, France; (V.G.); (D.G.)
- University Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, Inserm UMR 1045, F-33000 Bordeaux, France
- Correspondence: ; Tel.: +33-(0)5-56-79-55-17; Fax: +33-(0)5-56-79-54-18
| | - Yahsou Delmas
- CHU Bordeaux, Nephrology Transplantation Dialysis Apheresis Unit, F-33076 Bordeaux, France;
| | - Vivien Guillotin
- CHU Bordeaux, Medical Intensive Care Unit, F-33000 Bordeaux, France; (V.G.); (D.G.)
| | - Didier Gruson
- CHU Bordeaux, Medical Intensive Care Unit, F-33000 Bordeaux, France; (V.G.); (D.G.)
- University Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, Inserm UMR 1045, F-33000 Bordeaux, France
| | - Etienne Rivière
- CHU Bordeaux, Internal Medicine Department, F-33000 Bordeaux, France;
- University Bordeaux, Biology of Cardiovascular Diseases, InsermU1034, F-33604 Pessac, France
| |
Collapse
|
24
|
Identification of discriminative gene-level and protein-level features associated with pathogenic gain-of-function and loss-of-function variants. Am J Hum Genet 2021; 108:2301-2318. [PMID: 34762822 DOI: 10.1016/j.ajhg.2021.10.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 10/19/2021] [Indexed: 12/13/2022] Open
Abstract
Identifying whether a given genetic mutation results in a gene product with increased (gain-of-function; GOF) or diminished (loss-of-function; LOF) activity is an important step toward understanding disease mechanisms because they may result in markedly different clinical phenotypes. Here, we generated an extensive database of documented germline GOF and LOF pathogenic variants by employing natural language processing (NLP) on the available abstracts in the Human Gene Mutation Database. We then investigated various gene- and protein-level features of GOF and LOF variants and applied machine learning and statistical analyses to identify discriminative features. We found that GOF variants were enriched in essential genes, for autosomal-dominant inheritance, and in protein binding and interaction domains, whereas LOF variants were enriched in singleton genes, for protein-truncating variants, and in protein core regions. We developed a user-friendly web-based interface that enables the extraction of selected subsets from the GOF/LOF database by a broad set of annotated features and downloading of up-to-date versions. These results improve our understanding of how variants affect gene/protein function and may ultimately guide future treatment options.
Collapse
|
25
|
Freiwald T, Afzali B. Renal diseases and the role of complement: Linking complement to immune effector pathways and therapeutics. Adv Immunol 2021; 152:1-81. [PMID: 34844708 PMCID: PMC8905641 DOI: 10.1016/bs.ai.2021.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The complement system is an ancient and phylogenetically conserved key danger sensing system that is critical for host defense against pathogens. Activation of the complement system is a vital component of innate immunity required for the detection and removal of pathogens. It is also a central orchestrator of adaptive immune responses and a constituent of normal tissue homeostasis. Once complement activation occurs, this system deposits indiscriminately on any cell surface in the vicinity and has the potential to cause unwanted and excessive tissue injury. Deposition of complement components is recognized as a hallmark of a variety of kidney diseases, where it is indeed associated with damage to the self. The provenance and the pathophysiological role(s) played by complement in each kidney disease is not fully understood. However, in recent years there has been a renaissance in the study of complement, with greater appreciation of its intracellular roles as a cell-intrinsic system and its interplay with immune effector pathways. This has been paired with a profusion of novel therapeutic agents antagonizing complement components, including approved inhibitors against complement components (C)1, C3, C5 and C5aR1. A number of clinical trials have investigated the use of these more targeted approaches for the management of kidney diseases. In this review we present and summarize the evidence for the roles of complement in kidney diseases and discuss the available clinical evidence for complement inhibition.
Collapse
Affiliation(s)
- Tilo Freiwald
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), Bethesda, MD, United States; Department of Nephrology, University Hospital Frankfurt, Goethe-University, Frankfurt am Main, Germany
| | - Behdad Afzali
- Department of Nephrology, University Hospital Frankfurt, Goethe-University, Frankfurt am Main, Germany.
| |
Collapse
|
26
|
Cañas CA, Vecino MJ, Posso-Osorio I. Atypical Hemolytic Uremic Syndrome in a Patient With Bothrops asper Envenomation. Wilderness Environ Med 2021; 33:109-115. [PMID: 34740531 DOI: 10.1016/j.wem.2021.08.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 11/29/2022]
Abstract
Bothrops asper envenomation is common in Colombia and is characterized by local tissue injury and venom-induced consumption coagulopathy (VICC). Rarely, thrombotic microangiopathy is associated with envenomation by this species. The case of a 57-y-old man with B asper bite and envenomation on the left foot is presented. The patient was admitted 8 h after the event and progressively developed edema, hemorrhage at the site of the bite, and hemorrhagic blisters. His coagulation test results (prothrombin and partial thromboplastin times) were prolonged, and his fibrinogen levels were severely reduced. The diagnosis of VICC was made. Administration of Colombian polyvalent viper antivenom controlled the VICC within a few hours. Subsequently, the patient developed severe microangiopathic anemia, thrombocytopenia, and acute kidney injury. A diagnosis of thrombotic microangiopathy was made, and the patient met the criteria for hemolytic uremic syndrome. Management with hemodialysis in addition to therapeutic plasma exchange and replacement with fresh frozen plasma was indicated. The patient's condition resolved 14 d later. To the best of our knowledge, this is the first case of B asper envenomation in which the patient presented with hemolytic uremic syndrome after VICC. A proposal is made regarding the pathogenesis of this chain of events.
Collapse
Affiliation(s)
- Carlos A Cañas
- Department of Internal Medicine, Unit of Rheumatology, Fundación Valle del Lili, Universidad Icesi, Cali, Colombia.
| | - Milly J Vecino
- Department of Internal Medicine, Unit of Rheumatology, Fundación Valle del Lili, Universidad Icesi, Cali, Colombia
| | - Iván Posso-Osorio
- Department of Internal Medicine, Unit of Rheumatology, Fundación Valle del Lili, Universidad Icesi, Cali, Colombia
| |
Collapse
|
27
|
Fakhouri F, Frémeaux-Bacchi V. Thrombotic microangiopathy in aHUS and beyond: clinical clues from complement genetics. Nat Rev Nephrol 2021; 17:543-553. [PMID: 33953366 DOI: 10.1038/s41581-021-00424-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2021] [Indexed: 02/02/2023]
Abstract
Studies of complement genetics have changed the landscape of thrombotic microangiopathies (TMAs), particularly atypical haemolytic uraemic syndrome (aHUS). Knowledge of complement genetics paved the way for the design of the first specific treatment for aHUS, eculizumab, and is increasingly being used to aid decisions regarding discontinuation of anti-complement treatment in this setting. Complement genetic studies have also been used to investigate the pathogenic mechanisms that underlie other forms of HUS and provided evidence that contributed to the reclassification of pregnancy- and postpartum-associated HUS within the spectrum of complement-mediated aHUS. By contrast, complement genetics has not provided definite evidence of a link between constitutional complement dysregulation and secondary forms of HUS. Therefore, the available data do not support systematic testing of complement genes in patients with typical HUS or secondary HUS. The potential relevance of complement genetics for distinguishing the underlying mechanisms of malignant hypertension-associated TMA should be assessed with caution owing to the overlap between aHUS and other causes of malignant hypertension. In all cases, the interpretation of complement genetics results remains complex, as even complement-mediated aHUS is not a classical monogenic disease. Such interpretation requires the input of trained geneticists and experts who have a comprehensive view of complement biology.
Collapse
Affiliation(s)
- Fadi Fakhouri
- Service of Nephrology and Hypertension, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| | - Véronique Frémeaux-Bacchi
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service d'Immunologie, Paris, France
| |
Collapse
|
28
|
Pollack S, Eisenstein I, Mory A, Paperna T, Ofir A, Baris-Feldman H, Weiss K, Veszeli N, Csuka D, Shemer R, Glaser F, Prohászka Z, Magen D. A Novel Homozygous In-Frame Deletion in Complement Factor 3 Underlies Early-Onset Autosomal Recessive Atypical Hemolytic Uremic Syndrome - Case Report. Front Immunol 2021; 12:608604. [PMID: 34248927 PMCID: PMC8264753 DOI: 10.3389/fimmu.2021.608604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 05/24/2021] [Indexed: 11/21/2022] Open
Abstract
Background and Objectives Atypical hemolytic uremic syndrome (aHUS) is mostly attributed to dysregulation of the alternative complement pathway (ACP) secondary to disease-causing variants in complement components or regulatory proteins. Hereditary aHUS due to C3 disruption is rare, usually caused by heterozygous activating mutations in the C3 gene, and transmitted as autosomal dominant traits. We studied the molecular basis of early-onset aHUS, associated with an unusual finding of a novel homozygous activating deletion in C3. Design, Setting, Participants, & Measurements A male neonate with eculizumab-responsive fulminant aHUS and C3 hypocomplementemia, and six of his healthy close relatives were investigated. Genetic analysis on genomic DNA was performed by exome sequencing of the patient, followed by targeted Sanger sequencing for variant detection in his close relatives. Complement components analysis using specific immunoassays was performed on frozen plasma samples from the patient and mother. Results Exome sequencing revealed a novel homozygous variant in exon 26 of C3 (c.3322_3333del, p.Ile1108_Lys1111del), within the highly conserved thioester-containing domain (TED), fully segregating with the familial disease phenotype, as compatible with autosomal recessive inheritance. Complement profiling of the patient showed decreased C3 and FB levels, with elevated levels of the terminal membrane attack complex, while his healthy heterozygous mother showed intermediate levels of C3 consumption. Conclusions Our findings represent the first description of aHUS secondary to a novel homozygous deletion in C3 with ensuing unbalanced C3 over-activation, highlighting a critical role for the disrupted C3-TED domain in the disease mechanism.
Collapse
Affiliation(s)
- Shirley Pollack
- Pediatric Nephrology Institute, Ruth Children's Hospital, Haifa, Israel.,Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Israel Eisenstein
- Pediatric Nephrology Institute, Ruth Children's Hospital, Haifa, Israel
| | - Adi Mory
- Genetic Institute, Haifa, Israel
| | | | | | | | | | - Nóra Veszeli
- Research Laboratory, Department of Internal Medicine and Haematology, and MTA-SE Research Group of Immunology and Hematology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Dorottya Csuka
- Research Laboratory, Department of Internal Medicine and Haematology, and MTA-SE Research Group of Immunology and Hematology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Revital Shemer
- Laboratory of Molecular Medicine, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Fabian Glaser
- Bioinformatics Knowledge Unit, The Lorry I. Lokey Interdisciplinary Center for Life Sciences and Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Zoltán Prohászka
- Research Laboratory, Department of Internal Medicine and Haematology, and MTA-SE Research Group of Immunology and Hematology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Daniella Magen
- Pediatric Nephrology Institute, Ruth Children's Hospital, Haifa, Israel.,Laboratory of Molecular Medicine, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
29
|
Lemaire M, Noone D, Lapeyraque AL, Licht C, Frémeaux-Bacchi V. Inherited Kidney Complement Diseases. Clin J Am Soc Nephrol 2021; 16:942-956. [PMID: 33536243 PMCID: PMC8216622 DOI: 10.2215/cjn.11830720] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In the past 20 years, we have witnessed tremendous advances in our ability to diagnose and treat genetic diseases of the kidney caused by complement dysregulation. Staggering progress was realized toward a better understanding of the genetic underpinnings and pathophysiology of many forms of atypical hemolytic uremic syndrome (aHUS) and C3-dominant glomerulopathies that are driven by complement system abnormalities. Many of these seminal discoveries paved the way for the design and characterization of several innovative therapies, some of which have already radically improved patients' outcomes. This review offers a broad overview of the exciting developments that have occurred in the recent past, with a particular focus on single-gene (or Mendelian), complement-driven aHUS and C3-dominant glomerulopathies that should be of interest to both nephrologists and kidney researchers. The discussion is restricted to genes with robust associations with both aHUS and C3-dominant glomerulopathies (complement factor H, complement component 3, complement factor H-related proteins) or only aHUS (complement factor B, complement factor I, and membrane cofactor protein). Key questions and challenges are highlighted, along with potential avenues for future directions.
Collapse
Affiliation(s)
- Mathieu Lemaire
- Division of Nephrology, The Hospital for Sick Children, Toronto, Ontario, Canada,Cell Biology Program, SickKids Research Institute, Toronto, Ontario, Canada,Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Damien Noone
- Division of Nephrology, The Hospital for Sick Children, Toronto, Ontario, Canada,Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Anne-Laure Lapeyraque
- Division of Nephrology, Sainte-Justine University Hospital Center, Montreal, Quebec, Canada,Department of Pediatrics, Faculty of Medicine, University of Montréal, Québec, Canada
| | - Christoph Licht
- Division of Nephrology, The Hospital for Sick Children, Toronto, Ontario, Canada,Cell Biology Program, SickKids Research Institute, Toronto, Ontario, Canada,Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Véronique Frémeaux-Bacchi
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Laboratory of Immunology, Paris, France
| |
Collapse
|
30
|
Lemaire M, Noone D, Lapeyraque AL, Licht C, Frémeaux-Bacchi V. Inherited Kidney Complement Diseases. CLINICAL JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY : CJASN 2021. [PMID: 33536243 DOI: 10.2215/cjn.11830720)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
In the past 20 years, we have witnessed tremendous advances in our ability to diagnose and treat genetic diseases of the kidney caused by complement dysregulation. Staggering progress was realized toward a better understanding of the genetic underpinnings and pathophysiology of many forms of atypical hemolytic uremic syndrome (aHUS) and C3-dominant glomerulopathies that are driven by complement system abnormalities. Many of these seminal discoveries paved the way for the design and characterization of several innovative therapies, some of which have already radically improved patients' outcomes. This review offers a broad overview of the exciting developments that have occurred in the recent past, with a particular focus on single-gene (or Mendelian), complement-driven aHUS and C3-dominant glomerulopathies that should be of interest to both nephrologists and kidney researchers. The discussion is restricted to genes with robust associations with both aHUS and C3-dominant glomerulopathies (complement factor H, complement component 3, complement factor H-related proteins) or only aHUS (complement factor B, complement factor I, and membrane cofactor protein). Key questions and challenges are highlighted, along with potential avenues for future directions.
Collapse
Affiliation(s)
- Mathieu Lemaire
- Division of Nephrology, The Hospital for Sick Children, Toronto, Ontario, Canada .,Cell Biology Program, SickKids Research Institute, Toronto, Ontario, Canada.,Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Damien Noone
- Division of Nephrology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Anne-Laure Lapeyraque
- Division of Nephrology, Sainte-Justine University Hospital Center, Montreal, Quebec, Canada.,Department of Pediatrics, Faculty of Medicine, University of Montréal, Québec, Canada
| | - Christoph Licht
- Division of Nephrology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Cell Biology Program, SickKids Research Institute, Toronto, Ontario, Canada.,Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Véronique Frémeaux-Bacchi
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Laboratory of Immunology, Paris, France
| |
Collapse
|
31
|
Iorember F, Nayak A. Deficiency of CFHR plasma proteins and autoantibody positive hemolytic uremic syndrome: treatment rationale, outcomes, and monitoring. Pediatr Nephrol 2021; 36:1365-1375. [PMID: 32529325 DOI: 10.1007/s00467-020-04652-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/30/2020] [Accepted: 06/04/2020] [Indexed: 01/20/2023]
Abstract
Deficiency of Complement Factor H Related (CFHR) plasma proteins and Autoantibody Positive Hemolytic Uremic Syndrome (DEAP-HUS) is a subtype of atypical hemolytic uremic syndrome, known to be associated with significant morbidity. Its pathogenesis is linked to the production of IgG autoantibodies against complement factor H, a regulator of the alternative complement pathway. The binding of the autoantibodies to the C terminal of complement factor H interferes with its regulatory function, leading to increased activation of the alternative complement pathway and consequent endothelial cellular damage. Early diagnosis and initiation of appropriate therapy is reported to lead to favorable outcomes. Institution of plasma exchange therapy within 24 h of diagnosis has been shown to rapidly lower antibody levels, leading to clinical improvement. Adjunctive immunosuppression therapy suppresses antibody production and helps in maintaining long-term clinical remission of the disease. Available data advocates a treatment regimen that combines plasma therapy (preferably plasma exchange) and immunosuppression to halt disease process and sustain long-term disease remission.
Collapse
Affiliation(s)
- Franca Iorember
- Division of Nephrology, Phoenix Children's Hospital, Phoenix, AZ, USA.
| | - Anjali Nayak
- Division of Nephrology, Phoenix Children's Hospital, Phoenix, AZ, USA
| |
Collapse
|
32
|
Risk of Atypical HUS Among Family Members of Patients Carrying Complement Regulatory Gene Abnormality. Kidney Int Rep 2021; 6:1614-1621. [PMID: 34169201 PMCID: PMC8207326 DOI: 10.1016/j.ekir.2021.03.885] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/08/2021] [Accepted: 03/15/2021] [Indexed: 01/06/2023] Open
Abstract
Introduction Atypical hemolytic uremic syndrome (aHUS) is mainly due to complement regulatory gene abnormalities with a dominant pattern but incomplete penetrance. Thus, healthy carriers can be identified in any family of aHUS patients, but it is unpredictable if they will eventually develop aHUS. Methods Patients are screened for 10 complement regulatory gene abnormalities and once a genetic alteration is identified, the search is extended to at-risk family members. The present cohort study includes 257 subjects from 71 families: 99 aHUS patients (71 index cases + 28 affected family members) and 158 healthy relatives with a documented complement gene abnormality. Results Fourteen families (19.7%) experienced multiple cases. Over a cumulative observation period of 7595 person-years, only 28 family members carrying gene mutations experienced aHUS (overall penetrance of 20%), leading to a disease rate of 3.69 events for 1000 person-years. The disease rate was 7.47 per 1000 person-years among siblings, 6.29 among offspring, 2.01 among parents, 1.84 among carriers of variants of uncertain significance, and 4.43 among carriers of causative variants. Conclusions The penetrance of aHUS seems a lot lower than previously reported. Moreover, the disease risk is higher in carriers of causative variants and is not equally distributed among generations: siblings and the offspring of patients have a much greater disease risk than parents. However, risk calculation may depend on variant classification that could change over time.
Collapse
|
33
|
Kim MJ, Lee H, Kim YH, Jin SY, Kim HJ, Oh D, Jeon JS. Eculizumab therapy on a patient with co-existent lupus nephritis and C3 mutation-related atypical haemolytic uremic syndrome: a case report. BMC Nephrol 2021; 22:86. [PMID: 33691638 PMCID: PMC7944615 DOI: 10.1186/s12882-021-02293-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/03/2021] [Indexed: 11/12/2022] Open
Abstract
Background Thrombotic microangiopathy (TMA), a rare but serious complication of systemic lupus erythematosus (SLE), is associated with poor outcomes to conventional immunosuppressive therapy. Recently, eculizumab, a humanised monoclonal antibody that blocks the complement factor 5, has been known to effectively treat atypical haemolytic uremic syndrome (aHUS). Here, we report a case of aHUS co-existing with lupus nephritis that was successfully treated with eculizumab. Case presentation A 23-year-old man presented with abdominal pain and diarrhoea. Initial laboratory tests have shown thrombocytopaenia, microangiopathic haemolytic anaemia, and acute kidney injury. Immunologic tests were consistent with SLE. Kidney biopsy have revealed lupus nephritis class IV-G with TMA. Genetic analysis have shown complement C3 gene mutations, which hints the co-existence of lupus nephritis with aHUS, a form of complement-mediated TMA. Although initial treatment with haemodialysis, plasma exchange, and conventional immunosuppressive therapy (steroid and cyclophosphamide) did not appreciably improve kidney function and thrombocytopaenia, the patient was able to respond to eculizumab therapy. Conclusions Due to the similar features of TMA and SLE, clinical suspicion of aHUS in patients with lupus nephritis is important for early diagnosis and prompt management. Timely administration of eculizumab should be considered as a treatment option for aHUS in lupus nephritis patients to yield optimal therapeutic outcomes.
Collapse
Affiliation(s)
- Mi Jung Kim
- Asan Yuri Hospital, 179 Dogomyeon-ro, Dogo-myeon, 31551, Asan-si, Chungcheongnam-do, Republic of Korea
| | - Haekyung Lee
- Division of Nephrology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, 59 Daesagwan-ro, Yongsan-gu, 04401, Seoul, Republic of Korea
| | - Yon Hee Kim
- Department of Pathology, Soonchunhyang University Seoul Hospital, 59 Daesagwan-ro, Yongsan-gu, 04401, Seoul, Republic of Korea
| | - So Young Jin
- Department of Pathology, Soonchunhyang University Seoul Hospital, 59 Daesagwan-ro, Yongsan-gu, 04401, Seoul, Republic of Korea
| | - Hee-Jin Kim
- Department of Laboratory Medicine & Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, 06531, Seoul, Republic of Korea
| | - Doyeun Oh
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University, 59 Yatapro, Bundang- gu, 13496, Seonganm-si, Gyeonggi, Korea
| | - Jin Seok Jeon
- Division of Nephrology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, 59 Daesagwan-ro, Yongsan-gu, 04401, Seoul, Republic of Korea.
| |
Collapse
|
34
|
Gäckler A, Schönermarck U, Dobronravov V, La Manna G, Denker A, Liu P, Vinogradova M, Yoon SS, Praga M. Efficacy and safety of the long-acting C5 inhibitor ravulizumab in patients with atypical hemolytic uremic syndrome triggered by pregnancy: a subgroup analysis. BMC Nephrol 2021; 22:5. [PMID: 33407224 PMCID: PMC7786907 DOI: 10.1186/s12882-020-02190-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 11/26/2020] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Atypical hemolytic uremic syndrome (aHUS) triggered by pregnancy is a rare disease caused by dysregulation of the alternative complement pathway that occurs in approximately 1 in 25,000 pregnancies. The 311 phase 3 trial (NCT02949128) showed that ravulizumab, a long-acting C5 inhibitor obtained through selective modifications to eculizumab, is efficacious in inhibiting complement-mediated thrombotic microangiopathy (TMA) in patients with aHUS. In this analysis, we report outcomes in a subgroup of patients from the 311 study who developed TMA postpartum. METHODS This was a phase 3, multicenter trial evaluating efficacy and safety of ravulizumab in adults (≥18 years of age) with aHUS naïve to complement inhibitor treatment. The primary endpoint was complete TMA response (simultaneous platelet count normalization [≥150 × 109/L], lactate dehydrogenase normalization [≤246 U/L] and 25% improvement in serum creatinine) through the 183-day initial evaluation period. Additional efficacy endpoints included time to complete TMA response, hematologic normalization, and dialysis requirement status. RESULTS Eight patients presenting with TMA postpartum (median age of 37.7 [range; 22.1-45.2] years) were diagnosed with aHUS and received ≥1 dose of ravulizumab. Five patients (63%) were on dialysis at baseline. Complete TMA response was achieved in 7/8 patients (87.5%) in a median time of 31.5 days. Hematologic normalization was observed in all patients. All patients on dialysis at baseline discontinued dialysis within 21 days after treatment with ravulizumab. All patients showed continued improvements in the estimated glomerular filtration rate from baseline to Day 183. Three possible treatment-related adverse events were observed in 2 patients (arthralgia and nasopharyngitis [both non-severe]; urinary tract infection). No deaths or meningococcal infections occurred. CONCLUSIONS Treatment with ravulizumab provided immediate and complete C5 inhibition, resulting in rapid clinical and laboratory improvements and complete TMA response through 183 days in patients with aHUS triggered by pregnancy. The safety profile observed in this subset of patients analysed is consistent with the 311 study investigating ravulizumab in patients with aHUS naïve to complement treatment. TRIAL REGISTRATION Clinical trial identifier: NCT02949128 .
Collapse
Affiliation(s)
- Anja Gäckler
- Department of Nephrology, University Hospital Essen, University Duisburg-Essen, Essen, Germany.
| | | | | | - Gaetano La Manna
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), Nephrology, Dialysis and Renal Transplant Unit, St. Orsola Hospital, University of Bologna, Bologna, Italy
| | | | - Peng Liu
- Alexion Pharmaceuticals, Inc., Boston, USA
| | - Maria Vinogradova
- National Medical Research Centre for Obstetrics and Gynecology, Moscow, Russia
| | - Sung-Soo Yoon
- Seoul National University Hospital, Seoul, Republic of Korea
| | - Manuel Praga
- Instituto de Investigación Hospital Universitario 12 de Octubre i+12, Madrid, Spain
| |
Collapse
|
35
|
Chabannes M, Togarsimalemath SK, Dragon-Durey MA. Hemolytic Tests Exploring Factor H Functional Activities. Methods Mol Biol 2021; 2227:69-81. [PMID: 33847932 DOI: 10.1007/978-1-0716-1016-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Impairment of the complement regulatory protein Factor H (FH) is implicated in the physiopathological mechanisms of different diseases like atypical hemolytic and uremic syndrome and C3 glomerulopathies. It may be due to genetic abnormalities or acquired with the development of autoantibodies. FH has several ligands; therefore, the exploration of its functions requires to perform different tests. Among them, two hemolytic tests are very useful because they give specific and complementary information about FH functions. The first one is dedicated to explore the FH capacity to dissociate the alternative pathway C3 convertase, whereas the second one is designed to explore the capacity of FH to bind cell surfaces and to protect them from complement attack. This chapter describes the procedures to perform these two hemolytic tests, exploring in a complementary way the FH functionality.
Collapse
Affiliation(s)
- Melchior Chabannes
- INSERM, UMRS 1138, "Inflammation, Complement and Cancer" Team, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France
| | - Shambhuprasad K Togarsimalemath
- INSERM, UMRS 1138, "Inflammation, Complement and Cancer" Team, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France
| | - Marie-Agnès Dragon-Durey
- INSERM, UMRS 1138, "Inflammation, Complement and Cancer" Team, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France.
- Service d'Immunologie Biologique, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France.
| |
Collapse
|
36
|
Maddirevula S, Shamseldin HE, Sirr A, AlAbdi L, Lo RS, Ewida N, Al-Qahtani M, Hashem M, Abdulwahab F, Aboyousef O, Kaya N, Monies D, Salem MH, Al Harbi N, Aldhalaan HM, Alzaidan H, Almanea HM, Alsalamah AK, Al Mutairi F, Ismail S, Abdel-Salam GMH, Alhashem A, Asery A, Faqeih E, AlQassmi A, Al-Hamoudi W, Algoufi T, Shagrani M, Dudley AM, Alkuraya FS. Exploiting the Autozygome to Support Previously Published Mendelian Gene-Disease Associations: An Update. Front Genet 2020; 11:580484. [PMID: 33456446 PMCID: PMC7806527 DOI: 10.3389/fgene.2020.580484] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/30/2020] [Indexed: 01/06/2023] Open
Abstract
There is a growing interest in standardizing gene-disease associations for the purpose of facilitating the proper classification of variants in the context of Mendelian diseases. One key line of evidence is the independent observation of pathogenic variants in unrelated individuals with similar phenotypes. Here, we expand on our previous effort to exploit the power of autozygosity to produce homozygous pathogenic variants that are otherwise very difficult to encounter in the homozygous state due to their rarity. The identification of such variants in genes with only tentative associations to Mendelian diseases can add to the existing evidence when observed in the context of compatible phenotypes. In this study, we report 20 homozygous variants in 18 genes (ADAMTS18, ARNT2, ASTN1, C3, DMBX1, DUT, GABRB3, GM2A, KIF12, LOXL3, NUP160, PTRHD1, RAP1GDS1, RHOBTB2, SIGMAR1, SPAST, TENM3, and WASHC5) that satisfy the ACMG classification for pathogenic/likely pathogenic if the involved genes had confirmed rather than tentative links to diseases. These variants were selected because they were truncating, founder with compelling segregation or supported by robust functional assays as with the DUT variant that we present its validation using yeast model. Our findings support the previously reported disease associations for these genes and represent a step toward their confirmation.
Collapse
Affiliation(s)
- Sateesh Maddirevula
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Hanan E Shamseldin
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Amy Sirr
- Pacific Northwest Research Institute, Seattle, WA, United States
| | - Lama AlAbdi
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Russell S Lo
- Pacific Northwest Research Institute, Seattle, WA, United States
| | - Nour Ewida
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mashael Al-Qahtani
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mais Hashem
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Firdous Abdulwahab
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Omar Aboyousef
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Namik Kaya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Dorota Monies
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - May H Salem
- Pediatric Nephrology Service, Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Naffaa Al Harbi
- Pediatric Nephrology Service, Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Hesham M Aldhalaan
- Department of Neuroscience, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Hamad Alzaidan
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Hadeel M Almanea
- Anatomic Pathology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Abrar K Alsalamah
- Vitreoretinal and Uveitis Divisions, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Fuad Al Mutairi
- Medical Genetics Division, Department of Pediatrics, King Abdullah International Medical Research Centre, King Abdulaziz Medical City, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Samira Ismail
- Human Genetics & Genome Research Division, Clinical Genetics Department, Center of Excellence of Human Genetics, National Research Centre, Cairo, Egypt
| | - Ghada M H Abdel-Salam
- Human Genetics & Genome Research Division, Clinical Genetics Department, Center of Excellence of Human Genetics, National Research Centre, Cairo, Egypt
| | - Amal Alhashem
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.,Department of Pediatric, Prince Sultan Medical Military City, Riyadh, Saudi Arabia
| | - Ali Asery
- Section of Pediatric Gastroenterology, Children's Specialist Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Eissa Faqeih
- Department of Pediatric Subspecialties, Children's Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Amal AlQassmi
- Pediatric Neurology, King Saud Medical City, Riyadh, Saudi Arabia
| | - Waleed Al-Hamoudi
- Department of Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Talal Algoufi
- King Faisal Specialist Hospital and Research Center, Organ Transplant Centre, Riyadh, Saudi Arabia
| | - Mohammad Shagrani
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.,King Faisal Specialist Hospital and Research Center, Organ Transplant Centre, Riyadh, Saudi Arabia
| | - Aimée M Dudley
- Pacific Northwest Research Institute, Seattle, WA, United States
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
37
|
Atypical hemolytic and uremic syndrome due to C3 mutation in pancreatic islet transplantation: a case report. BMC Nephrol 2020; 21:405. [PMID: 32950058 PMCID: PMC7501718 DOI: 10.1186/s12882-020-02062-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/10/2020] [Indexed: 12/29/2022] Open
Abstract
Background We here report on the first observation of a C3 mutation that is related to atypical hemolytic and uremic syndrome (aHUS), which occurred in a pancreatic islet transplant patient. Immunosuppressive treatments, such as calcineurin inhibitors, have been linked to undesirable effects like nephrotoxicity. Case presentation A 40-year-old man with brittle diabetes, who was included in the TRIMECO trial, became insulin-independent 2 months after pancreatic islet transplantation. About 15 months after islet transplantation, the patient exhibited acute kidney injury due to aHUS. Despite plasma exchange and eculizumab treatment, the patient developed end-stage renal disease. A genetic workup identified a missense variant (p.R592Q) in the C3 gene. In vitro, this C3 variant had defective Factor I proteolytic activity with membrane proteins as cofactor proteins, which was thus classified as pathogenic. About 1 year after the aHUS episode, kidney transplantation was carried out under the protection of the specific anti-C5 monoclonal antibody eculizumab. The patient had normal kidney function, with preserved pancreatic islet function 4 years later. Conclusions Pancreatic islet transplantation could have triggered this aHUS episode, but this link needs to be clarified. Although prophylactic eculizumab maintains kidney allograft function, its efficacy still needs to be studied in larger populations.
Collapse
|
38
|
Avila Bernabeu AI, Cavero Escribano T, Cao Vilarino M. Atypical Hemolytic Uremic Syndrome: New Challenges in the Complement Blockage Era. Nephron Clin Pract 2020; 144:537-549. [PMID: 32950988 DOI: 10.1159/000508920] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/22/2020] [Indexed: 11/19/2022] Open
Abstract
Atypical hemolytic uremic syndrome (aHUS) is a rare cause of thrombotic microangiopathy (TMA), characterized by microangiopathic hemolytic anemia, consumptive thrombocytopenia, and multisystem end organ involvement, most commonly affecting the kidney. Diagnosis is clinical, after exclusion of other TMA causes. Primary aHUS arises from genetic abnormalities, resulting in uncontrolled complement activity, while a variety of clinical scenarios cause secondary aHUS, including infection, pregnancy, malignancy, autoimmune disease, and medications. They can also induce a temporary complement deregulation with an overlap between both scenarios, which can make differential diagnosis difficult. Primary aHUS can be sporadic or familial and is associated with a high rate of progression to ESRD. Many aHUS patients relapse in the native or transplanted kidneys, leading to kidney failure. The introduction of eculizumab has changed the prognosis of aHUS, by inducing hematologic remission, improving or stabilizing kidney functions, and preventing graft failure. The early institution of appropriate therapy can prevent multiorgan damage, so is essential to recognize and differentiate the TMA syndromes. Eculizumab is considered now the first-line treatment, and it is recommended lifelong therapy. However, the high cost of therapy has led to make efforts to develop precise complement functional and genetic studies that help physicians to determine the appropriate duration of eculizumab therapy. Nowadays, more studies are needed to select candidates to adjustment of therapy.
Collapse
|
39
|
Infante B, Rossini M, Leo S, Troise D, Netti GS, Ranieri E, Gesualdo L, Castellano G, Stallone G. Recurrent Glomerulonephritis after Renal Transplantation: The Clinical Problem. Int J Mol Sci 2020; 21:ijms21175954. [PMID: 32824988 PMCID: PMC7504691 DOI: 10.3390/ijms21175954] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 07/30/2020] [Accepted: 08/17/2020] [Indexed: 12/22/2022] Open
Abstract
Glomerulonephritis (GN) continues to be one of the main causes of end-stage kidney disease (ESKD) with an incidence rating from 10.5% to 38.2%. Therefore, recurrent GN, previously considered to be a minor contributor to graft loss, is the third most common cause of graft failure 10 years after renal transplantation. However, the incidence, pathogenesis, and natural course of recurrences are still not completely understood. This review focuses on the most frequent diseases that recur after renal transplantation, analyzing rate of recurrence, epidemiology and risk factors, pathogenesis and bimolecular mechanisms, clinical presentation, diagnosis, and therapy, taking into consideration the limited data available in the literature. First of all, the risk for recurrence depends on the type of glomerulonephritis. For example, recipient patients with anti-glomerular basement membrane (GBM) disease present recurrence rarely, but often exhibit rapid graft loss. On the other hand, recipient patients with C3 glomerulonephritis present recurrence in more than 50% of cases, although the disease is generally slowly progressive. It should not be forgotten that every condition that can lead to chronic graft dysfunction should be considered in the differential diagnosis of recurrence. Therefore, a complete workup of renal biopsy, including light, immunofluorescence and electron microscopy study, is essential to provide the diagnosis, excluding alternative diagnosis that may require different treatment. We will examine in detail the biomolecular mechanisms of both native and transplanted kidney diseases, monitoring the risk of recurrence and optimizing the available treatment options.
Collapse
Affiliation(s)
- Barbara Infante
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Viale Pinto Luigi 251, 71122 Foggia, Italy; (B.I.); (S.L.); (D.T.); (G.S.)
| | - Michele Rossini
- Clinical Pathology Unit and Center of Molecular Medicine, Department of Medical and Surgical Sciences, University of Foggia, Viale Luigi Pinto, 71122 Foggia, Italy; (M.R.); (G.S.N.); (E.R.)
| | - Serena Leo
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Viale Pinto Luigi 251, 71122 Foggia, Italy; (B.I.); (S.L.); (D.T.); (G.S.)
| | - Dario Troise
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Viale Pinto Luigi 251, 71122 Foggia, Italy; (B.I.); (S.L.); (D.T.); (G.S.)
| | - Giuseppe Stefano Netti
- Clinical Pathology Unit and Center of Molecular Medicine, Department of Medical and Surgical Sciences, University of Foggia, Viale Luigi Pinto, 71122 Foggia, Italy; (M.R.); (G.S.N.); (E.R.)
| | - Elena Ranieri
- Clinical Pathology Unit and Center of Molecular Medicine, Department of Medical and Surgical Sciences, University of Foggia, Viale Luigi Pinto, 71122 Foggia, Italy; (M.R.); (G.S.N.); (E.R.)
| | - Loreto Gesualdo
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy;
| | - Giuseppe Castellano
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Viale Pinto Luigi 251, 71122 Foggia, Italy; (B.I.); (S.L.); (D.T.); (G.S.)
- Correspondence: ; Tel.: +39-0881732610; Fax: +39-0881736001
| | - Giovanni Stallone
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Viale Pinto Luigi 251, 71122 Foggia, Italy; (B.I.); (S.L.); (D.T.); (G.S.)
| |
Collapse
|
40
|
Lumbreras J, Subias M, Espinosa N, Ferrer JM, Arjona E, Rodríguez de Córdoba S. The Relevance of the MCP Risk Polymorphism to the Outcome of aHUS Associated With C3 Mutations. A Case Report. Front Immunol 2020; 11:1348. [PMID: 32765494 PMCID: PMC7381106 DOI: 10.3389/fimmu.2020.01348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 05/27/2020] [Indexed: 11/18/2022] Open
Abstract
Thrombotic microangiopathy (TMA) has different etiological causes, and not all of them are well understood. In atypical hemolytic uremic syndrome (aHUS), the TMA is caused by the complement dysregulation associated with pathogenic mutations in complement components and its regulators. Here, we describe a pediatric patient with aHUS in whom the relatively benign course of the disease confused the initial diagnosis. A previously healthy 8-year-old boy developed jaundice, hematuria, hemolytic anemia, thrombopenia, and mild acute kidney injury (AKI) in the context of a diarrhea without hypertension nor oliguria. Spontaneous and complete recovery was observed from the third day of admission. Persistent low C3 plasma levels after recovery raised the suspicion for aHUS, which prompted clinicians to discard the initial diagnosis of Shigatoxin-associated HUS (STEC-HUS). A thorough genetic and molecular study of the complement revealed the presence of an isolated novel pathogenic C3 mutation. The relatively benign clinical course of the disease as well as the finding of a de novo pathogenic C3 mutation are remarkable aspects of this case. The data are discussed to illustrate the benefits of identifying the TMA etiological factor and the relevant contribution of the MCP aHUS risk polymorphism to the disease severity.
Collapse
Affiliation(s)
- Javier Lumbreras
- Unidad de Nefrología Infantil, Servicio de Pediatría, Hospital Universitari Son Espases-Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - Marta Subias
- Centro de Investigaciones Biológicas Margarita Salas and Ciber de Enfermedades Raras, Madrid, Spain
| | - Natalia Espinosa
- Unidad de Nefrología Infantil, Servicio de Pediatría, Hospital Universitari Son Espases-Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - Juana María Ferrer
- Servicio de Inmunología, Hospital Universitari Son Espases-Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - Emilia Arjona
- Centro de Investigaciones Biológicas Margarita Salas and Ciber de Enfermedades Raras, Madrid, Spain
| | | |
Collapse
|
41
|
Castelli R, Lambertenghi Delilliers G, Gidaro A, Cicardi M, Bergamaschini L. Complement activation in patients with immune thrombocytopenic purpura according to phases of disease course. Clin Exp Immunol 2020; 201:258-265. [PMID: 32515487 DOI: 10.1111/cei.13475] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/29/2020] [Accepted: 06/03/2020] [Indexed: 11/27/2022] Open
Abstract
Immune thrombocytopenic purpura (ITP) is an autoimmune thrombocytopenia with shortened platelet survival and relative bone marrow failure. The pathogenesis involves antibody production, cytokine release, T cell impairment, complement activation and clearance of platelets. We measured plasma levels of C3, C4, C1q and sC5b-9 in 80 ITP patients in acute phase, 50 ITP patients in complete (CR) or partial (PR) remission and 50 age- and sex-matched healthy volunteers. Statistical analyses showed that acute ITP patients had higher plasma levels of sC5b-9 and C1q than CR or PR patients (median = sC5b-9: 200 versus 98 mg/dl, P-value < 0·001) (median C1q = 2·11 versus 1·00 mg/dl, P-value < 0·001). CR and PR ITP patients had sC5b-9 and C1q plasma levels comparable to those observed in healthy volunteers. There was a significant correlation between sC5b-9 and C1q plasma levels (Spearman's rho correlation index on 130 ITP patients equal to 0·58, P-value < 0·001). We also found that sC5b-9 plasma level is inversely correlated with the number of platelets. Furthermore, we divided acute ITP patients into subjects with detectable (24 of 80, 30%) or undetectable (56 of 80, 70%) anti-platelet antibodies; patients with detectable anti-platelet antibodies have significantly higher plasma levels of C1q and sC5b-9. This research will potentially offer novel therapeutic strategies in light of new drugs affecting complement activation for monitoring therapy response.
Collapse
Affiliation(s)
- R Castelli
- Department of Biomedical and Clinical Sciences Luigi Sacco, University of Milan, Luigi Sacco Hospital, Milan, Italy
| | | | - A Gidaro
- Department of Biomedical and Clinical Sciences Luigi Sacco, University of Milan, Luigi Sacco Hospital, Milan, Italy
| | - M Cicardi
- Department of Biomedical and Clinical Sciences Luigi Sacco, University of Milan, Luigi Sacco Hospital, Milan, Italy
| | - L Bergamaschini
- Department of Biomedical and Clinical Sciences Luigi Sacco, University of Milan, Luigi Sacco Hospital, Milan, Italy
| |
Collapse
|
42
|
Brocklebank V, Kumar G, Howie AJ, Chandar J, Milford DV, Craze J, Evans J, Finlay E, Freundlich M, Gale DP, Inward C, Mraz M, Jones C, Wong W, Marks SD, Connolly J, Corner BM, Smith-Jackson K, Walsh PR, Marchbank KJ, Harris CL, Wilson V, Wong EKS, Malina M, Johnson S, Sheerin NS, Kavanagh D. Long-term outcomes and response to treatment in diacylglycerol kinase epsilon nephropathy. Kidney Int 2020; 97:1260-1274. [PMID: 32386968 PMCID: PMC7242908 DOI: 10.1016/j.kint.2020.01.045] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/15/2020] [Accepted: 01/31/2020] [Indexed: 12/19/2022]
Abstract
Recessive mutations in diacylglycerol kinase epsilon (DGKE) display genetic pleiotropy, with pathological features reported as either thrombotic microangiopathy or membranoproliferative glomerulonephritis (MPGN), and clinical features of atypical hemolytic uremic syndrome (aHUS), nephrotic syndrome or both. Pathophysiological mechanisms and optimal management strategies have not yet been defined. In prospective and retrospective studies of aHUS referred to the United Kingdom National aHUS service and prospective studies of MPGN referred to the National Registry of Rare Kidney Diseases for MPGN we defined the incidence of DGKE aHUS as 0.009/million/year and so-called DGKE MPGN as 0.006/million/year, giving a combined incidence of 0.015/million/year. Here, we describe a cohort of sixteen individuals with DGKE nephropathy. One presented with isolated nephrotic syndrome. Analysis of pathological features reveals that DGKE mutations give an MPGN-like appearance to different extents, with but more often without changes in arterioles or arteries. In 15 patients presenting with aHUS, ten had concurrent substantial proteinuria. Identified triggering events were rare but coexistent developmental disorders were seen in six. Nine with aHUS experienced at least one relapse, although in only one did a relapse of aHUS occur after age five years. Persistent proteinuria was seen in the majority of cases. Only two individuals have reached end stage renal disease, 20 years after the initial presentation, and in one, renal transplantation was successfully undertaken without relapse. Six individuals received eculizumab. Relapses on treatment occurred in one individual. In four individuals eculizumab was withdrawn, with one spontaneously resolving aHUS relapse occurring. Thus we suggest that DGKE-mediated aHUS is eculizumab non-responsive and that in individuals who currently receive eculizumab therapy it can be safely withdrawn. This has important patient safety and economic implications.
Collapse
Affiliation(s)
- Vicky Brocklebank
- National Renal Complement Therapeutics Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK; Complement Therapeutics Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Gurinder Kumar
- Division of Paediatric Nephrology, Sheikh Khalifa Medical City, Abu Dhabi, United Arab Emirates
| | - Alexander J Howie
- Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Jayanthi Chandar
- Division of Pediatric Nephrology, University of Miami, Miami, Florida, USA
| | - David V Milford
- Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Janet Craze
- Department of General Paediatrics, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Jonathan Evans
- Children's Renal and Urology Unit, Nottingham Children's Hospital, Nottingham University Hospitals NHS Foundation Trust, Nottingham, UK
| | - Eric Finlay
- Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Michael Freundlich
- Division of Pediatric Nephrology, University of Miami, Miami, Florida, USA
| | - Daniel P Gale
- Department of Renal Medicine, University College London, UK
| | - Carol Inward
- Department of Paediatric Nephrology, Bristol Royal Hospital For Children, University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - Martin Mraz
- Department of Paediatric Nephrology, Bristol Royal Hospital For Children, University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - Caroline Jones
- Department of Paediatric Nephrology, Alder Hey Children's Hospital NHS Trust, Liverpool, UK
| | - William Wong
- Department of Paediatric Nephrology, Starship Children's Hospital, Grafton, Auckland, New Zealand
| | - Stephen D Marks
- Department of Paediatric Nephrology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - John Connolly
- Centre for Nephrology, Royal Free Hospital, University College London, London, UK
| | - Bronte M Corner
- Complement Therapeutics Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Kate Smith-Jackson
- National Renal Complement Therapeutics Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK; Complement Therapeutics Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Patrick R Walsh
- National Renal Complement Therapeutics Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK; Complement Therapeutics Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Kevin J Marchbank
- National Renal Complement Therapeutics Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK; Complement Therapeutics Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Claire L Harris
- National Renal Complement Therapeutics Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK; Complement Therapeutics Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Valerie Wilson
- National Renal Complement Therapeutics Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Edwin K S Wong
- National Renal Complement Therapeutics Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Michal Malina
- National Renal Complement Therapeutics Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK; Great North Children's Hospital, Sir James Spence Institute, Royal Victoria Infirmary, Newcastle, UK
| | - Sally Johnson
- National Renal Complement Therapeutics Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK; Great North Children's Hospital, Sir James Spence Institute, Royal Victoria Infirmary, Newcastle, UK
| | - Neil S Sheerin
- National Renal Complement Therapeutics Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK; Complement Therapeutics Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - David Kavanagh
- National Renal Complement Therapeutics Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK; Complement Therapeutics Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
43
|
Timmermans SAMEG, Abdul-Hamid MH, van Paassen P. Chronic thrombotic microangiopathy in patients with a C3 gain of function protein. Nephrol Dial Transplant 2020; 35:1449-1451. [PMID: 32337601 PMCID: PMC7462720 DOI: 10.1093/ndt/gfaa050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/19/2020] [Indexed: 12/16/2022] Open
Affiliation(s)
- Sjoerd A M E G Timmermans
- Department of Nephrology and Clinical Immunology, Maastricht University Medical Center, Maastricht, The Netherlands.,Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht, The Netherlands
| | - Myrurgia H Abdul-Hamid
- Department of Pathology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Pieter van Paassen
- Department of Nephrology and Clinical Immunology, Maastricht University Medical Center, Maastricht, The Netherlands.,Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht, The Netherlands
| | | |
Collapse
|
44
|
Case Report: Carfilzomib-induced Thrombotic Microangiopathy With Complement Activation Treated Successfully With Eculizumab. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2020; 20:e155-e157. [DOI: 10.1016/j.clml.2020.01.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/20/2020] [Accepted: 01/24/2020] [Indexed: 01/28/2023]
|
45
|
Abstract
The technological advances in diagnostics and therapy of primary immunodeficiency are progressing at a fast pace. This review examines recent developments in the field of inborn errors of immunity, from their definition to their treatment. We will summarize the challenges posed by the growth of next-generation sequencing in the clinical setting, touch briefly on the expansion of the concept of inborn errors of immunity beyond the classic immune system realm, and finally review current developments in targeted therapies, stem cell transplantation, and gene therapy.
Collapse
Affiliation(s)
- Giorgia Bucciol
- Inborn Errors of Immunity, Department of Immunology, Microbiology and Transplantation, KU Leuven, Herestraat 49, Leuven, 3000, Belgium.,Childhood Immunology, Department of Pediatrics, University Hospitals Leuven, ERN-RITA Core Member, Herestraat 49, Leuven, 3000, Belgium
| | - Isabelle Meyts
- Inborn Errors of Immunity, Department of Immunology, Microbiology and Transplantation, KU Leuven, Herestraat 49, Leuven, 3000, Belgium.,Childhood Immunology, Department of Pediatrics, University Hospitals Leuven, ERN-RITA Core Member, Herestraat 49, Leuven, 3000, Belgium
| |
Collapse
|
46
|
Amari Chinchilla K, Vijayan M, Taveras Garcia B, Jim B. Complement-Mediated Disorders in Pregnancy. Adv Chronic Kidney Dis 2020; 27:155-164. [PMID: 32553248 DOI: 10.1053/j.ackd.2020.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 12/13/2022]
Abstract
Complement-mediated disorders in pregnancy span a large spectrum and have been implicated in all three complement pathways: classical, lectin, and alternative. Our understanding of these disorders in recent years has advanced due to a better understanding of complement regulatory proteins, such as complement factor H, complement factor I, membrane cofactor protein, and thrombomodulin that particularly affect the alternative complement pathway. Enthusiasm in genotyping for mutations that encode these proteins has allowed us to study the presence of genetic variants which may predispose women to develop conditions such as pregnancy-associated hemolytic uremic syndrome (P-aHUS), thrombotic thrombocytopenic purpura, preeclampsia/hemolysis, elevated liver enzymes, low platelets (HELLP), systemic lupus erythematosus/antiphospholipid syndrome, and peripartum cardiomyopathy. The advent of the anti-C5-antibody eculizumab to quench the complement cascade has already proven in small case series to improve maternal kidney outcomes in complement-mediated obstetric catastrophes such as P-aHUS and HELLP. In this review, we will detail the pathogenesis behind these complement-mediated pregnancy disorders, the role of complement variants in disease phenotype, and the most up-to-date experience with eculizumab in this population.
Collapse
|
47
|
Manrique-Caballero CL, Peerapornratana S, Formeck C, Del Rio-Pertuz G, Gomez Danies H, Kellum JA. Typical and Atypical Hemolytic Uremic Syndrome in the Critically Ill. Crit Care Clin 2020; 36:333-356. [PMID: 32172817 DOI: 10.1016/j.ccc.2019.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Hemolytic uremic syndrome is characterized by microangiopathic hemolytic anemia, thrombocytopenia, and acute kidney injury. Disseminated intravascular coagulation, thrombotic thrombocytopenic purpura, and hemolytic uremic syndrome have a similar clinical presentation. Diagnostic needs to be prompt to decrease mortality, because identifying the different disorders can help to tailor specific, effective therapies. However, diagnosis is challenging and morbidity and mortality remain high, especially in the critically ill population. Development of clinical prediction scores and rapid diagnostic tests for hemolytic uremic syndrome based on mechanistic knowledge are needed to facilitate early diagnosis and assign timely specific treatments to patients with hemolytic uremic syndrome variants.
Collapse
Affiliation(s)
- Carlos L Manrique-Caballero
- Center for Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, 3347 Forbes Avenue Suite 220, Pittsburgh, PA 15213, USA; The CRISMA (Clinical Research, Investigation and Systems Modeling of Acute Illness) Center, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, 3550 Terrace Street, Scaife Hall, Suite 600, Pittsburgh, PA 15213, USA
| | - Sadudee Peerapornratana
- Center for Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, 3347 Forbes Avenue Suite 220, Pittsburgh, PA 15213, USA; The CRISMA (Clinical Research, Investigation and Systems Modeling of Acute Illness) Center, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, 3550 Terrace Street, Scaife Hall, Suite 600, Pittsburgh, PA 15213, USA; Excellence Center for Critical Care Nephrology, Division of Nephrology, Department of Medicine, Chulalongkorn University, 1873 Rama 4 Road, Pathumwan, Bangkok 10330, Thailand; Department of Laboratory Medicine, Chulalongkorn University, 1873 Rama 4 Road, Pathumwan, Bangkok 10330, Thailand
| | - Cassandra Formeck
- Center for Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, 3347 Forbes Avenue Suite 220, Pittsburgh, PA 15213, USA; The CRISMA (Clinical Research, Investigation and Systems Modeling of Acute Illness) Center, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, 3550 Terrace Street, Scaife Hall, Suite 600, Pittsburgh, PA 15213, USA; Department of Nephrology, Children's Hospital of Pittsburgh of UPMC, 4401 Penn Avenue, Floor 3, Pittsburgh, PA 15224, USA
| | - Gaspar Del Rio-Pertuz
- Center for Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, 3347 Forbes Avenue Suite 220, Pittsburgh, PA 15213, USA; The CRISMA (Clinical Research, Investigation and Systems Modeling of Acute Illness) Center, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, 3550 Terrace Street, Scaife Hall, Suite 600, Pittsburgh, PA 15213, USA
| | - Hernando Gomez Danies
- Center for Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, 3347 Forbes Avenue Suite 220, Pittsburgh, PA 15213, USA; The CRISMA (Clinical Research, Investigation and Systems Modeling of Acute Illness) Center, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, 3550 Terrace Street, Scaife Hall, Suite 600, Pittsburgh, PA 15213, USA
| | - John A Kellum
- Center for Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, 3347 Forbes Avenue Suite 220, Pittsburgh, PA 15213, USA; The CRISMA (Clinical Research, Investigation and Systems Modeling of Acute Illness) Center, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, 3550 Terrace Street, Scaife Hall, Suite 600, Pittsburgh, PA 15213, USA.
| |
Collapse
|
48
|
Joseph A, Cointe A, Mariani Kurkdjian P, Rafat C, Hertig A. Shiga Toxin-Associated Hemolytic Uremic Syndrome: A Narrative Review. Toxins (Basel) 2020; 12:E67. [PMID: 31973203 PMCID: PMC7076748 DOI: 10.3390/toxins12020067] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/13/2020] [Accepted: 01/17/2020] [Indexed: 01/28/2023] Open
Abstract
The severity of human infection by one of the many Shiga toxin-producing Escherichia coli (STEC) is determined by a number of factors: the bacterial genome, the capacity of human societies to prevent foodborne epidemics, the medical condition of infected patients (in particular their hydration status, often compromised by severe diarrhea), and by our capacity to devise new therapeutic approaches, most specifically to combat the bacterial virulence factors, as opposed to our current strategies that essentially aim to palliate organ deficiencies. The last major outbreak in 2011 in Germany, which killed more than 50 people in Europe, was evidence that an effective treatment was still lacking. Herein, we review the current knowledge of STEC virulence, how societies organize the prevention of human disease, and how physicians treat (and, hopefully, will treat) its potentially fatal complications. In particular, we focus on STEC-induced hemolytic and uremic syndrome (HUS), where the intrusion of toxins inside endothelial cells results in massive cell death, activation of the coagulation within capillaries, and eventually organ failure.
Collapse
Affiliation(s)
- Adrien Joseph
- Department of Nephrology, AP-HP, Hôpital Tenon, F-75020 Paris, France; (A.J.); (C.R.)
| | - Aurélie Cointe
- Department of Microbiology, AP-HP, Hôpital Robert Debré, F-75019 Paris, France; (A.C.); (P.M.K.)
| | | | - Cédric Rafat
- Department of Nephrology, AP-HP, Hôpital Tenon, F-75020 Paris, France; (A.J.); (C.R.)
| | - Alexandre Hertig
- Department of Renal Transplantation, Sorbonne Université, AP-HP, Hôpital Pitié Salpêtrière, F-75013 Paris, France
| |
Collapse
|
49
|
Basnayake BMDB, Wazil AWM, Nanayakkara N, Samarakoon SMDK, Senavirathne EMSK, Thangarajah BUEWDR, Karunasena N, Mahanama RMBSS. Atypical hemolytic uremic syndrome: a case report. J Med Case Rep 2020; 14:11. [PMID: 31928535 PMCID: PMC6956473 DOI: 10.1186/s13256-019-2334-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/05/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Thrombotic microangiopathy is a pathological condition comprised of microvascular thrombosis involving any organ of the body leading to thrombocytopenia, Coombs-negative hemolytic anemia, and end-organ damage. The most common forms of thrombotic microangiopathies are Shiga toxin-producing Escherichia coli-mediated hemolytic uremic syndrome, thrombotic thrombocytopenic purpura, and atypical hemolytic uremic syndrome. The atypical hemolytic uremic syndrome occurs due to genetic and acquired mutations in complement regulatory factors and to complement activation factors in the immune system, mainly the alternative pathway. Clinical manifestations and outcomes differ with the prevalent mutations of the patient. Currently, available treatment modalities are therapeutic plasma exchange and a monoclonal antibody against C5, eculizumab. We report a case of a Sri Lankan girl diagnosed with atypical hemolytic uremic syndrome complicated with septicemia, hemolytic anemia, acute kidney injury, pulmonary hemorrhage with respiratory failure, and hypertension who had a complete remission following long-term (30 months) therapeutic plasma exchange. CASE PRESENTATION A 15-year-old Sri Lankan girl was transferred from a local hospital with the features of septicemia and acute kidney injury for specialized management. She had high blood pressure (180/100 mmHg) on admission. She underwent appendicectomy based on suspicion of acute appendicitis as the cause of sepsis. Following surgery, her condition deteriorated, and intensive care unit management was warranted because she developed pulmonary hemorrhages and respiratory failure requiring mechanical ventilation and renal replacement therapy in the form of hemodialysis. Her blood investigations showed microangiopathic hemolytic anemia, thrombocytopenia, elevated lactate dehydrogenase, and reduced human complement C3 levels, together with a normal coagulation profile. She was diagnosed with atypical hemolytic uremic syndrome and was initiated on therapeutic plasma exchange and other supportive therapy, including corticosteroids. Following a lengthy course of plasma exchange, complete recovery was achieved. CONCLUSION The atypical hemolytic uremic syndrome is a rare disease entity requiring a high index of suspicion to diagnose. It is a diagnosis of exclusion. Early diagnosis with prompt treatment will render a better outcome. The atypical hemolytic uremic syndrome needs to be considered in all patients with thrombotic microangiopathy.
Collapse
Affiliation(s)
- B M D B Basnayake
- Department of Nephrology and Renal Transplant, Teaching Hospital Kandy, Kandy, Sri Lanka.
| | - A W M Wazil
- Department of Nephrology and Renal Transplant, Teaching Hospital Kandy, Kandy, Sri Lanka
| | - N Nanayakkara
- Department of Nephrology and Renal Transplant, Teaching Hospital Kandy, Kandy, Sri Lanka
| | - S M D K Samarakoon
- Department of Transfusion Medicine, Teaching Hospital Kandy, Kandy, Sri Lanka
| | | | | | - N Karunasena
- Department of Nephrology and Renal Transplant, Teaching Hospital Kandy, Kandy, Sri Lanka
| | - R M B S S Mahanama
- Department of Nephrology and Renal Transplant, Teaching Hospital Kandy, Kandy, Sri Lanka
| |
Collapse
|
50
|
Schapiro D, Daga A, Lawson JA, Majmundar AJ, Lovric S, Tan W, Warejko JK, Fessi I, Rao J, Airik M, Gee HY, Schneider R, Widmeier E, Hermle T, Ashraf S, Jobst-Schwan T, van der Ven AT, Nakayama M, Shril S, Braun DA, Hildebrandt F. Panel sequencing distinguishes monogenic forms of nephritis from nephrosis in children. Nephrol Dial Transplant 2019; 34:474-485. [PMID: 30295827 DOI: 10.1093/ndt/gfy050] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 01/21/2018] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Alport syndrome (AS) and atypical hemolytic-uremic syndrome (aHUS) are rare forms of chronic kidney disease (CKD) that can lead to a severe decline of renal function. Steroid-resistant nephrotic syndrome (SRNS) is more common than AS and aHUS and causes 10% of childhood-onset CKD. In recent years, multiple monogenic causes of AS, aHUS and SRNS have been identified, but their relative prevalence has yet to be studied together in a typical pediatric cohort of children with proteinuria and hematuria. We hypothesized that identification of causative mutations by whole exome sequencing (WES) in known monogenic nephritis and nephrosis genes would allow distinguishing nephritis from nephrosis in a typical pediatric group of patients with both proteinuria and hematuria at any level. METHODS We therefore conducted an exon sequencing (WES) analysis for 11 AS, aHUS and thrombotic thrombocytopenic purpura-causing genes in an international cohort of 371 patients from 362 families presenting with both proteinuria and hematuria before age 25 years. In parallel, we conducted either WES or high-throughput exon sequencing for 23 SRNS-causing genes in all patients. RESULTS We detected pathogenic mutations in 18 of the 34 genes analyzed, leading to a molecular diagnosis in 14.1% of families (51 of 362). Disease-causing mutations were detected in 3 AS-causing genes (4.7%), 3 aHUS-causing genes (1.4%) and 12 NS-causing genes (8.0%). We observed a much higher mutation detection rate for monogenic forms of CKD in consanguineous families (35.7% versus 10.1%). CONCLUSIONS We present the first estimate of relative frequency of inherited AS, aHUS and NS in a typical pediatric cohort with proteinuria and hematuria. Important therapeutic and preventative measures may result from mutational analysis in individuals with proteinuria and hematuria.
Collapse
Affiliation(s)
- David Schapiro
- Department of Medicine, Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ankana Daga
- Department of Medicine, Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jennifer A Lawson
- Department of Medicine, Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Amar J Majmundar
- Department of Medicine, Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Svjetlana Lovric
- Department of Medicine, Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Weizhen Tan
- Department of Medicine, Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jillian K Warejko
- Department of Medicine, Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Inés Fessi
- Department of Medicine, Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jia Rao
- Department of Medicine, Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Merlin Airik
- Department of Medicine, Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Heon Yung Gee
- Department of Medicine, Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ronen Schneider
- Department of Medicine, Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Eugen Widmeier
- Department of Medicine, Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tobias Hermle
- Department of Medicine, Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Shazia Ashraf
- Department of Medicine, Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tilman Jobst-Schwan
- Department of Medicine, Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Amelie T van der Ven
- Department of Medicine, Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Makiko Nakayama
- Department of Medicine, Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Shirlee Shril
- Department of Medicine, Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniela A Braun
- Department of Medicine, Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Friedhelm Hildebrandt
- Department of Medicine, Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|