1
|
Cohen O, Santagata D, Ageno W. Novel horizons in anticoagulation: the emerging role of factor XI inhibitors across different settings. Haematologica 2024; 109:3110-3124. [PMID: 38779744 PMCID: PMC11443408 DOI: 10.3324/haematol.2023.283682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Indexed: 05/25/2024] Open
Abstract
Anticoagulants have long been fundamental in preventing and treating thromboembolic disorders, with a recent shift of focus towards direct oral anticoagulants, thanks to their ease of use, efficacy, and safety. Despite these advancements, bleeding complications remain a major concern with any anticoagulant, highlighting the need for safer drugs. Factor XI (FXI) inhibitors have emerged as promising agents in this regard, offering a novel approach by targeting upstream factors in the coagulation system. Phase II trials have shown encouraging outcomes, indicating a reduced bleeding risk compared to that associated with traditional anticoagulants, particularly in the context of cardiovascular disease management when combined with antiplatelet therapy. However, the variability in findings and limited efficacy data call for a cautious interpretation pending insights from phase III trials. These trials are essential for validating the potential of FXI inhibitors to balance bleeding risk reduction and maintain anticoagulant efficacy. This review explores the pharmacology, potential indications, clinical data, and future directions of FXI inhibitors, providing a perspective on their evolving role in anticoagulant therapy. It also provides a detailed analysis of data from published clinical trials on FXI inhibitors in various indications. Preliminary data from ongoing trials are also outlined. As the field moves forward, a cautiously optimistic outlook can be expected, focusing on comprehensive data from phase III trials to define the role of FXI inhibitors in various clinical scenarios.
Collapse
Affiliation(s)
- Omri Cohen
- Department of Medicine and Surgery, University of Insubria, Varese, Italy; National Hemophilia Center and Institute of Thrombosis and Hemostasis, Sheba Medical Center, Tel-Hashomer, Israel; The Amalia Biron Institute of thrombosis research, Aviv University
| | - Davide Santagata
- Department of Medicine and Surgery, University of Insubria, Varese
| | - Walter Ageno
- Department of Medicine and Surgery, University of Insubria, Varese.
| |
Collapse
|
2
|
Goel A, Tathireddy H, Wang SH, Vu HH, Puy C, Hinds MT, Zonies D, McCarty OJ, Shatzel JJ. Targeting the Contact Pathway of Coagulation for the Prevention and Management of Medical Device-Associated Thrombosis. Semin Thromb Hemost 2024; 50:989-997. [PMID: 37044117 PMCID: PMC11069398 DOI: 10.1055/s-0043-57011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Hemorrhage remains a major complication of anticoagulants, with bleeding leading to serious and even life-threatening outcomes in rare settings. Currently available anticoagulants target either multiple coagulation factors or specifically coagulation factor (F) Xa or thrombin; however, inhibiting these pathways universally impairs hemostasis. Bleeding complications are especially salient in the medically complex population who benefit from medical devices. Extracorporeal devices-such as extracorporeal membrane oxygenation, hemodialysis, and cardiac bypass-require anticoagulation for optimal use. Nonetheless, bleeding complications are common, and with certain devices, highly morbid. Likewise, pharmacologic prophylaxis to prevent thrombosis is not commonly used with many medical devices like central venous catheters due to high rates of bleeding. The contact pathway members FXI, FXII, and prekallikrein serve as a nexus, connecting biomaterial surface-mediated thrombin generation and inflammation, and may represent safe, druggable targets to improve medical device hemocompatibility and thrombogenicity. Recent in vivo and clinical data suggest that selectively targeting the contact pathway of coagulation through the inhibition of FXI and FXII can reduce the incidence of medical device-associated thrombotic events, and potentially systemic inflammation, without impairing hemostasis. In the following review, we will outline the current in vivo and clinical data encompassing the mechanism of action of drugs targeting the contact pathway. This new class of inhibitors has the potential to herald a new era of effective and low-risk anticoagulation for the management of patients requiring the use of medical devices.
Collapse
Affiliation(s)
- Abhishek Goel
- Division of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| | - Harsha Tathireddy
- Division of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| | - Si-Han Wang
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon
| | - Helen H. Vu
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon
| | - Cristina Puy
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon
| | - Monica T. Hinds
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon
| | - David Zonies
- Department of Surgery, Oregon Health and Science University, Portland, Oregon
| | - Owen J.T. McCarty
- Division of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon
| | - Joseph J. Shatzel
- Division of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
3
|
Patel SM, Ruff CT. Will Factor XI Inhibitors Replace Current Anticoagulants for Stroke Prevention in Atrial Fibrillation? Curr Cardiol Rep 2024; 26:911-917. [PMID: 39042343 DOI: 10.1007/s11886-024-02100-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/10/2024] [Indexed: 07/24/2024]
Abstract
PURPOSE OF REVIEW This review provides an overview of the factor XI (FXI) inhibitor hypothesis for the development of novel anticoagulants which may be safer to those currently used in clinical practice and describes preliminary clinical data from phase 2 dose-ranging studies of patients with atrial fibrillation. RECENT FINDINGS Recent data from phase 2 dose ranging studies demonstrate substantial reductions in bleeding with FXI pathway inhibition compared with currently approved anticoagulants. However, larger studies are necessary to demonstrate efficacy of FXI inhibition for stroke prevention in atrial fibrillation. FXI pathway inhibition holds great promise for revolutionizing the landscape of anticoagulation for atrial fibrillation, primarily by reducing bleeding risk; however, further data are necessary to demonstrate efficacy.
Collapse
Affiliation(s)
- Siddharth M Patel
- TIMI Study Group, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA, 02115, USA
| | - Christian T Ruff
- TIMI Study Group, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA, 02115, USA.
| |
Collapse
|
4
|
Anderson D, Le H, Vu H, Johnson J, Aslan J, Goldman J, Hinds M. Thrombogenicity of biodegradable metals. Bioact Mater 2024; 38:411-421. [PMID: 38774458 PMCID: PMC11107095 DOI: 10.1016/j.bioactmat.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/10/2024] [Accepted: 05/02/2024] [Indexed: 05/24/2024] Open
Abstract
Biodegradable metals offer a promising means to ameliorate many of the long-term risks associated with vascular devices made of conventional biostable stent metals. While numerous biodegradable metal alloys have been developed and characterized in animal models, knowledge of their blood reactivity and thrombogenicity remains unknown. Metal hemocompatibility is particularly valuable because current generation drug-eluting stents pose a significant long-term thrombosis risk. In this study, four pure metals, widely used as degradable base materials (Fe, Zn, Mg, and Mo), and three alloys commonly used in cardiovascular devices [NiTi, CoCr, and stainless steel (SS)] were evaluated. This work examined how each of these metals activate platelets, coagulation factors, and inflammation using in vitro hemocompatibility assays and a clinically relevant ex vivo non-human primate arteriovenous shunt model. Testing found that while all metals promoted a downstream activation of platelets and coagulation in flowing whole blood, platelet and fibrin attachment to Mg was markedly reduced. Additionally, Fe and Mo trended toward higher platelet attachment and contact pathway activation. Overall, the results suggest that Mg may delay clot initiation, but not eliminate clot formation, indicating the importance of understanding thrombosis in Mg alloys that are currently being developed for clinical use as biodegradable stents.
Collapse
Affiliation(s)
- D.E.J. Anderson
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - H.H. Le
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - H. Vu
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - J. Johnson
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - J.E. Aslan
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
| | - J. Goldman
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI, USA
| | - M.T. Hinds
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
5
|
Tantry US, Raghavakurup L, Becker RC, Singh S, Bliden KP, Gurbel PA. Milvexian: evaluating the factor XIa inhibitor for the treatment of acute coronary syndrome. Expert Opin Pharmacother 2024; 25:1271-1280. [PMID: 39072402 DOI: 10.1080/14656566.2024.2385062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/11/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
INTRODUCTION Balancing the prevention of thrombosis with bleeding risk when combining anticoagulants and platelet antagonists remains a concern among clinicians, particularly in patients with acute coronary syndrome (ACS) who are treated with potent antiplatelet therapy. This may be because the available antiplatelet and anticoagulants are unable to uncouple physiological hemostasis and pathological thrombosis. Therefore, their use is associated with an unavoidable elevated risk of bleeding. AREAS COVERED Evidence available from studies evaluating FXIa inhibitors and milvexian was collected from a selective literature search. In this review, the authors describe the potential role of FXI/XIa in experimental thrombosis, evidence for FXIa inhibition in the treatment of clinical thrombotic events, and highlight the current evidence supporting the role of milvexian, a novel FXIa inhibitor, in patients with ACS. EXPERT OPINION The ongoing LIBREXIA-ACS trial is a large-scale study currently investigating milvexian in patients with ACS. This study may support the proof of concept of differentiating physiological hemostasis and pathological thrombosis and achieving maximum antithrombotic efficacy with minimum bleeding risk when used on top of dual antiplatelet therapy with potent P2Y12 receptor blockers.
Collapse
Affiliation(s)
- Udaya S Tantry
- Sinai Center for Thrombosis Research and Drug Development, Sinai Hospital of Baltimore, Baltimore, MD, USA
| | | | - Richard C Becker
- Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Sahib Singh
- Sinai Center for Thrombosis Research and Drug Development, Sinai Hospital of Baltimore, Baltimore, MD, USA
| | - Kevin P Bliden
- Sinai Center for Thrombosis Research and Drug Development, Sinai Hospital of Baltimore, Baltimore, MD, USA
| | - Paul A Gurbel
- Sinai Center for Thrombosis Research and Drug Development, Sinai Hospital of Baltimore, Baltimore, MD, USA
| |
Collapse
|
6
|
Rosellini E, Giordano C, Guidi L, Cascone MG. Biomimetic Approaches in Scaffold-Based Blood Vessel Tissue Engineering. Biomimetics (Basel) 2024; 9:377. [PMID: 39056818 PMCID: PMC11274842 DOI: 10.3390/biomimetics9070377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/15/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Cardiovascular diseases remain a leading cause of mortality globally, with atherosclerosis representing a significant pathological means, often leading to myocardial infarction. Coronary artery bypass surgery, a common procedure used to treat coronary artery disease, presents challenges due to the limited autologous tissue availability or the shortcomings of synthetic grafts. Consequently, there is a growing interest in tissue engineering approaches to develop vascular substitutes. This review offers an updated picture of the state of the art in vascular tissue engineering, emphasising the design of scaffolds and dynamic culture conditions following a biomimetic approach. By emulating native vessel properties and, in particular, by mimicking the three-layer structure of the vascular wall, tissue-engineered grafts can improve long-term patency and clinical outcomes. Furthermore, ongoing research focuses on enhancing biomimicry through innovative scaffold materials, surface functionalisation strategies, and the use of bioreactors mimicking the physiological microenvironment. Through a multidisciplinary lens, this review provides insight into the latest advancements and future directions of vascular tissue engineering, with particular reference to employing biomimicry to create systems capable of reproducing the structure-function relationships present in the arterial wall. Despite the existence of a gap between benchtop innovation and clinical translation, it appears that the biomimetic technologies developed to date demonstrate promising results in preventing vascular occlusion due to blood clotting under laboratory conditions and in preclinical studies. Therefore, a multifaceted biomimetic approach could represent a winning strategy to ensure the translation of vascular tissue engineering into clinical practice.
Collapse
Affiliation(s)
- Elisabetta Rosellini
- Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy; (C.G.); (L.G.)
| | | | | | - Maria Grazia Cascone
- Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy; (C.G.); (L.G.)
| |
Collapse
|
7
|
Keeling NM, Wallisch M, Johnson J, Le HH, Vu HH, Jordan KR, Puy C, Tucker EI, Nguyen KP, McCarty OJT, Aslan JE, Hinds MT, Anderson DEJ. Pharmacologic targeting of coagulation factors XII and XI by monoclonal antibodies reduces thrombosis in nitinol stents under flow. J Thromb Haemost 2024; 22:1433-1446. [PMID: 38331196 PMCID: PMC11055672 DOI: 10.1016/j.jtha.2024.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/11/2024] [Accepted: 01/28/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND Cardiovascular implantable devices, such as vascular stents, are critical for the treatment of cardiovascular diseases. However, their success is dependent on robust and often long-term antithrombotic therapies. Yet, the current standard-of-care therapies often pose significant bleeding risks to patients. Coagulation factor (F)XI and FXII have emerged as potentially safe and efficacious targets to safely reduce pathologic thrombin generation in medical devices. OBJECTIVES To study the efficacy of monoclonal antibody-targeting FXII and FXI of the contact pathway in preventing vascular device-related thrombosis. METHODS The effects of inhibition of FXII and FXI using function-blocking monoclonal antibodies were examined in a nonhuman primate model of nitinol stent-related thrombosis under arterial and venous flow conditions. RESULTS We found that function-blocking antibodies of FXII and FXI reduced markers of stent-induced thrombosis in vitro and ex vivo. However, FXI inhibition resulted in more effective mitigation of thrombosis markers under varied flow conditions. CONCLUSION This work provides further support for the translation of contact pathway of coagulation inhibitors for their adjunctive clinical use with cardiovascular devices.
Collapse
Affiliation(s)
- Novella M Keeling
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA; Biomedical Engineering Program, University of Colorado Boulder, Boulder, Colorado, USA.
| | - Michael Wallisch
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA; Aronora Inc, Portland, Oregon, USA
| | - Jennifer Johnson
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
| | - Hillary H Le
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
| | - Helen H Vu
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
| | - Kelley R Jordan
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
| | - Cristina Puy
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
| | - Erik I Tucker
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA; Aronora Inc, Portland, Oregon, USA
| | - Khanh P Nguyen
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA; Veterans Affairs Portland Health Care System, Portland, Oregon, USA
| | - Owen J T McCarty
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA; Division of Hematology & Medical Oncology, Oregon Health & Science University, Portland, Oregon, USA
| | - Joseph E Aslan
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA; Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Monica T Hinds
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
| | - Deirdre E J Anderson
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA.
| |
Collapse
|
8
|
Ali AE, Becker RC. The foundation for investigating factor XI as a target for inhibition in human cardiovascular disease. J Thromb Thrombolysis 2024:10.1007/s11239-024-02985-0. [PMID: 38662114 DOI: 10.1007/s11239-024-02985-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/13/2024] [Indexed: 04/26/2024]
Abstract
Anticoagulant therapy is a mainstay in the management of patients with cardiovascular disease and related conditions characterized by a heightened risk for thrombosis. Acute coronary syndrome, chronic coronary syndrome, ischemic stroke, and atrial fibrillation are the most common. In addition to their proclivity for thrombosis, each of these four conditions is also characterized by local and systemic inflammation, endothelial/endocardial injury and dysfunction, oxidative stress, impaired tissue-level reparative capabilities, and immune dysregulation that plays a critical role in linking molecular events, environmental triggers, and phenotypic expressions. Knowing that cardiovascular disease and thrombosis are complex and dynamic, can the scientific community identify a common pathway or specific point of interface susceptible to pharmacological inhibition or alteration that is likely to be safe and effective? The contact factors of coagulation may represent the proverbial "sweet spot" and are worthy of investigation. The following review provides a summary of the fundamental biochemistry of factor XI, its biological activity in thrombosis, inflammation, and angiogenesis, new targeting drugs, and a pragmatic approach to managing hemostatic requirements in clinical trials and possibly day-to-day patient care in the future.
Collapse
Affiliation(s)
- Ahmed E Ali
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Richard C Becker
- Department of Internal Medicine, College of Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH, 45267, USA.
| |
Collapse
|
9
|
Ali AE, Becker RC. Factor XI: structure, function and therapeutic inhibition. J Thromb Thrombolysis 2024:10.1007/s11239-024-02972-5. [PMID: 38622277 DOI: 10.1007/s11239-024-02972-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/19/2024] [Indexed: 04/17/2024]
Abstract
Arterial and venous thromboembolism is a major medical concern that requires therapeutic anticoagulation in various medical fields to prevent its drastic consequences. Despite significant advances in anticoagulant therapy, thrombosis remains a leading cause of morbidity and mortality worldwide. Traditional anticoagulants like heparin and vitamin K antagonists (VKAs) have shown efficacy in preventing and treating thrombosis but come with an inherent risk of bleeding due to their non-specific inhibition of multiple coagulation factors. Subsequent direct oral anticoagulants (DOACs), targeting specific factors such as Xa or thrombin, demonstrated improved safety profiles compared to VKAs, yet bleeding remains a concern. Accordingly, research is focused on developing anticoagulants with improved safety profiles. A safer class of anticoagulants would have broad appeal. The intrinsic pathway of coagulation, involving factor XI (FXI), has attracted attention as a potential target for safer anticoagulants. Preclinical studies and epidemiological data indicate that FXI deficiency or inhibition protects against thrombosis with minimal bleeding. Current research involves evaluating various FXI-directed strategies, and phase 2 studies have shown promising results in orthopedic surgery, atrial fibrillation, end-stage renal disease (ESRD), myocardial infarction, and ischemic stroke. Several agents, such as antisense oligonucleotides, monoclonal antibodies, small synthetic molecules, natural peptides, and aptamers, have been developed to inhibit FXI at different stages, offering potentially safer alternatives to traditional anticoagulants. However, the optimal balance between preventing thrombosis and the risk of bleeding associated with FXI inhibitors requires validation through extensive phase 3 clinical trials using definite clinical endpoints. Several of such trials are currently underway or planned to define the role of FXI inhibitors in clinical practice and determine the most suitable FXI inhibitor for each specific indication. The current review highlights the rationale behind developing FXI inhibitors, presenting the most advanced agents in development, summarizing completed clinical trials, and discussing ongoing research efforts.
Collapse
Affiliation(s)
- Ahmed E Ali
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Richard C Becker
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
10
|
Rosas Diaz AN, Troy AL, Kaplinskiy V, Pritchard A, Vani R, Ko D, Orkaby AR. Assessment and Management of Atrial Fibrillation in Older Adults with Frailty. Geriatrics (Basel) 2024; 9:50. [PMID: 38667517 PMCID: PMC11050611 DOI: 10.3390/geriatrics9020050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/28/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024] Open
Abstract
Atrial fibrillation (AF) is a major driver of morbidity and mortality among older adults with frailty. Moreover, frailty is highly prevalent in older adults with AF. Understanding and addressing the needs of frail older adults with AF is imperative to guide clinicians caring for older adults. In this review, we summarize current evidence to support the assessment and management of older adults with AF and frailty, incorporating numerous recent landmark trials and studies in the context of the 2023 US AF guideline.
Collapse
Affiliation(s)
| | - Aaron L. Troy
- Beth Israel Deaconess Medical Center, Boston, MA 02215, USA (A.L.T.)
| | | | - Abiah Pritchard
- Beth Israel Deaconess Medical Center, Boston, MA 02215, USA (A.L.T.)
| | - Rati Vani
- Beth Israel Deaconess Medical Center, Boston, MA 02215, USA (A.L.T.)
| | - Darae Ko
- Section of Cardiovascular Medicine, Boston Medical Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Harvard Medical School, 1200 Center Street, Boston, MA 02131, USA
| | - Ariela R. Orkaby
- New England GRECC (Geriatric Research, Education and Clinical Center), VA Boston Healthcare System, Boston, MA 02130, USA
- Division of Aging, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
11
|
Gailani D, Gruber A. Targeting factor XI and factor XIa to prevent thrombosis. Blood 2024; 143:1465-1475. [PMID: 38142404 PMCID: PMC11033593 DOI: 10.1182/blood.2023020722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/22/2023] [Accepted: 12/07/2023] [Indexed: 12/26/2023] Open
Abstract
ABSTRACT Direct oral anticoagulants (DOACs) that inhibit the coagulation proteases thrombin or factor Xa (FXa) have replaced warfarin and other vitamin K antagonists (VKAs) for most indications requiring long-term anticoagulation. In many clinical situations, DOACs are as effective as VKAs, cause less bleeding, and do not require laboratory monitoring. However, because DOACs target proteases that are required for hemostasis, their use increases the risk of serious bleeding. Concerns over therapy-related bleeding undoubtedly contribute to undertreatment of many patients who would benefit from anticoagulation therapy. There is considerable interest in the plasma zymogen factor XI (FXI) and its protease form factor XIa (FXIa) as drug targets for treating and preventing thrombosis. Laboratory and epidemiologic studies support the conclusion that FXI contributes to venous and arterial thrombosis. Based on 70 years of clinical observations of patients lacking FXI, it is anticipated that drugs targeting this protein will cause less severe bleeding than warfarin or DOACs. In phase 2 studies, drugs that inhibit FXI or FXIa prevent venous thromboembolism after total knee arthroplasty as well as, or better than, low molecular weight heparin. Patients with heart disease on FXI or FXIa inhibitors experienced less bleeding than patients taking DOACs. Based on these early results, phase 3 trials have been initiated that compare drugs targeting FXI and FXIa to standard treatments or placebo. Here, we review the contributions of FXI to normal and abnormal coagulation and discuss results from preclinical, nonclinical, and clinical studies of FXI and FXIa inhibitors.
Collapse
Affiliation(s)
- David Gailani
- The Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | | |
Collapse
|
12
|
Moellmer SA, Puy C, McCarty OJT. Biology of factor XI. Blood 2024; 143:1445-1454. [PMID: 37874916 PMCID: PMC11033592 DOI: 10.1182/blood.2023020719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 10/26/2023] Open
Abstract
ABSTRACT Unique among coagulation factors, the coagulation factor XI (FXI) arose through a duplication of the gene KLKB1, which encodes plasma prekallikrein. This evolutionary origin sets FXI apart structurally because it is a homodimer with 2 identical subunits composed of 4 apple and 1 catalytic domain. Each domain exhibits unique affinities for binding partners within the coagulation cascade, regulating the conversion of FXI to a serine protease as well as the selectivity of substrates cleaved by the active form of FXI. Beyond serving as the molecular nexus for the extrinsic and contact pathways to propagate thrombin generation by way of activating FIX, the function of FXI extends to contribute to barrier function, platelet activation, inflammation, and the immune response. Herein, we critically review the current understanding of the molecular biology of FXI, touching on some functional consequences at the cell, tissue, and organ level. We conclude each section by highlighting the DNA mutations within each domain that present as FXI deficiency. Together, a narrative review of the structure-function of the domains of FXI is imperative to understand the etiology of hemophilia C as well as to identify regions of FXI to safely inhibit the pathological function of activation or activity of FXI without compromising the physiologic role of FXI.
Collapse
Affiliation(s)
- Samantha A. Moellmer
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR
| | - Cristina Puy
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR
| | - Owen J. T. McCarty
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR
| |
Collapse
|
13
|
Verstraete A, Engelen MM, Van Edom C, Vanassche T, Verhamme P. Reshaping Anticoagulation: Factor XI Inhibition in Thrombosis Management. Hamostaseologie 2024; 44:49-58. [PMID: 38122819 DOI: 10.1055/a-2202-8620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Affiliation(s)
- Andreas Verstraete
- Department of Cardiovascular Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Matthias M Engelen
- Department of Cardiovascular Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Charlotte Van Edom
- Department of Cardiovascular Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Thomas Vanassche
- Department of Cardiovascular Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Peter Verhamme
- Department of Cardiovascular Diseases, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
14
|
Mäder J, Rolling CC, Voigtländer M, Schulenkorf A, Lehr C, Regenhardt J, Bokemeyer C, Beckmann L, Langer F. Effect of factor XI inhibition on tumor cell-induced coagulation activation. J Thromb Haemost 2024; 22:199-212. [PMID: 37751848 DOI: 10.1016/j.jtha.2023.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/29/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023]
Abstract
BACKGROUND Cancer-associated thrombosis is a frequent complication in patients with malignancies. While factor XI (FXI)/FXIa inhibition is efficacious in preventing postoperative venous thromboembolism, its role in tumor cell-induced coagulation is less defined. OBJECTIVES We thus aimed to provide mechanistic insights into FXI/FXIa inhibition in tumor cell-induced coagulation activation. METHODS Procoagulant activity (PCA) of 4 different tissue factor (TF) expressing tumor cell lines was analyzed by single-stage clotting and thrombin generation assay in the presence of a FXIa inhibitor, BMS-262084 (BMS), an inhibitory FXI antibody (anti-FXI), or peak and trough concentrations of rivaroxaban or tinzaparin. Further, tumor cell-induced platelet aggregation was recorded. Recombinant human TF served as positive control. RESULTS Although BMS and anti-FXI potently inhibited FXIa amidolytic activity, both inhibitors efficiently mitigated recombinant human TF- and tumor cell-induced fibrin clot formation and platelet aggregation only in the presence of low TF PCA. The anticoagulant effects showed an inverse correlation with the magnitude of cellular TF PCA expression. Similarly, BMS markedly interfered with tumor cell-induced thrombin generation, with the most prominent effects on peak and total thrombin. In addition, anticoagulant effects of FXIa inhibition by 10 μM BMS were in a similar range to those obtained by 600 nM rivaroxaban and 1.6 μM tinzaparin at low TF PCA levels. However, rivaroxaban and tinzaparin also exerted marked anticoagulant activity at high TF PCA levels. CONCLUSION Our findings indicate that FXI/FXIa inhibition interferes with tumor cell-induced coagulation activation only at low TF PCA expression levels, a finding with potential implications for future in vivo studies.
Collapse
Affiliation(s)
- Jonathan Mäder
- II. Medizinische Klinik und Poliklinik, Universitätsklinikum Eppendorf, Hamburg, Germany
| | - Christina C Rolling
- II. Medizinische Klinik und Poliklinik, Universitätsklinikum Eppendorf, Hamburg, Germany
| | - Minna Voigtländer
- II. Medizinische Klinik und Poliklinik, Universitätsklinikum Eppendorf, Hamburg, Germany
| | - Anita Schulenkorf
- II. Medizinische Klinik und Poliklinik, Universitätsklinikum Eppendorf, Hamburg, Germany
| | - Carina Lehr
- II. Medizinische Klinik und Poliklinik, Universitätsklinikum Eppendorf, Hamburg, Germany
| | - Judith Regenhardt
- II. Medizinische Klinik und Poliklinik, Universitätsklinikum Eppendorf, Hamburg, Germany
| | - Carsten Bokemeyer
- II. Medizinische Klinik und Poliklinik, Universitätsklinikum Eppendorf, Hamburg, Germany
| | - Lennart Beckmann
- II. Medizinische Klinik und Poliklinik, Universitätsklinikum Eppendorf, Hamburg, Germany
| | - Florian Langer
- II. Medizinische Klinik und Poliklinik, Universitätsklinikum Eppendorf, Hamburg, Germany.
| |
Collapse
|
15
|
Kohs TC, Vu HH, Jordan KR, Parra-Izquierdo I, Hinds MT, Shatzel JJ, Kievit P, Morgan TK, Yunga ST, Ngo TT, Aslan JE, Wallisch M, Lorentz CU, Tucker EI, Gailani D, Lindner JR, Puy C, McCarty OJ. Activation of coagulation FXI promotes endothelial inflammation and amplifies platelet activation in a nonhuman primate model of hyperlipidemia. Res Pract Thromb Haemost 2024; 8:102276. [PMID: 38226339 PMCID: PMC10788631 DOI: 10.1016/j.rpth.2023.102276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 09/16/2023] [Accepted: 09/19/2023] [Indexed: 01/17/2024] Open
Abstract
Background Hyperlipidemia is associated with chronic inflammation and thromboinflammation. This is an underlying cause of several cardiovascular diseases, including atherosclerosis. In diseased blood vessels, rampant thrombin generation results in the initiation of the coagulation cascade, activation of platelets, and endothelial cell dysfunction. Coagulation factor (F) XI represents a promising therapeutic target to reduce thromboinflammation, as it is uniquely positioned at an intersection between inflammation and thrombin generation. Objectives This study aimed to investigate the role of FXI in promoting platelet and endothelial cell activation in a model of hyperlipidemia. Methods Nonhuman primates (NHPs) were fed a standard chow diet (lean, n = 6) or a high-fat diet (obese, n = 8) to establish a model of hyperlipidemia. Obese NHPs were intravenously administered a FXI blocking antibody (2 mg/kg) and studied at baseline and at 1, 7, 14, 21, and 28 days after drug administration. Platelet activation and inflammatory markers were measured using fluorescence-activated cell sorting or enzyme-linked immunosorbent assay. Molecular imaging was used to quantify vascular cell adhesion molecule 1 (VCAM-1) expression at the carotid bifurcation. Results Obese NHPs demonstrated increased sensitivity for platelet P-selectin expression and phosphatidylserine exposure in response to platelet GPVI or PAR agonists compared with lean NHPs. Obese NHPs exhibited elevated levels of C-reactive protein, cathepsin D, and myeloperoxidase compared with lean NHPs. Following pharmacological inhibition of FIX activation by FXIa, platelet priming for activation by GPVI or PAR agonists, C-reactive protein levels, and endothelial VCAM-1 levels were reduced in obese NHPs. Conclusion FXI activation promotes the proinflammatory phenotype of hyperlipidemia by priming platelet activation and inciting endothelial cell dysfunction.
Collapse
Affiliation(s)
- Tia C.L. Kohs
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
| | - Helen H. Vu
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
| | - Kelley R. Jordan
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
| | - Iván Parra-Izquierdo
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
| | - Monica T. Hinds
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
| | - Joseph J. Shatzel
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
- Division of Hematology and Oncology, Oregon Health & Science University, Portland, Oregon, USA
| | - Paul Kievit
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Terry K. Morgan
- Department of Pathology and Laboratory Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Samuel Tassi Yunga
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Thuy T.M. Ngo
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon, USA
| | - Joseph E. Aslan
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
- Knight Cardiovascular Institute, School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon, USA
| | - Michael Wallisch
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
- Aronora, Inc, Portland, Oregon, USA
| | - Christina U. Lorentz
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
- Aronora, Inc, Portland, Oregon, USA
| | - Erik I. Tucker
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
- Aronora, Inc, Portland, Oregon, USA
| | - David Gailani
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jonathan R. Lindner
- Division of Cardiovascular Medicine and Robert M. Berne Cardiovascular Research Institute, University of Virginia, Charlottesville, Virginia, USA
| | - Cristina Puy
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
| | - Owen J.T. McCarty
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
- Division of Hematology and Oncology, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
16
|
Kohs TCL, Fallon ME, Oseas EC, Healy LD, Tucker EI, Gailani D, McCarty OJT, Vandenbark AA, Offner H, Verbout NG. Pharmacological targeting of coagulation factor XI attenuates experimental autoimmune encephalomyelitis in mice. Metab Brain Dis 2023; 38:2383-2391. [PMID: 37341855 PMCID: PMC10530106 DOI: 10.1007/s11011-023-01251-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/05/2023] [Indexed: 06/22/2023]
Abstract
Multiple sclerosis (MS) is the most common causes of non-traumatic disability in young adults worldwide. MS pathophysiologies include the formation of inflammatory lesions, axonal damage and demyelination, and blood brain barrier (BBB) disruption. Coagulation proteins, including factor (F)XII, can serve as important mediators of the adaptive immune response during neuroinflammation. Indeed, plasma FXII levels are increased during relapse in relapsing-remitting MS patients, and previous studies showed that reducing FXII levels was protective in a murine model of MS, experimental autoimmune encephalomyelitis (EAE). Our objective was to determine if pharmacological targeting of FXI, a major substrate of activated FXII (FXIIa), improves neurological function and attenuates CNS damage in the setting of EAE. EAE was induced in male mice using murine myelin oligodendrocyte glycoprotein peptides combined with heat-inactivated Mycobacterium tuberculosis and pertussis toxin. Upon onset of symptoms, mice were treated every other day intravenously with anti-FXI antibody, 14E11, or saline. Disease scores were recorded daily until euthanasia for ex vivo analyses of inflammation. Compared to the vehicle control, 14E11 treatment reduced the clinical severity of EAE and total mononuclear cells, including CD11b+CD45high macrophage/microglia and CD4+ T cell numbers in brain. Following pharmacological targeting of FXI, BBB disruption was reduced, as measured by decreased axonal damage and fibrin(ogen) accumulation in the spinal cord. These data demonstrate that pharmacological inhibition of FXI reduces disease severity, immune cell migration, axonal damage, and BBB disruption in mice with EAE. Thus, therapeutic agents targeting FXI and FXII may provide a useful approach for treating autoimmune and neurologic disorders.
Collapse
Affiliation(s)
- Tia C L Kohs
- Department of Biomedical Engineering, Oregon Health & Science University, 3303 S. Bond Avenue, Portland, OR, 97239, USA.
| | - Meghan E Fallon
- Department of Biomedical Engineering, Oregon Health & Science University, 3303 S. Bond Avenue, Portland, OR, 97239, USA
| | - Ethan C Oseas
- Department of Biomedical Engineering, Oregon Health & Science University, 3303 S. Bond Avenue, Portland, OR, 97239, USA
| | - Laura D Healy
- Department of Biomedical Engineering, Oregon Health & Science University, 3303 S. Bond Avenue, Portland, OR, 97239, USA
| | - Erik I Tucker
- Department of Biomedical Engineering, Oregon Health & Science University, 3303 S. Bond Avenue, Portland, OR, 97239, USA
- Aronora, Inc., Portland, OR, USA
| | - David Gailani
- Department of Pathology and Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Owen J T McCarty
- Department of Biomedical Engineering, Oregon Health & Science University, 3303 S. Bond Avenue, Portland, OR, 97239, USA
| | - Arthur A Vandenbark
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR, USA
- Veterans Affairs Portland Health Care System, Portland, OR, USA
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Halina Offner
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Norah G Verbout
- Department of Biomedical Engineering, Oregon Health & Science University, 3303 S. Bond Avenue, Portland, OR, 97239, USA
- Aronora, Inc., Portland, OR, USA
| |
Collapse
|
17
|
Litvak M, Shamanaev A, Zalawadiya S, Matafonov A, Kobrin A, Feener EP, Wallisch M, Tucker EI, McCarty OJT, Gailani D. Titanium is a potent inducer of contact activation: implications for intravascular devices. J Thromb Haemost 2023; 21:1200-1213. [PMID: 36696212 PMCID: PMC10621279 DOI: 10.1016/j.jtha.2022.12.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/07/2022] [Accepted: 12/15/2022] [Indexed: 01/09/2023]
Abstract
BACKGROUND Titanium (Ti) and its alloys are widely used in manufacturing medical devices because of their strength and resistance to corrosion. Although Ti compounds are considered compatible with blood, they appear to support plasma contact activation and may be thrombogenic. OBJECTIVES The objective of this study was to compare Ti and titanium nitride (TiN) with known activators of contact activation (kaolin and silica) in plasma-clotting assays and to assess binding and activation of factor XII, (FXII), factor XI (FXI), prekallikrein, and high-molecular-weight kininogen (HK) with Ti/TiN. METHODS Ti-based nanospheres and foils were compared with kaolin, silica, and aluminum in plasma-clotting assays. Binding and activation of FXII, prekallikrein, HK, and FXI to surfaces was assessed with western blots and chromogenic assays. RESULTS Using equivalent surface amounts, Ti and TiN were comparable with kaolin and superior to silica, for inducing coagulation and FXII autoactivation. Similar to many inducers of contact activation, Ti and TiN are negatively charged; however, their effects on FXII are not neutralized by the polycation polybrene. Antibodies to FXII, prekallikrein, or FXI or coating Ti with poly-L-arginine blocked Ti-induced coagulation. An antibody to FXII reduced FXII and PK binding to Ti, kallikrein generation, and HK cleavage. CONCLUSION Titanium compounds induce contact activation with a potency comparable with that of kaolin. Binding of FXII with Ti shares some features with FXII binding to soluble polyanions but may have unique features. Inhibitors targeting FXII or FXI may be useful in mitigating Ti-induced contact activation in patients with titanium-based implants that are exposed to blood.
Collapse
Affiliation(s)
- Maxim Litvak
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Aleksandr Shamanaev
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sandip Zalawadiya
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Anton Matafonov
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Anton Kobrin
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Edward P Feener
- KalVista Pharmaceuticals, Inc., Cambridge, Massachusetts, USA
| | - Michael Wallisch
- Aronora, Inc., Portland, Oregon, USA; Department of Biomedical Engineering, Oregon Health & Science University, Oregon, USA
| | - Erik I Tucker
- Aronora, Inc., Portland, Oregon, USA; Department of Biomedical Engineering, Oregon Health & Science University, Oregon, USA
| | - Owen J T McCarty
- Department of Biomedical Engineering, Oregon Health & Science University, Oregon, USA
| | - David Gailani
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
| |
Collapse
|
18
|
Wang X, Li Q, Du F, Shukla N, Nawrocki AR, Chintala M. Antithrombotic Effects of the Novel Small-Molecule Factor XIa Inhibitor Milvexian in a Rabbit Arteriovenous Shunt Model of Venous Thrombosis. TH OPEN 2023; 7:e97-e104. [PMID: 37101592 PMCID: PMC10125780 DOI: 10.1055/a-2061-3311] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/20/2023] [Indexed: 04/28/2023] Open
Abstract
Background Factor XIa (FXIa) is an emerging therapeutic target, and FXIa inhibition is a promising mechanism to improve therapeutic index over current anticoagulants. Milvexian (BMS-986177/JNJ-70033093) is an oral small-molecule FXIa inhibitor. Objective Milvexian's antithrombotic efficacy was characterized in a rabbit arteriovenous (AV) shunt model of venous thrombosis and compared with the factor Xa inhibitor apixaban and the direct thrombin inhibitor dabigatran. Methods The AV shunt model of thrombosis was conducted in anesthetized rabbits. Vehicle or drugs were administered as intravenous bolus plus a continuous infusion. Thrombus weight was the primary efficacy endpoint. Ex vivo activated partial thromboplastin time (aPTT), prothrombin time (PT), and thrombin time (TT) were measured as the pharmacodynamic responses. Results Milvexian dose dependently reduced thrombus weights by 34.3 ± 7.9, 51.6 ± 6.8 ( p < 0.01; n = 5), and 66.9 ± 4.8% ( p < 0.001; n = 6) versus vehicle at 0.25 + 0.17, 1.0 + 0.67, and 4.0 ± 2.68 mg/kg bolus + mg/kg/h infusion, respectively. Ex vivo clotting data supported a dose-dependent prolongation of aPTT (with 1.54-, 2.23-, and 3.12-fold increases from baseline upon the AV shunt start), but no changes in PT and TT. Dose-dependent inhibition in thrombus weight and clotting assays was also demonstrated for both apixaban and dabigatran as the references for the model validation. Conclusion Results demonstrate that milvexian is an effective anticoagulant for prevention of venous thrombosis in the rabbit model, which supports the utility of milvexian in venous thrombosis, as seen in the phase 2 clinical study.
Collapse
Affiliation(s)
- Xinkang Wang
- Cardiovascular & Metabolism Therapeutic Area, Janssen Research & Development, LLC, Spring House, Pennsylvania, United States
- Address for correspondence Xinkang Wang, PhD Janssen Research & Development, LLC1400 McKean Road, 42-2522, Spring House, PA 19002United States
| | - Qiu Li
- Cardiovascular & Metabolism Therapeutic Area, Janssen Research & Development, LLC, Spring House, Pennsylvania, United States
| | - Fuyong Du
- Cardiovascular & Metabolism Therapeutic Area, Janssen Research & Development, LLC, Spring House, Pennsylvania, United States
| | - Neetu Shukla
- Formulation, Janssen Research & Development, LLC, Spring House, Pennsylvania, United States
| | - Andrea R. Nawrocki
- Cardiovascular & Metabolism Therapeutic Area, Janssen Research & Development, LLC, Spring House, Pennsylvania, United States
| | - Madhu Chintala
- Cardiovascular & Metabolism Therapeutic Area, Janssen Research & Development, LLC, Spring House, Pennsylvania, United States
| |
Collapse
|
19
|
Goldman J, Liu SQ, Tefft BJ. Anti-Inflammatory and Anti-Thrombogenic Properties of Arterial Elastic Laminae. Bioengineering (Basel) 2023; 10:bioengineering10040424. [PMID: 37106611 PMCID: PMC10135563 DOI: 10.3390/bioengineering10040424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/07/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Elastic laminae, an elastin-based, layered extracellular matrix structure in the media of arteries, can inhibit leukocyte adhesion and vascular smooth muscle cell proliferation and migration, exhibiting anti-inflammatory and anti-thrombogenic properties. These properties prevent inflammatory and thrombogenic activities in the arterial media, constituting a mechanism for the maintenance of the structural integrity of the arterial wall in vascular disorders. The biological basis for these properties is the elastin-induced activation of inhibitory signaling pathways, involving the inhibitory cell receptor signal regulatory protein α (SIRPα) and Src homology 2 domain-containing protein tyrosine phosphatase 1 (SHP1). The activation of these molecules causes deactivation of cell adhesion- and proliferation-regulatory signaling mechanisms. Given such anti-inflammatory and anti-thrombogenic properties, elastic laminae and elastin-based materials have potential for use in vascular reconstruction.
Collapse
|
20
|
Harrington J, Piccini JP, Alexander JH, Granger CB, Patel MR. Clinical Evaluation of Factor XIa Inhibitor Drugs: JACC Review Topic of the Week. J Am Coll Cardiol 2023; 81:771-779. [PMID: 36813377 DOI: 10.1016/j.jacc.2022.11.057] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 02/22/2023]
Abstract
Factor XI/XIa (FXI/FXIa) represents a potential target for improved precision in anticoagulation because it is involved primarily in thrombus formation and plays a much smaller role in clotting and hemostasis. This suggests that the inhibition of FXI/XIa could prevent pathologic thrombi from forming, but largely preserve a patient's ability to clot in response to bleeding or trauma. This theory is supported by observational data showing that patients with congenital FXI deficiency have lower rates of embolic events without an increase in spontaneous bleeding. Small phase 2 trials of FXI/XIa inhibitors have offered encouraging data with regard to bleeding and safety and evidence of efficacy for the prevention of venous thromboembolism. However, larger clinical trials across multiple patient groups are needed for this emerging class of anticoagulants to understand their possible role in clinical use. Here we review the potential clinical indications for FXI/XIa inhibitors, data available to date, and consider future trials.
Collapse
Affiliation(s)
- Josephine Harrington
- Duke Clinical Research Institute, Durham, North Carolina, USA; Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA. https://twitter.com/JLHarrington_MD
| | - Jonathan P Piccini
- Duke Clinical Research Institute, Durham, North Carolina, USA; Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA. https://twitter.com/JonPicciniSr
| | - John H Alexander
- Duke Clinical Research Institute, Durham, North Carolina, USA; Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Christopher B Granger
- Duke Clinical Research Institute, Durham, North Carolina, USA; Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Manesh R Patel
- Duke Clinical Research Institute, Durham, North Carolina, USA; Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA.
| |
Collapse
|
21
|
Behrangzade A, Simon BR, Wagner WR, Geest JPV. Optimizing the Porohyperelastic Response of a Layered Compliance Matched Vascular Graft to Promote Luminal Self-Cleaning. J Biomech Eng 2023; 145:021002. [PMID: 36082481 PMCID: PMC9632477 DOI: 10.1115/1.4055563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 08/17/2022] [Indexed: 11/08/2022]
Abstract
Thrombosis and intimal hyperplasia have remained the major failure mechanisms of small-diameter vascular grafts used in bypass procedures. While most efforts to reduce thrombogenicity have used a biochemical surface modification approach, the use of local mechanical phenomena to aid in this goal has received somewhat less attention. In this work, the mechanical, fluid transport, and geometrical properties of a layered and porous vascular graft are optimized within a porohyperelastic finite element framework to maximize self-cleaning via luminal reversal fluid velocity (into the lumen). This is expected to repel platelets as well as inhibit the formation of and/or destabilize adsorbed protein layers thereby reducing thrombogenic potential. A particle swarm optimization algorithm was utilized to maximize luminal reversal fluid velocity while also compliance matching our graft to a target artery (rat aorta). The maximum achievable luminal reversal fluid velocity was approximately 246 μm/s without simultaneously optimizing for host compliance. Simultaneous optimization of reversal flow and compliance resulted in a luminal reversal fluid velocity of 59 μm/s. Results indicate that a thick highly permeable compressible inner layer and a thin low permeability incompressible outer layer promote intraluminal reversal fluid velocity. Future research is needed to determine the feasibility of fabricating such a layered and optimized graft and verify its ability to improve hemocompatibility.
Collapse
Affiliation(s)
- Ali Behrangzade
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219
| | - Bruce R. Simon
- Aerospace and Mechanical Engineering, Biomedical Engineering Interdisciplinary Program University of Arizona, Tucson, AZ 85721
| | - William R. Wagner
- Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219; Department of Bioengineering, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219
| | - Jonathan P. Vande Geest
- Department of Bioengineering, McGowan Institute for Regenerative Medicine, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15219; Department of Mechanical Engineering and Material Science, McGowan Institute for Regenerative Medicine, Vascular Medicine Institute University of Pittsburgh, Pittsburgh, PA 15219
| |
Collapse
|
22
|
De Caterina R, Prisco D, Eikelboom JW. Factor XI inhibitors: cardiovascular perspectives. Eur Heart J 2023; 44:280-292. [PMID: 36263776 DOI: 10.1093/eurheartj/ehac464] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/15/2022] [Accepted: 08/11/2022] [Indexed: 01/28/2023] Open
Abstract
Anticoagulants are the cornerstone for prevention and treatment of thrombosis but are not completely effective, and concerns about the risk of bleeding continue to limit their uptake. Animal studies and experience from patients with genetic coagulation factor XI deficiency suggesting that this factor is more important for thrombosis than for haemostasis raises the potential for drugs that target factor XI to provide safer anticoagulation. Multiple factor XI inhibitors are currently under evaluation in clinical trials, including parenterally administered antisense oligonucleotides, monoclonal antibodies, and orally active small-molecule inhibitors. Promising results of phase 2 trials in patients undergoing major orthopaedic surgery, and in those with end-stage kidney disease, atrial fibrillation and acute coronary syndromes have led to large phase 3 trials that are currently ongoing. We here review premises for the use of these agents, results so far accrued, ongoing studies, and perspectives for future patient care.
Collapse
Affiliation(s)
- Raffaele De Caterina
- Chair of Cardiology, University of Pisa and Division of Cardiology, Pisa University Hospital, Pisa, Italy
| | - Domenico Prisco
- Chair of Internal Medicine, Department of Experimental and Clinical Medicine, University of Florence and Careggi University Hospital, Florence, Italy
| | - John W Eikelboom
- Population Health Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, Ontario, Canada
| |
Collapse
|
23
|
Barriuso I, Worner F, Vilahur G. Novel Antithrombotic Agents in Ischemic Cardiovascular Disease: Progress in the Search for the Optimal Treatment. J Cardiovasc Dev Dis 2022; 9:397. [PMID: 36421932 PMCID: PMC9699470 DOI: 10.3390/jcdd9110397] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 09/10/2024] Open
Abstract
Ischemic cardiovascular diseases have a high incidence and high mortality worldwide. Therapeutic advances in the last decades have reduced cardiovascular mortality, with antithrombotic therapy being the cornerstone of medical treatment. Yet, currently used antithrombotic agents carry an inherent risk of bleeding associated with adverse cardiovascular outcomes and mortality. Advances in understanding the pathophysiology of thrombus formation have led to the discovery of new targets and the development of new anticoagulants and antiplatelet agents aimed at preventing thrombus stabilization and growth while preserving hemostasis. In the following review, we will comment on the key limitation of the currently used antithrombotic regimes in ischemic heart disease and ischemic stroke and provide an in-depth and state-of-the-art overview of the emerging anticoagulant and antiplatelet agents in the pipeline with the potential to improve clinical outcomes.
Collapse
Affiliation(s)
- Ignacio Barriuso
- Hospital Universitario Arnau de Vilanova, Institut de Recerca Biomèdica de Lleida, 25198 Lleida, Spain
- Institut de Recerca, Hospital Santa Creu i Sant Pau, IIB Sant Pau, 08025 Barcelona, Spain
- Department of Medicine, Autonomous University of Barcelona, 08193 Barcelona, Spain
| | - Fernando Worner
- Hospital Universitario Arnau de Vilanova, Institut de Recerca Biomèdica de Lleida, 25198 Lleida, Spain
| | - Gemma Vilahur
- Institut de Recerca, Hospital Santa Creu i Sant Pau, IIB Sant Pau, 08025 Barcelona, Spain
- Centro de Investigaciones Biomédicas En Red de enfermedades CardioVasculares (CiberCV), 28029 Madrid, Spain
| |
Collapse
|
24
|
Moellmer SA, Puy C, McCarty OJT. HK is the apple of FXI's eye. J Thromb Haemost 2022; 20:2485-2487. [PMID: 36271466 PMCID: PMC9589922 DOI: 10.1111/jth.15842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 07/29/2022] [Accepted: 08/08/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Samantha A. Moellmer
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Cristina Puy
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Owen J. T. McCarty
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
25
|
Li T, Liu J, Wu W. Factor XI, a potential target for anticoagulation therapy for venous thromboembolism. Front Cardiovasc Med 2022; 9:975767. [PMID: 36386334 PMCID: PMC9659736 DOI: 10.3389/fcvm.2022.975767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/11/2022] [Indexed: 11/25/2022] Open
Abstract
Venous thromboembolism (VTE) is a common cause of mortality and disability in hospitalized patients, and anticoagulation is an essential therapeutic option. Despite the increasing use of direct oral anticoagulants, complications and adverse drug reactions still occur in patients with VTE. Within 5 years, 20% of patients with VTE experience recurrence, and 50% of patients with deep vein thrombosis develop post-thrombotic syndrome. Furthermore, bleeding due to anticoagulants is a side effect that must be addressed. Therefore, safer and more effective anticoagulant strategies with higher patient compliance are urgently needed. Available epidemiological evidence and animal studies have shown that factor XI (FXI) inhibitors can reduce thrombus size and loosen the thrombus structure with a relatively low risk of bleeding, suggesting that FXI has an important role in thrombus stabilization and is a safer target for anticoagulation. Recent clinical trial data have also shown that FXI inhibitors are as effective as enoxaparin and apixaban in preventing VTE, but with a significantly lower incidence of bleeding. Furthermore, FXI inhibitors can be administered daily or monthly; therefore, the monitoring interval can be longer. Additionally, FXI inhibitors can prolong the activated partial thromboplastin time without affecting prothrombin time, which is an easy and common test used in clinical testing, providing a cost-effective monitoring routine for patients. Consequently, the inhibition of FXI may be an effective strategy for the prevention and treatment of VTE. Enormous progress has been made in the research strategies for FXI inhibitors, with abelacimab already in phase III clinical trials and most other inhibitors in phase I or II trials. In this review, we discuss the challenges of VTE therapy, briefly describe the structure and function of FXI, summarize the latest FXI/activated FXI (FXIa) inhibitor strategies, and summarize the latest developments in clinical trials of FXI/FXIa inhibitors.
Collapse
Affiliation(s)
- Tingting Li
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital, National Center of Gerontology, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiang Liu
- Department of Nephrology, Metabolic Vascular Disease Key Laboratory, Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Weihua Wu
- Department of Nephrology, Metabolic Vascular Disease Key Laboratory, Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- *Correspondence: Weihua Wu
| |
Collapse
|
26
|
Fallon ME, Le HH, Bates NM, Yao Y, Yim EK, Hinds MT, Anderson DE. Hemocompatibility of micropatterned biomaterial surfaces is dependent on topographical feature size. Front Physiol 2022; 13:983187. [PMID: 36200053 PMCID: PMC9527343 DOI: 10.3389/fphys.2022.983187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Small-diameter synthetic vascular grafts that have improved hemocompatibility and patency remain an unmet clinical need due to thrombosis. A surface modification that has potential to attenuate these failure mechanisms while promoting an endothelial layer is the micropatterning of luminal surfaces. Anisotropic features have been shown to downregulate smooth muscle cell proliferation, direct endothelial migration, and attenuate platelet adhesion and activation. However, the effect of micropatterning feature size and orientation relative to whole blood flow has yet to be investigated within a systematic study. In this work, hemocompatibility of micropattern grating sizes of 2, 5, and 10 µm were investigated. The thrombogenicity of the micropattern surface modifications were characterized by quantifying FXIIa activity, fibrin formation, and static platelet adhesion in vitro. Additionally, dynamic platelet attachment and end-point fibrin formation were quantified using an established, flowing whole blood ex vivo non-human primate shunt model without antiplatelet or anticoagulant therapies. We observed a higher trend in platelet attachment and significantly increased fibrin formation for larger features. We then investigated the orientation of 2 µm gratings relative to whole blood flow and found no significant differences between the various orientations for platelet attachment, rate of linear platelet attachment, or end-point fibrin formation. MicroCT analysis of micropatterned grafts was utilized to quantify luminal patency. This work is a significant step in the development of novel synthetic biomaterials with improved understanding of hemocompatibility for use in cardiovascular applications.
Collapse
Affiliation(s)
- Meghan E. Fallon
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, United States
| | - Hillary H. Le
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, United States
| | - Novella M. Bates
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, United States
| | - Yuan Yao
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Evelyn K.F. Yim
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Monica T. Hinds
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, United States
| | - Deirdre E.J. Anderson
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, United States
- *Correspondence: Deirdre E.J. Anderson,
| |
Collapse
|
27
|
Heitmeier S, Visser M, Tersteegen A, Dietze‐Torres J, Glunz J, Gerdes C, Laux V, Stampfuss J, Roehrig S. Pharmacological profile of asundexian, a novel, orally bioavailable inhibitor of factor XIa. J Thromb Haemost 2022; 20:1400-1411. [PMID: 35289054 PMCID: PMC9313898 DOI: 10.1111/jth.15700] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/02/2022] [Accepted: 03/07/2022] [Indexed: 12/03/2022]
Abstract
BACKGROUND Activated coagulation factor XI (FXIa) contributes to the development and propagation of thrombosis but plays only a minor role in hemostasis; therefore, it is an attractive antithrombotic target. OBJECTIVES To evaluate the pharmacology of asundexian (BAY 2433334), a small molecule inhibitor targeting FXIa, in vitro and in various rabbit models. METHODS The effects of asundexian on FXIa activity, selectivity versus other proteases, plasma thrombin generation, and clotting assays were evaluated. Antithrombotic effects were determined in FeCl2 - and arterio-venous (AV) shunt models. Asundexian was administered intravenously or orally, before or during thrombus formation, and with or without antiplatelet drugs (aspirin and ticagrelor). Potential effects of asundexian on bleeding were evaluated in ear-, gum-, and liver injury models. RESULTS Asundexian inhibited human FXIa with high potency and selectivity. It reduced FXIa activity, thrombin generation triggered by contact activation or low concentrations of tissue factor, and prolonged activated partial thromboplastin time in human, rabbit, and various other species, but not in rodents. In the FeCl2 -injury models, asundexian reduced thrombus weight versus control, and in the arterial model when added to aspirin and ticagrelor. In the AV shunt model, asundexian reduced thrombus weight when administered before or during thrombus formation. Asundexian alone or in combination with antiplatelet drugs did not increase bleeding times or blood loss in any of the models studied. CONCLUSIONS Asundexian is a potent oral FXIa inhibitor with antithrombotic efficacy in arterial and venous thrombosis models in prevention and intervention settings, without increasing bleeding.
Collapse
Affiliation(s)
- Stefan Heitmeier
- Bayer AGResearch and Development PharmaceuticalsWuppertalGermany
| | - Mayken Visser
- Bayer AGResearch and Development PharmaceuticalsWuppertalGermany
| | | | | | - Julia Glunz
- Bayer AGResearch and Development PharmaceuticalsWuppertalGermany
| | - Christoph Gerdes
- Bayer AGResearch and Development PharmaceuticalsWuppertalGermany
| | - Volker Laux
- Bayer AGResearch and Development PharmaceuticalsWuppertalGermany
| | - Jan Stampfuss
- Bayer AGResearch and Development PharmaceuticalsWuppertalGermany
| | - Susanne Roehrig
- Bayer AGResearch and Development PharmaceuticalsWuppertalGermany
| |
Collapse
|
28
|
Lakshmanan HHS, Estonilo A, Reitsma SE, Melrose AR, Subramanian J, Zheng TJ, Maddala J, Tucker EI, Gailani D, McCarty OJT, Jurney PL, Puy C. Revised model of the tissue factor pathway of thrombin generation: Role of the feedback activation of FXI. J Thromb Haemost 2022; 20:1350-1363. [PMID: 35352494 PMCID: PMC9590754 DOI: 10.1111/jth.15716] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/26/2022] [Accepted: 03/16/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Biochemical reaction networks are self-regulated in part due to feedback activation mechanisms. The tissue factor (TF) pathway of blood coagulation is a complex reaction network controlled by multiple feedback loops that coalesce around the serine protease thrombin. OBJECTIVES Our goal was to evaluate the relative contribution of the feedback activation of coagulation factor XI (FXI) in TF-mediated thrombin generation using a comprehensive systems-based analysis. MATERIALS AND METHODS We developed a systems biology model that improves the existing Hockin-Mann (HM) model through an integrative approach of mathematical modeling and in vitro experiments. Thrombin generation measured using in vitro assays revealed that the feedback activation of FXI contributes to the propagation of thrombin generation based on the initial concentrations of TF or activated coagulation factor X (FXa). We utilized experimental data to improve the robustness of the HM model to capture thrombin generation kinetics without a role for FXI before including the feedback activation of FXI by thrombin to construct the extended (ext.) HM model. RESULTS AND CONCLUSIONS Using the ext.HM model, we predicted that the contribution of positive feedback of FXI activation by thrombin can be abolished by selectively eliminating the inhibitory function of tissue factor pathway inhibitor (TFPI), a serine protease inhibitor of FXa and TF-activated factor VII (FVIIa) complex. This prediction from the ext.HM model was experimentally validated using thrombin generation assays with function blocking antibodies against TFPI and plasmas depleted of FXI. Together, our results demonstrate the applications of combining experimental and modeling techniques in predicting complex biochemical reaction systems.
Collapse
Affiliation(s)
| | - Aldrich Estonilo
- Department of Biomedical Engineering, San Jose State University, San Jose, California, USA
| | - Stéphanie E. Reitsma
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
| | - Alexander R. Melrose
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
| | | | - Tony J. Zheng
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
| | - Jeevan Maddala
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, West Virginia, USA
| | - Erik I. Tucker
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
- Aronora, Inc., Portland, Oregon, USA
| | - David Gailani
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | - Owen J. T. McCarty
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
| | - Patrick L. Jurney
- Department of Biomedical Engineering, San Jose State University, San Jose, California, USA
| | - Cristina Puy
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
29
|
Nopp S, Kraemmer D, Ay C. Factor XI Inhibitors for Prevention and Treatment of Venous Thromboembolism: A Review on the Rationale and Update on Current Evidence. Front Cardiovasc Med 2022; 9:903029. [PMID: 35647061 PMCID: PMC9133368 DOI: 10.3389/fcvm.2022.903029] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/12/2022] [Indexed: 12/12/2022] Open
Abstract
Although anticoagulation therapy has evolved from non-specific drugs (i.e., heparins and vitamin K antagonists) to agents that directly target specific coagulation factors (i.e., direct oral anticoagulants, argatroban, fondaparinux), thrombosis remains a leading cause of death worldwide. Direct oral anticoagulants (i.e., factor IIa- and factor Xa-inhibitors) now dominate clinical practice because of their favorable pharmacological profile and ease of use, particularly in venous thromboembolism (VTE) treatment and stroke prevention in atrial fibrillation. However, despite having a better safety profile than vitamin K antagonists, their bleeding risk is not insignificant. This is true for all currently available anticoagulants, and a high bleeding risk is considered a contraindication to anticoagulation. As a result, ongoing research focuses on developing future anticoagulants with an improved safety profile. Several promising approaches to reduce the bleeding risk involve targeting the intrinsic (or contact activation) pathway of coagulation, with the ultimate goal of preventing thrombosis without impairing hemostasis. Based on epidemiological data on hereditary factor deficiencies and preclinical studies factor XI (FXI) emerged as the most promising candidate target. In this review, we highlight unmet clinical needs of anticoagulation therapy, outlay the rationale and evidence for inhibiting FXI, discuss FXI inhibitors in current clinical trials, conduct an exploratory meta-analysis on their efficacy and safety, and provide an outlook on the potential clinical application of these novel anticoagulants.
Collapse
Affiliation(s)
| | | | - Cihan Ay
- Clinical Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
30
|
A FRET-based assay for the quantitation of the thrombin-factor XI interaction. Thromb Res 2022; 214:23-28. [DOI: 10.1016/j.thromres.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/30/2022] [Accepted: 04/11/2022] [Indexed: 11/23/2022]
|
31
|
Kluge KE, Seljeflot I, Arnesen H, Jensen T, Halvorsen S, Helseth R. Coagulation factors XI and XII as possible targets for anticoagulant therapy. Thromb Res 2022; 214:53-62. [DOI: 10.1016/j.thromres.2022.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/04/2022] [Accepted: 04/19/2022] [Indexed: 10/18/2022]
|
32
|
Gailani D. Factor XI as a target for preventing venous thromboembolism. J Thromb Haemost 2022; 20:550-555. [PMID: 35023278 PMCID: PMC9540353 DOI: 10.1111/jth.15628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 12/23/2021] [Indexed: 01/10/2023]
Affiliation(s)
- David Gailani
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
33
|
Dilger AK, Pabbisetty KB, Corte JR, De Lucca I, Fang T, Yang W, Pinto DJP, Wang Y, Zhu Y, Mathur A, Li J, Hou X, Smith D, Sun D, Zhang H, Krishnananthan S, Wu DR, Myers JE, Sheriff S, Rossi KA, Chacko S, Zheng JJ, Galella MA, Ziemba T, Dierks EA, Bozarth JM, Wu Y, Crain E, Wong PC, Luettgen JM, Wexler RR, Ewing WR. Discovery of Milvexian, a High-Affinity, Orally Bioavailable Inhibitor of Factor XIa in Clinical Studies for Antithrombotic Therapy. J Med Chem 2022; 65:1770-1785. [PMID: 34494428 DOI: 10.1021/acs.jmedchem.1c00613] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Factor XIa (FXIa) is an enzyme in the coagulation cascade thought to amplify thrombin generation but has a limited role in hemostasis. From preclinical models and human genetics, an inhibitor of FXIa has the potential to be an antithrombotic agent with superior efficacy and safety. Reversible and irreversible inhibitors of FXIa have demonstrated excellent antithrombotic efficacy without increased bleeding time in animal models (Weitz, J. I., Chan, N. C. Arterioscler. Thromb. Vasc. Biol. 2019, 39 (1), 7-12). Herein, we report the discovery of a novel series of macrocyclic FXIa inhibitors containing a pyrazole P2' moiety. Optimization of the series for (pharmacokinetic) PK properties, free fraction, and solubility resulted in the identification of milvexian (BMS-986177/JNJ-70033093, 17, FXIa Ki = 0.11 nM) as a clinical candidate for the prevention and treatment of thromboembolic disorders, suitable for oral administration.
Collapse
Affiliation(s)
- Andrew K Dilger
- Research and Development, Bristol Myers Squibb Company, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Kumar B Pabbisetty
- Research and Development, Bristol Myers Squibb Company, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - James R Corte
- Research and Development, Bristol Myers Squibb Company, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Indawati De Lucca
- Research and Development, Bristol Myers Squibb Company, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Tianan Fang
- Research and Development, Bristol Myers Squibb Company, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Wu Yang
- Research and Development, Bristol Myers Squibb Company, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Donald J P Pinto
- Research and Development, Bristol Myers Squibb Company, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Yufeng Wang
- Research and Development, Bristol Myers Squibb Company, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Yeheng Zhu
- Research and Development, Bristol Myers Squibb Company, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Arvind Mathur
- Research and Development, Bristol Myers Squibb Company, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Jianqing Li
- Research and Development, Bristol Myers Squibb Company, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Xiaoping Hou
- Research and Development, Bristol Myers Squibb Company, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Daniel Smith
- Research and Development, Bristol Myers Squibb Company, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Dawn Sun
- Research and Development, Bristol Myers Squibb Company, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Huiping Zhang
- Research and Development, Bristol Myers Squibb Company, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Subramaniam Krishnananthan
- Research and Development, Bristol Myers Squibb Company, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Dauh-Rurng Wu
- Research and Development, Bristol Myers Squibb Company, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Joseph E Myers
- Research and Development, Bristol Myers Squibb Company, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Steven Sheriff
- Research and Development, Bristol Myers Squibb Company, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Karen A Rossi
- Research and Development, Bristol Myers Squibb Company, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Silvi Chacko
- Research and Development, Bristol Myers Squibb Company, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Joanna J Zheng
- Research and Development, Bristol Myers Squibb Company, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Michael A Galella
- Research and Development, Bristol Myers Squibb Company, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Theresa Ziemba
- Research and Development, Bristol Myers Squibb Company, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Elizabeth A Dierks
- Research and Development, Bristol Myers Squibb Company, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Jeffrey M Bozarth
- Research and Development, Bristol Myers Squibb Company, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Yiming Wu
- Research and Development, Bristol Myers Squibb Company, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Earl Crain
- Research and Development, Bristol Myers Squibb Company, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Pancras C Wong
- Research and Development, Bristol Myers Squibb Company, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Joseph M Luettgen
- Research and Development, Bristol Myers Squibb Company, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Ruth R Wexler
- Research and Development, Bristol Myers Squibb Company, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - William R Ewing
- Research and Development, Bristol Myers Squibb Company, P.O. Box 5400, Princeton, New Jersey 08543, United States
| |
Collapse
|
34
|
Salomon O, Gailani D. A proposal for managing bleeding in patients on therapeutic factor XI(a) inhibitors. J Thromb Haemost 2022; 20:32-38. [PMID: 34735741 PMCID: PMC9540351 DOI: 10.1111/jth.15579] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/27/2021] [Accepted: 11/01/2021] [Indexed: 12/16/2022]
Abstract
Several drugs that reduce functional levels of the plasma protease zymogen factor XI (FXI), or that inhibit its activated form (FXIa), are being evaluated as treatments to prevent thrombosis. Based on the observation that individuals with inherited FXI deficiency have a relatively mild bleeding disorder, it is anticipated that therapeutic FXI(a) inhibitors will have a smaller impact on hemostasis than anticoagulants targeting thrombin or factor Xa. However, even if FXI(a) inhibitors are determined to be safer than currently used anticoagulants, some patients on these drugs will experience abnormal bleeding or require emergent surgery. Strategies for dealing with such situations are required. Treatment with antifibrinolytic agents and low doses of recombinant factor VIIa effectively prevent abnormal bleeding in FXI-deficient patients with alloantibody inhibitors to FXI who undergo surgery. We propose that a similar strategy can be used for patients on therapeutic FXI(a) inhibitors who are bleeding or require invasive procedures.
Collapse
Affiliation(s)
- Ophira Salomon
- Thrombosis Unit Sheba Medical Center, Tel Hashomer, Israel
- The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - David Gailani
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
35
|
WPK5, a Novel Kunitz-Type Peptide from the Leech Whitmania pigra Inhibiting Factor XIa, and Its Loop-Replaced Mutant to Improve Potency. Biomedicines 2021; 9:biomedicines9121745. [PMID: 34944561 PMCID: PMC8698482 DOI: 10.3390/biomedicines9121745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 12/24/2022] Open
Abstract
Kunitz-type proteins or peptides have been found in many blood-sucking animals, but the identity of them in leeches remained elusive. In the present study, five Kunitz-type peptides named WPK1-WPK5 were identified from the leech Whitmania pigra. Recombinant WPK1-WPK5 were expressed in Pichia pastoris GS115, and their inhibitory activity against Factor XIa (FXIa) was tested. WPK5 showed inhibitory activity against FXIa with an IC50 value of 978.20 nM. To improve its potency, the loop replacement strategy was used. The loop 1 (TGPCRSNLER) and loop 2 (QYGGC) in WPK5 were replaced by loop 1 (TGPCRAMISR) and loop 2 (FYGGC) in PN2KPI, respectively, and the resulting peptide named WPK5-Mut showed an IC50 value of 8.34 nM to FXIa, which is about 100-fold the potency of FXIa compared to that of WPK5. WPK5-Mut was further evaluated for its extensive bioactivity in vitro and in vivo. It dose-dependently prolonged APTT on both murine plasma and human plasma, and potently inhibited FeCl3-induced carotid artery thrombosis in mice at a dose of 1.5 mg/kg. Additionally, WPK5-Mut did not show significant bleeding risk at a dose of 6 mg/kg. Together, these results showed that WPK5-Mut is a promising candidate for the development of an antithrombotic drug.
Collapse
|
36
|
Devillard CD, Marquette CA. Vascular Tissue Engineering: Challenges and Requirements for an Ideal Large Scale Blood Vessel. Front Bioeng Biotechnol 2021; 9:721843. [PMID: 34671597 PMCID: PMC8522984 DOI: 10.3389/fbioe.2021.721843] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/20/2021] [Indexed: 01/05/2023] Open
Abstract
Since the emergence of regenerative medicine and tissue engineering more than half a century ago, one obstacle has persisted: the in vitro creation of large-scale vascular tissue (>1 cm3) to meet the clinical needs of viable tissue grafts but also for biological research applications. Considerable advancements in biofabrication have been made since Weinberg and Bell, in 1986, created the first blood vessel from collagen, endothelial cells, smooth muscle cells and fibroblasts. The synergistic combination of advances in fabrication methods, availability of cell source, biomaterials formulation and vascular tissue development, promises new strategies for the creation of autologous blood vessels, recapitulating biological functions, structural functions, but also the mechanical functions of a native blood vessel. In this review, the main technological advancements in bio-fabrication are discussed with a particular highlights on 3D bioprinting technologies. The choice of the main biomaterials and cell sources, the use of dynamic maturation systems such as bioreactors and the associated clinical trials will be detailed. The remaining challenges in this complex engineering field will finally be discussed.
Collapse
Affiliation(s)
- Chloé D Devillard
- 3d.FAB, CNRS, INSA, Univ Lyon, CPE-Lyon, UMR5246, ICBMS, Université Lyon 1, Villeurbanne Cedex, France
| | - Christophe A Marquette
- 3d.FAB, CNRS, INSA, Univ Lyon, CPE-Lyon, UMR5246, ICBMS, Université Lyon 1, Villeurbanne Cedex, France
| |
Collapse
|
37
|
Thomas D, Kanefendt F, Schwers S, Unger S, Yassen A, Boxnick S. First evaluation of the safety, pharmacokinetics, and pharmacodynamics of BAY 2433334, a small molecule targeting coagulation factor XIa. J Thromb Haemost 2021; 19:2407-2416. [PMID: 34192419 PMCID: PMC8518835 DOI: 10.1111/jth.15439] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/21/2021] [Accepted: 06/28/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Coagulation factor XI (FXI) contributes to the development of thrombosis but appears to play a minor role in hemostasis and is, therefore, an attractive anticoagulant drug target. OBJECTIVES To evaluate the safety, pharmacokinetic, and pharmacodynamic properties of BAY 2433334, an orally administered small molecule targeting activated FXI (FXIa), in healthy men. PATIENTS/METHODS This phase 1 study was conducted in two parts. In part 1, 70 volunteers were randomized 4:1 to receive a single oral dose of BAY 2433334 (5-150 mg as oral solution or immediate-release tablets) or placebo. In part 2, 16 volunteers received a single oral dose of five BAY 2433334 5-mg tablets with or without a high-calorie breakfast in a randomized crossover study design. Adverse events, pharmacokinetic parameters, and pharmacodynamic parameters were assessed up to 72 h after drug administration. Volunteers were followed up after 7 to 14 days. RESULTS BAY 2433334 demonstrated favorable safety and tolerability with a dose-dependent increase in exposure and a terminal half-life of 14.2 to 17.4 h. A high-calorie breakfast reduced mean maximum plasma concentration and exposure by 31% and 12.4%, respectively. AY 2433334 was associated with a dose-dependent inhibition of FXIa activity and an increase in activated partial thromboplastin time. Bleeding times in volunteers who had received BAY 2433334 were similar to those in volunteers who had received placebo. CONCLUSIONS These data indicate that BAY 2433334 is a promising development candidate for once-daily oral anticoagulation; it is being evaluated in phase 2 dose-finding studies in patients at risk of thrombosis.
Collapse
Affiliation(s)
- Dirk Thomas
- Research and Development PharmaceuticalsBayer AGWuppertalGermany
| | | | - Stephan Schwers
- Research and Development PharmaceuticalsBayer AGWuppertalGermany
| | - Sigrun Unger
- Research and Development PharmaceuticalsBayer AGWuppertalGermany
| | - Ashraf Yassen
- Research and Development PharmaceuticalsBayer AGWuppertalGermany
| | | |
Collapse
|
38
|
Abstract
Factor XI (FXI) deficiency (hemophilia C or Rosenthal disease) was first described in the 1950s in a multigenerational family experiencing bleeding related to surgery and dental procedures. Managing patients with FXI deficiency presents several challenges, including a lack of correlation of bleeding symptoms with FXI activity levels, the large volume of fresh frozen plasma required to achieve hemostatic FXI levels, lack of availability of FXI concentrate in certain regions of the world, and the inherent thrombotic risk associated with replacement therapy. This article summarizes presentation, diagnosis, and management of patients with FXI deficiency in a variety of clinical settings.
Collapse
Affiliation(s)
| | - Jean Marie Connors
- Hematology Division, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, 75 Francis Street, Boston, MA 02215, USA. https://twitter.com/connors_md
| |
Collapse
|
39
|
Hsu C, Hutt E, Bloomfield DM, Gailani D, Weitz JI. Factor XI Inhibition to Uncouple Thrombosis From Hemostasis: JACC Review Topic of the Week. J Am Coll Cardiol 2021; 78:625-631. [PMID: 34353538 DOI: 10.1016/j.jacc.2021.06.010] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 11/29/2022]
Abstract
Hemostasis and thrombosis are believed to be so intricately linked that any strategies that reduce thrombosis will have an inevitable impact on hemostasis. Consequently, bleeding is viewed as an unavoidable side effect of anticoagulant therapy. Emerging evidence suggests that factor XI is important for thrombosis but has a minor role in hemostasis. This information raises the possibility that anticoagulants that target factor XI will be safer than currently available agents. The authors provide a visual representation of the coagulation pathways that distinguishes between the steps involved in thrombosis and hemostasis to explain why factor XI inhibitors may serve as hemostasis-sparing anticoagulants. A safer class of anticoagulants would provide opportunities for treatment of a wider range of patients, including those at high risk for bleeding. Ongoing clinical studies will determine the extent to which factor XI inhibitors attenuate thrombosis without disruption of hemostasis.
Collapse
Affiliation(s)
- Charles Hsu
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | - David Gailani
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jeffrey I Weitz
- Departments of Medicine and Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada; Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario, Canada.
| |
Collapse
|
40
|
Contact Activation Inhibitor, AB023, in Heparin-Free Hemodialysis: Results of a Randomized Phase 2 Clinical Trial. Blood 2021; 138:2173-2184. [PMID: 34086880 DOI: 10.1182/blood.2021011725] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/24/2021] [Indexed: 11/20/2022] Open
Abstract
End-stage renal disease (ESRD) patients on chronic hemodialysis have repeated blood exposure to artificial surfaces that can trigger clot formation within the hemodialysis circuit. Dialyzer clotting can lead to anemia despite erythropoietin and iron supplementation. Unfractionated heparin prevents clotting during hemodialysis, but it is not tolerated by all patients. Although heparin-free dialysis is performed, intradialytic blood entrapment can be problematic. To address this issue, we performed a randomized, double-blind, phase 2 study comparing AB023, a unique antibody that binds factor (F) XI and blocks its activation by factor XIIa but not by thrombin, to placebo in 24 patients with ESRD undergoing heparin-free hemodialysis (www.clinicaltrials.gov #NCT03612856). Patients were randomized to receive a single pre-dialysis dose of AB023 (0.25 or 0.5 mg/kg) or placebo in a 2:1 ratio and safety and preliminary efficacy were compared to placebo and to observations made prior to dosing within each treatment arm. AB023 administration was not associated with impaired hemostasis or other drug-related adverse events. Occlusive events requiring hemodialysis circuit exchange were less frequent and levels of thrombin-antithrombin complexes and C-reactive protein were lower after AB023 administration compared with data collected prior to dosing. AB023 also reduced potassium and iron entrapment in the dialyzers, consistent with less blood accumulation within the dialyzers. We conclude that despite the small sample size, inhibition of contact activation-induced coagulation with AB023 was well tolerated and reduced clotting within the dialyzer.
Collapse
|
41
|
Carle V, Wu Y, Mukherjee R, Kong XD, Rogg C, Laurent Q, Cecere E, Villequey C, Konakalla MS, Maric T, Lamers C, Díaz-Perlas C, Butler K, Goto J, Stegmayr B, Heinis C. Development of Selective FXIa Inhibitors Based on Cyclic Peptides and Their Application for Safe Anticoagulation. J Med Chem 2021; 64:6802-6813. [PMID: 33974422 DOI: 10.1021/acs.jmedchem.1c00056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Coagulation factor XI (FXI) has emerged as a promising target for the development of safer anticoagulation drugs that limit the risk of severe and life-threatening bleeding. Herein, we report the first cyclic peptide-based FXI inhibitor that selectively and potently inhibits activated FXI (FXIa) in human and animal blood. The cyclic peptide inhibitor (Ki = 2.8 ± 0.5 nM) achieved anticoagulation effects that are comparable to that of the gold standard heparin applied at a therapeutic dose (0.3-0.7 IU/mL in plasma) but with a substantially broader estimated therapeutic range. We extended the plasma half-life of the peptide via PEGylation and demonstrated effective FXIa inhibition over extended periods in vivo. We validated the anticoagulant effects of the PEGylated inhibitor in an ex vivo hemodialysis model with human blood. Our work shows that FXI can be selectively targeted with peptides and provides a promising candidate for the development of a safe anticoagulation therapy.
Collapse
Affiliation(s)
- Vanessa Carle
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Yuteng Wu
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Rakesh Mukherjee
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Xu-Dong Kong
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Chloé Rogg
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Quentin Laurent
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Enza Cecere
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Camille Villequey
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Madhuree S Konakalla
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Tamara Maric
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Christina Lamers
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Cristina Díaz-Perlas
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Kaycie Butler
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Junko Goto
- Department of Public Health and Clinical Medicine, University of Umeå, SE-901 87 Umeå, Sweden
| | - Bernd Stegmayr
- Department of Public Health and Clinical Medicine, University of Umeå, SE-901 87 Umeå, Sweden
| | - Christian Heinis
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
42
|
[Congenital factor Ⅺ deficiency: a retrospective analysis of 80 cases]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2021; 42:205-209. [PMID: 33910305 PMCID: PMC8081945 DOI: 10.3760/cma.j.issn.0253-2727.2021.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
目的 分析遗传性凝血因子Ⅺ(FⅪ)缺乏症的临床表现、实验室检查、治疗及转归。 方法 对2006年9月至2020年10月就诊于中国医学科学院血液病医院的80例遗传性FⅪ缺乏症患者进行回顾性分析。结果 80例患者中,男33例(41.3%),女47例(58.8%),中位年龄32(2~66)岁。28例(35.0%)存在出血事件,其中自发性出血11例(13.8%),皮肤磕碰后瘀斑或出血9例(11.3%),手术后出血9例(11.3%),女性患者月经过多11例(23.4%),阴道分娩后出血1例(2.1%)。实验室检查表现为活化部分凝血活酶时间(APTT)延长、凝血酶原时间(PT)正常、FⅪ活性(FⅪ∶C)减低。9例(11.3%)患者接受F11基因检测,共检测到11种突变。27例(33.8%)患者接受新鲜冰冻血浆(FFP)治疗,15例(18.8%)手术前预防性输注患者均未发生术中、术后出血。 结论 多数遗传性FⅪ缺乏症患者无出血症状或症状轻微,FⅪ∶C与出血严重程度之间缺乏相关性,FⅪ∶C与F11基因纯合或杂合突变类型具有较好的一致性。预防性输注FFP可有效降低手术出血风险。
Collapse
|
43
|
Hayakawa Y, Tamura S, Suzuki N, Odaira K, Tokoro M, Kawashima F, Hayakawa F, Takagi A, Katsumi A, Suzuki A, Okamoto S, Kanematsu T, Matsushita T, Kojima T. Essential role of a carboxyl-terminal α-helix motif in the secretion of coagulation factor XI. J Thromb Haemost 2021; 19:920-930. [PMID: 33421272 DOI: 10.1111/jth.15242] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 12/28/2020] [Accepted: 01/04/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Coagulation factor XI (FXI) is a plasma serine protease zymogen that contributes to hemostasis. However, the mechanism of its secretion remains unclear. OBJECTIVE To determine the molecular mechanism of FXI secretion by characterizing a novel FXI mutant identified in a FXI-deficient Japanese patient. PATIENT/METHODS The FXI gene (F11) was analyzed by direct sequencing. Mutant recombinant FXI (rFXI) was overexpressed in HEK293 or COS-7 cells. Western blotting and enzyme-linked immunosorbent assay were performed to examine the FXI extracellular secretion profile. Immunofluorescence microscopy was used to investigate the subcellular localization of the rFXI mutant. RESULTS We identified a novel homozygous frameshift mutation in F11 [c.1788dupC (p.E597Rfs*65)], resulting in a unique and extended carboxyl-terminal (C-terminal) structure in FXI. Although rFXI-E597Rfs*65 was intracellularly synthesized, its extracellular secretion was markedly reduced. Subcellular localization analysis revealed that rFXI-E597Rfs*65 was abnormally retained in the endoplasmic reticulum (ER). We generated a series of C-terminal-truncated rFXI mutants to further investigate the role of the C-terminal region in FXI secretion. Serial rFXI experiments revealed that a threonine at position 622, the fourth residue from the C-terminus, was essential for secretion. Notably, Thr622 engages in the formation of an α-helix motif, indicating the importance of the C-terminal α-helix in FXI intracellular behavior and secretion. CONCLUSION FXI E597Rfs*65 results in the pathogenesis of a severe secretory defect resulting from aberrant ER-to-Golgi trafficking caused by the lack of a C-terminal α-helix motif. This study demonstrates the impact of the C-terminal structure, especially the α-helix motif, on FXI secretion.
Collapse
Affiliation(s)
- Yuri Hayakawa
- Division of Cellular and Genetic Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shogo Tamura
- Division of Cellular and Genetic Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Nobuaki Suzuki
- Department of Transfusion Medicine, Nagoya University Hospital, Nagoya, Japan
| | - Koya Odaira
- Division of Cellular and Genetic Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mahiru Tokoro
- Division of Cellular and Genetic Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Fumika Kawashima
- Division of Cellular and Genetic Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Fumihiko Hayakawa
- Division of Cellular and Genetic Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akira Takagi
- Department of Medical Technology, Shubun University, Ichinomiya, Japan
| | - Akira Katsumi
- Department of Hematology, National Center for Geriatrics and Gerontology, Obu City, Japan
| | - Atsuo Suzuki
- Department of Clinical Laboratory, Nagoya University Hospital, Nagoya, Japan
| | - Shuichi Okamoto
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takeshi Kanematsu
- Department of Clinical Laboratory, Nagoya University Hospital, Nagoya, Japan
| | - Tadashi Matsushita
- Department of Transfusion Medicine, Nagoya University Hospital, Nagoya, Japan
- Department of Clinical Laboratory, Nagoya University Hospital, Nagoya, Japan
| | - Tetsuhito Kojima
- Division of Cellular and Genetic Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Aichi Health Promotion Foundation, Nagoya, Japan
| |
Collapse
|
44
|
Abstract
PURPOSE OF REVIEW Anticoagulation with vitamin-K antagonists or direct oral anticoagulants is associated with a significant risk of bleeding. There is a major effort underway to develop antithrombotic drugs that have a smaller impact on hemostasis. The plasma contact proteins factor XI (FXI) and factor XII (FXII) have drawn considerable interest because they contribute to thrombosis but have limited roles in hemostasis. Here, we discuss results of preclinical and clinical trials supporting the hypothesis that the contact system contributes to thromboembolic disease. RECENT FINDINGS Numerous compounds targeting FXI or FXII have shown antithrombotic properties in preclinical studies. In phase 2 studies, drugs-targeting FXI or its protease form FXIa compared favorably with standard care for venous thrombosis prophylaxis in patients undergoing knee replacement. While less work has been done with FXII inhibitors, they may be particularly useful for limiting thrombosis in situations where blood comes into contact with artificial surfaces of medical devices. SUMMARY Inhibitors of contact activation, and particularly of FXI, are showing promise for prevention of thromboembolic disease. Larger studies are required to establish their efficacy, and to establish that they are safer than current therapy from a bleeding standpoint.
Collapse
|
45
|
Hinds MT, Kaul S. Response to commentary on JTH-2020-01486.R1 - Quantification of microbubble-induced sonothrombolysis in an ex-vivo non-human primate model. J Thromb Haemost 2021; 19:874-875. [PMID: 33650254 DOI: 10.1111/jth.15225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 11/27/2022]
Affiliation(s)
- Monica T Hinds
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Sanjiv Kaul
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
46
|
A novel rationale for targeting FXI: Insights from the hemostatic microRNA targetome for emerging anticoagulant strategies. Pharmacol Ther 2021; 218:107676. [DOI: 10.1016/j.pharmthera.2020.107676] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/03/2020] [Indexed: 02/07/2023]
|
47
|
Fredenburgh JC, Weitz JI. New anticoagulants: Moving beyond the direct oral anticoagulants. J Thromb Haemost 2021; 19:20-29. [PMID: 33047462 DOI: 10.1111/jth.15126] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/21/2020] [Accepted: 09/28/2020] [Indexed: 01/23/2023]
Abstract
Although anticoagulants have been in use for more than 80 years, heparin and vitamin K antagonists were the sole available options until recently. Although these agents revolutionized the prevention and treatment of thrombotic diseases, their use has been hampered by the necessity for coagulation monitoring and by bleeding complications resulting in part from their multiple sites of action. Owing to advances in basic science, animal models, and epidemiology, the arsenal of available anticoagulants has expanded in the past two decades. This evolution has yielded many novel compounds that target single coagulation enzymes. Initially, thrombin and factor Xa were targeted because of their critical roles in coagulation. However, attention has now shifted to compounds that target upstream reactions, particularly those catalyzed by factors XIIa and XIa, which are part of the contact system. This shift is predicated on epidemiological and experimental evidence suggesting that these factors are more important for thrombosis than for hemostasis. With the goal of developing a new class of anticoagulants associated with a lower risk of bleeding than currently available agents, dozens of drugs targeting the contact system are now in development. This article focuses on the rationale, development, and testing of these new agents with a concentration on those that have reached or completed phase 2 evaluation for at least one indication.
Collapse
Affiliation(s)
- James C Fredenburgh
- Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, ON, Canada
- Departments of Medicine, McMaster University, Hamilton, ON, Canada
| | - Jeffrey I Weitz
- Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, ON, Canada
- Departments of Medicine, McMaster University, Hamilton, ON, Canada
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
48
|
Han EX, Wang J, Kural M, Jiang B, Leiby KL, Chowdhury N, Tellides G, Kibbey RG, Lawson JH, Niklason LE. Development of a Bioartificial Vascular Pancreas. J Tissue Eng 2021; 12:20417314211027714. [PMID: 34262686 PMCID: PMC8243137 DOI: 10.1177/20417314211027714] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 06/08/2021] [Indexed: 12/16/2022] Open
Abstract
Transplantation of pancreatic islets has been shown to be effective, in some patients, for the long-term treatment of type 1 diabetes. However, transplantation of islets into either the portal vein or the subcutaneous space can be limited by insufficient oxygen transfer, leading to islet loss. Furthermore, oxygen diffusion limitations can be magnified when islet numbers are increased dramatically, as in translating from rodent studies to human-scale treatments. To address these limitations, an islet transplantation approach using an acellular vascular graft as a vascular scaffold has been developed, termed the BioVascular Pancreas (BVP). To create the BVP, islets are seeded as an outer coating on the surface of an acellular vascular graft, using fibrin as a hydrogel carrier. The BVP can then be anastomosed as an arterial (or arteriovenous) graft, which allows fully oxygenated arterial blood with a pO2 of roughly 100 mmHg to flow through the graft lumen and thereby supply oxygen to the islets. In silico simulations and in vitro bioreactor experiments show that the BVP design provides adequate survivability for islets and helps avoid islet hypoxia. When implanted as end-to-end abdominal aorta grafts in nude rats, BVPs were able to restore near-normoglycemia durably for 90 days and developed robust microvascular infiltration from the host. Furthermore, pilot implantations in pigs were performed, which demonstrated the scalability of the technology. Given the potential benefits provided by the BVP, this tissue design may eventually serve as a solution for transplantation of pancreatic islets to treat or cure type 1 diabetes.
Collapse
Affiliation(s)
- Edward X Han
- Department of Biomedical Engineering,
Yale School of Engineering and Applied Science, New Haven, CT, USA
| | - Juan Wang
- Vascular Biology and Therapeutics
Program, Yale School of Medicine, New Haven, CT, USA
- Department of Anesthesiology, Yale
School of Medicine, New Haven, CT, USA
| | - Mehmet Kural
- Vascular Biology and Therapeutics
Program, Yale School of Medicine, New Haven, CT, USA
- Department of Anesthesiology, Yale
School of Medicine, New Haven, CT, USA
| | - Bo Jiang
- Department of Surgery, Yale School of
Medicine, New Haven, CT, USA
- Department of Vascular Surgery, The
First Hospital of China Medical University, Shenyang, China
| | - Katherine L Leiby
- Department of Biomedical Engineering,
Yale School of Engineering and Applied Science, New Haven, CT, USA
| | - Nazar Chowdhury
- Molecular, Cellular, and Developmental
Biology, Yale University, New Haven, CT, USA
| | - George Tellides
- Vascular Biology and Therapeutics
Program, Yale School of Medicine, New Haven, CT, USA
- Department of Surgery, Yale School of
Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare
System, West Haven, CT, USA
| | - Richard G Kibbey
- Department of Internal Medicine
(Endocrinology), Yale University, New Haven, CT, USA
- Department of Cellular & Molecular
Physiology, Yale School of Medicine, New Haven, CT, USA
| | - Jeffrey H Lawson
- Department of Surgery, Duke
University, Durham, NC, USA
- Humacyte Inc., Durham, NC, USA
| | - Laura E Niklason
- Department of Biomedical Engineering,
Yale School of Engineering and Applied Science, New Haven, CT, USA
- Vascular Biology and Therapeutics
Program, Yale School of Medicine, New Haven, CT, USA
- Department of Anesthesiology, Yale
School of Medicine, New Haven, CT, USA
- Humacyte Inc., Durham, NC, USA
| |
Collapse
|
49
|
Grover SP, Olson TM, Cooley BC, Mackman N. Model-dependent contributions of FXII and FXI to venous thrombosis in mice. J Thromb Haemost 2020; 18:2899-2909. [PMID: 33094904 PMCID: PMC7693194 DOI: 10.1111/jth.15037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/07/2020] [Accepted: 07/17/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND The intrinsic pathway factors (F) XII and FXI have been shown to contribute to thrombosis in animal models. We assessed the role of FXII and FXI in venous thrombosis in three distinct mouse models. METHODS Venous thrombosis was assessed in mice genetically deficient for either FXII or FXI. Three models were used: the inferior vena cava (IVC) stasis, IVC stenosis, and femoral vein electrolytic injury models. RESULTS In the IVC stasis model, FXII and FXI deficiency did not affect the size of thrombi but their absence was associated with decreased levels of fibrin(ogen) and an increased level of the neutrophil extracellular trap marker citrullinated histone H3. In contrast, a deficiency of either FXII or FXI resulted in a significant and equivalent reduction in thrombus weight and incidence of thrombus formation in the IVC stenosis model. Thrombi formed in the IVC stenosis model contained significantly higher levels of citrullinated histone H3 compared with the thrombi formed in the IVC stasis model. Deletion of either FXII or FXI also resulted in a significant and equivalent reduction in both fibrin and platelet accumulation in the femoral vein electrolytic injury model. CONCLUSIONS Collectively, these data indicate that FXII and FXI contribute to the size of venous thrombosis in models with blood flow and thrombus composition in a stasis model. This study also demonstrates the importance of using multiple mouse models to assess the role of a given protein in venous thrombosis.
Collapse
Affiliation(s)
- Steven P. Grover
- Division of Hematology and OncologyDepartment of MedicineUNC Blood Research CenterUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | - Tatianna M. Olson
- Division of Hematology and OncologyDepartment of MedicineUNC Blood Research CenterUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | - Brian C. Cooley
- Department of Pathology and Laboratory MedicineMcAllister Heart InstituteUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | - Nigel Mackman
- Division of Hematology and OncologyDepartment of MedicineUNC Blood Research CenterUniversity of North Carolina at Chapel HillChapel HillNCUSA
| |
Collapse
|
50
|
Kohs TCL, Lorentz CU, Johnson J, Puy C, Olson SR, Shatzel JJ, Gailani D, Hinds MT, Tucker EI, Gruber A, McCarty OJT, Wallisch M. Development of Coagulation Factor XII Antibodies for Inhibiting Vascular Device-Related Thrombosis. Cell Mol Bioeng 2020; 14:161-175. [PMID: 33868498 DOI: 10.1007/s12195-020-00657-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 09/26/2020] [Indexed: 11/26/2022] Open
Abstract
Introduction Vascular devices such as stents, hemodialyzers, and membrane oxygenators can activate blood coagulation and often require the use of systemic anticoagulants to selectively prevent intravascular thrombotic/embolic events or extracorporeal device failure. Coagulation factor (F)XII of the contact activation system has been shown to play an important role in initiating vascular device surface-initiated thrombus formation. As FXII is dispensable for hemostasis, targeting the contact activation system holds promise as a significantly safer strategy than traditional antithrombotics for preventing vascular device-associated thrombosis. Objective Generate and characterize anti-FXII monoclonal antibodies that inhibit FXII activation or activity. Methods Monoclonal antibodies against FXII were generated in FXII-deficient mice and evaluated for their binding and anticoagulant properties in purified and plasma systems, in whole blood flow-based assays, and in an in vivo non-human primate model of vascular device-initiated thrombus formation. Results A FXII antibody screen identified over 400 candidates, which were evaluated in binding studies and clotting assays. One non-inhibitor and six inhibitor antibodies were selected for characterization in functional assays. The most potent inhibitory antibody, 1B2, was found to prolong clotting times, inhibit fibrin generation on collagen under shear, and inhibit platelet deposition and fibrin formation in an extracorporeal membrane oxygenator deployed in a non-human primate. Conclusion Selective contact activation inhibitors hold potential as useful tools for research applications as well as safe and effective inhibitors of vascular device-related thrombosis.
Collapse
Affiliation(s)
- T C L Kohs
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239 USA
| | - C U Lorentz
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239 USA
- Aronora Inc., Portland, OR USA
| | - J Johnson
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239 USA
| | - C Puy
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239 USA
| | - S R Olson
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239 USA
- Division of Hematology& Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR USA
| | - J J Shatzel
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239 USA
- Division of Hematology& Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR USA
| | - D Gailani
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN USA
| | - M T Hinds
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239 USA
| | - E I Tucker
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239 USA
- Aronora Inc., Portland, OR USA
| | - A Gruber
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239 USA
- Aronora Inc., Portland, OR USA
- Division of Hematology& Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR USA
| | - O J T McCarty
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239 USA
- Division of Hematology& Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR USA
| | - M Wallisch
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239 USA
- Aronora Inc., Portland, OR USA
| |
Collapse
|