1
|
Shahbaz S, Rosero EP, Syed H, Hnatiuk M, Bozorgmehr N, Rahmati A, Zia S, Plemel J, Osman M, Elahi S. Bipotential B-neutrophil progenitors are present in human and mouse bone marrow and emerge in the periphery upon stress hematopoiesis. mBio 2024; 15:e0159924. [PMID: 39012145 PMCID: PMC11323571 DOI: 10.1128/mbio.01599-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 06/30/2024] [Indexed: 07/17/2024] Open
Abstract
Hematopoiesis is a tightly regulated process that gets skewed toward myelopoiesis. This restrains lymphopoiesis, but the role of lymphocytes in this process is not well defined. To unravel the intricacies of neutrophil responses in COVID-19, we performed bulk RNAseq on neutrophils from healthy controls and COVID-19 patients. Principal component analysis revealed distinguishing neutrophil gene expression alterations in COVID-19 patients. ICU and ward patients displayed substantial transcriptional changes, with ICU patients exhibiting a more pronounced response. Intriguingly, neutrophils from COVID-19 patients, notably ICU patients, exhibited an enrichment of immunoglobulin (Ig) and B cell lineage-associated genes, suggesting potential lineage plasticity. We validated our RNAseq findings in a larger cohort. Moreover, by reanalyzing single-cell RNA sequencing (scRNAseq) data on human bone marrow (BM) granulocytes, we identified the cluster of granulocyte-monocyte progenitors (GMP) enriched with Ig and B cell lineage-associated genes. These cells with lineage plasticity may serve as a resource depending on the host's needs during severe systemic infection. This distinct B cell subset may play a pivotal role in promoting myelopoiesis in response to infection. The scRNAseq analysis of BM neutrophils in infected mice further supported our observations in humans. Finally, our studies using an animal model of acute infection implicate IL-7/GM-CSF in influencing neutrophil and B cell dynamics. Elevated GM-CSF and reduced IL-7 receptor expression in COVID-19 patients imply altered hematopoiesis favoring myeloid cells over B cells. Our findings provide novel insights into the relationship between the B-neutrophil lineages during severe infection, hinting at potential implications for disease pathogenesis. IMPORTANCE This study investigates the dynamics of hematopoiesis in COVID-19, focusing on neutrophil responses. Through RNA sequencing of neutrophils from healthy controls and COVID-19 patients, distinct gene expression alterations are identified, particularly in ICU patients. Notably, neutrophils from COVID-19 patients, especially in the ICU, exhibit enrichment of immunoglobulin and B cell lineage-associated genes, suggesting potential lineage plasticity. Validation in a larger patient cohort and single-cell analysis of bone marrow granulocytes support the presence of granulocyte-monocyte progenitors with B cell lineage-associated genes. The findings propose a link between B-neutrophil lineages during severe infection, implicating a potential role for these cells in altered hematopoiesis favoring myeloid cells over B cells. Elevated GM-CSF and reduced IL-7 receptor expression in stress hematopoiesis suggest cytokine involvement in these dynamics, providing novel insights into disease pathogenesis.
Collapse
Affiliation(s)
- Shima Shahbaz
- School of Dentistry, Division of Foundational Sciences, University of Alberta, Edmonton, Canada
| | - Eliana Perez Rosero
- School of Dentistry, Division of Foundational Sciences, University of Alberta, Edmonton, Canada
| | - Hussain Syed
- Department of Medicine, Division of Gastroenterology, University of Alberta, Edmonton, Canada
| | - Mark Hnatiuk
- Division of Hematology, University of Alberta, Edmonton, Canada
| | - Najmeh Bozorgmehr
- School of Dentistry, Division of Foundational Sciences, University of Alberta, Edmonton, Canada
| | - Amirhossein Rahmati
- School of Dentistry, Division of Foundational Sciences, University of Alberta, Edmonton, Canada
| | - Sameera Zia
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Jason Plemel
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada
| | - Mohammed Osman
- Department of Medicine, Division of Rheumatology, University of Alberta, Edmonton, Canada
| | - Shokrollah Elahi
- School of Dentistry, Division of Foundational Sciences, University of Alberta, Edmonton, Canada
- Li Ka Shing Institute of Virology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, Canada
- Glycomics Institute of Alberta, University of Alberta, Edmonton, Canada
- Women and Children Health Research Institute, University of Alberta, Edmonton, Canada
| |
Collapse
|
2
|
Kaiser R, Gold C, Joppich M, Loew Q, Akhalkatsi A, Mueller TT, Offensperger F, Droste Zu Senden A, Popp O, di Fina L, Knottenberg V, Martinez-Navarro A, Eivers L, Anjum A, Escaig R, Bruns N, Briem E, Dewender R, Muraly A, Akgöl S, Ferraro B, Hoeflinger JKL, Polewka V, Khaled NB, Allgeier J, Tiedt S, Dichgans M, Engelmann B, Enard W, Mertins P, Hubner N, Weckbach L, Zimmer R, Massberg S, Stark K, Nicolai L, Pekayvaz K. Peripheral priming induces plastic transcriptomic and proteomic responses in circulating neutrophils required for pathogen containment. SCIENCE ADVANCES 2024; 10:eadl1710. [PMID: 38517968 DOI: 10.1126/sciadv.adl1710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/16/2024] [Indexed: 03/24/2024]
Abstract
Neutrophils rapidly respond to inflammation and infection, but to which degree their functional trajectories after mobilization from the bone marrow are shaped within the circulation remains vague. Experimental limitations have so far hampered neutrophil research in human disease. Here, using innovative fixation and single-cell-based toolsets, we profile human and murine neutrophil transcriptomes and proteomes during steady state and bacterial infection. We find that peripheral priming of circulating neutrophils leads to dynamic shifts dominated by conserved up-regulation of antimicrobial genes across neutrophil substates, facilitating pathogen containment. We show the TLR4/NF-κB signaling-dependent up-regulation of canonical neutrophil activation markers like CD177/NB-1 during acute inflammation, resulting in functional shifts in vivo. Blocking de novo RNA synthesis in circulating neutrophils abrogates these plastic shifts and prevents the adaptation of antibacterial neutrophil programs by up-regulation of distinct effector molecules upon infection. These data underline transcriptional plasticity as a relevant mechanism of functional neutrophil reprogramming during acute infection to foster bacterial containment within the circulation.
Collapse
Affiliation(s)
- Rainer Kaiser
- Department of Medicine I, LMU University Hospital, LMU Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Christoph Gold
- Department of Medicine I, LMU University Hospital, LMU Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Markus Joppich
- LFE Bioinformatik, Department of Informatics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Quentin Loew
- Department of Medicine I, LMU University Hospital, LMU Munich, Germany
| | | | - Tonina T Mueller
- Department of Medicine I, LMU University Hospital, LMU Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
- Vascular Biology and Pathology, Institute of Laboratory Medicine, University Hospital Ludwig-Maximilians University, Munich, Germany
| | - Felix Offensperger
- LFE Bioinformatik, Department of Informatics, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | - Oliver Popp
- Max Delbrück Center for Molecular Medicine (MDC) and Berlin Institute of Health (BIH), Berlin, Germany
| | - Lea di Fina
- Department of Medicine I, LMU University Hospital, LMU Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | | | | | - Luke Eivers
- Department of Medicine I, LMU University Hospital, LMU Munich, Germany
| | - Afra Anjum
- Department of Medicine I, LMU University Hospital, LMU Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Raphael Escaig
- Department of Medicine I, LMU University Hospital, LMU Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Nils Bruns
- Department of Medicine I, LMU University Hospital, LMU Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Eva Briem
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Robin Dewender
- Department of Medicine I, LMU University Hospital, LMU Munich, Germany
| | - Abhinaya Muraly
- Department of Medicine I, LMU University Hospital, LMU Munich, Germany
| | - Sezer Akgöl
- Department of Medicine I, LMU University Hospital, LMU Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Bartolo Ferraro
- Department of Medicine I, LMU University Hospital, LMU Munich, Germany
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, Ludwig Maximilian University Munich, Planegg-Martinsried, Germany
| | - Jonathan K L Hoeflinger
- Vascular Biology and Pathology, Institute of Laboratory Medicine, University Hospital Ludwig-Maximilians University, Munich, Germany
| | - Vivien Polewka
- Department of Medicine I, LMU University Hospital, LMU Munich, Germany
| | - Najib Ben Khaled
- Medizinische Klinik und Poliklinik II, University Hospital Ludwig-Maximilian University, Munich, Germany
| | - Julian Allgeier
- Medizinische Klinik und Poliklinik II, University Hospital Ludwig-Maximilian University, Munich, Germany
| | - Steffen Tiedt
- Institute for Stroke and Dementia Research, University Hospital Ludwig-Maximilian University, Munich, Germany
| | - Martin Dichgans
- Institute for Stroke and Dementia Research, University Hospital Ludwig-Maximilian University, Munich, Germany
| | - Bernd Engelmann
- Vascular Biology and Pathology, Institute of Laboratory Medicine, University Hospital Ludwig-Maximilians University, Munich, Germany
| | - Wolfgang Enard
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Philipp Mertins
- Max Delbrück Center for Molecular Medicine (MDC) and Berlin Institute of Health (BIH), Berlin, Germany
| | - Norbert Hubner
- Max Delbrück Center for Molecular Medicine (MDC) and Berlin Institute of Health (BIH), Berlin, Germany
- Charite-Universitätsmedizin Berlin, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Ludwig Weckbach
- Department of Medicine I, LMU University Hospital, LMU Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, Ludwig Maximilian University Munich, Planegg-Martinsried, Germany
| | - Ralf Zimmer
- LFE Bioinformatik, Department of Informatics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Steffen Massberg
- Department of Medicine I, LMU University Hospital, LMU Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Konstantin Stark
- Department of Medicine I, LMU University Hospital, LMU Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Leo Nicolai
- Department of Medicine I, LMU University Hospital, LMU Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Kami Pekayvaz
- Department of Medicine I, LMU University Hospital, LMU Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
3
|
Kolman JP, Pagerols Raluy L, Müller I, Nikolaev VO, Trochimiuk M, Appl B, Wadehn H, Dücker CM, Stoll FD, Boettcher M, Reinshagen K, Trah J. NET Release of Long-Term Surviving Neutrophils. Front Immunol 2022; 13:815412. [PMID: 35242132 PMCID: PMC8887621 DOI: 10.3389/fimmu.2022.815412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/07/2022] [Indexed: 11/17/2022] Open
Abstract
Background Neutrophil extracellular traps (NETs)—as double-edged swords of innate immunity—are involved in numerous processes such as infection, inflammation and tissue repair. Research on neutrophil granulocytes is limited because of their short lifetime of only a few hours. Several attempts have been made to prolong the half-life of neutrophils using cytokines and bacterial products and have shown promising results. These long-term surviving neutrophils are reported to maintain phagocytic activity and cytokine release; however, little is known regarding their capability to release NETs. Methods We analysed the prolongation of neutrophil survival in vitro under various culture conditions using granulocyte colony-stimulating factor (G-CSF), lipopolysaccharide (LPS) or tumour necrosis factor alpha (TNF-α) by flow cytometry and a viability assay. Additionally, we assessed NET formation following stimulation with phorbol 12-myristate 13-acetate (PMA) by immunofluorescence staining, myeloperoxidase (MPO)-DNA sandwich-ELISA and fluorometric assays for cell-free DNA (cfDNA), neutrophil elastase (NE) and myeloperoxidase (MPO). Results Untreated neutrophils could form NETs after stimulation with PMA for up to 24 h. Incubation with LPS extended their ability to form NETs for up to 48 h. At 48 h, NET release of neutrophils cultured with LPS was significantly higher compared to that of untreated cells; however, no significantly different enzymatic activity of NE and MPO was observed. Similarly, incubation with G-CSF resulted in significantly higher NET release at 48 h compared to untreated cells. Furthermore, NETs showed significantly higher enzymatic activity of NE and MPO after incubation with G-CSF. Lastly, incubation with TNF-α had no influence on NET release compared to untreated cells although survival counts were altered by TNF-α. Conclusions G-CSF, LPS or TNF-α each at low concentrations lead to prolonged survival of cultured neutrophils, resulting in considerable differences in NET formation and composition. These results provide new information for the use of neutrophils in long-term experiments for NET formation and provide novel insights for neutrophil behaviour under inflammatory conditions.
Collapse
Affiliation(s)
- Jan Philipp Kolman
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Laia Pagerols Raluy
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ingo Müller
- Division of Pediatric Stem Cell Transplantation and Immunology, University Medical Center Hamburg, Hamburg, Germany
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Magdalena Trochimiuk
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Birgit Appl
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hannah Wadehn
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Charlotte Maria Dücker
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fabian David Stoll
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Michael Boettcher
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Konrad Reinshagen
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julian Trah
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
4
|
Karuthadurai T, Das DN, Kumaresan A, Sinha MK, Kamaraj E, Nag P, Ebenezer Samuel King JP, Datta TK, Manimaran A, Jeyakumar S, Ramesha K. Sperm Transcripts Associated With Odorant Binding and Olfactory Transduction Pathways Are Altered in Breeding Bulls Producing Poor-Quality Semen. Front Vet Sci 2022; 9:799386. [PMID: 35274020 PMCID: PMC8902071 DOI: 10.3389/fvets.2022.799386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/03/2022] [Indexed: 12/28/2022] Open
Abstract
Spermatozoa carries a reservoir of mRNAs regulating sperm functions and fertilizing potential. Although it is well recognized that a considerable proportion of high genetic merit breeding bulls produce poor-quality semen, the transcriptomic alterations in spermatozoa from such bulls are not understood. In the present study, comparative high-throughput transcriptomic profiling of spermatozoa from good and poor-quality semen-producing bulls was carried out to identify the transcripts associated with semen quality. Using next-generation sequencing (NGS), we identified 11,632 transcripts in Holstein Friesian bull spermatozoa; after total hit normalization, a total of 544 transcripts were detected, of which 185 transcripts were common to both good and poor-quality semen, while 181 sperm transcripts were unique to good quality semen, and 178 transcripts were unique to poor-quality semen. Among the co-expressed transcripts, 31 were upregulated, while 108 were downregulated, and 46 were neutrally expressed in poor-quality semen. Bioinformatics analysis revealed that the dysregulated transcripts were predominantly involved in molecular function, such as olfactory receptor activity and odor binding, and in biological process, such as detection of chemical stimulus involved in sensory perception, sensory perception of smell, signal transduction, and signal synaptic transmission. Since a majority of the dysregulated transcripts were involved in the olfactory pathway (85% of enriched dysregulated genes were involved in this pathway), the expression of selected five transcripts associated with this pathway (OR2T11, OR10S1, ORIL3, OR5M11, and PRRX1) were validated using real-time qPCR, and it was found that their transcriptional abundance followed the same trend as observed in NGS; the sperm transcriptional abundance of OR2T11 and OR10S1 differed significantly (p < 0.05) between good and poor-quality semen. It is concluded that poor-quality semen showed altered expression of transcripts associated with olfactory receptors and pathways indicating the relationship between olfactory pathway and semen quality in bulls.
Collapse
Affiliation(s)
- Thirumalaisamy Karuthadurai
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - Dayal Nitai Das
- Dairy Production Section, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - Arumugam Kumaresan
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
- *Correspondence: Arumugam Kumaresan ;
| | - Manish Kumar Sinha
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - Elango Kamaraj
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - Pradeep Nag
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - John Peter Ebenezer Samuel King
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - Tirtha Kumar Datta
- Animal Genomics Laboratory, ICAR-National Dairy Research Institute, Karnal, India
| | - Ayyasamy Manimaran
- Dairy Production Section, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - Sakthivel Jeyakumar
- Dairy Production Section, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - Kerekoppa Ramesha
- Dairy Production Section, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| |
Collapse
|
5
|
Kagızmanlı GA, Guzelkucuk Z, Işık P, Kara A, Ozbek NY, Yarali N. Efficacy and safety of granulocyte transfusion in children: A single-center experience. J Clin Apher 2020; 35:420-426. [PMID: 32722895 DOI: 10.1002/jca.21818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/29/2020] [Accepted: 07/11/2020] [Indexed: 11/11/2022]
Abstract
BACKGROUND Granulocyte suspension transfusion (GTx) can be used in severely neutropenic patients with infections that cannot be controlled despite appropriate antibiotic therapy. OBJECTIVE We aimed to evaluate the effectiveness and safety of GTx for the treatment of febrile neutropenia (FEN) in the pediatric age group. METHODS Patients who underwent GTx in the Hematology Clinic of Ankara Child Health and Diseases Hematology Oncology Training and Research Hospital between 2013 and 2017 were evaluated retrospectively. Hematologic and clinical response rates, effects on survival, and adverse effects were investigated. Clinical response was defined at two time points: clinical response I was evaluated after each transfusion, while clinical response II was evaluated after the final GTx in a FEN episode. RESULTS During the study period, 343 GTx were given 107 FEN episodes of 74 patients. The mean number of granulocyte suspensions administered per patient and per FEN episode was 4.6 units and 3.2 units. The mean GTx volume administered was 237 ± 40 mL, and the mean granulocyte count was 2.8 ± 1.3 x 1010 /unit. Hematologic response was attained in 163 (47.6%) of 343 transfusions. Clinical response I was obtained in 88 (25.7%) of the GTx, and clinical response II was attained in 83 (78.5%) of 107 episodes. Life-threatening adverse event was not observed. The cumulative 1-month and 3-month survival rates were 87.8% and 76.5%, respectively. CONCLUSION High hematologic response and clinical recovery rates were achieved with GTx, with no limiting adverse effects. Granulocyte transfusion appears to be a safe and effective treatment in pediatric patients with FEN.
Collapse
Affiliation(s)
- Gozde Akın Kagızmanlı
- Ankara City Hospital, Department of Pediatrics, University of Health Sciences, Ankara, Turkey
| | - Zeliha Guzelkucuk
- Ankara City Hospital, Department of Pediatric Hematology and Oncology, University of Health Sciences, Ankara, Turkey
| | - Pamir Işık
- Ankara City Hospital, Department of Pediatric Hematology and Oncology, University of Health Sciences, Ankara, Turkey
| | - Abdurrahman Kara
- Ankara City Hospital, Department of Pediatric Hematology and Oncology, University of Health Sciences, Ankara, Turkey
| | - Namık Yasar Ozbek
- Ankara City Hospital, Department of Pediatric Hematology and Oncology, University of Health Sciences, Ankara, Turkey
| | - Nese Yarali
- Ankara City Hospital, Department of Pediatric Hematology and Oncology, Yıldırım Beyazıt University, Ankara, Turkey
| |
Collapse
|
6
|
Aarts CEM, Hiemstra IH, Furumaya C, van Bruggen R, Kuijpers TW. Different MDSC Activity of G-CSF/Dexamethasone Mobilized Neutrophils: Benefits to the Patient? Front Oncol 2020; 10:1110. [PMID: 32793476 PMCID: PMC7385308 DOI: 10.3389/fonc.2020.01110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 06/03/2020] [Indexed: 01/03/2023] Open
Abstract
Human neutrophils exert a well-known role as efficient effector cells to kill pathogenic micro-organisms. Apart from their role in innate immunity, neutrophils also have the capacity to suppress T cell-mediated immune responses as so-called granulocyte-myeloid-derived suppressor cells (g-MDSCs), impacting the clinical outcome of various disease settings such as cancer. Patients undergoing chemotherapy because of an underlying malignancy can develop prolonged bone marrow suppression and are prone to serious infections because of severe neutropenia. Concentrates of granulocytes for transfusion (GTX) constitute a therapeutic tool and rescue treatment to fight off these serious bacterial and fungal infections when antimicrobial therapy is ineffective. GTX neutrophils are mobilized by overnight G-CSF and/or Dexamethasone stimulation of healthy donors. Although the phenotype of these mobilized neutrophils differs from the circulating neutrophils under normal conditions, their anti-microbial function is still intact. In contrast to the unaltered antimicrobial effector functions, G-CSF/Dexamethasone-mobilized neutrophils were found to lack suppression of the T cell proliferation, whereas G-CSF-mobilized or Dexamethasone-mobilized neutrophils could still suppress the T cell proliferation upon cell activation equally well as control neutrophils. Although the mechanism of how G-CSF/Dex mobilization may silence the g-MDSC activity of neutrophils without downregulating the antimicrobial activity is presently unclear, their combined use in patients in the treatment of underlying malignancies may be beneficial-irrespective of the number of circulating neutrophils. These findings also indicate that MDSC activity does not fully overlap with the antimicrobial activity of human neutrophils and offers the opportunity to elucidate the feature(s) unique to their T-cell suppressive activity.
Collapse
Affiliation(s)
- Cathelijn E M Aarts
- Department of Blood Cell Research, Sanquin Research, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, Netherlands
| | - Ida H Hiemstra
- Department of Blood Cell Research, Sanquin Research, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, Netherlands
| | - Charita Furumaya
- Department of Blood Cell Research, Sanquin Research, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, Netherlands
| | - Robin van Bruggen
- Department of Blood Cell Research, Sanquin Research, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, Netherlands
| | - Taco W Kuijpers
- Department of Blood Cell Research, Sanquin Research, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, Netherlands.,Department of Pediatric Immunology, Rheumatology & Infectious Diseases, Emma Children's Hospital, AUMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
7
|
Volkmann J, Schmitz J, Nordlohne J, Dong L, Helmke A, Sen P, Immenschuh S, Bernhardt WM, Gwinner W, Bräsen JH, Schmitt R, Haller H, von Vietinghoff S. Kidney injury enhances renal G-CSF expression and modulates granulopoiesis and human neutrophil CD177 in vivo. Clin Exp Immunol 2019; 199:97-108. [PMID: 31509227 PMCID: PMC6904607 DOI: 10.1111/cei.13372] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2019] [Indexed: 12/25/2022] Open
Abstract
Kidney injury significantly increases overall mortality. Neutrophilic granulocytes (neutrophils) are the most abundant human blood leukocytes. They are characterized by a high turnover rate, chiefly controlled by granulocyte colony stimulating factor (G‐CSF). The role of kidney injury and uremia in regulation of granulopoiesis has not been reported. Kidney transplantation, which inherently causes ischemia–reperfusion injury of the graft, elevated human neutrophil expression of the surface glycoprotein CD177. CD177 is among the most G‐CSF‐responsive neutrophil genes and reversibly increased on neutrophils of healthy donors who received recombinant G‐CSF. In kidney graft recipients, a transient rise in neutrophil CD177 correlated with renal tubular epithelial G‐CSF expression. In contrast, CD177 was unaltered in patients with chronic renal impairment and independent of renal replacement therapy. Under controlled conditions of experimental ischemia–reperfusion and unilateral ureteral obstruction injuries in mice, renal G‐CSF mRNA and protein expression significantly increased and systemic neutrophilia developed. Human renal tubular epithelial cell G‐CSF expression was promoted by hypoxia and proinflammatory cytokine interleukin 17A in vitro. Clinically, recipients of ABO blood group‐incompatible kidney grafts developed a larger rise in neutrophil CD177. Their grafts are characterized by complement C4d deposition on the renal endothelium, even in the absence of rejection. Indeed, complement activation, but not hypoxia, induced primary human endothelial cell G‐CSF expression. Our data demonstrate that kidney injury induces renal G‐CSF expression and modulates granulopoiesis. They delineate differential G‐CSF regulation in renal epithelium and endothelium. Altered granulopoiesis may contribute to the systemic impact of kidney injury.
Collapse
Affiliation(s)
- J Volkmann
- Department of Internal Medicine, Division of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - J Schmitz
- Department of Pathology, Hannover Medical School, Hannover, Germany
| | - J Nordlohne
- Department of Internal Medicine, Division of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - L Dong
- Department of Internal Medicine, Division of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - A Helmke
- Department of Internal Medicine, Division of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - P Sen
- Department of Internal Medicine, Division of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - S Immenschuh
- Department of Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - W M Bernhardt
- Clinic for Hypertension, Kidney- and Metabolic Diseases Hannover, Hannover, Germany
| | - W Gwinner
- Department of Internal Medicine, Division of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - J H Bräsen
- Department of Pathology, Hannover Medical School, Hannover, Germany
| | - R Schmitt
- Department of Internal Medicine, Division of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - H Haller
- Department of Internal Medicine, Division of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - S von Vietinghoff
- Department of Internal Medicine, Division of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| |
Collapse
|
8
|
Ebrahimi F, Giaglis S, Hahn S, Blum CA, Baumgartner C, Kutz A, van Breda SV, Mueller B, Schuetz P, Christ-Crain M, Hasler P. Markers of neutrophil extracellular traps predict adverse outcome in community-acquired pneumonia: secondary analysis of a randomised controlled trial. Eur Respir J 2018. [PMID: 29519921 DOI: 10.1183/13993003.01389-2017] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Neutrophil extracellular traps (NETs) are a hallmark of the immune response in inflammatory diseases. However, the role of NETs in community-acquired pneumonia (CAP) is unknown. This study aims to characterise the impact of NETs on clinical outcomes in pneumonia.This is a secondary analysis of a randomised controlled, multicentre trial. Patients with CAP were randomly assigned to either 50 mg prednisone or placebo for 7 days. The primary end-point was time to clinical stability; main secondary end-points were length of hospital stay and mortality.In total, 310 patients were included in the analysis. Levels of cell-free nucleosomes as surrogate markers of NETosis were significantly increased at admission and declined over 7 days. NETs were significantly associated with reduced hazards of clinical stability and hospital discharge in multivariate adjusted analyses. Moreover, NETs were associated with a 3.8-fold increased adjusted odds ratio of 30-day mortality. Prednisone treatment modified circulatory NET levels and was associated with beneficial outcome.CAP is accompanied by pronounced NET formation. Patients with elevated serum NET markers were at higher risk for clinical instability, prolonged length of hospital stay and 30-day all-cause mortality. NETs represent a novel marker for outcome and a possible target for adjunct treatments of pneumonia.
Collapse
Affiliation(s)
- Fahim Ebrahimi
- Division of Endocrinology, Diabetes and Clinical Nutrition, Dept of Internal Medicine, University of Basel Hospital, Basel, Switzerland
| | - Stavros Giaglis
- Division of Rheumatology, Dept of Internal Medicine, Kantonsspital Aarau, Aarau, Switzerland.,Dept of Biomedicine/University Women's Hospital, University of Basel Hospital, Basel, Switzerland
| | - Sinuhe Hahn
- Dept of Biomedicine/University Women's Hospital, University of Basel Hospital, Basel, Switzerland
| | - Claudine A Blum
- Division of Endocrinology, Diabetes and Clinical Nutrition, Dept of Internal Medicine, University of Basel Hospital, Basel, Switzerland.,University Dept of Medicine, Kantonsspital Aarau, Aarau, Switzerland
| | - Christine Baumgartner
- Dept of General Internal Medicine, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Alexander Kutz
- University Dept of Medicine, Kantonsspital Aarau, Aarau, Switzerland
| | - Shane Vontelin van Breda
- Division of Rheumatology, Dept of Internal Medicine, Kantonsspital Aarau, Aarau, Switzerland.,Dept of Biomedicine/University Women's Hospital, University of Basel Hospital, Basel, Switzerland
| | - Beat Mueller
- University Dept of Medicine, Kantonsspital Aarau, Aarau, Switzerland
| | - Philipp Schuetz
- University Dept of Medicine, Kantonsspital Aarau, Aarau, Switzerland
| | - Mirjam Christ-Crain
- Division of Endocrinology, Diabetes and Clinical Nutrition, Dept of Internal Medicine, University of Basel Hospital, Basel, Switzerland.,These authors contributed equally to this work
| | - Paul Hasler
- Division of Rheumatology, Dept of Internal Medicine, Kantonsspital Aarau, Aarau, Switzerland .,These authors contributed equally to this work
| |
Collapse
|
9
|
Granulocyte transfusions in the management of neutropenic fever: A pediatric perspective. Transfus Apher Sci 2018; 57:16-19. [DOI: 10.1016/j.transci.2018.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Granulocyte Transfusions: A Critical Reappraisal. Biol Blood Marrow Transplant 2017; 23:2034-2041. [DOI: 10.1016/j.bbmt.2017.07.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 07/31/2017] [Indexed: 11/23/2022]
|
11
|
Gazendam RP, van de Geer A, Roos D, van den Berg TK, Kuijpers TW. How neutrophils kill fungi. Immunol Rev 2017; 273:299-311. [PMID: 27558342 DOI: 10.1111/imr.12454] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Neutrophils play a critical role in the prevention of invasive fungal infections. Whereas mouse studies have demonstrated the role of various neutrophil pathogen recognition receptors (PRRs), signal transduction pathways, and cytotoxicity in the murine antifungal immune response, much less is known about the killing of fungi by human neutrophils. Recently, novel primary immunodeficiencies have been identified in patients with a susceptibility to fungal infections. These human 'knock-out' neutrophils expand our knowledge to understand the role of PRRs and signaling in human fungal killing. From the studies with these patients it is becoming clear that neutrophils employ fundamentally distinct mechanisms to kill Candida albicans or Aspergillus fumigatus.
Collapse
Affiliation(s)
- Roel P Gazendam
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Annemarie van de Geer
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Dirk Roos
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Timo K van den Berg
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Taco W Kuijpers
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Angiotensin-converting enzyme enhances the oxidative response and bactericidal activity of neutrophils. Blood 2017; 130:328-339. [PMID: 28515091 DOI: 10.1182/blood-2016-11-752006] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 05/15/2017] [Indexed: 01/04/2023] Open
Abstract
Angiotensin-converting enzyme (ACE) inhibitors are widely used to reduce blood pressure. Here, we examined if an ACE is important for the antibacterial effectiveness of neutrophils. ACE knockout mice or mice treated with an ACE inhibitor were more susceptible to bacterial infection by methicillin-resistant Staphylococcus aureus (MRSA). In contrast, mice overexpressing ACE in neutrophils (NeuACE mice) have increased resistance to MRSA and better in vitro killing of MRSA, Pseudomonas aeruginosa, and Klebsiella pneumoniae ACE overexpression increased neutrophil production of reactive oxygen species (ROS) following MRSA challenge, an effect independent of the angiotensin II AT1 receptor. Specifically, as compared with wild-type (WT) mice, there was a marked increase of superoxide generation (>twofold, P < .0005) in NeuACE neutrophils following infection, whereas ACE knockout neutrophils decreased superoxide production. Analysis of membrane p47-phox and p67-phox indicates that ACE increases reduced NAD phosphate oxidase activity but does not increase expression of these subunits. Increased ROS generation mediates the enhanced bacterial resistance of NeuACE mice because the enhanced resistance is lost with DPI (an inhibitor of ROS production by flavoenzymes) inhibition. NeuACE granulocytes also have increased neutrophil extracellular trap formation and interleukin-1β release in response to MRSA. In a mouse model of chemotherapy-induced neutrophil depletion, transfusion of ACE-overexpressing neutrophils was superior to WT neutrophils in treating MRSA infection. These data indicate a previously unknown function of ACE in neutrophil antibacterial defenses and suggest caution in the treatment of certain individuals with ACE inhibitors. ACE overexpression in neutrophils may be useful in boosting the immune response to antibiotic-resistant bacterial infection.
Collapse
|
13
|
Hiemstra IH, van Hamme JL, Janssen MH, van den Berg TK, Kuijpers TW. Dexamethasone promotes granulocyte mobilization by prolonging the half-life of granulocyte-colony-stimulating factor in healthy donors for granulocyte transfusions. Transfusion 2016; 57:674-684. [PMID: 28032635 DOI: 10.1111/trf.13941] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 09/29/2016] [Accepted: 10/03/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Granulocyte transfusion (GTX) is a potential approach to correcting neutropenia and relieving the increased risk of infection in patients who are refractory to antibiotics. To mobilize enough granulocytes for transfusion, healthy donors are premedicated with granulocyte-colony-stimulating factor (G-CSF) and dexamethasone. Granulocytes have a short circulatory half-life. Consequently, patients need to receive GTX every other day to keep circulating granulocyte counts at an acceptable level. We investigated whether plasma from premedicated donors was capable of prolonging neutrophil survival and, if so, which factor could be held responsible. STUDY DESIGN AND METHODS The effects of plasma from G-CSF/dexamethasone-treated donors on neutrophil survival were assessed by annexin-V, CD16. and CXCR4 staining and nuclear morphology. We isolated an albumin-bound protein using α-chymotrypsin and albumin-depletion and further characterized it using protein analysis. The effects of dexamethasone and G-CSF were assessed using mifepristone and G-CSF-neutralizing antibody. G-CSF plasma concentrations were determined by Western blot and Luminex analyses. RESULTS G-CSF/dexamethasone plasma contained a survival-promoting factor for at least 2 days. This factor was recognized as an albumin-associated protein and was identified as G-CSF itself, which was surprising considering its reported half-life of only 4.5 hours. Compared with coadministration of dexamethasone, administration of G-CSF alone to the same GTX donors led to a faster decline in circulating G-CSF levels, whereas dexamethasone itself did not induce any G-CSF, demonstrating a role for dexamethasone in increasing G-CSF half-life. CONCLUSION Dexamethasone increases granulocyte yield upon coadministration with G-CSF by extending G-CSF half-life. This observation might also be exploited in the coadministration of dexamethasone with other recombinant proteins to modulate their half-life.
Collapse
Affiliation(s)
- Ida H Hiemstra
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam
| | - John L van Hamme
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam
| | - Machiel H Janssen
- Department of Experimental Immunology, Academic Medical Center (AMC)
| | - Timo K van den Berg
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam
| | - Taco W Kuijpers
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam.,Department of Pediatric Hematology, Immunology, and Infectious Disease, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
14
|
Gazendam RP, van de Geer A, van Hamme JL, Tool ATJ, van Rees DJ, Aarts CEM, van den Biggelaar M, van Alphen F, Verkuijlen P, Meijer AB, Janssen H, Roos D, van den Berg TK, Kuijpers TW. Impaired killing of Candida albicans by granulocytes mobilized for transfusion purposes: a role for granule components. Haematologica 2016; 101:587-96. [PMID: 26802050 DOI: 10.3324/haematol.2015.136630] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 01/14/2016] [Indexed: 12/21/2022] Open
Abstract
Granulocyte transfusions are used to treat neutropenic patients with life-threatening bacterial or fungal infections that do not respond to anti-microbial drugs. Donor neutrophils that have been mobilized with granulocyte-colony stimulating factor (G-CSF) and dexamethasone are functional in terms of antibacterial activity, but less is known about their fungal killing capacity. We investigated the neutrophil-mediated cytotoxic response against C. albicans and A. fumigatus in detail. Whereas G-CSF/dexamethasone-mobilized neutrophils appeared less mature as compared to neutrophils from untreated controls, these cells exhibited normal ROS production by the NADPH oxidase system and an unaltered granule mobilization capacity upon stimulation. G-CSF/dexamethasone-mobilized neutrophils efficiently inhibited A. fumigatus germination and killed Aspergillus and Candida hyphae, but the killing of C. albicans yeasts was distinctly impaired. Following normal Candida phagocytosis, analysis by mass spectrometry of purified phagosomes after fusion with granules demonstrated that major constituents of the antimicrobial granule components, including major basic protein (MBP), were reduced. Purified MBP showed candidacidal activity, and neutrophil-like Crisp-Cas9 NB4-KO-MBP differentiated into phagocytes were impaired in Candida killing. Together, these findings indicate that G-CSF/dexamethasone-mobilized neutrophils for transfusion purposes have a selectively impaired capacity to kill Candida yeasts, as a consequence of an altered neutrophil granular content.
Collapse
Affiliation(s)
- Roel P Gazendam
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Annemarie van de Geer
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, The Netherlands
| | - John L van Hamme
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Anton T J Tool
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Dieke J van Rees
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Cathelijn E M Aarts
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Maartje van den Biggelaar
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Floris van Alphen
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Paul Verkuijlen
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Alexander B Meijer
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Hans Janssen
- The Netherlands Netherlands Cancer Institute, Division of Cell Biology, Amsterdam, The Netherlands
| | - Dirk Roos
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Timo K van den Berg
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Taco W Kuijpers
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, The Netherlands Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
15
|
[Advances in the treatment of severe aplastic anemia]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2016; 36:711-5. [PMID: 26462649 PMCID: PMC7348265 DOI: 10.3760/cma.j.issn.0253-2727.2015.08.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
16
|
Abstract
Immune cells express several adhesion G protein-coupled receptors (aGPCRs), including the ADGRE subfamily members EMR1 (F4/80, ADGRE1), EMR2 (ADGRE2), EMR3 (ADGRE3), EMR4 (FIRE, ADGRE4), and CD97 (ADGRE5), the ADGRB subfamily member BAI1 (ADGRB1), and the ADGRG subfamily members GPR56 (ADGRG1), GPR97 (Pb99, ADGRG3), and GPR114 (ADGRG5). Expression of these molecules in hematopoietic stem and progenitor cells, monocytes/macrophages (Mφs), dendritic cells, granulocytes, and lymphocytes depends on lineage diversification and maturation, making them suitable markers for individual leukocyte subsets (e.g., F4/80 on mouse Mφs). Recent studies revealed intriguing activities of aGPCRs in tolerance induction (EMR1), granulopoiesis (CD97), engulfment of apoptotic cells and bacteria (BAI1), hematopoietic stem cell formation (GPR56), and control of cytotoxicity (GPR56). Here, we review these findings and discuss their biological and translational implications.
Collapse
|
17
|
Cugno C, Deola S, Filippini P, Stroncek DF, Rutella S. Granulocyte transfusions in children and adults with hematological malignancies: benefits and controversies. J Transl Med 2015; 13:362. [PMID: 26572736 PMCID: PMC4647505 DOI: 10.1186/s12967-015-0724-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 11/02/2015] [Indexed: 12/22/2022] Open
Abstract
Bacterial and fungal infections continue to pose a major clinical challenge in patients with prolonged severe neutropenia after chemotherapy or hematopoietic stem cell transplantation (HSCT). With the advent of granulocyte colony-stimulating factor (G-CSF) to mobilize neutrophils in healthy donors, granulocyte transfusions have been broadly used to prevent and/or treat life-threatening infections in patients with severe febrile neutropenia and/or neutrophil dysfunction. Although the results of randomized controlled trials are inconclusive, there are suggestions from pilot and retrospective studies that granulocyte transfusions may benefit selected categories of patients. We will critically appraise the evidence related to the use of therapeutic granulocyte transfusions in children and adults, highlighting current controversies in the field and discussing complementary approaches to modulate phagocyte function in the host.
Collapse
Affiliation(s)
- Chiara Cugno
- Division of Translational Medicine, Clinical Research Center, Sidra Medical and Research Center, Out-Patient Clinic, Al Luqta Street, Education City North Campus, P.O. Box 26999, Doha, Qatar. .,Department of Pediatric Hematology and Oncology, IRCCS Fondazione Policlinico San Matteo, Pavia, Italy.
| | - Sara Deola
- Division of Translational Medicine, Clinical Research Center, Sidra Medical and Research Center, Out-Patient Clinic, Al Luqta Street, Education City North Campus, P.O. Box 26999, Doha, Qatar. .,Hematology and Bone Marrow Transplant Unit, Ospedale Centrale Bolzano, Bolzano, Italy.
| | - Perla Filippini
- Deep Immunophenotyping Core, Division of Translational Medicine, Sidra Medical and Research Center, Doha, Qatar.
| | - David F Stroncek
- Cell Processing Section, Department of Transfusion Medicine, National Institutes of Health (NIH) Clinical Center, Bethesda, MD, USA.
| | - Sergio Rutella
- Division of Translational Medicine, Clinical Research Center, Sidra Medical and Research Center, Out-Patient Clinic, Al Luqta Street, Education City North Campus, P.O. Box 26999, Doha, Qatar.
| |
Collapse
|
18
|
Cannas G, Thomas X. Supportive care in patients with acute leukaemia: historical perspectives. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2015; 13:205-20. [PMID: 25369611 PMCID: PMC4385068 DOI: 10.2450/2014.0080-14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 06/24/2014] [Indexed: 01/09/2023]
Affiliation(s)
- Giovanna Cannas
- Haemovigilance Unit, Edouard Herriot Hospital and Croix-Rousse Hospital, Hospices Civils de Lyon, Lyon, France
| | - Xavier Thomas
- Leukaemia Unit, Haematology Department, Lyon-Sud Hospital, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
19
|
Wang H, Wu Y, Fu R, Qu W, Ruan E, Wang G, Liu H, Song J, Xing L, Guan J, Li L, Liu C, Shao Z. Granulocyte transfusion combined with granulocyte colony stimulating factor in severe infection patients with severe aplastic anemia: a single center experience from China. PLoS One 2014; 9:e88148. [PMID: 24505406 PMCID: PMC3914902 DOI: 10.1371/journal.pone.0088148] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 01/06/2014] [Indexed: 12/14/2022] Open
Abstract
Objective To investigate the efficacy and safety of granulocyte transfusion combined with granulocyte colony stimulating factor (G-CSF) in severe infection patients with severe aplastic anemia (SAA). Methods Fifty-six patients in severe infections with SAA who had received granulocyte transfusions combined with G-CSF from 2006 to 2012 in our department were analyzed. A retrospective analysis was undertaken to investigate the survival rates (at 30 days, 90 days and 180 days), the responses to treatment (at 7 days and 30 days, including microbiological, radiographic and clinical responses), the neutrophil count and adverse events after transfusion. Results All SAA patients with severe infections were treated with granulocyte transfusions combined with G-CSF. Forty-seven patients had received antithymocyte globulin/antilymphocyte globulin and cyclosporine A as immunosuppressive therapy. The median number of granulocyte components transfused was 18 (range, 3–75). The survival at 30 days, 90 days and 180 days were 50(89%), 39(70%) and 37(66%) respectively. Among 31 patients who had invasive fungal infections, the survival at 30 days, 90 days and 180 days were 27(87%), 18(58%) and 16(52%) respectively. Among the 25 patients who had refractory severe bacterial infections, the survival at 30 days, 90 days and 180 days were 23(92%), 21(84%) and 21(84%) respectively. Survival rate was correlated with hematopoietic recovery. Responses of patients at 7 and 30 days were correlated with survival rate. Common adverse effects of granulocyte transfusion included mild to moderate fever, chills, allergy and dyspnea. Conclusion Granulocyte transfusions combined with G-CSF could be an adjunctive therapy for treating severe infections of patients with SAA.
Collapse
Affiliation(s)
- Huaquan Wang
- Department of Hematology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Yuhong Wu
- Department of Hematology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Rong Fu
- Department of Hematology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Wen Qu
- Department of Hematology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Erbao Ruan
- Department of Hematology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Guojin Wang
- Department of Hematology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Hong Liu
- Department of Hematology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Jia Song
- Department of Hematology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Limin Xing
- Department of Hematology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Jing Guan
- Department of Hematology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Lijuan Li
- Department of Hematology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Chunyan Liu
- Department of Hematology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Zonghong Shao
- Department of Hematology, General Hospital, Tianjin Medical University, Tianjin, China
- * E-mail:
| |
Collapse
|
20
|
Abstract
Bacterial and fungal infections continue to be a major cause of morbidity and mortality in severely neutropenic patients undergoing aggressive chemotherapy regimens or hematopoietic stem cell transplantation. Traditional granulocyte transfusion therapy, a logical approach in treating these infections, has been available for many years, and several controlled studies have shown this therapy to be useful. However, granulocyte transfusion therapy fell out of favor because the results were not clinically impressive, and adverse results were reported. These disappointing results were felt to be, in part, because of the low doses of granulocytes provided. More recent studies have attempted to increase the numbers of transfused cells by stimulating normal granulocyte donors with G-CSF (+/-corticosteroids). With these techniques, the number of granulocytes transfused can be increased 3-4 fold. The cells have been shown to circulate in recipients, and daily transfusions are capable of maintaining normal or near-normal blood neutrophil counts in previously severely neutropenic patients. The cells appear to function normally by a variety of in vitro and in vivo tests. Clinical benefit, as defined by survival or clearance of infection, has not been definitively determined. Results of an ongoing randomized controlled clinical trial should be available in the near future.
Collapse
Affiliation(s)
- Anthony A. Marfin
- Puget Sound Blood Center, Seattle, WA, USA
- Current Address: HIV Prevention Branch, Division of Global HIV/AIDS, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Thomas H. Price
- Puget Sound Blood Center, Seattle, WA, USA
- Department of Medicine, Division of Hematology, University of Washington, Seattle, WA, USA
| |
Collapse
|
21
|
Wang L, Ge S, Agustian A, Hiss M, Haller H, von Vietinghoff S. Surface receptor CD177/NB1 does not confer a recruitment advantage to neutrophilic granulocytes during human peritonitis. Eur J Haematol 2013; 90:436-7. [PMID: 23461681 DOI: 10.1111/ejh.12095] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Chiara AD, Pederzoli-Ribeil M, Burgel PR, Danel C, Witko-Sarsat V. Targeting cytosolic proliferating cell nuclear antigen in neutrophil-dominated inflammation. Front Immunol 2012; 3:311. [PMID: 23181059 PMCID: PMC3501000 DOI: 10.3389/fimmu.2012.00311] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 09/17/2012] [Indexed: 12/12/2022] Open
Abstract
New therapeutic approaches that can accelerate neutrophil apoptosis under inflammatory conditions to enhance the resolution of inflammation are now under study. Neutrophils are deprived of proliferative capacity and have a tightly controlled lifespan to avoid their persistence at the site of injury. We have recently described that the proliferating cell nuclear antigen (PCNA), a nuclear factor involved in DNA replication and repair of proliferating cells is a key regulator of neutrophil survival. The nuclear-to-cytoplasmic relocalization occurred during granulocytic differentiation and is dependent on a nuclear export sequence thus strongly suggesting that PCNA has physiologic cytoplasmic functions. In this review, we will try to put into perspective the physiologic relevance of PCNA in neutrophils. We will discuss key issues such as molecular structure, post-translational modifications, based on our knowledge of nuclear PCNA, assuming that similar principles governing its function are conserved between nuclear and cytosolic PCNA. The example of cystic fibrosis that features one of the most intense neutrophil-dominated pulmonary inflammation will be discussed. We believe that through an intimate comprehension of the cytosolic PCNA scaffold based on nuclear PCNA knowledge, novel pathways regulating neutrophil survival can be unraveled and innovative agents can be developed to dampen inflammation where it proves detrimental.
Collapse
Affiliation(s)
- Alessia De Chiara
- Department of Immunology and Hematology, INSERM U1016, Cochin Institute ParisFrance
- Paris Descartes UniversityParis, France
- CNRS-UMR 8104Paris, France
| | - Magali Pederzoli-Ribeil
- Department of Immunology and Hematology, INSERM U1016, Cochin Institute ParisFrance
- Paris Descartes UniversityParis, France
- CNRS-UMR 8104Paris, France
| | - Pierre-Régis Burgel
- Paris Descartes UniversityParis, France
- Department of Pneumology, Cochin HospitalParis, France
| | - Claire Danel
- Paris Diderot UniversityParis, France
- Department of Pneumology, Bichat HospitalParis, France
| | - Véronique Witko-Sarsat
- Department of Immunology and Hematology, INSERM U1016, Cochin Institute ParisFrance
- Paris Descartes UniversityParis, France
- CNRS-UMR 8104Paris, France
| |
Collapse
|
23
|
Farley K, Stolley JM, Zhao P, Cooley J, Remold-O'Donnell E. A serpinB1 regulatory mechanism is essential for restricting neutrophil extracellular trap generation. THE JOURNAL OF IMMUNOLOGY 2012; 189:4574-81. [PMID: 23002442 DOI: 10.4049/jimmunol.1201167] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
NETosis (neutrophil extracellular trap [NET] generation), a programmed death pathway initiated in mature neutrophils by pathogens and inflammatory mediators, can be a protective process that sequesters microbes and prevents spread of infection, but it can also be a pathological process that causes inflammation and serious tissue injury. Little is known about the regulatory mechanism. Previously, we demonstrated that serpinb1-deficient mice are highly susceptible to pulmonary bacterial and viral infections due to inflammation and tissue injury associated with increased neutrophilic death. In this study, we used in vitro and in vivo approaches to investigate whether SerpinB1 regulates NETosis. We found that serpinb1-deficient bone marrow and lung neutrophils are hypersusceptible to NETosis induced by multiple mediators in both an NADPH-dependent and -independent manner, indicating a deeply rooted regulatory role in NETosis. This role is further supported by increased nuclear expansion (representing chromatin decondensation) of PMA-treated serpinb1-deficient neutrophils compared with wild-type, by migration of SerpinB1 from the cytoplasm to the nucleus of human neutrophils that is coincident with or preceding early conversion of lobulated (segmented) nuclei to delobulated (spherical) morphology, as well as by the finding that exogenous human recombinant SerpinB1 abrogates NET production. NETosis of serpinb1-deficient neutrophils is also increased in vivo during Pseudomonas aeruginosa lung infection. The findings identify a previously unrecognized regulatory mechanism involving SerpinB1 that restricts the production of NETs.
Collapse
Affiliation(s)
- Kalamo Farley
- Immune Disease Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
24
|
Milot E, Filep JG. Regulation of neutrophil survival/apoptosis by Mcl-1. ScientificWorldJournal 2011; 11:1948-62. [PMID: 22125448 PMCID: PMC3217587 DOI: 10.1100/2011/131539] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 10/11/2011] [Indexed: 12/14/2022] Open
Abstract
Neutrophil granulocytes have the shortest lifespan among leukocytes in the circulation and die via apoptosis. At sites of infection or tissue injury, prolongation of neutrophil lifespan is critical for effective host defense. Apoptosis of inflammatory neutrophils and their clearance are critical control points for termination of the inflammatory response. Evasion of neutrophil apoptosis aggravates local injury and leads to persistent tissue damage. The short-lived prosurvival Bcl-2 family protein, Mcl-1 (myeloid cell leukemia-1), is instrumental in controlling apoptosis and consequently neutrophil lifespan in response to rapidly changing environmental cues during inflammation. This paper will focus on multiple levels of control of Mcl-1 expression and function and will discuss targeting Mcl-1 as a potential therapeutic strategy to enhance the resolution of inflammation through accelerating neutrophil apoptosis.
Collapse
Affiliation(s)
- Eric Milot
- Department of Medicine, Research Center Maisonneuve-Rosemont Hospital, University of Montreal, 5415 Boulevard de l'Assomption, Montreal, QC, Canada H1T 2M4
| | | |
Collapse
|
25
|
Sa Q, Hoover-Plow JL. EMILIN2 (Elastin microfibril interface located protein), potential modifier of thrombosis. Thromb J 2011; 9:9. [PMID: 21569335 PMCID: PMC3113922 DOI: 10.1186/1477-9560-9-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 05/11/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Elastin microfibril interface located protein 2 (EMILIN2) is an extracellular glycoprotein associated with cardiovascular development. While other EMILIN proteins are reported to play a role in elastogenesis and coagulation, little is known about EMILIN2 function in the cardiovascular system. The objective of this study was to determine whether EMILIN2 could play a role in thrombosis. RESULTS EMILIN2 mRNA was expressed in 8 wk old C57BL/6J mice in lung, heart, aorta and bone marrow, with the highest expression in bone marrow. In mouse cells, EMILIN2 mRNA expression in macrophages was higher than expression in endothelial cells and fibroblasts. EMILIN2 was identified with cells and extracellular matrix by immunohistochemistry in the carotid and aorta. After carotid ferric chloride injury, EMILIN2 was abundantly expressed in the thrombus and inhibition of EMILIN2 increased platelet de-aggregation after ADP-stimulated platelet aggregation. CONCLUSIONS These results suggest EMILIN2 could play a role in thrombosis as a constituent of the vessel wall and/or a component of the thrombus.
Collapse
Affiliation(s)
- Qila Sa
- Joseph J, Jacobs Center For Thrombosis and Vascular Biology, Department of Cardiovascular Medicine and Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| | | |
Collapse
|
26
|
Witko-Sarsat V, Pederzoli-Ribeil M, Hirsch E, Hirsh E, Sozzani S, Cassatella MA. Regulating neutrophil apoptosis: new players enter the game. Trends Immunol 2011; 32:117-24. [PMID: 21317039 DOI: 10.1016/j.it.2011.01.001] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 12/29/2010] [Accepted: 01/04/2011] [Indexed: 02/07/2023]
Abstract
Recently, unexpected biological features of polymorphonuclear neutrophils have been revealed. In addition to their pivotal role in the defence against pathogens, neutrophils display a high degree of plasticity and contribute to control of adaptive immune responses. An emerging aspect of neutrophils is their ability to modulate their survival in response to both intrinsic and extrinsic factors. This review focuses on recent advances that have uncovered proliferating cell nuclear antigen (PCNA) and other cell cycle regulatory proteins as novel players regulating neutrophil survival. A better understanding of the mechanisms involved in neutrophil fate might pave the way for the identification of new anti-inflammatory molecules.
Collapse
Affiliation(s)
- Véronique Witko-Sarsat
- Institut National de la Santé et de la Recherche Médicale Unité 1016, 75014 Paris, France.
| | | | | | | | | | | |
Collapse
|
27
|
Witko-Sarsat V, Mocek J, Bouayad D, Tamassia N, Ribeil JA, Candalh C, Davezac N, Reuter N, Mouthon L, Hermine O, Pederzoli-Ribeil M, Cassatella MA. Proliferating cell nuclear antigen acts as a cytoplasmic platform controlling human neutrophil survival. ACTA ACUST UNITED AC 2010; 207:2631-45. [PMID: 20975039 PMCID: PMC2989777 DOI: 10.1084/jem.20092241] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cytosolic proliferating cell nuclear antigen (PCNA) binds to procaspases and protects human neutrophils from apoptosis. Neutrophil apoptosis is a highly regulated process essential for inflammation resolution, the molecular mechanisms of which are only partially elucidated. In this study, we describe a survival pathway controlled by proliferating cell nuclear antigen (PCNA), a nuclear factor involved in DNA replication and repairing of proliferating cells. We show that mature neutrophils, despite their inability to proliferate, express high levels of PCNA exclusively in their cytosol and constitutively associated with procaspases, presumably to prevent their activation. Notably, cytosolic PCNA abundance decreased during apoptosis, and increased during in vitro and in vivo exposure to the survival factor granulocyte colony-stimulating factor (G-CSF). Peptides derived from the cyclin-dependent kinase inhibitor p21, which compete with procaspases to bind PCNA, triggered neutrophil apoptosis thus demonstrating that specific modification of PCNA protein interactions affects neutrophil survival. Furthermore, PCNA overexpression rendered neutrophil-differentiated PLB985 myeloid cells significantly more resistant to TNF-related apoptosis-inducing ligand– or gliotoxin-induced apoptosis. Conversely, a decrease in PCNA expression after PCNA small interfering RNA transfection sensitized these cells to apoptosis. Finally, a mutation in the PCNA interdomain-connecting loop, the binding site for many partners, significantly decreased the PCNA-mediated antiapoptotic effect. These results identify PCNA as a regulator of neutrophil lifespan, thereby highlighting a novel target to potentially modulate pathological inflammation.
Collapse
Affiliation(s)
- Véronique Witko-Sarsat
- Institut National de la Santé et de la Recherche Médicale Unité 1016, 75014 Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Toll-like receptor-induced reactivity and strongly potentiated IL-8 production in granulocytes mobilized for transfusion purposes. Blood 2010; 115:4588-96. [PMID: 20354173 DOI: 10.1182/blood-2009-11-253245] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Transfusion of granulocytes from granulocyte-colony stimulating factor (G-CSF)/dexamethasone (dexa)-treated donors can be beneficial for neutropenic recipients that are refractory to antimicrobial therapy. G-CSF/dexa treatment not only increases the number of circulating neutrophils but also affects their gene expression. Because of the intended transfusion of these granulocytes into patients who are severely ill, it is of importance to establish to what extent mobilization affects the cellular behavior of neutrophils. Here, we studied the effects of mobilization on Toll-like receptor (TLR)-mediated responses. Mobilized granulocytes displayed increased gene and protein expression of TLR2, TLR4, TLR5, and TLR8. Although mobilized granulocytes displayed normal priming of nicotinamide adenine dinucleotide phosphate oxidase activity and a slight increase in adhesion in response to TLR stimulation, these cells produced massive amounts of interleukin-8 (IL-8), in particular to TLR2 and TLR8 stimulation. The increase in IL-8 release occurred despite reduced IL-8 mRNA levels in the donor granulocytes after in vivo G-CSF/dexa treatment, indicating that the enhanced TLR-induced IL-8 production was largely determined by posttranscriptional regulation. In summary, granulocytes mobilized for transfusion purposes show enhanced TLR responsiveness in cytokine production, which is anticipated to be beneficial for the function of these cells on transfusion into patients.
Collapse
|
29
|
|
30
|
Fox S, Leitch AE, Duffin R, Haslett C, Rossi AG. Neutrophil apoptosis: relevance to the innate immune response and inflammatory disease. J Innate Immun 2010; 2:216-27. [PMID: 20375550 DOI: 10.1159/000284367] [Citation(s) in RCA: 289] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 12/15/2009] [Indexed: 12/12/2022] Open
Abstract
Neutrophils are the most abundant cell type involved in the innate immune response. They are rapidly recruited to sites of injury or infection where they engulf and kill invading microorganisms. Neutrophil apoptosis, the process of programmed cell death that prevents the release of neutrophil histotoxic contents, is tightly regulated and limits the destructive capacity of neutrophil products to surrounding tissue. The subsequent recognition and phagocytosis of apoptotic cells by phagocytic cells such as macrophages is central to the successful resolution of an inflammatory response and it is increasingly apparent that the dying neutrophil itself exerts an anti-inflammatory effect through modulation of surrounding cell responses, particularly macrophage inflammatory cytokine release. Apoptosis may be delayed, induced or enhanced by micro-organisms dependent on their immune evasion strategies and the health of the host they encounter. There is now an established field of research aimed at understanding the regulation of apoptosis and its potential as a target for therapeutic intervention in inflammatory and infective diseases. This review focuses on the physiological regulation of neutrophil apoptosis with respect to the innate immune system and highlights recent advances in mechanistic understanding of apoptotic pathways and their therapeutic manipulation in appropriate and excessive innate immune responses.
Collapse
Affiliation(s)
- Sarah Fox
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh Medical School, Edinburgh, UK. sfox1 @ staffmail.ed.ac.uk
| | | | | | | | | |
Collapse
|