1
|
Park TY, Jeon J, Lee N, Kim J, Song B, Kim JH, Lee SK, Liu D, Cha Y, Kim M, Leblanc P, Herrington TM, Carter BS, Schweitzer JS, Kim KS. Co-transplantation of autologous T reg cells in a cell therapy for Parkinson's disease. Nature 2023; 619:606-615. [PMID: 37438521 DOI: 10.1038/s41586-023-06300-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/08/2023] [Indexed: 07/14/2023]
Abstract
The specific loss of midbrain dopamine neurons (mDANs) causes major motor dysfunction in Parkinson's disease, which makes cell replacement a promising therapeutic approach1-4. However, poor survival of grafted mDANs remains an obstacle to successful clinical outcomes5-8. Here we show that the surgical procedure itself (referred to here as 'needle trauma') triggers a profound host response that is characterized by acute neuroinflammation, robust infiltration of peripheral immune cells and brain cell death. When midbrain dopamine (mDA) cells derived from human induced pluripotent stem (iPS) cells were transplanted into the rodent striatum, less than 10% of implanted tyrosine hydroxylase (TH)+ mDANs survived at two weeks after transplantation. By contrast, TH- grafted cells mostly survived. Notably, transplantation of autologous regulatory T (Treg) cells greatly modified the response to needle trauma, suppressing acute neuroinflammation and immune cell infiltration. Furthermore, intra-striatal co-transplantation of Treg cells and human-iPS-cell-derived mDA cells significantly protected grafted mDANs from needle-trauma-associated death and improved therapeutic outcomes in rodent models of Parkinson's disease with 6-hydroxydopamine lesions. Co-transplantation with Treg cells also suppressed the undesirable proliferation of TH- grafted cells, resulting in more compact grafts with a higher proportion and higher absolute numbers of TH+ neurons. Together, these data emphasize the importance of the initial inflammatory response to surgical injury in the differential survival of cellular components of the graft, and suggest that co-transplanting autologous Treg cells effectively reduces the needle-trauma-induced death of mDANs, providing a potential strategy to achieve better clinical outcomes for cell therapy in Parkinson's disease.
Collapse
Affiliation(s)
- Tae-Yoon Park
- Molecular Neurobiology Laboratory, Department of Psychiatry and McLean Hospital, Harvard Medical School, Belmont, MA, USA
- Program in Neuroscience, Harvard Medical School, Belmont, MA, USA
| | - Jeha Jeon
- Molecular Neurobiology Laboratory, Department of Psychiatry and McLean Hospital, Harvard Medical School, Belmont, MA, USA
- Program in Neuroscience, Harvard Medical School, Belmont, MA, USA
| | - Nayeon Lee
- Molecular Neurobiology Laboratory, Department of Psychiatry and McLean Hospital, Harvard Medical School, Belmont, MA, USA
- Program in Neuroscience, Harvard Medical School, Belmont, MA, USA
| | - Jisun Kim
- Molecular Neurobiology Laboratory, Department of Psychiatry and McLean Hospital, Harvard Medical School, Belmont, MA, USA
- Program in Neuroscience, Harvard Medical School, Belmont, MA, USA
| | - Bin Song
- Molecular Neurobiology Laboratory, Department of Psychiatry and McLean Hospital, Harvard Medical School, Belmont, MA, USA
- Program in Neuroscience, Harvard Medical School, Belmont, MA, USA
| | - Jung-Ho Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Sang-Kyou Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
- Good T Cells, Inc., Seoul, Republic of Korea
| | - Dongxin Liu
- Molecular Neurobiology Laboratory, Department of Psychiatry and McLean Hospital, Harvard Medical School, Belmont, MA, USA
- Program in Neuroscience, Harvard Medical School, Belmont, MA, USA
| | - Young Cha
- Molecular Neurobiology Laboratory, Department of Psychiatry and McLean Hospital, Harvard Medical School, Belmont, MA, USA
- Program in Neuroscience, Harvard Medical School, Belmont, MA, USA
| | - Minseon Kim
- Molecular Neurobiology Laboratory, Department of Psychiatry and McLean Hospital, Harvard Medical School, Belmont, MA, USA
- Program in Neuroscience, Harvard Medical School, Belmont, MA, USA
| | - Pierre Leblanc
- Molecular Neurobiology Laboratory, Department of Psychiatry and McLean Hospital, Harvard Medical School, Belmont, MA, USA
- Program in Neuroscience, Harvard Medical School, Belmont, MA, USA
| | - Todd M Herrington
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Bob S Carter
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jeffrey S Schweitzer
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kwang-Soo Kim
- Molecular Neurobiology Laboratory, Department of Psychiatry and McLean Hospital, Harvard Medical School, Belmont, MA, USA.
- Program in Neuroscience, Harvard Medical School, Belmont, MA, USA.
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Harvard Medical School, Belmont, MA, USA.
| |
Collapse
|
2
|
Schlöder J, Shahneh F, Schneider FJ, Wieschendorf B. Boosting regulatory T cell function for the treatment of autoimmune diseases – That’s only half the battle! Front Immunol 2022; 13:973813. [PMID: 36032121 PMCID: PMC9400058 DOI: 10.3389/fimmu.2022.973813] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/18/2022] [Indexed: 01/04/2023] Open
Abstract
Regulatory T cells (Treg) represent a subset of specialized T cells that are essential for the regulation of immune responses and maintenance of peripheral tolerance. Once activated, Treg exert powerful immunosuppressive properties, for example by inhibiting T cell-mediated immune responses against self-antigens, thereby protecting our body from autoimmunity. Autoimmune diseases such as multiple sclerosis, rheumatoid arthritis or systemic lupus erythematosus, exhibit an immunological imbalance mainly characterized by a reduced frequency and impaired function of Treg. In addition, there has been increasing evidence that – besides Treg dysfunction – immunoregulatory mechanisms fail to control autoreactive T cells due to a reduced responsiveness of T effector cells (Teff) for the suppressive properties of Treg, a process termed Treg resistance. In order to efficiently treat autoimmune diseases and thus fully induce immunological tolerance, a combined therapy aimed at both enhancing Treg function and restoring Teff responsiveness could most likely be beneficial. This review provides an overview of immunomodulating drugs that are currently used to treat various autoimmune diseases in the clinic and have been shown to increase Treg frequency as well as Teff sensitivity to Treg-mediated suppression. Furthermore, we discuss strategies on how to boost Treg activity and function, and their potential use in the treatment of autoimmunity. Finally, we present a humanized mouse model for the preclinical testing of Treg-activating substances in vivo.
Collapse
Affiliation(s)
- Janine Schlöder
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- ActiTrexx GmbH, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- *Correspondence: Janine Schlöder,
| | - Fatemeh Shahneh
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Franz-Joseph Schneider
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- ActiTrexx GmbH, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Björn Wieschendorf
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- ActiTrexx GmbH, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
3
|
Bellinghausen I, Khatri R, Saloga J. Current Strategies to Modulate Regulatory T Cell Activity in Allergic Inflammation. Front Immunol 2022; 13:912529. [PMID: 35720406 PMCID: PMC9205643 DOI: 10.3389/fimmu.2022.912529] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/02/2022] [Indexed: 12/12/2022] Open
Abstract
Over the past decades, atopic diseases, including allergic rhinitis, asthma, atopic dermatitis, and food allergy, increased strongly worldwide, reaching up to 50% in industrialized countries. These diseases are characterized by a dominating type 2 immune response and reduced numbers of allergen-specific regulatory T (Treg) cells. Conventional allergen-specific immunotherapy is able to tip the balance towards immunoregulation. However, in mouse models of allergy adaptive transfer of Treg cells did not always lead to convincing beneficial results, partially because of limited stability of their regulatory phenotype activity. Besides genetic predisposition, it has become evident that environmental factors like a westernized lifestyle linked to modern sanitized living, the early use of antibiotics, and the consumption of unhealthy foods leads to epithelial barrier defects and dysbiotic microbiota, thereby preventing immune tolerance and favoring the development of allergic diseases. Epigenetic modification of Treg cells has been described as one important mechanism in this context. In this review, we summarize how environmental factors affect the number and function of Treg cells in allergic inflammation and how this knowledge can be exploited in future allergy prevention strategies as well as novel therapeutic approaches.
Collapse
Affiliation(s)
- Iris Bellinghausen
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Rahul Khatri
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Joachim Saloga
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
4
|
Schroeter CB, Huntemann N, Bock S, Nelke C, Kremer D, Pfeffer K, Meuth SG, Ruck T. Crosstalk of Microorganisms and Immune Responses in Autoimmune Neuroinflammation: A Focus on Regulatory T Cells. Front Immunol 2021; 12:747143. [PMID: 34691057 PMCID: PMC8529161 DOI: 10.3389/fimmu.2021.747143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 09/20/2021] [Indexed: 12/22/2022] Open
Abstract
Regulatory T cells (Tregs) are the major determinant of peripheral immune tolerance. Many Treg subsets have been described, however thymus-derived and peripherally induced Tregs remain the most important subpopulations. In multiple sclerosis, a prototypical autoimmune disorder of the central nervous system, Treg dysfunction is a pathogenic hallmark. In contrast, induction of Treg proliferation and enhancement of their function are central immune evasion mechanisms of infectious pathogens. In accordance, Treg expansion is compartmentalized to tissues with high viral replication and prolonged in chronic infections. In friend retrovirus infection, Treg expansion is mainly based on excessive interleukin-2 production by infected effector T cells. Moreover, pathogens seem also to enhance Treg functions as shown in human immunodeficiency virus infection, where Tregs express higher levels of effector molecules such as cytotoxic T-lymphocyte-associated protein 4, CD39 and cAMP and show increased suppressive capacity. Thus, insights into the molecular mechanisms by which intracellular pathogens alter Treg functions might aid to find new therapeutic approaches to target central nervous system autoimmunity. In this review, we summarize the current knowledge of the role of pathogens for Treg function in the context of autoimmune neuroinflammation. We discuss the mechanistic implications for future therapies and provide an outlook for new research directions.
Collapse
Affiliation(s)
- Christina B Schroeter
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Niklas Huntemann
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Stefanie Bock
- Department of Neurology With Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Christopher Nelke
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - David Kremer
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Klaus Pfeffer
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Sven G Meuth
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tobias Ruck
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
5
|
Johann K, Bohn T, Shahneh F, Luther N, Birke A, Jaurich H, Helm M, Klein M, Raker VK, Bopp T, Barz M, Becker C. Therapeutic melanoma inhibition by local micelle-mediated cyclic nucleotide repression. Nat Commun 2021; 12:5981. [PMID: 34645812 PMCID: PMC8514514 DOI: 10.1038/s41467-021-26269-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 09/28/2021] [Indexed: 12/03/2022] Open
Abstract
The acidic tumor microenvironment in melanoma drives immune evasion by up-regulating cyclic adenosine monophosphate (cAMP) in tumor-infiltrating monocytes. Here we show that the release of non-toxic concentrations of an adenylate cyclase (AC) inhibitor from poly(sarcosine)-block-poly(L-glutamic acid γ-benzyl ester) (polypept(o)id) copolymer micelles restores antitumor immunity. In combination with selective, non-therapeutic regulatory T cell depletion, AC inhibitor micelles achieve a complete remission of established B16-F10-OVA tumors. Single-cell sequencing of melanoma-infiltrating immune cells shows that AC inhibitor micelles reduce the number of anti-inflammatory myeloid cells and checkpoint receptor expression on T cells. AC inhibitor micelles thus represent an immunotherapeutic measure to counteract melanoma immune escape. The acidic tumour microenvironment in melanoma drives immune evasion by cAMP in tumor-infiltrating monocytes. Here, the authors show that the release of an adenylate cyclase inhibitor from micelles restores antitumor immunity and, when combined with regulatory T cell depletion, leads to remission of established B16-F10-OVA tumors.
Collapse
Affiliation(s)
- Kerstin Johann
- Institute of Organic Chemistry, Johannes Gutenberg University, Mainz, Germany
| | - Toszka Bohn
- Institute for Immunology, University Medical Center Mainz, Johannes Gutenberg University, Mainz, Germany
| | - Fatemeh Shahneh
- Department of Dermatology, University Medical Center Mainz, Johannes Gutenberg University, Mainz, Germany
| | - Natascha Luther
- Department of Dermatology, University Medical Center Mainz, Johannes Gutenberg University, Mainz, Germany
| | - Alexander Birke
- Institute of Organic Chemistry, Johannes Gutenberg University, Mainz, Germany
| | - Henriette Jaurich
- Institute of Organic Chemistry, Johannes Gutenberg University, Mainz, Germany.,Department of Dermatology, University Medical Center Mainz, Johannes Gutenberg University, Mainz, Germany
| | - Mark Helm
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| | - Matthias Klein
- Institute for Immunology, University Medical Center Mainz, Johannes Gutenberg University, Mainz, Germany
| | - Verena K Raker
- Department of Dermatology, University Medical Center Mainz, Johannes Gutenberg University, Mainz, Germany.,Department of Dermatology, University Hospital Münster, Westfälische Wilhelms-University, Münster, Germany
| | - Tobias Bopp
- Institute for Immunology, University Medical Center Mainz, Johannes Gutenberg University, Mainz, Germany.
| | - Matthias Barz
- Institute of Organic Chemistry, Johannes Gutenberg University, Mainz, Germany. .,Leiden Academic Center for Drug Research (LACDR), Leiden, Netherlands.
| | - Christian Becker
- Department of Dermatology, University Medical Center Mainz, Johannes Gutenberg University, Mainz, Germany. .,Department of Dermatology, University Hospital Münster, Westfälische Wilhelms-University, Münster, Germany.
| |
Collapse
|
6
|
Using immuno-PET imaging to monitor kinetics of T cell-mediated inflammation and treatment efficiency in a humanized mouse model for GvHD. Eur J Nucl Med Mol Imaging 2019; 47:1314-1325. [DOI: 10.1007/s00259-019-04507-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 08/23/2019] [Indexed: 10/26/2022]
|
7
|
Kleinman AJ, Sivanandham R, Pandrea I, Chougnet CA, Apetrei C. Regulatory T Cells As Potential Targets for HIV Cure Research. Front Immunol 2018; 9:734. [PMID: 29706961 PMCID: PMC5908895 DOI: 10.3389/fimmu.2018.00734] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/23/2018] [Indexed: 12/19/2022] Open
Abstract
T regulatory cells (Tregs) are a key component of the immune system, which maintain a delicate balance between overactive responses and immunosuppression. As such, Treg deficiencies are linked to autoimmune disorders and alter the immune control of pathogens. In HIV infection, Tregs play major roles, both beneficial and detrimental. They regulate the immune system such that inflammation and spread of virus through activated T cells is suppressed. However, suppression of immune activation also limits viral clearance and promotes reservoir formation. Tregs can be directly targeted by HIV, thereby harboring a fraction of the viral reservoir. The vital role of Tregs in the pathogenesis and control of HIV makes them a subject of interest for manipulation in the search of an HIV cure. Here, we discuss the origin and generation, homeostasis, and functions of Tregs, particularly their roles and effects in HIV infection. We also present various Treg manipulation strategies, including Treg depletion techniques and interventions that alter Treg function, which may be used in different cure strategies, to simultaneously boost HIV-specific immune responses and induce reactivation of the latent virus.
Collapse
Affiliation(s)
- Adam J Kleinman
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ranjit Sivanandham
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ivona Pandrea
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Claire A Chougnet
- Division of Immunobiology, Department of Pediatrics, Cincinnati Children's Hospital, Cincinnati University, Cincinnati, OH, United States
| | - Cristian Apetrei
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
8
|
Abstract
Tight regulation of immune responses is not only critical for preventing autoimmune diseases but also for preventing immunopathological damage during infections in which overactive immune responses may be more harmful for the host than the pathogen itself. Regulatory T cells (Tregs) play a critical role in this regulation, which was discovered using the Friend retrovirus (FV) mouse model. Subsequent FV studies revealed basic biological information about Tregs, including their suppressive activity on effector cells as well as the molecular mechanisms of virus-induced Treg expansion. Treg suppression not only limits immunopathology but also prevents complete elimination of pathogens contributing to chronic infections. Therefore, Tregs play a complex role in the pathogenesis of persistent retroviral infections. New therapeutic concepts to reactivate effector T-cell responses in chronic viral infections by manipulating Tregs also came from work with the FV model. This knowledge initiated many studies to characterize the role of Tregs in HIV pathogenesis in humans, where a complex picture is emerging. On one hand, Tregs suppress HIV-specific effector T-cell responses and are themselves targets of infection, but on the other hand, Tregs suppress HIV-induced immune hyperactivation and thus slow the infection of conventional CD4+ T cells and limit immunopathology. In this review, the basic findings from the FV mouse model are put into perspective with clinical and basic research from HIV studies. In addition, the few Treg studies performed in the simian immunodeficiency virus (SIV) monkey model will also be discussed. The review provides a comprehensive picture of the diverse role of Tregs in different retroviral infections and possible therapeutic approaches to treat retroviral chronicity and pathogenesis by manipulating Treg responses. Regulatory T cells (Tregs) play a very complex role in retroviral infections, and the balance of beneficial versus detrimental effects from Tregs can change between the acute and chronic phase of infection. Therefore, the development of therapeutics to treat chronic retroviral infections via modulation of Tregs requires detailed information regarding both the positive and negative contributions of Tregs in a particular phase of a specific infection. Here, we review the molecular mechanisms that initiate and control Treg responses in retroviral infections as well as the target cells that are functionally manipulated by Tregs. Basic findings from the Friend retrovirus mouse model that initiated this area of research are put into perspective with clinical and basic research from HIV studies. The targeted manipulation of Treg responses holds a bright future for enhancing immune responses to infections, vaccine responses, and for cure or functional cure of chronic retroviral infections.
Collapse
Affiliation(s)
- Kim J. Hasenkrug
- Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, United States of America
| | - Claire A. Chougnet
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- * E-mail:
| |
Collapse
|
9
|
Schlöder J, Berges C, Tuettenberg A, Jonuleit H. Novel Concept of CD4-Mediated Activation of Regulatory T Cells for the Treatment of Graft-Versus-Host Disease. Front Immunol 2017; 8:1495. [PMID: 29167672 PMCID: PMC5682297 DOI: 10.3389/fimmu.2017.01495] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 10/24/2017] [Indexed: 01/28/2023] Open
Abstract
Allogeneic hematopoietic stem cell transplantation is the only curative treatment option for several hematological malignancies and immune deficiency syndromes. Nevertheless, the development of a graft-versus-host disease (GvHD) after transplantation is a high risk and a severe complication with high morbidity and mortality causing therapeutic challenges. Current pharmacological therapies of GvHD lead to generalized immunosuppression followed by severe adverse side effects including infections and relapse of leukemia. Several novel cell-based immunomodulatory strategies for treatment or prevention of GvHD have been developed. Herein, thymus-derived regulatory T cells (tTreg), essential for the maintenance of peripheral immunologic tolerance, are in the focus of investigation. However, due to the limited number of tTreg in the peripheral blood, a complex, time- and cost-intensive in vitro expansion protocol is necessary for the production of an efficient cellular therapeutic. We demonstrated that activation of tTreg using the CD4-binding human immunodeficiency virus-1 protein gp120 leads to a substantially increased suppressor activity of tTreg without the need for additional expansion. Gp120-activated tTreg prevent GvHD development in a preclinical humanized mouse model. In addition, gp120 is not only effective in prevention but also in therapy of GvHD by suppressing all clinical symptoms and improving survival of treated mice. These data indicate that tTreg activation by gp120 is a feasible and potent strategy for significant functional improvement of tTreg as cellular therapeutic for GvHD treatment without the need of complicated, time-intensive, and expensive in vitro expansion of isolated tTreg.
Collapse
Affiliation(s)
- Janine Schlöder
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Carsten Berges
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Andrea Tuettenberg
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Helmut Jonuleit
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
10
|
Schlöder J, Berges C, Luessi F, Jonuleit H. Dimethyl Fumarate Therapy Significantly Improves the Responsiveness of T Cells in Multiple Sclerosis Patients for Immunoregulation by Regulatory T Cells. Int J Mol Sci 2017; 18:ijms18020271. [PMID: 28134847 PMCID: PMC5343807 DOI: 10.3390/ijms18020271] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 01/14/2017] [Accepted: 01/22/2017] [Indexed: 12/20/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease caused by an insufficient suppression of autoreactive T lymphocytes. One reason for the lack of immunological control is the reduced responsiveness of T effector cells (Teff) for the suppressive properties of regulatory T cells (Treg), a process termed Treg resistance. Here we investigated whether the disease-modifying therapy of relapsing-remitting MS (RRMS) with dimethyl fumarate (DMF) influences the sensitivity of T cells in the peripheral blood of patients towards Treg-mediated suppression. We demonstrated that DMF restores responsiveness of Teff to the suppressive function of Treg in vitro, presumably by down-regulation of interleukin-6R (IL-6R) expression on T cells. Transfer of human immune cells into immunodeficient mice resulted in a lethal graft-versus-host reaction triggered by human CD4⁺ Teff. This systemic inflammation can be prevented by activated Treg after transfer of immune cells from DMF-treated MS patients, but not after injection of Treg-resistant Teff from therapy-naïve MS patients. Furthermore, after DMF therapy, proliferation and expansion of T cells and the immigration into the spleen of the animals is reduced and modulated by activated Treg. In summary, our data reveals that DMF therapy significantly improves the responsiveness of Teff in MS patients to immunoregulation.
Collapse
Affiliation(s)
- Janine Schlöder
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstr. 1, 55131 Mainz, Germany.
| | - Carsten Berges
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstr. 1, 55131 Mainz, Germany.
| | - Felix Luessi
- Department of Neurology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstr. 1, 55131 Mainz, Germany.
| | - Helmut Jonuleit
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstr. 1, 55131 Mainz, Germany.
| |
Collapse
|
11
|
Yu HT, Wang JY, Tian D, Wang MX, Li Y, Yuan L, Chen WJ, Li D, Zhuang M, Ling H. Comparison of the patterns of antibody recall responses to HIV-1 gp120 and hepatitis B surface antigen in immunized mice. Vaccine 2016; 34:6276-6284. [PMID: 27843002 DOI: 10.1016/j.vaccine.2016.10.063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 08/10/2016] [Accepted: 10/24/2016] [Indexed: 12/23/2022]
Abstract
To date, we still lack an ideal strategy for designing envelope glycoprotein (Env) vaccines to elicit potent protective antibodies against HIV-1 infection. Since the human hepatitis B virus surface antigen (HBsAg) is representative of effective vaccines that can induce ideal humoral immune responses, knowledge of how it elicits antibody responses and T helper cells would be an useful reference for HIV vaccine development. We compared the characteristics of the HIV-1 Env gp120 trimer and HBsAg in antibody elicitation and induction of T follicular helper (Tfh) and memory B cells in immunized Balb/c mice. Using the strategy of protein prime-protein boost, we found that HIV-1 gp120 induced slower recall antibody responses but redundant non-specific IgG responses at early time after boosting compared to HBsAg. The higher frequency of PD-1hiCD4+ T cells and Tfh cells that appeared at the early time point after gp120 boosting is likely to limit the development of memory B cells, memory T cells, and specific antibody recall responses. These findings regarding the different features of HIV envelope and HBsAg in T helper cell responses may provide a direction to improve HIV envelope immunogenicity.
Collapse
Affiliation(s)
- Hao-Tong Yu
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Jia-Ye Wang
- Department of Microbiology, Harbin Medical University, Harbin, China; Heilongjiang Provincial Key Laboratory of Infection and Immunity, Key Laboratory of Pathogen Biology, Harbin, China; Wu Lien-Teh Institute, Harbin Medical University, Harbin, China
| | - Dan Tian
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Ming-Xia Wang
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Yan Li
- Department of Microbiology, Harbin Medical University, Harbin, China; Heilongjiang Provincial Key Laboratory of Infection and Immunity, Key Laboratory of Pathogen Biology, Harbin, China; Wu Lien-Teh Institute, Harbin Medical University, Harbin, China
| | - Li Yuan
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Wen-Jiang Chen
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Di Li
- Department of Microbiology, Harbin Medical University, Harbin, China; Heilongjiang Provincial Key Laboratory of Infection and Immunity, Key Laboratory of Pathogen Biology, Harbin, China
| | - Min Zhuang
- Department of Microbiology, Harbin Medical University, Harbin, China; Heilongjiang Provincial Key Laboratory of Infection and Immunity, Key Laboratory of Pathogen Biology, Harbin, China; Wu Lien-Teh Institute, Harbin Medical University, Harbin, China.
| | - Hong Ling
- Department of Microbiology, Harbin Medical University, Harbin, China; Heilongjiang Provincial Key Laboratory of Infection and Immunity, Key Laboratory of Pathogen Biology, Harbin, China; Wu Lien-Teh Institute, Harbin Medical University, Harbin, China; Department of Parasitology, Harbin Medical University, Harbin, China.
| |
Collapse
|
12
|
Boieri M, Shah P, Dressel R, Inngjerdingen M. The Role of Animal Models in the Study of Hematopoietic Stem Cell Transplantation and GvHD: A Historical Overview. Front Immunol 2016; 7:333. [PMID: 27625651 PMCID: PMC5003882 DOI: 10.3389/fimmu.2016.00333] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 08/18/2016] [Indexed: 12/13/2022] Open
Abstract
Bone marrow transplantation (BMT) is the only therapeutic option for many hematological malignancies, but its applicability is limited by life-threatening complications, such as graft-versus-host disease (GvHD). The last decades have seen great advances in the understanding of BMT and its related complications; in particular GvHD. Animal models are beneficial to study complex diseases, as they allow dissecting the contribution of single components in the development of the disease. Most of the current knowledge on the therapeutic mechanisms of BMT derives from studies in animal models. Parallel to BMT, the understanding of the pathophysiology of GvHD, as well as the development of new treatment regimens, has also been supported by studies in animal models. Pre-clinical experimentation is the basis for deep understanding and successful improvements of clinical applications. In this review, we retrace the history of BMT and GvHD by describing how the studies in animal models have paved the way to the many advances in the field. We also describe how animal models contributed to the understanding of GvHD pathophysiology and how they are fundamental for the discovery of new treatments.
Collapse
Affiliation(s)
- Margherita Boieri
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Pranali Shah
- Institute of Cellular and Molecular Immunology, University Medical Center Göttingen , Göttingen , Germany
| | - Ralf Dressel
- Institute of Cellular and Molecular Immunology, University Medical Center Göttingen , Göttingen , Germany
| | - Marit Inngjerdingen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Department of Immunology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
13
|
Bellinghausen I, Saloga J. Analysis of allergic immune responses in humanized mice. Cell Immunol 2016; 308:7-12. [PMID: 27493097 DOI: 10.1016/j.cellimm.2016.07.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 07/13/2016] [Indexed: 12/14/2022]
Abstract
Nowadays, more than 25% of the population in industrial countries are affected by IgE-mediated (atopic) allergic diseases such as allergic rhinitis, asthma and atopic eczema. Due to intensive research on basis of in vitro studies with human immune cells and different murine in vivo models of allergy fundamental mechanisms of allergic immune responses have been elucidated during the last years. However, human studies are restricted and the immune system of mice differs from the human immune system in several aspects so that the transferability of experimental results from mice to men is limited. Humanized mice represent a new tool to analyze the interaction of human immune cells under physiological conditions as far as possible, particularly to test novel therapeutic strategies. This review summarizes the impact of humanized mouse models for the investigation and treatment of allergic diseases.
Collapse
Affiliation(s)
- Iris Bellinghausen
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany.
| | - Joachim Saloga
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
14
|
López-Abente J, Correa-Rocha R, Pion M. Functional Mechanisms of Treg in the Context of HIV Infection and the Janus Face of Immune Suppression. Front Immunol 2016; 7:192. [PMID: 27242797 PMCID: PMC4871867 DOI: 10.3389/fimmu.2016.00192] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/02/2016] [Indexed: 12/20/2022] Open
Abstract
Regulatory T cells (Tregs) play an important role in infections, by modulating host immune responses and avoiding the overreactive immunity that in the case of human immunodeficiency virus (HIV) infection leads to a marked erosion and deregulation of the entire immune system. Therefore, the suppressive function of Treg in HIV-infected patients is critical because of their implication on preventing the immune hyperactivation, even though it could also have a detrimental effect by suppressing HIV-specific immune responses. In recent years, several studies have shown that HIV-1 can directly infect Treg, disturbing their phenotype and suppressive capacity via different mechanisms. These effects include Foxp3 and CD25 downregulation, and the impairment of suppressive capacity. This review describes the functional mechanisms of Treg to modulate immune activation during HIV infection, and how such control is no longer fine-tune orchestrated once Treg itself get infected. We will review the current knowledge about the HIV effects on the Treg cytokine expression, on pathways implying the participation of different ectoenzymes (i.e., CD39/CD73 axis), transcription factors (ICER), and lastly on cyclic adenosine monophosphate (cAMP), one of the keystones in Treg-suppressive function. To define which are the HIV effects upon these regulatory mechanisms is crucial not only for the comprehension of immune deregulation in HIV-infected patients but also for the correct understanding of the role of Tregs in HIV infection.
Collapse
Affiliation(s)
- Jacobo López-Abente
- Laboratory of Immunoregulation, "Gregorio Marañón" Health Research Institute (IISGM) , Madrid , Spain
| | - Rafael Correa-Rocha
- Laboratory of Immunoregulation, "Gregorio Marañón" Health Research Institute (IISGM) , Madrid , Spain
| | - Marjorie Pion
- Laboratory of Immunoregulation, "Gregorio Marañón" Health Research Institute (IISGM) , Madrid , Spain
| |
Collapse
|
15
|
Raker VK, Becker C, Steinbrink K. The cAMP Pathway as Therapeutic Target in Autoimmune and Inflammatory Diseases. Front Immunol 2016; 7:123. [PMID: 27065076 PMCID: PMC4814577 DOI: 10.3389/fimmu.2016.00123] [Citation(s) in RCA: 206] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 03/18/2016] [Indexed: 12/26/2022] Open
Abstract
Nucleotide signaling molecules contribute to the regulation of cellular pathways. In the immune system, cyclic adenosine monophosphate (cAMP) is well established as a potent regulator of innate and adaptive immune cell functions. Therapeutic strategies to interrupt or enhance cAMP generation or effects have immunoregulatory potential in autoimmune and inflammatory disorders. Here, we provide an overview of the cyclic AMP axis and its role as a regulator of immune functions and discuss the clinical and translational relevance of interventions with these processes.
Collapse
Affiliation(s)
- Verena Katharina Raker
- Department of Dermatology, University Medical Center Mainz, Johannes Gutenberg-University Mainz , Mainz , Germany
| | - Christian Becker
- Department of Dermatology, University Medical Center Mainz, Johannes Gutenberg-University Mainz , Mainz , Germany
| | - Kerstin Steinbrink
- Department of Dermatology, University Medical Center Mainz, Johannes Gutenberg-University Mainz , Mainz , Germany
| |
Collapse
|
16
|
Pankratz S, Ruck T, Meuth SG, Wiendl H. CD4(+)HLA-G(+) regulatory T cells: Molecular signature and pathophysiological relevance. Hum Immunol 2016; 77:727-33. [PMID: 26826445 DOI: 10.1016/j.humimm.2016.01.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 01/20/2016] [Indexed: 12/21/2022]
Abstract
The regulation of potentially harmful immune responses by regulatory T (Treg) cells is essential for maintaining peripheral immune tolerance and homeostasis. Especially CD4(+) Treg cells have been regarded as pivotal regulators of autoreactive and inflammatory responses as well as inducers of immune tolerance by using a variety of immune suppressive mechanisms. Besides the well-known classical CD4(+)CD25(+)FoxP3(+) Treg cells, CD4(+) T cells expressing the immune tolerizing molecule human leukocyte antigen G (HLA-G) have been recently described as another potent thymus-derived Treg (tTreg) cell subset. Albeit both tTreg subsets share common molecular characteristics, the mechanisms of their immunosuppressive function differ fundamentally. Dysfunction and numerical abnormalities of classical CD4(+) tTreg cells have been implicated in the pathogenesis of several immune-mediated diseases such as multiple sclerosis (MS). Clearly, a deeper understanding of the various CD4(+) tTreg subsets and also the underlying mechanisms of impaired immune tolerance in these disorders are essential for the development of potential therapeutic strategies. This review focuses on the current knowledge on defining features and functioning of HLA-G(+)CD4(+) tTreg cells as well as their emerging role in various pathologies with special emphasis on the pathogenesis of MS. Furthermore, future research possibilities together with potential therapeutic applications are discussed.
Collapse
Affiliation(s)
- Susann Pankratz
- Department of Neurology, University of Muenster, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany.
| | - Tobias Ruck
- Department of Neurology, University of Muenster, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany.
| | - Sven G Meuth
- Department of Neurology, University of Muenster, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany.
| | - Heinz Wiendl
- Department of Neurology, University of Muenster, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany.
| |
Collapse
|
17
|
Hahn SA, Bellinghausen I, Trinschek B, Becker C. Translating Treg Therapy in Humanized Mice. Front Immunol 2015; 6:623. [PMID: 26697017 PMCID: PMC4677486 DOI: 10.3389/fimmu.2015.00623] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 11/30/2015] [Indexed: 12/30/2022] Open
Abstract
Regulatory T cells (Treg) control immune cell function as well as non-immunological processes. Their far-reaching regulatory activities suggest their functional manipulation as a means to sustainably and causally intervene with the course of diseases. Preclinical tools and strategies are however needed to further test and develop interventional strategies outside the human body. “Humanized” mouse models consisting of mice engrafted with human immune cells and tissues provide new tools to analyze human Treg ontogeny, immunobiology, and therapy. Here, we summarize the current state of humanized mouse models as a means to study human Treg function at the molecular level and to design strategies to harness these cells for therapeutic purposes.
Collapse
Affiliation(s)
- Susanne A Hahn
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University , Mainz , Germany
| | - Iris Bellinghausen
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University , Mainz , Germany
| | - Bettina Trinschek
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University , Mainz , Germany
| | - Christian Becker
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University , Mainz , Germany
| |
Collapse
|
18
|
Trinschek B, Luessi F, Gross CC, Wiendl H, Jonuleit H. Interferon-Beta Therapy of Multiple Sclerosis Patients Improves the Responsiveness of T Cells for Immune Suppression by Regulatory T Cells. Int J Mol Sci 2015; 16:16330-46. [PMID: 26193267 PMCID: PMC4519953 DOI: 10.3390/ijms160716330] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 06/10/2015] [Accepted: 07/06/2015] [Indexed: 12/20/2022] Open
Abstract
Multiple sclerosis (MS) is an inflammatory autoimmune disease characterized by imbalanced immune regulatory networks, and MS patient-derived T effector cells are inefficiently suppressed through regulatory T cells (Treg), a phenomenon known as Treg resistance. In the current study we investigated T cell function in MS patients before and after interferon-beta therapy. We compared cytokine profile, responsiveness for Treg-mediated suppression ex vivo and evaluated reactivity of T cells in vivo using a humanized mouse model. We found that CD4+ and CD8+ T cells of therapy-naive MS patients were resistant to Treg-mediated suppression. Treg resistance is associated with an augmented IL-6 production, enhanced IL-6 receptor expression, and increased PKB/c-Akt phosphorylation. These parameters as well as responsiveness of T cells to Treg-mediated suppression were restored after interferon-beta therapy of MS patients. Following transfer into immunodeficient mice, MS T cells induced a lethal graft versus host disease (GvHD) and in contrast to T cells of healthy volunteers, this aggressive T cell response could not be controlled by Treg, but was abolished by anti-IL-6 receptor antibodies. However, magnitude and lethality of GvHD induced by MS T cells was significantly decreased after interferon-beta therapy and the reaction was prevented by Treg activation in vivo. Our data reveals that interferon-beta therapy improves the immunoregulation of autoaggressive T effector cells in MS patients by changing the IL-6 signal transduction pathway, thus restoring their sensitivity to Treg-mediated suppression.
Collapse
Affiliation(s)
- Bettina Trinschek
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstr. 1, 55131 Mainz, Germany.
| | - Felix Luessi
- Department of Neurology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstr. 1, 55131 Mainz, Germany.
| | - Catharina C Gross
- Department of Neurology-Inflammatory Disorders of the Nervous System and Neurooncology, University of Muenster, Schlossplatz 2, 48149 Muenster, Germany.
| | - Heinz Wiendl
- Department of Neurology-Inflammatory Disorders of the Nervous System and Neurooncology, University of Muenster, Schlossplatz 2, 48149 Muenster, Germany.
| | - Helmut Jonuleit
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstr. 1, 55131 Mainz, Germany.
| |
Collapse
|
19
|
Eschborn M, Weigmann B, Reissig S, Waisman A, Saloga J, Bellinghausen I. Activated glycoprotein A repetitions predominant (GARP)–expressing regulatory T cells inhibit allergen-induced intestinal inflammation in humanized mice. J Allergy Clin Immunol 2015; 136:159-68. [DOI: 10.1016/j.jaci.2015.04.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 03/31/2015] [Accepted: 04/03/2015] [Indexed: 12/25/2022]
|
20
|
Tregalizumab (BT-061) increases regulatory T cell function. Boosting regulatory T-cell function with the humanized CD4-specific humanized monoclonal antibody Tregalizumab (BT-061). Immunol Cell Biol 2015; 93:321-2. [PMID: 25666094 DOI: 10.1038/icb.2014.120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
21
|
Phetsouphanh C, Xu Y, Zaunders J. CD4 T Cells Mediate Both Positive and Negative Regulation of the Immune Response to HIV Infection: Complex Role of T Follicular Helper Cells and Regulatory T Cells in Pathogenesis. Front Immunol 2015; 5:681. [PMID: 25610441 PMCID: PMC4285174 DOI: 10.3389/fimmu.2014.00681] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 12/17/2014] [Indexed: 12/13/2022] Open
Abstract
HIV-1 infection results in chronic activation of cells in lymphoid tissue, including T cells, B-cells, and myeloid lineage cells. The resulting characteristic hyperplasia is an amalgam of proliferating host immune cells in the adaptive response, increased concentrations of innate response mediators due to viral and bacterial products, and homeostatic responses to inflammation. While it is generally thought that CD4 T cells are greatly depleted, in fact, two types of CD4 T cells appear to be increased, namely, regulatory T cells (Tregs) and T follicular helper cells (Tfh). These cells have opposing roles, but may both be important in the pathogenic process. Whether Tregs are failing in their role to limit lymphocyte activation is unclear, but there is no doubt now that Tfh are associated with B-cell hyperplasia and increased germinal center activity. Antiretroviral therapy may reduce the lymphocyte activation, but not completely, and therefore, there is a need for interventions that selectively enhance normal CD4 function without exacerbating Tfh, B-cell, or Treg dysfunction.
Collapse
Affiliation(s)
- Chansavath Phetsouphanh
- Centre for Applied Medical Research, Kirby Institute, St Vincent's Hospital, University of New South Wales , Sydney, NSW , Australia
| | - Yin Xu
- Centre for Applied Medical Research, Kirby Institute, St Vincent's Hospital, University of New South Wales , Sydney, NSW , Australia
| | - John Zaunders
- Centre for Applied Medical Research, Kirby Institute, St Vincent's Hospital, University of New South Wales , Sydney, NSW , Australia
| |
Collapse
|
22
|
A specific CD4 epitope bound by tregalizumab mediates activation of regulatory T cells by a unique signaling pathway. Immunol Cell Biol 2014; 93:396-405. [PMID: 25512343 PMCID: PMC4407014 DOI: 10.1038/icb.2014.102] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 10/24/2014] [Accepted: 10/25/2014] [Indexed: 12/13/2022]
Abstract
CD4+CD25+ regulatory T cells (Tregs) represent a specialized subpopulation of T cells, which are essential for maintaining peripheral tolerance and preventing autoimmunity. The immunomodulatory effects of Tregs depend on their activation status. Here we show that, in contrast to conventional anti-CD4 monoclonal antibodies (mAbs), the humanized CD4-specific monoclonal antibody tregalizumab (BT-061) is able to selectively activate the suppressive properties of Tregs in vitro. BT-061 activates Tregs by binding to CD4 and activation of signaling downstream pathways. The specific functionality of BT-061 may be explained by the recognition of a unique, conformational epitope on domain 2 of the CD4 molecule that is not recognized by other anti-CD4 mAbs. We found that, due to this special epitope binding, BT-061 induces a unique phosphorylation of T-cell receptor complex-associated signaling molecules. This is sufficient to activate the function of Tregs without activating effector T cells. Furthermore, BT-061 does not induce the release of pro-inflammatory cytokines. These results demonstrate that BT-061 stimulation via the CD4 receptor is able to induce T-cell receptor-independent activation of Tregs. Selective activation of Tregs via CD4 is a promising approach for the treatment of autoimmune diseases where insufficient Treg activity has been described. Clinical investigation of this new approach is currently ongoing.
Collapse
|
23
|
Ohta A, Sitkovsky M. Extracellular adenosine-mediated modulation of regulatory T cells. Front Immunol 2014; 5:304. [PMID: 25071765 PMCID: PMC4091046 DOI: 10.3389/fimmu.2014.00304] [Citation(s) in RCA: 224] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 06/15/2014] [Indexed: 12/20/2022] Open
Abstract
Extracellular adenosine-dependent suppression and redirection of pro-inflammatory activities are mediated by the signaling through adenosine receptors on the surface of most immune cells. The immunosuppression by endogenously-produced adenosine is pathophysiologically significant since inactivation of A2A/A2B adenosine receptor (A2AR/A2BR) and adenosine-producing ecto-enzymes CD39/CD73 results in the higher intensity of immune response and exaggeration of inflammatory damage. Regulatory T cells (Treg) can generate extracellular adenosine, which is implicated in the immunoregulatory activity of Tregs. Interestingly, adenosine has been shown to increase the numbers of Tregs and further promotes their immunoregulatory activity. A2AR-deficiency in Tregs reduces their immunosuppressive efficacy in vivo. Thus, adenosine is not only directly and instantly inhibiting to the immune response through interaction with A2AR/A2BR on the effector cells, but also adenosine signaling can recruit other immunoregulatory mechanisms, including Tregs. Such interaction between adenosine and Tregs suggests the presence of a positive feedback mechanism, which further promotes negative regulation of immune system through the establishment of immunosuppressive microenvironment.
Collapse
Affiliation(s)
- Akio Ohta
- New England Inflammation and Tissue Protection Institute, Northeastern University , Boston, MA , USA
| | - Michail Sitkovsky
- New England Inflammation and Tissue Protection Institute, Northeastern University , Boston, MA , USA
| |
Collapse
|
24
|
Kubach J, Hubo M, Amendt C, Stroh C, Jonuleit H. IgG1 anti-epidermal growth factor receptor antibodies induce CD8-dependent antitumor activity. Int J Cancer 2014; 136:821-30. [PMID: 24947844 DOI: 10.1002/ijc.29037] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 06/06/2014] [Indexed: 12/13/2022]
Abstract
Anti-EGFR monoclonal antibodies (mAb) like Cetuximab are commonly used for treatment of EGFR+ solid tumors mainly by exerting their therapeutic effect through inhibition of signal transduction. Additionally, IgG1 is a potent mediator of antibody-dependent cytotoxicity (ADCC). In case of the IgG1, Cetuximab induction of ADCC in vivo is controversially discussed. In our study, we investigated the efficiency of Cetuximab-mediated ADCC in a humanized mouse tumor model in vivo and analyzed the contribution of immunologic processes toward antitumor activity. Therefore, we used immunodeficient NOD/Scid mice transgenic for human MHC class I molecule HLA-A2 and adoptively transferred human HLA-A2+ PBMC after engraftment of human epidermoid cell carcinoma A431. Here, we show that high doses of anti-EGFR mAb induced strong tumor regression independent of the immune system. However, tumor regression by low doses of anti-EGFR mAb treatment was ADCC dependent and mediated by tumor infiltrating CD8+ T effector cells. This novel mechanism of ADCC conducted by CD8+ T effector cells was restricted to IgG1 anti-EGFR mAb, dependent of binding to CD16 on T cells and could be inhibited after EGFR blockade on tumor cells. Furthermore, CD8+ T effector cell-mediated ADCC was enhanced in the presence of IL-15 and strongly improved after glycosylation of anti-EGFR mAb indicating the potential of glycoengineered therapeutic mAb as efficient biologicals in cancer therapy.
Collapse
Affiliation(s)
- Jan Kubach
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University, 55131, Mainz, Germany
| | | | | | | | | |
Collapse
|
25
|
Pankratz S, Bittner S, Herrmann AM, Schuhmann MK, Ruck T, Meuth SG, Wiendl H. Human CD4+ HLA-G+ regulatory T cells are potent suppressors of graft-versus-host disease in vivo. FASEB J 2014; 28:3435-45. [PMID: 24744146 DOI: 10.1096/fj.14-251074] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
CD4(+) T cells expressing the immunotolerizing molecule HLA-G have been described as a unique human thymus-derived regulatory T (tTreg) cell subset involved in immunoregulation and parenchymal homeostasis during infectious and autoimmune inflammation. We compared properties and molecular characteristics of human CD4(+)HLA-G(+) with those of CD4(+)CD25(+)FoxP3-expressing tTreg cells using in vitro studies of T-cell receptor (TCR) signaling, single-cell electrophysiology, and functional in vivo studies. Both tTreg populations are characterized by alterations in proximal-signaling pathways on TCR stimulation and a hyperpolarization of the plasma membrane when compared to conventional CD4(+) T cells. However, both clearly differ in phenotype and pattern of secreted cytokines, which results in distinct mechanisms of suppression: While CD4(+)HLA-G(+) cells secrete high levels of inhibitory molecules (IL-10, soluble HLA-G, IL-35), CD4(+)CD25(+)FoxP3(+) cells express these molecules at significantly lower levels and seem to exert their function mainly in a contact-dependent manner via cyclic adenosine-monophosphate. Finally we demonstrate that human CD4(+)HLA-G(+) tTreg cells significantly ameliorated graft-versus-host disease in a humanized mouse model as a first proof of their in vivo relevance. Our data further characterize and establish CD4(+)HLA-G(+) cells as a potent human tTreg population that can modulate polyclonal adaptive immune responses in vivo and thus being a promising candidate for potential clinical applications in the future.
Collapse
Affiliation(s)
| | | | | | | | | | - Sven G Meuth
- Department of Neurology and Institute of Physiology I, Department of Neuropathophysiology, University of Münster, Münster, Germany; and
| | | |
Collapse
|
26
|
Veiga-Parga T, Sehrawat S, Rouse BT. Role of regulatory T cells during virus infection. Immunol Rev 2014; 255:182-96. [PMID: 23947355 DOI: 10.1111/imr.12085] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The host response to viruses includes multiple cell types that have regulatory function. Most information focuses on CD4(+) regulatory T cells that express the transcription factor Foxp3(+) (Tregs), which are the topic of this review. We explain how viruses through specific and non-specific means can trigger the response of thymus-derived natural Tregs as well as induce Tregs. The latter derive under appropriate stimulation conditions either from uncommitted precursors or from differentiated cells that convert to become Tregs. We describe instances where Tregs appear to limit the efficacy of antiviral protective immunity and other, perhaps more common, immune-mediated inflammatory conditions, where the Tregs function to limit the extent of tissue damage that occurs during a virus infection. We discuss the controversial roles that Tregs may play in the pathogenesis of human immunodeficiency and hepatitis C virus infections. The issue of plasticity is discussed, as this may result in Tregs losing their protective function when present in inflammatory environments. Finally, we mention approaches used to manipulate Treg numbers and function and assess their current value and likely future success to manage the outcome of virus infection, especially those that are responsible for chronic tissue damage.
Collapse
Affiliation(s)
- Tamara Veiga-Parga
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
| | | | | |
Collapse
|
27
|
Mukhopadhyay A, Ray S, Maulik U. Incorporating the type and direction information in predicting novel regulatory interactions between HIV-1 and human proteins using a biclustering approach. BMC Bioinformatics 2014; 15:26. [PMID: 24460683 PMCID: PMC3922888 DOI: 10.1186/1471-2105-15-26] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 01/08/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Discovering novel interactions between HIV-1 and human proteins would greatly contribute to different areas of HIV research. Identification of such interactions leads to a greater insight into drug target prediction. Some recent studies have been conducted for computational prediction of new interactions based on the experimentally validated information stored in a HIV-1-human protein-protein interaction database. However, these techniques do not predict any regulatory mechanism between HIV-1 and human proteins by considering interaction types and direction of regulation of interactions. RESULTS Here we present an association rule mining technique based on biclustering for discovering a set of rules among human and HIV-1 proteins using the publicly available HIV-1-human PPI database. These rules are subsequently utilized to predict some novel interactions among HIV-1 and human proteins. For prediction purpose both the interaction types and direction of regulation of interactions, (i.e., virus-to-host or host-to-virus) are considered here to provide important additional information about the regulation pattern of interactions. We have also studied the biclusters and analyzed the significant GO terms and KEGG pathways in which the human proteins of the biclusters participate. Moreover the predicted rules have also been analyzed to discover regulatory relationship between some human proteins in course of HIV-1 infection. Some experimental evidences of our predicted interactions have been found by searching the recent literatures in PUBMED. We have also highlighted some human proteins that are likely to act against the HIV-1 attack. CONCLUSIONS We pose the problem of identifying new regulatory interactions between HIV-1 and human proteins based on the existing PPI database as an association rule mining problem based on biclustering algorithm. We discover some novel regulatory interactions between HIV-1 and human proteins. Significant number of predicted interactions has been found to be supported by recent literature.
Collapse
Affiliation(s)
| | - Sumanta Ray
- Department of Computer Science and Engineering, Aliah University, Kolkata-700091, West Bengal, India.
| | | |
Collapse
|
28
|
Trinschek B, Lüssi F, Haas J, Wildemann B, Zipp F, Wiendl H, Becker C, Jonuleit H. Kinetics of IL-6 production defines T effector cell responsiveness to regulatory T cells in multiple sclerosis. PLoS One 2013; 8:e77634. [PMID: 24155968 PMCID: PMC3796502 DOI: 10.1371/journal.pone.0077634] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 09/13/2013] [Indexed: 11/18/2022] Open
Abstract
In multiple sclerosis (MS) autoaggressive T effector cells (Teff) are not efficiently controlled by regulatory T cells (Treg) but the underlying mechanisms are incompletely understood. Proinflammatory cytokines are key factors facilitating Teff activity in chronic inflammation. Here we investigated the influence of IL-6 on Treg sensitivity of Teff from therapy-naïve MS patients with or without active disease. Compared to healthy volunteers and independent of disease course CD4+ and especially CD8+ MS-Teff were insensitive against functional active Treg from healthy controls. This unresponsiveness was caused by accelerated production of IL-6, elevated IL-6 receptor expression and phosphorylation of protein kinase B (PKB)/c-Akt in MS-Teff. In a positive feedback loop, IL-6 itself induced its accelerated synthesis and enhanced phosphorylation of PKB/c-Akt that finally mediated Treg resistance. Furthermore, accelerated IL-6 release especially by CD8+ Teff prevented control of surrounding Teff, described here as “bystander resistance”. Blockade of IL-6 receptor signaling or direct inhibition of PKB/c-Akt phosphorylation restored Treg responsiveness of Teff and prevented bystander resistance. In Teff of healthy controls (HC) exogenous IL-6 also changed the kinetics of IL-6 production and induced Treg unresponsiveness. This modulation was only transient in Teff from healthy volunteers, whereas accelerated IL-6 production in MS-Teff maintained also in absence of IL-6. Hence, we showed that the kinetics of IL-6 production instead of elevated IL-6 levels defines the Teff responsiveness in early Treg-T cell communication in MS independent of their disease course and propose IL-6 and associated PKB/c-Akt activation as effective therapeutic targets for modulation of Teff activity in MS.
Collapse
Affiliation(s)
- Bettina Trinschek
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Felix Lüssi
- Department of Neurology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Jürgen Haas
- Division of Molecular Neuroimmunology, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | - Brigitte Wildemann
- Division of Molecular Neuroimmunology, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | - Frauke Zipp
- Department of Neurology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Heinz Wiendl
- Department of Neurology-Inflammatory Disorders of the Nervous System and Neurooncology, University of Muenster, Muenster, Germany
| | - Christian Becker
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Helmut Jonuleit
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- * E-mail:
| |
Collapse
|
29
|
CD4 blockade directly inhibits mouse and human CD4(+) T cell functions independent of Foxp3(+) Tregs. J Autoimmun 2013; 47:73-82. [PMID: 24055067 DOI: 10.1016/j.jaut.2013.08.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 08/20/2013] [Accepted: 08/26/2013] [Indexed: 11/22/2022]
Abstract
CD4(+) helper T cells orchestrate protective immunity against pathogens, yet can also induce undesired pathologies including allergies, transplant rejection and autoimmunity. Non-depleting CD4-specific antibodies such as clone YTS177.9 were found to promote long-lasting T cell tolerance in animal models. Thus, CD4 blockade could represent a promising therapeutic approach for human autoimmune diseases. However, the mechanisms underlying anti-CD4-induced tolerance are incompletely resolved. Particularly, multiple immune cells express CD4 including Foxp3(+) regulatory T cells (Tregs) and dendritic cells (DCs), both controlling the activation of CD4(+)Foxp3(-) helper T cells. Utilizing mixed leukocyte reactions (MLRs) reflecting physiological interactions between T cells and DCs, we report that anti-CD4 treatment inhibits CD4(+)Foxp3(-) T cell proliferation in an IL-2-independent fashion. Notably, YTS177.9 binding induces a rapid internalization of CD4 on both CD4(+)Foxp3(-) T cells and Foxp3(+) Tregs. However, no expansion or activation of immunosuppressive CD4(+)Foxp3(+) Tregs was observed following anti-CD4 treatment. Additionally, cytokine production, maturation and T cell priming capacity of DCs are not affected by anti-CD4 exposure. In line with these data, the selective ablation of Foxp3(+) Tregs from MLRs by the use of diphtheria toxin (DT)-treated bacterial artificial chromosome (BAC)-transgenic DEREG mice completely fails to abrogate the suppressive activity of multiple anti-CD4 antibodies. Instead, tolerization is associated with the defective expression of various co-stimulatory receptors including OX40 and CD30, suggesting altered signaling through the TCR complex. Consistent with our findings in mice, anti-CD4 treatment renders human CD4(+) T cells tolerant in the absence of Tregs. Thus, our results establish that anti-CD4 antibodies can directly tolerize pathogenic CD4(+)Foxp3(-) helper T cells. This has important implications for the treatment of human inflammatory diseases.
Collapse
|
30
|
Soluble GARP has potent antiinflammatory and immunomodulatory impact on human CD4+ T cells. Blood 2013; 122:1182-91. [DOI: 10.1182/blood-2012-12-474478] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Key Points
GARP efficiently represses proliferation of naïve and resting CD4+ T cells and is involved in the induction of adaptive regulatory T cells. In vivo, GARP prevents T cell–mediated destructive inflammation in a preclinical humanized mouse model of GVHD.
Collapse
|
31
|
Bacher N, Raker V, Hofmann C, Graulich E, Schwenk M, Baumgrass R, Bopp T, Zechner U, Merten L, Becker C, Steinbrink K. Interferon-α suppresses cAMP to disarm human regulatory T cells. Cancer Res 2013; 73:5647-56. [PMID: 23878189 DOI: 10.1158/0008-5472.can-12-3788] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
IFN-α is an antineoplastic agent in the treatment of several solid and hematologic malignancies that exerts strong immune- and autoimmune-stimulating activity. However, the mechanisms of immune activation by IFN-α remain incompletely understood, particularly with regard to CD4(+)CD25(high)Foxp(+) regulatory T cells (Treg). Here, we show that IFN-α deactivates the suppressive function of human Treg by downregulating their intracellular cAMP level. IFN-α-mediated Treg inactivation increased CD4(+) effector T-cell activation and natural killer cell tumor cytotoxicity. Mechanistically, repression of cAMP in Treg was caused by IFN-α-induced MAP-ERK kinase (MEK)/extracellular signal-regulated kinase (ERK)-mediated phosphodiesterase 4 (PDE4) activation and accompanied by downregulation of IFN receptor (IFNAR)-2 and negative regulation of T-cell receptor signaling. IFN-α did not affect the anergic state, cytokine production, Foxp3 expression, or methylation state of the Treg-specific demethylated region (TSDR) within the FOXP3 locus associated with a stable imprinted phenotype of human Treg. Abrogated protection by IFN-α-treated Treg in a humanized mouse model of xenogeneic graft-versus-host disease confirmed IFN-α-dependent regulation of Treg activity in vivo. Collectively, the present study unravels Treg inactivation as a novel IFN-α activity that provides a conceivable explanation for the immune-promoting effect and induction of autoimmunity by IFN-α treatment in patients with cancer and suggests IFN-α for concomitant Treg blockade in the context of therapeutic vaccination against tumor antigens.
Collapse
Affiliation(s)
- Nicole Bacher
- Authors' Affiliations: Department of Dermatology, Institute of Human Genetics, and Department of Immunology, University Medical Center, Johannes Gutenberg-University Mainz, Mainz; and German Rheumatism Research Centre Berlin (DRFZ), Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Søndergaard H, Kvist PH, Haase C. Human T cells depend on functional calcineurin, tumour necrosis factor-α and CD80/CD86 for expansion and activation in mice. Clin Exp Immunol 2013; 172:300-10. [PMID: 23574326 DOI: 10.1111/cei.12051] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2012] [Indexed: 12/15/2022] Open
Abstract
Dysregulated T cells are a hallmark of several autoimmune and inflammatory diseases; thus, models to study human T cells in vivo are advantageous, but limited by lacking insight into human T cell functionality in mice. Using non-obese diabetic (NOD), severe combined immunodeficient (SCID) or recombination activating gene-1 (RAG1)(-/-) and interleukin-2 receptor gamma-chain (IL-2Rγ)(-/-) mice reconstituted with human peripheral blood mononuclear cells (PBMCs), we have studied the mechanisms of human T cell expansion and activation in mice. Injection of human PBMCs into mice caused consistent xeno-engraftment with polyclonal expansion and activation of functional human T cells and production of human cytokines. Human T cell expansion coincided with development of a graft-versus-host disease (GVHD)-like condition observed as weight loss, multi-organ immune infiltration and liver damage. CD8(+) T cells alone were sufficient for expansion and required for disease development; in contrast, CD4(+) T cells alone expanded but did not induce acute disease and, rather, exerted regulatory capacity through CD25(+)CD4(+) T cells. Using various anti-inflammatory compounds, we demonstrated that several T cell-activation pathways controlled T cell expansion and disease development, including calcineurin-, tumour necrosis factor-α and co-stimulatory signalling via the CD80/CD86 pathway, indicating the diverse modes of action used by human T cells during expansion and activation in mice as well as the pharmacological relevance of this model. Overall, these data provide insight into the mechanisms used by human T cells during expansion and activation in mice, and we speculate that PBMC-injected mice may be useful to study intrinsic human T cell functions in vivo and to test T cell-targeting compounds.
Collapse
Affiliation(s)
- H Søndergaard
- Department of Immunopharmacology, Novo Nordisk A/S, Måløv, Denmark.
| | | | | |
Collapse
|
33
|
Subclinical CNS Inflammation as Response to a Myelin Antigen in Humanized Mice. J Neuroimmune Pharmacol 2013; 8:1037-47. [DOI: 10.1007/s11481-013-9466-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 04/22/2013] [Indexed: 12/25/2022]
|
34
|
Horch M, Nguyen VH. Regulatory T-cell immunotherapy for allogeneic hematopoietic stem-cell transplantation. Ther Adv Hematol 2013; 3:29-44. [PMID: 23556110 DOI: 10.1177/2040620711422266] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
From mouse studies to recently published clinical trials, evidence has accumulated on the potential use of regulatory T cells (Treg) in preventing and treating graft-versus-host disease following hematopoietic-cell transplantation (HCT). However, controversies remain as to the phenotype and stability of various Treg subsets and their respective roles in vivo, the requirement of antigen-specificity of Treg to reduce promiscuous suppression, and the molecular mechanisms by which Treg suppress, particularly in humans. In this review, we discuss recent findings that support a heterogeneous population of human Treg, address advances in understanding how Treg function in the context of HCT, and present data on recent clinical trials that highlight the feasibility and limitations on Treg immunotherapy for graft-versus-host disease.
Collapse
|
35
|
Immune regulation and evasion of Mammalian host cell immunity during viral infection. INDIAN JOURNAL OF VIROLOGY : AN OFFICIAL ORGAN OF INDIAN VIROLOGICAL SOCIETY 2013; 24:1-15. [PMID: 24426252 DOI: 10.1007/s13337-013-0130-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 02/15/2013] [Indexed: 12/18/2022]
Abstract
The mammalian host immune system has wide array of defence mechanisms against viral infections. Depending on host immunity and the extent of viral persistence, either the host immune cells might clear/restrict the viral load and disease progression or the virus might evade host immunity by down regulating host immune effector response(s). Viral antigen processing and presentation in the host cells through major histocompatibility complex (MHC) elicit subsequent anti-viral effector T cell response(s). However, modulation of such response(s) might generate one of the important viral immune evasion strategies. Viral peptides are mostly generated by proteolytic cleavage in the cytosol of the infected host cells. CD8(+) T lymphocytes play critical role in the detection of viral infection by recognizing these peptides displayed at the plasma membrane by MHC-I molecules. The present review summarises the current knowledge on the regulation of mammalian host innate and adaptive immune components, which are operative in defence mechanisms against viral infections and the variety of strategies that viruses have evolved to escape host cell immunity. The understanding of viral immune evasion strategies is important for designing anti-viral immunotherapies.
Collapse
|
36
|
Vang T, Landskron J, Viken MK, Oberprieler N, Torgersen KM, Mustelin T, Tasken K, Tautz L, Rickert RC, Lie BA. The autoimmune-predisposing variant of lymphoid tyrosine phosphatase favors T helper 1 responses. Hum Immunol 2013; 74:574-85. [PMID: 23333624 DOI: 10.1016/j.humimm.2012.12.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 11/28/2012] [Accepted: 12/21/2012] [Indexed: 02/08/2023]
Abstract
The C1858T single nucleotide polymorphism in PTPN22, which is the gene encoding lymphoid tyrosine phosphatase (LYP), confers increased risk for various autoimmune disorders in Caucasians. Although the disease-associated LYP allele (LYP*W620) is a gain-of-function variant that has higher catalytic activity than the major allele (LYP*R620), it is still unclear how LYP*W620 predisposes for autoimmunity. Here, we compared both T cell signaling and T cell function in healthy human donors homozygous for either LYP*R620 or LYP*W620. Generally, the presence of LYP*W620 caused reduced proximal T cell antigen receptor-mediated signaling (e.g. ζ chain phosphorylation) but augmented CD28-associated signaling (e.g. AKT activation). Altered ligand binding properties of the two LYP variants could explain these findings since LYP*R620 interacted more strongly with the p85 subunit of PI3K. Variation in signaling between cells expressing either LYP*R620 or LYP*W620 also affected the differentiation of conventional CD4(+) T cells. For example, LYP*W620 homozygous donors displayed exaggerated Th1 responses (e.g. IFNγ production) and reduced Th17 responses (e.g. IL-17 production). Importantly, while regulatory T cells normally suppressed Th1-mediated IFNγ production in LYP*R620 homozygous individuals, such suppression was lost in LYP*W620 homozygous individuals. Altogether, these findings provide a molecular and cellular explanation for the autoimmune phenotype associated with LYP*W620.
Collapse
Affiliation(s)
- Torkel Vang
- Biotechnology Centre of Oslo, University of Oslo, Oslo, Norway.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Natural regulatory T cells (Tregs) participate in responses to various chronic infections including HIV. HIV infection is associated with a progressive CD4 lymphopenia and defective HIV-specific CD8 responses known to play a key role in the control of viral replication. Persistent immune activation is a hallmark of HIV infection and is involved in disease progression independent of viral load. The consequences of Treg expansion, observed in HIV infection, could be either beneficial, by suppressing generalized T-cell activation, or detrimental, by weakening HIV-specific responses and thus contributing to viral persistence. The resulting balance between Tregs contrasting outcomes might have critical implications in pathogenesis. Topics covered in this review include HIV-induced alterations of Tregs, Treg cell dynamics in blood and tissues, Treg-suppressive function, and the relationship between Tregs and immune activation. This review also provides a focus on the role of CD39(+) Tregs and other regulatory cell subsets. All these issues will be explored in different situations including acute and chronic infection, antiretroviral treatment-mediated viral control, and spontaneous viral control. Results must be interpreted with regard to both the Treg definition used in context and to the setting of the disease in an attempt to draw clearer conclusions from the apparently conflicting results.
Collapse
|
38
|
Dependence on nuclear factor of activated T-cells (NFAT) levels discriminates conventional T cells from Foxp3+ regulatory T cells. Proc Natl Acad Sci U S A 2012; 109:16258-63. [PMID: 22991461 DOI: 10.1073/pnas.1203870109] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Several lines of evidence suggest nuclear factor of activated T-cells (NFAT) to control regulatory T cells: thymus-derived naturally occurring regulatory T cells (nTreg) depend on calcium signals, the Foxp3 gene harbors several NFAT binding sites, and the Foxp3 (Fork head box P3) protein interacts with NFAT. Therefore, we investigated the impact of NFAT on Foxp3 expression. Indeed, the generation of peripherally induced Treg (iTreg) by TGF-β was highly dependent on NFAT expression because the ability of CD4(+) T cells to differentiate into iTreg diminished markedly with the number of NFAT family members missing. It can be concluded that the expression of Foxp3 in TGF-β-induced iTreg depends on the threshold value of NFAT rather than on an individual member present. This is specific for iTreg development, because frequency of nTreg remained unaltered in mice lacking NFAT1, NFAT2, or NFAT4 alone or in combination. Different from expectation, however, the function of both nTreg and iTreg was independent on robust NFAT levels, reflected by less nuclear NFAT in nTreg and iTreg. Accordingly, absence of one or two NFAT members did not alter suppressor activity in vitro or during colitis and transplantation in vivo. This scenario emphasizes an inhibition of high NFAT activity as treatment for autoimmune diseases and in transplantation, selectively targeting the proinflammatory conventional T cells, while keeping Treg functional.
Collapse
|
39
|
Hubo M, Jonuleit H. Plasmacytoid dendritic cells are inefficient in activation of human regulatory T cells. PLoS One 2012; 7:e44056. [PMID: 22952871 PMCID: PMC3430613 DOI: 10.1371/journal.pone.0044056] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 07/30/2012] [Indexed: 12/20/2022] Open
Abstract
Background Dendritic cells (DC) play a key role in initiation and regulation of immune responses. Plasmacytoid DC (pDC), a small subset of DC, characterized as type-I interferon producing cells, are critically involved in anti-viral immune responses, but also mediate tolerance by induction of regulatory T cells (Treg). In this study, we compared the capacity of human pDC and conventional DC (cDC) to modulate T cell activity in presence of Foxp3+ Treg. Principal Findings In coculture of T effector cells (Teff) and Treg, activated cDC overcome Treg anergy, abrogate their suppressive function and induce Teff proliferation. In contrast, pDC do not break Treg anergy but induce Teff proliferation even in coculture with Treg. Lack of Treg-mediated suppression is independent of proinflammatory cytokines like IFN-α, IL-1, IL-6 and TNF-α. Phenotyping of pDC-stimulated Treg reveals a reduced expression of Treg activation markers GARP and CTLA-4. Additional stimulation by anti-CD3 antibodies enhances surface expression of GARP and CTLA-4 on Treg and consequently reconstitutes their suppressive function, while increased costimulation with anti-CD28 antibodies is ineffective. Conclusions/Significance Our data show that activated pDC induce Teff proliferation, but are insufficient for functional Treg activation and, therefore, allow expansion of Teff also in presence of Treg.
Collapse
Affiliation(s)
- Mario Hubo
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany.
| | | |
Collapse
|
40
|
Bodor J, Bopp T, Vaeth M, Klein M, Serfling E, Hünig T, Becker C, Schild H, Schmitt E. Cyclic AMP underpins suppression by regulatory T cells. Eur J Immunol 2012; 42:1375-84. [PMID: 22678893 DOI: 10.1002/eji.201141578] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Elevated levels of intracellular cyclic adenosine monophosphate (cAMP) in naturally occurring T regulatory (nTreg) cells play a key role in nTreg-cell-mediated suppression. Upon contact with nTreg cells, cAMP is transferred from nTreg cells into activated target CD4(+) T cells and/or antigen-presenting cells (APCs) via gap junctions to suppress CD4(+) T-cell function. cAMP facilitates the expression and nuclear function of a potent transcriptional inhibitor, inducible cAMP early repressor (ICER), resulting in ICER-mediated suppression of interleukin-2 (IL-2). Furthermore, ICER inhibits transcription of nuclear factor of activated T cell c1/α (NFATc1/α) and forms inhibitory complexes with preexisting NFATc1/c2, thereby inhibiting NFAT-driven transcription, including that of IL-2. In addition to its suppressive effects mediated via ICER, cAMP can also modulate the levels of surface-expressed cytotoxic T lymphocyte antigen-4 (CTLA-4) and its cognate B7 ligands on conventional CD4(+) T cells and/or APCs, fine-tuning suppression. These cAMP-driven nTreg-cell suppression mechanisms are the focus of this review.
Collapse
Affiliation(s)
- Josef Bodor
- Department of Molecular Pathology, Institute of Pathology, University of Würzburg, Würzburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Regulatory T cells (Tregs) play a pivotal role in the maintenance of tolerance as well as in the control of immune activation, particularly during chronic infections. In the setting of HIV infection, the majority of studies have reported an increase in Treg frequency but a decrease in absolute number in all immune compartments of HIV-infected individuals. Several nonexclusive mechanisms have been postulated to explain this preferential Treg accumulation, including peripheral survival, increased proliferation, increased peripheral conversion, and tissue redistribution. The role played by Tregs during HIV infection is still poorly understood, as two opposing hypotheses have been proposed. A detrimental role of Tregs during HIV infection was suggested based on the evidence that Tregs suppress virus-specific immune responses. Conversely, Tregs could be beneficial by limiting immune activation, thus controlling the availability of HIV targets as well as preventing immune-based pathologies. Despite the technical difficulties, getting a better understanding of the mechanisms regulating Treg dynamics remains important, as it will help determine whether we can successfully manipulate Treg function or number to the advantage of the infected host. The aim of this review is thus to discuss the recent findings on Treg homeostasis and function in the setting of HIV infection.
Collapse
|
42
|
Becker C, Bopp T, Jonuleit H. Boosting regulatory T cell function by CD4 stimulation enters the clinic. Front Immunol 2012; 3:164. [PMID: 22719741 PMCID: PMC3376463 DOI: 10.3389/fimmu.2012.00164] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 05/31/2012] [Indexed: 01/14/2023] Open
Abstract
Understanding tolerance mechanisms at the cellular and molecular level holds the promise to establish novel immune intervention therapies in patients with allergy or autoimmunity and to prevent transplant rejection. Administration of mAb against the CD4 molecule has been found to be exceptionally well suited for intentional tolerance induction in rodent and non-human primate models as well as in humanized mouse models. Recent evidence demonstrated that regulatory T cells (Treg) are directly activated by non-depleting CD4 ligands and suggests Treg activation as a central mechanism in anti-CD4-mediated tolerance induction. This review summarizes the current knowledge on the role of Treg in peripheral tolerance, addresses the putative mechanisms of Treg-mediated suppression and discusses the clinical potential of harnessing Treg suppressive activity through CD4 stimulation.
Collapse
Affiliation(s)
- Christian Becker
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | | | | |
Collapse
|
43
|
Mauricio Rueda C, Andrea Velilla P, Rojas M, Teresa Rugeles M. AMPc: una molécula clave en los eventos de regulación inmune y en el control de la replicación del VIH. INFECTIO 2012. [DOI: 10.1016/s0123-9392(12)70058-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
44
|
Moreno-Fernandez ME, Rueda CM, Velilla PA, Rugeles MT, Chougnet CA. cAMP during HIV infection: friend or foe? AIDS Res Hum Retroviruses 2012; 28:49-53. [PMID: 21916808 DOI: 10.1089/aid.2011.0265] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Intracellular levels of cyclic adenosine 3',5'-monophosphate (cAMP) are important regulators of immune cells, partially determining the balance between activation and suppression. In this review, we discuss the mechanisms by which HIV infection increases cAMP levels in T cells, as well as the effect of cAMP on HIV-specific responses and its effect on HIV replication and infection. Results suggest that increased cAMP levels during HIV infection may have a dual and opposite roles. On the one hand, they could have a protective effect by limiting viral replication in infected cells and decreasing viral entry. On the other hand, they could have a detrimental role by reducing HIV-specific antiviral immune responses, thus reducing the clearance of the virus and contributing to T cell dysfunction. Future studies are thus needed to further define the beneficial versus detrimental roles of cAMP, as they could help establish new therapeutic targets to combat HIV replication and/or identify novel ways to boost antiviral immune responses.
Collapse
Affiliation(s)
- Maria E. Moreno-Fernandez
- Division of Molecular Immunology, Cincinnati Children's Hospital Research Foundation, Department of Pediatrics, Immunobiology Graduate Program University of Cincinnati, College of Medicine, Cincinnati, Ohio
| | | | - Paula A. Velilla
- Grupo Inmunovirologia, Universidad de Antioquia, Medellin, Antioquia, Colombia
| | | | - Claire A. Chougnet
- Division of Molecular Immunology, Cincinnati Children's Hospital Research Foundation, Department of Pediatrics, Immunobiology Graduate Program University of Cincinnati, College of Medicine, Cincinnati, Ohio
| |
Collapse
|
45
|
Klein M, Vaeth M, Scheel T, Grabbe S, Baumgrass R, Berberich-Siebelt F, Bopp T, Schmitt E, Becker C. Repression of cyclic adenosine monophosphate upregulation disarms and expands human regulatory T cells. THE JOURNAL OF IMMUNOLOGY 2011; 188:1091-7. [PMID: 22190184 DOI: 10.4049/jimmunol.1102045] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The main molecular mechanism of human regulatory T cell (Treg)-mediated suppression has not been elucidated. We show in this study that cAMP represents a key regulator of human Treg function. Repression of cAMP production by inhibition of adenylate cyclase activity or augmentation of cAMP degradation through ectopic expression of a cAMP-degrading phosphodiesterase greatly reduces the suppressive activity of human Treg in vitro and in a humanized mouse model in vivo. Notably, cAMP repression additionally abrogates the anergic state of human Treg, accompanied by nuclear translocation of NFATc1 and induction of its short isoform NFATc1/αA. Treg expanded under cAMP repression, however, do not convert into effector T cells and regain their anergic state and suppressive activity upon proliferation. Together, these findings reveal the cAMP pathway as an attractive target for clinical intervention with Treg function.
Collapse
Affiliation(s)
- Matthias Klein
- University Medical Center, Institute for Immunology, Johannes Gutenberg-University, 55131 Mainz, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Frequency of circulating regulatory T cells increases during chronic HIV infection and is largely controlled by highly active antiretroviral therapy. PLoS One 2011; 6:e28118. [PMID: 22162758 PMCID: PMC3230597 DOI: 10.1371/journal.pone.0028118] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 11/01/2011] [Indexed: 12/14/2022] Open
Abstract
Regulatory T cells (Tregs) act by suppressing the activation and effector functions of innate and adaptive immune responses. HIV infection impacts Treg proportion and phenotype, although discrepant results have been reported depending on the patient population and the way Tregs were characterized. The effects of highly active antiretroviral therapy (HAART) on Treg frequency have not been thoroughly documented. We performed a detailed longitudinal analysis of Treg frequency and phenotype in 11 HIV-infected individuals enrolled in a single, prospective clinical trial, in which all patients underwent the same treatment protocol and were sampled at the same time points. Tregs were characterized for their expression of molecules associated with activation, cell cycle, apoptosis, or function, and compared to circulating Tregs from a group of age-matched healthy individuals. Our results revealed increased proportions, but reduced absolute numbers of circulating CD3+CD4+FOXP3+ Tregs in chronically infected HIV-infected patients. Treg frequency was largely normalized by HAART. Importantly, we show that similar conclusions were drawn regardless of the combination of markers used to define Tregs. Our results also showed increased expression of cell cycle markers (Ki67 and cyclin B) in Tregs from untreated infected individuals, which were decreased by HAART. However, the Treg phenotype in untreated patients was not consistent with a higher level of generalized activation, as they expressed very low levels of CD69, slightly elevated levels of HLA-DR and similar levels of GARP compared to Tregs from uninfected donors. Moreover, none of these markers was significantly changed by HAART. Treg expression of CTLA-4 and cytotoxic molecules was identical between patients and controls. The most striking difference in terms of functional molecules was the high expression of CD39 by Tregs in untreated patients, which HAART only partially controlled.
Collapse
|
47
|
Martin H, Reuter S, Dehzad N, Heinz A, Bellinghausen I, Saloga J, Haasler I, Korn S, Jonuleit H, Buhl R, Becker C, Taube C. CD4-mediated regulatory T-cell activation inhibits the development of disease in a humanized mouse model of allergic airway disease. J Allergy Clin Immunol 2011; 129:521-8, 528.e1-7. [PMID: 22078574 DOI: 10.1016/j.jaci.2011.09.038] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 09/20/2011] [Accepted: 09/30/2011] [Indexed: 01/23/2023]
Abstract
BACKGROUND Based on their potency to control allergic diseases, regulatory T (Treg) cells represent a promising target for novel strategies to interfere with allergic airway inflammation. We have previously demonstrated that stimulation of the CD4 molecule on human Treg cells activates their suppressive activity in vitro and in vivo. OBJECTIVE We sought to determine the effect of CD4-mediated Treg-cell activation on pulmonary inflammation in a humanized mouse model of allergic airway inflammation. METHODS PBMCs obtained from donors allergic to birch pollen or from healthy donors were injected into NOD-severe combined immunodeficiency γc(-/-) mice, followed by allergen airway challenges and analysis of airway responsiveness and inflammation. For Treg-cell activation, mice were treated with the CD4-binding, lck-activating recombinant HIV-1 surface protein gp120 after sensitization prior to allergen challenge. Control experiments with CD25-depleted PBMCs were performed to evaluate the role of Treg cells. RESULTS PBMCs from allergic donors but not from healthy donors induced airway inflammation and airway hyperresponsiveness. Treatment with gp120 prior to allergen challenge abrogated airway hyperresponsiveness and reduced the inflammatory immune response. In contrast, treatment had no effect on inflammation and airway hyperresponsiveness in mice that received CD25-depleted PBMCs, demonstrating Treg-cell dependency of disease prevention. CONCLUSION Allergic airway inflammation can be prevented by stimulation of human Treg cells by CD4. These results suggest a clinical potential of Treg-cell activation by high-affinity CD4 ligands in allergic diseases.
Collapse
Affiliation(s)
- Helen Martin
- III Medical Department, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
De Maria A, Cossarizza A. CD4saurus Rex &HIVelociraptor vs. development of clinically useful immunological markers: a Jurassic tale of frozen evolution. J Transl Med 2011; 9:93. [PMID: 21679413 PMCID: PMC3141501 DOI: 10.1186/1479-5876-9-93] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 06/16/2011] [Indexed: 01/11/2023] Open
Abstract
One of the most neglected areas of everyday clinical practice for HIV physicians is unexpectedly represented by CD4 T cell counts when used as an aid to clinical decisions. All who care for HIV patients believe that CD4+ T cell counts are a reliable method to evaluate a patient immune status. There is however a fatalistic acceptance that besides its general usefulness, CD4+ T cell counts have relevant clincal and immunological limits. Shortcomings of CD4 counts appear in certain clinical scenarios including identification of immunological nonresponders, subsequent development of cancer on antiretroviral teatment, failure on tretment simplification. Historical and recently described parameters might be better suited to advise management of patients at certain times during their disease history. Immunogenotypic parameters and innate immune parameters that define progression as well as immune parameters associated with immune recovery are available and have not been introduced into validation processes in larger trials. The scientific and clinical community needs an effort in stimulating clinical evolution of immunological tests beyond "CD4saurus Rex" introducing new parameters in the clinical arena after appropriate validation
Collapse
Affiliation(s)
- Andrea De Maria
- Centro di Eccellenza per la Ricerca Biomedica, Università di Genova, Genova, Italy.
| | | |
Collapse
|
49
|
Recipient Type-Sepcific Engineered Regulatory T Cells Prevent Graft-vs-Host Disease After Allogeneic Bone Marrow Transplantation in Mice. Transplant Proc 2011; 43:2041-8. [DOI: 10.1016/j.transproceed.2011.02.055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 02/15/2011] [Indexed: 11/22/2022]
|
50
|
Santosuosso M, Righi E, Hill ED, Leblanc PR, Kodish B, Mylvaganam HN, Siddappa NB, Stevceva L, Hu SL, Ghebremichael M, Chenine AL, Hovav AH, Ruprecht RM, Poznansky MC. R5-SHIV induces multiple defects in T cell function during early infection of rhesus macaques including accumulation of T reg cells in lymph nodes. PLoS One 2011; 6:e18465. [PMID: 21483689 PMCID: PMC3071731 DOI: 10.1371/journal.pone.0018465] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 03/09/2011] [Indexed: 11/18/2022] Open
Abstract
Background HIV-1 is a pathogen that T cell responses fail to control. HIV-1gp120 is the surface viral envelope glycoprotein that interacts with CD4 T cells and mediates entry. HIV-1gp120 has been implicated in immune dysregulatory functions that may limit anti-HIV antigen-specific T cell responses. We hypothesized that in the context of early SHIV infection, immune dysregulation of antigen-specific T-effector cell and regulatory functions would be detectable and that these would be associated or correlated with measurable concentrations of HIV-1gp120 in lymphoid tissues. Methods Rhesus macaques were intravaginally inoculated with a Clade C CCR5-tropic simian-human immunodeficiency virus, SHIV-1157ipd3N4. HIV-1gp120 levels, antigen-specificity, levels of apoptosis/anergy and frequency and function of Tregs were examined in lymph node and blood derived T cells at 5 and 12 weeks post inoculation. Results/Conclusions We observed reduced responses to Gag in CD4 and gp120 in CD8 lymph node-derived T cells compared to the peripheral blood at 5 weeks post-inoculation. Reduced antigen-specific responses were associated with higher levels of PD-1 on lymph node-derived CD4 T cells as compared to peripheral blood and uninfected lymph node-derived CD4 T cells. Lymph nodes contained increased numbers of Tregs as compared to peripheral blood, which positively correlated with gp120 levels; T regulatory cell depletion restored CD8 T cell responses to Gag but not to gp120. HIV gp120 was also able to induce T regulatory cell chemotaxis in a dose-dependent, CCR5-mediated manner. These studies contribute to our broader understanding of the ways in which HIV-1 dysregulates T cell function and localization during early infection.
Collapse
Affiliation(s)
- Michael Santosuosso
- Infectious Diseases Medicine Division, Vaccine and Immunotherapy Center, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Elda Righi
- Infectious Diseases Medicine Division, Vaccine and Immunotherapy Center, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - E. David Hill
- Infectious Diseases Medicine Division, Vaccine and Immunotherapy Center, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Pierre R. Leblanc
- Infectious Diseases Medicine Division, Vaccine and Immunotherapy Center, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Brett Kodish
- Infectious Diseases Medicine Division, Vaccine and Immunotherapy Center, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Hari N. Mylvaganam
- Infectious Diseases Medicine Division, Vaccine and Immunotherapy Center, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Nagadenahalli B. Siddappa
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Liljana Stevceva
- Infectious Diseases Medicine Division, Vaccine and Immunotherapy Center, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Shiu-Lok Hu
- Department of Pharmaceutics, University of Washington, Seattle, Washington, United States of America
| | - Musie Ghebremichael
- Department of Biostatistics and Computational Biology, Harvard School of Public Health and Dana Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Agnes-L. Chenine
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Avi-Hai Hovav
- Faculty of Dental Medicine, Institute of Dental Sciences, Hebrew University, Jerusalem, Israel
| | - Ruth M. Ruprecht
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Mark C. Poznansky
- Infectious Diseases Medicine Division, Vaccine and Immunotherapy Center, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|