1
|
Mai Q, He B, Deng S, Zeng Q, Xu Y, Wang C, Pang Y, Zhang S, Li J, Zeng J, Huang L, Fu Y, Li C, Li T, Xu X, Zhang L. Efficacy of NKG2D CAR-T cells with IL-15/IL-15Rα signaling for treating Epstein-Barr virus-associated lymphoproliferative disorder. Exp Hematol Oncol 2024; 13:85. [PMID: 39160631 PMCID: PMC11334566 DOI: 10.1186/s40164-024-00553-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/05/2024] [Indexed: 08/21/2024] Open
Abstract
Epstein-Barr virus (EBV) related post-transplant lymphoproliferative disorder (EBV-PTLD) is a life-threatening complication after hematopoietic stem cell transplantation (HSCT) or solid organ transplantation (SOT), for which no standard therapeutic means have been developed. Significant increase expression of natural killer group 2 member D ligands (NKG2DLs) was observed on B-lymphoblastoid cells of EBV-PTLD, indicating NKG2DLs as potential therapeutic targets for treatment of EBV-PTLD. In this study, the recombinant constructs of NKG2D CAR and IL-15/IL-15Rα-NKG2D CAR were generated with a retroviral vector and then transduced to human T cells to produce NKG2D CAR-T and IL-15/IL-15Rα-NKG2D CAR-T cells, respectively. B-lymphoblastoid cell lines (B-LCLs) and the xenografted mouse models were established to evaluate the efficacy of these CAR-T cells. IL-15/IL-15Rα-NKG2D CAR-T cells exhibited superior proliferation and antigen-specific cytotoxic effect compared to NKG2D CAR-T, as IL-15/IL-15Rα signaling promoted the expansion of less differentiated central memory T cells (TCM) and increased expression of CD107a and IFN-γ. Moreover, EBV DNA load was dramatically reduced, and 80% B-LCL cells were eliminated by IL-15/IL-15Rα-NKG2D CAR-T cells after co-culturing. In-vivo study confirmed that IL-15/IL-15Rα-NKG2D CAR-T cell therapy significantly enhanced antiviral efficacy in mice, as the serum load of EBV after IL-15/IL-15Rα-NKG2D CAR-T cell infusion was 1500 times lower than the untreated control (P < 0.001). The enhanced efficacy of IL-15/IL-15Rα-NKG2D CAR T cells was probably due to the IL-15/IL-15Rα signaling improved homing and persistence of NKG2D CAR-T cells in vivo, and increased the production of IFN-γ, Perforin, and Granulysin. In conclusion, NKG2D CAR-T cells co-expressing IL-15/IL-15Rα promoted the central memory CAR T cell proliferation and improved the homing and persistence of CAR T cells in vivo, resulting in enhanced anti-tumor and anti-viral effects in treating EBV-PTLD.
Collapse
Affiliation(s)
- Qiusui Mai
- Department of Blood Transfusion, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
| | - Bailin He
- Department of Hematology, Nanfang Hospital, Southern Medical Universit, Guangzhou, 510515, China
| | - Shikai Deng
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
| | - Qing Zeng
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
| | - Yanwen Xu
- Department of Obstetrics, He Xian Memorial Affiliated Hospital of Southern Medical University, Guangzhou, 511402, China
| | - Cong Wang
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
- Guangzhou Bai Rui Kang (BRK) Biological Science and Technology Limited Company, Guangzhou, 510555, China
| | - Yunyi Pang
- Department of Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Sheng Zhang
- Shenzhen Bao'an District Central Blood Station, Shenzhen, 518101, China
| | - Jinfeng Li
- Shenzhen Bao'an District Central Blood Station, Shenzhen, 518101, China
| | | | - Liqin Huang
- Shenzhen Blood Center, Shenzhen, 518035, China
| | - Yongshui Fu
- Guangzhou Blood Center, Guangzhou, 510095, China
| | - Chengyao Li
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China.
- Guangzhou Bai Rui Kang (BRK) Biological Science and Technology Limited Company, Guangzhou, 510555, China.
| | - Tingting Li
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China.
- Shenzhen Bao'an District Central Blood Station, Shenzhen, 518101, China.
| | - Xiaojun Xu
- Department of Blood Transfusion, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China.
| | - Ling Zhang
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
2
|
Lui WY, Ong CP, Cheung PHH, Ye ZW, Chan CP, To KKW, Yuen KS, Jin DY. Nsp1 facilitates SARS-CoV-2 replication through calcineurin-NFAT signaling. mBio 2024; 15:e0039224. [PMID: 38411085 PMCID: PMC11005343 DOI: 10.1128/mbio.00392-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/28/2024] Open
Abstract
SARS-CoV-2, the causative agent of COVID-19, has been intensely studied in search of effective antiviral treatments. The immunosuppressant cyclosporine A (CsA) has been suggested to be a pan-coronavirus inhibitor, yet its underlying mechanism remained largely unknown. Here, we found that non-structural protein 1 (Nsp1) of SARS-CoV-2 usurped CsA-suppressed nuclear factor of activated T cells (NFAT) signaling to drive the expression of cellular DEAD-box helicase 5 (DDX5), which facilitates viral replication. Nsp1 interacted with calcineurin A (CnA) to displace the regulatory protein regulator of calcineurin 3 (RCAN3) of CnA for NFAT activation. The influence of NFAT activation on SARS-CoV-2 replication was also validated by using the Nsp1-deficient mutant virus. Calcineurin inhibitors, such as CsA and VIVIT, inhibited SARS-CoV-2 replication and exhibited synergistic antiviral effects when used in combination with nirmatrelvir. Our study delineated the molecular mechanism of CsA-mediated inhibition of SARS-CoV-2 replication and the anti-SARS-CoV-2 action of calcineurin inhibitors. IMPORTANCE Cyclosporine A (CsA), commonly used to inhibit immune responses, is also known to have anti-SARS-CoV-2 activity, but its mode of action remains elusive. Here, we provide a model to explain how CsA antagonizes SARS-CoV-2 through three critical proteins: DDX5, NFAT1, and Nsp1. DDX5 is a cellular facilitator of SARS-CoV-2 replication, and NFAT1 controls the production of DDX5. Nsp1 is a viral protein absent from the mature viral particle and capable of activating the function of NFAT1 and DDX5. CsA and similar agents suppress Nsp1, NFAT1, and DDX5 to exert their anti-SARS-CoV-2 activity either alone or in combination with Paxlovid.
Collapse
Affiliation(s)
- Wai-Yin Lui
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Chon Phin Ong
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | | | - Zi-Wei Ye
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Chi-Ping Chan
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Kelvin Kai-Wang To
- Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong
| | - Kit-San Yuen
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
- School of Nursing, Tung Wah College, Kowloon, Hong Kong
| | - Dong-Yan Jin
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
3
|
Krämer C, Kilian M, Chih YC, Kourtesakis A, Hoffmann DC, Boschert T, Koopmann P, Sanghvi K, De Roia A, Jung S, Jähne K, Day B, Shultz LD, Ratliff M, Harbottle R, Green EW, Will R, Wick W, Platten M, Bunse L. NLGN4X TCR transgenic T cells to treat gliomas. Neuro Oncol 2024; 26:266-278. [PMID: 37715782 PMCID: PMC10836769 DOI: 10.1093/neuonc/noad172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Indexed: 09/18/2023] Open
Abstract
BACKGROUND Neuroligin 4 X-linked (NLGN4X) harbors a human leukocyte antigen (HLA)-A*02-restricted tumor-associated antigen, overexpressed in human gliomas, that was found to induce specific cytotoxic T cell responses following multi-peptide vaccination in patients with newly diagnosed glioblastoma. METHODS T cell receptor (TCR) discovery was performed using droplet-based single-cell TCR sequencing of NLGN4X-tetramer-sorted T cells postvaccination. The identified TCR was delivered to Jurkat T cells and primary human T cells (NLGN4X-TCR-T). Functional profiling of NLGN4X-TCR-T was performed by flow cytometry and cytotoxicity assays. Therapeutic efficacy of intracerebroventricular NLGN4X-TCR-T was assessed in NOD scid gamma (NSG) major histocompatibility complex (MHC) I/II knockout (KO) (NSG MHC I/II KO) mice bearing NLGN4X-expressing experimental gliomas. RESULTS An HLA-A*02-restricted vaccine-induced T cell receptor specifically binding NLGN4X131-139 was applied for preclinical therapeutic use. Reactivity, cytotoxicity, and polyfunctionality of this NLGN4X-specific TCR are demonstrated in various cellular models. Intracerebroventricular administration of NLGN4X-TCR-T prolongs survival and leads to an objective response rate of 44.4% in experimental glioma-bearing NSG MHC I/II KO mice compared to 0.0% in control groups. CONCLUSION NLGN4X-TCR-T demonstrate efficacy in a preclinical glioblastoma model. On a global scale, we provide the first evidence for the therapeutic retrieval of vaccine-induced human TCRs for the off-the-shelf treatment of glioblastoma patients.Keywords cell therapy | glioblastoma | T cell receptor | tumor antigen.
Collapse
Affiliation(s)
- Christoper Krämer
- German Cancer Consortium (DKTK) Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, MCTN, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Michael Kilian
- German Cancer Consortium (DKTK) Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, MCTN, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Yu-Chan Chih
- German Cancer Consortium (DKTK) Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Bioscience, Heidelberg University, Heidelberg, Germany
| | - Alexandros Kourtesakis
- Faculty of Bioscience, Heidelberg University, Heidelberg, Germany
- Neurology Clinic, Heidelberg University Hospital, University of Heidelberg, Heidelberg, Germany
- DKTK CCU Neurooncology, DKFZ, Heidelberg, Germany
| | - Dirk C Hoffmann
- Faculty of Bioscience, Heidelberg University, Heidelberg, Germany
- Neurology Clinic, Heidelberg University Hospital, University of Heidelberg, Heidelberg, Germany
- DKTK CCU Neurooncology, DKFZ, Heidelberg, Germany
| | - Tamara Boschert
- German Cancer Consortium (DKTK) Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Bioscience, Heidelberg University, Heidelberg, Germany
- Helmholtz Institute of Translational Oncology (HI-TRON), Mainz, Germany
| | - Philipp Koopmann
- German Cancer Consortium (DKTK) Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, MCTN, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Khwab Sanghvi
- German Cancer Consortium (DKTK) Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Bioscience, Heidelberg University, Heidelberg, Germany
| | - Alice De Roia
- German Cancer Consortium (DKTK) Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, MCTN, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Faculty of Bioscience, Heidelberg University, Heidelberg, Germany
- DNA Vector Laboratory, DKFZ, Heidelberg, Germany
| | - Stefanie Jung
- German Cancer Consortium (DKTK) Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kristine Jähne
- German Cancer Consortium (DKTK) Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Bryan Day
- Faculty of Medicine, University of Queensland, Herston, Australia
- Cell and Molecular Biology Department, Sid Faithfull Brain Cancer Laboratory, QIMR Berghofer MRI, Brisbane, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Gardens Point, Australia
| | - Lenny D Shultz
- Department of Immunology, The Jackson Laboratory, Bar Harbor, Maine, USA
| | - Miriam Ratliff
- Department of Neurosurgery, University Hospital Mannheim, Mannheim, Germany
| | | | - Edward W Green
- German Cancer Consortium (DKTK) Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rainer Will
- Neurology Clinic, Heidelberg University Hospital, University of Heidelberg, Heidelberg, Germany
- DKTK CCU Neurooncology, DKFZ, Heidelberg, Germany
- Core Facility Cellular tools, DKFZ, Heidelberg, Germany
| | | | - Michael Platten
- German Cancer Consortium (DKTK) Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, MCTN, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Helmholtz Institute of Translational Oncology (HI-TRON), Mainz, Germany
- Immune Monitoring Unit, National Center for Tumor Diseases (NCT), Heidelberg, Germany
- DKFZ Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
| | - Lukas Bunse
- German Cancer Consortium (DKTK) Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, MCTN, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- DKFZ Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
| |
Collapse
|
4
|
Zhang Y, Fang H, Wang G, Yuan G, Dong R, Luo J, Lyu Y, Wang Y, Li P, Zhou C, Yin W, Xiao H, Sun J, Zeng X. Cyclosporine A-resistant CAR-T cells mediate antitumour immunity in the presence of allogeneic cells. Nat Commun 2023; 14:8491. [PMID: 38123592 PMCID: PMC10733396 DOI: 10.1038/s41467-023-44176-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Chimeric antigen receptor (CAR)-T therapy requires autologous T lymphocytes from cancer patients, a process that is both costly and complex. Universal CAR-T cell treatment from allogeneic sources can overcome this limitation but is impeded by graft-versus-host disease (GvHD) and host versus-graft rejection (HvGR). Here, we introduce a mutated calcineurin subunit A (CNA) and a CD19-specific CAR into the T cell receptor α constant (TRAC) locus to generate cells that are resistant to the widely used immunosuppressant, cyclosporine A (CsA). These immunosuppressant-resistant universal (IRU) CAR-T cells display improved effector function in vitro and anti-tumour efficacy in a leukemia xenograft mouse model in the presence of CsA, compared with CAR-T cells carrying wild-type CNA. Moreover, IRU CAR-T cells retain effector function in vitro and in vivo in the presence of both allogeneic T cells and CsA. Lastly, CsA withdrawal restores HvGR, acting as a safety switch that can eliminate IRU CAR-T cells. These findings demonstrate the efficacy of CsA-resistant CAR-T cells as a universal, 'off-the-shelf' treatment option.
Collapse
Affiliation(s)
- Yixi Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Research Units of Infectious disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, 310003, China
| | - Hongyu Fang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Research Units of Infectious disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, 310003, China
| | - Guocan Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Research Units of Infectious disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, 310003, China
| | - Guangxun Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Research Units of Infectious disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, 310003, China
| | - Ruoyu Dong
- Department of Hematology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Jijun Luo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Research Units of Infectious disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, 310003, China
| | - Yu Lyu
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, Hangzhou, 310058, China
| | - Yajie Wang
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Peng Li
- Puluoting Health Technology Co., Ltd, Hangzhou, 310003, China
| | - Chun Zhou
- School of Public Health & Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Weiwei Yin
- Key Laboratory for Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310058, China
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Haowen Xiao
- Department of Hematology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
| | - Jie Sun
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, 310058, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China.
| | - Xun Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
- Research Units of Infectious disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, 310003, China.
| |
Collapse
|
5
|
Zaffiri L, Chambers ET. Screening and Management of PTLD. Transplantation 2023; 107:2316-2328. [PMID: 36949032 DOI: 10.1097/tp.0000000000004577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Posttransplant lymphoproliferative disorder (PTLD) represents a heterogeneous group of lymphoproliferative diseases occurring in the setting of immunosuppression following hematopoietic stem cells transplant and solid organ transplantation. Despite its overall low incidence, PTLD is a serious complication following transplantation, with a mortality rate as high as 50% in transplant recipients. Therefore, it is important to establish for each transplant recipient a personalized risk evaluation for the development of PTLD based on the determination of Epstein-Barr virus serostatus and viral load following the initiation of immunosuppression. Due to the dynamic progression of PTLD, reflected in the diverse pathological features, different therapeutic approaches have been used to treat this disorder. Moreover, new therapeutic strategies based on the administration of virus-specific cytotoxic T cells have been developed. In this review, we summarize the available data on screening and treatment to suggest a strategy to identify transplant recipients at a higher risk for PTLD development and to review the current therapeutic options for PTLD.
Collapse
Affiliation(s)
- Lorenzo Zaffiri
- Division of Pulmonary and Critical Care Medicine, Cedars-Sinai Medical Center, Los Angeles, CA
| | | |
Collapse
|
6
|
Zhang Q, Xu M. EBV-induced T-cell responses in EBV-specific and nonspecific cancers. Front Immunol 2023; 14:1250946. [PMID: 37841280 PMCID: PMC10576448 DOI: 10.3389/fimmu.2023.1250946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/12/2023] [Indexed: 10/17/2023] Open
Abstract
Epstein-Barr virus (EBV) is a ubiquitous human tumor virus associated with various malignancies, including B-lymphoma, NK and T-lymphoma, and epithelial carcinoma. It infects B lymphocytes and epithelial cells within the oropharynx and establishes persistent infection in memory B cells. With a balanced virus-host interaction, most individuals carry EBV asymptomatically because of the lifelong surveillance by T cell immunity against EBV. A stable anti-EBV T cell repertoire is maintained in memory at high frequency in the blood throughout persistent EBV infection. Patients with impaired T cell immunity are more likely to develop life-threatening lymphoproliferative disorders, highlighting the critical role of T cells in achieving the EBV-host balance. Recent studies reveal that the EBV protein, LMP1, triggers robust T-cell responses against multiple tumor-associated antigens (TAAs) in B cells. Additionally, EBV-specific T cells have been identified in EBV-unrelated cancers, raising questions about their role in antitumor immunity. Herein, we summarize T-cell responses in EBV-related cancers, considering latency patterns, host immune status, and factors like human leukocyte antigen (HLA) susceptibility, which may affect immune outcomes. We discuss EBV-induced TAA-specific T cell responses and explore the potential roles of EBV-specific T cell subsets in tumor microenvironments. We also describe T-cell immunotherapy strategies that harness EBV antigens, ranging from EBV-specific T cells to T cell receptor-engineered T cells. Lastly, we discuss the involvement of γδ T-cells in EBV infection and associated diseases, aiming to elucidate the comprehensive interplay between EBV and T-cell immunity.
Collapse
Affiliation(s)
| | - Miao Xu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center (SYSUCC), Guangzhou, Guangdong, China
| |
Collapse
|
7
|
Palianina D, Di Roberto RB, Castellanos-Rueda R, Schlatter F, Reddy ST, Khanna N. A method for polyclonal antigen-specific T cell-targeted genome editing (TarGET) for adoptive cell transfer applications. Mol Ther Methods Clin Dev 2023; 30:147-160. [PMID: 37448595 PMCID: PMC10336339 DOI: 10.1016/j.omtm.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 06/15/2023] [Indexed: 07/15/2023]
Abstract
Adoptive cell therapy of donor-derived, antigen-specific T cells expressing native T cell receptors (TCRs) is a powerful strategy to fight viral infections in immunocompromised patients. Determining the fate of T cells following patient infusion hinges on the ability to track them in vivo. While this is possible by genetic labeling of parent cells, the applicability of this approach has been limited by the non-specificity of the edited T cells. Here, we devised a method for CRISPR-targeted genome integration of a barcoded gene into Epstein-Barr virus-antigen-stimulated T cells and demonstrated its use for exclusively identifying expanded virus-specific cell lineages. Our method facilitated the enrichment of antigen-specific T cells, which then mediated improved cytotoxicity against Epstein-Barr virus-transformed target cells. Single-cell and deep sequencing for lineage tracing revealed the expansion profile of specific T cell clones and their corresponding gene expression signature. This approach has the potential to enhance the traceability and the monitoring capabilities during immunotherapeutic T cell regimens.
Collapse
Affiliation(s)
- Darya Palianina
- Department of Biomedicine, University and University Hospital of Basel, 4056 Basel, Switzerland
| | - Raphaël B. Di Roberto
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland
| | - Rocío Castellanos-Rueda
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland
- Life Science Zurich Graduate School, Systems Biology, ETH Zürich, University of Zurich, 8057 Zürich, Switzerland
| | - Fabrice Schlatter
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland
| | - Sai T. Reddy
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland
| | - Nina Khanna
- Department of Biomedicine, University and University Hospital of Basel, 4056 Basel, Switzerland
- Divsion of Infectious Diseases and Hospital Epidemiology, University Hospital of Basel, 4031 Basel, Switzerland
| |
Collapse
|
8
|
Immunocompromised host section: Adoptive T-cell therapy for dsDNA viruses in allogeneic hematopoietic cell transplant recipients. Curr Opin Infect Dis 2022; 35:302-311. [PMID: 35849520 DOI: 10.1097/qco.0000000000000838] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW Double-stranded DNA (dsDNA) viruses remain important causes of morbidity and mortality after allogeneic hematopoietic cell transplantation (HCT). As treatment options are limited, adoptive therapy with virus-specific T cells (VST) is promising in restoring immunity and thereby preventing and treating virus infections. Here we review current evidence and recent advances in the field of VST for dsDNA viruses in allogeneic HCT recipients. RECENT FINDINGS Four different protocols for VST generation are currently used in clinical trials, and various products including multivirus-specific and off-the-shelf products are under investigation for prophylaxis, preemptive therapy or treatment. Data from nearly 1400 dsDNA-VST applications in allogeneic HCT patients have been published and demonstrated its safety. Although Epstein-Barr virus, cytomegalovirus, and adenovirus-specific T-cell therapy studies have predominated over the past 25 years, additional human herpes viruses were added to multivirus-specific T cells over the last decade and clinical evidence for polyomavirus-specific VST has just recently emerged. Response rates of around 70-80% have been reported, but cautious interpretation is warranted as data are predominantly from phase 1/2 studies and clinical efficacy needs to be confirmed in phase 3 studies. SUMMARY Investigation on the 'ideal' composition of VST is ongoing. Several products recently entered phase 3 trials and may allow widespread clinical use in the near future.
Collapse
|
9
|
Hafezi M, Tan A, Bertoletti A. Personalized Armored TCR-Redirected T Cell Therapy for Liver/Organ Transplant with Recurrent Cancer. Cells 2021; 10:cells10081861. [PMID: 34440630 PMCID: PMC8393584 DOI: 10.3390/cells10081861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatitis B virus-related hepatocellular carcinoma recurrence after liver transplantation (LT) is notoriously difficult to manage and fatal. As a therapeutic option, adoptive cell therapy with HBV-specific TCR-redirected T cells could be employed to target and control relapses in these patients. However, indispensable immunosuppressive medications post-transplantation can significantly hinder the optimum efficacy of such therapy in the clinic. Here we report a new class of Armored TCR T cells which are able to attack recurrent cancer cells in liver transplanted recipients, while temporarily evading immunosuppressant drugs. We believe this strategy could open up new opportunities for treating pathologies under immunosuppressant treatment.
Collapse
Affiliation(s)
- Morteza Hafezi
- Emerging Infectious Diseases Program, Duke-NUS Medical School, Singapore 169857, Singapore; (M.H.); (A.T.)
| | - Anthony Tan
- Emerging Infectious Diseases Program, Duke-NUS Medical School, Singapore 169857, Singapore; (M.H.); (A.T.)
| | - Antonio Bertoletti
- Emerging Infectious Diseases Program, Duke-NUS Medical School, Singapore 169857, Singapore; (M.H.); (A.T.)
- Singapore Immunology Network, Singapore Agency for Science, Technology & Research (A*STAR), Singapore 169857, Singapore
- Correspondence:
| |
Collapse
|
10
|
Hafezi M, Lin M, Chia A, Chua A, Ho ZZ, Fam R, Tan D, Aw J, Pavesi A, Krishnamoorthy TL, Chow WC, Chen W, Zhang Q, Wai LE, Koh S, Tan AT, Bertoletti A. Immunosuppressive Drug-Resistant Armored T-Cell Receptor T Cells for Immune Therapy of HCC in Liver Transplant Patients. Hepatology 2021; 74:200-213. [PMID: 33249625 DOI: 10.1002/hep.31662] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/06/2020] [Accepted: 11/16/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND AIMS HBV-specific T-cell receptor (HBV-TCR) engineered T cells have the potential for treating HCC relapses after liver transplantation, but their efficacy can be hampered by the concomitant immunosuppressive treatment required to prevent graft rejection. Our aim is to molecularly engineer TCR-T cells that could retain their polyfunctionality in such patients while minimizing the associated risk of organ rejection. APPROACH AND RESULTS We first analyzed how immunosuppressive drugs can interfere with the in vivo function of TCR-T cells in liver transplanted patients with HBV-HCC recurrence receiving HBV-TCR T cells and in vitro in the presence of clinically relevant concentrations of immunosuppressive tacrolimus (TAC) and mycophenolate mofetil (MMF). Immunosuppressive Drug Resistant Armored TCR-T cells of desired specificity (HBV or Epstein-Barr virus) were then engineered by concomitantly electroporating mRNA encoding specific TCRs and mutated variants of calcineurin B (CnB) and inosine-5'-monophosphate dehydrogenase (IMPDH), and their function was assessed through intracellular cytokine staining and cytotoxicity assays in the presence of TAC and MMF. Liver transplanted HBV-HCC patients receiving different immunosuppressant drugs exhibited varying levels of activated (CD39+ Ki67+ ) peripheral blood mononuclear cells after HBV-TCR T-cell infusions that positively correlate with clinical efficacy. In vitro experiments with TAC and MMF showed a potent inhibition of TCR-T cell polyfunctionality. This inhibition can be effectively negated by the transient overexpression of mutated variants of CnB and IMPDH. Importantly, the resistance only lasted for 3-5 days, after which sensitivity was restored. CONCLUSIONS We engineered TCR-T cells of desired specificities that transiently escape the immunosuppressive effects of TAC and MMF. This finding has important clinical applications for the treatment of HBV-HCC relapses and other pathologies occurring in organ transplanted patients.
Collapse
Affiliation(s)
- Morteza Hafezi
- Emerging Infectious Diseases Program, Duke-NUS Medical School, Singapore, Singapore.,Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Meiyin Lin
- Emerging Infectious Diseases Program, Duke-NUS Medical School, Singapore, Singapore.,Institute of Molecular and Cell Biology, Agency for Science and Technology, Singapore, Singapore
| | - Adeline Chia
- Emerging Infectious Diseases Program, Duke-NUS Medical School, Singapore, Singapore
| | | | | | - Royce Fam
- Lion TCR Pte Ltd, Singapore, Singapore
| | - Damien Tan
- Institute of Molecular and Cell Biology, Agency for Science and Technology, Singapore, Singapore
| | - Joey Aw
- Institute of Molecular and Cell Biology, Agency for Science and Technology, Singapore, Singapore
| | - Andrea Pavesi
- Institute of Molecular and Cell Biology, Agency for Science and Technology, Singapore, Singapore
| | | | - Wan Cheng Chow
- Department of Gastroenterology & Hepatology, Singapore General Hospital, Singapore, Singapore
| | - Wenjie Chen
- Department of Biotherapy, The Third Affiliated Hospital of Sun Yat-Sen University, Guandong, China
| | - Qi Zhang
- Department of Biotherapy, The Third Affiliated Hospital of Sun Yat-Sen University, Guandong, China
| | - Lu-En Wai
- Lion TCR Pte Ltd, Singapore, Singapore.,Singapore Immunology Network, Agency for Science and Technology, Singapore, Singapore
| | - Sarene Koh
- Lion TCR Pte Ltd, Singapore, Singapore.,Singapore Immunology Network, Agency for Science and Technology, Singapore, Singapore
| | - Anthony T Tan
- Emerging Infectious Diseases Program, Duke-NUS Medical School, Singapore, Singapore
| | - Antonio Bertoletti
- Emerging Infectious Diseases Program, Duke-NUS Medical School, Singapore, Singapore.,Singapore Immunology Network, Agency for Science and Technology, Singapore, Singapore
| |
Collapse
|
11
|
Shahid S, Prockop SE. Epstein-Barr virus-associated post-transplant lymphoproliferative disorders: beyond chemotherapy treatment. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:646-664. [PMID: 34485854 PMCID: PMC8415721 DOI: 10.20517/cdr.2021.34] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/10/2021] [Accepted: 05/19/2021] [Indexed: 12/30/2022]
Abstract
Post-transplant lymphoproliferative disorder (PTLD) is a rare but life-threatening complication of both allogeneic solid organ (SOT) and hematopoietic cell transplantation (HCT). The histology of PTLD ranges from benign polyclonal lymphoproliferation to a lesion indistinguishable from classic monoclonal lymphoma. Most commonly, PTLDs are Epstein-Barr virus (EBV) positive and result from loss of immune surveillance over EBV. Treatment for PTLD differs from the treatment for typical non-Hodgkin lymphoma because prognostic factors are different, resistance to treatment is unique, and there are specific concerns for organ toxicity. While recipients of HCT have a limited time during which they are at risk for this complication, recipients of SOT have a lifelong requirement for immunosuppression, so approaches that limit compromising or help restore immune surveillance are of high interest. Furthermore, while EBV-positive and EBV-negative PTLDs are not intrinsically resistant to chemotherapy, the poor tolerance of chemotherapy in the post-transplant setting makes it essential to minimize potential treatment-related toxicities and explore alternative treatment algorithms. Therefore, reduced-toxicity approaches such as single-agent CD20 monoclonal antibodies or bortezomib, reduced dosing of standard chemotherapeutic agents, and non-chemotherapy-based approaches such as cytotoxic T cells have all been explored. Here, we review the chemotherapy and non-chemotherapy treatment landscape for PTLD.
Collapse
Affiliation(s)
| | - Susan E. Prockop
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
12
|
Parajuli S, Jorgenson M, Meyers RO, Djamali A, Galipeau J. Role of Virus-Specific T Cell Therapy for Cytomegalovirus and BK Infections in Kidney Transplant Recipients. KIDNEY360 2021; 2:905-915. [PMID: 35373059 PMCID: PMC8791350 DOI: 10.34067/kid.0001572021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 03/24/2021] [Indexed: 02/04/2023]
Abstract
Cytomegalovirus (CMV) and BK virus (BKV) are common viral infections after kidney transplant. Their negative effects on patient and graft outcomes have been well described. However, despite improvement in screening and prophylaxis strategies, CMV and BKV continue to negatively affect both short- and long-term graft survival. Adequate cell-mediated immunity is essential for the control and prevention of opportunistic viral infections, such as CMV and BKV. Therefore, immune reconstitution, in particular T cell recovery, is a key factor in antiviral control after kidney transplantation. Cell-based immunotherapy offers an attractive alternative approach to traditional interventions. Adoptive T cell transfer, via infusions of allogeneic virus-specific T lymphocytes is capable of restoring virus-specific T cell immunity, and are safe and effective in the treatment of viral infections after hematopoietic stem cell transplantation. In this article, we review the emerging role of virus-specific T cell therapy in the management of CMV and BKV after kidney transplantation. On the basis of the available data, virus-specific T cell therapy may be a promising addition to the antiviral treatment armamentarium after kidney transplantation. Future studies are needed to more clearly define the efficacy and risks of virus-specific T cell therapy in the kidney transplant population.
Collapse
Affiliation(s)
- Sandesh Parajuli
- Division of Nephrology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Margaret Jorgenson
- Department of Pharmacy, University of Wisconsin Hospital and Clinics, Madison, Wisconsin
| | - Ross O. Meyers
- Division of Pharmacy Professional Development, University of Wisconsin-Madison School of Pharmacy, Madison, Wisconsin,Program for Advanced Cell Therapy, University of Wisconsin Hospital and Clinics and School of Medicine and Public Health, Madison Wisconsin
| | - Arjang Djamali
- Division of Nephrology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Jacques Galipeau
- Program for Advanced Cell Therapy, University of Wisconsin Hospital and Clinics and School of Medicine and Public Health, Madison Wisconsin,Division of Hematology and Oncology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin,University of Wisconsin Carbone Cancer Center, Madison, Wisconsin
| |
Collapse
|
13
|
Amini L, Greig J, Schmueck-Henneresse M, Volk HD, Bézie S, Reinke P, Guillonneau C, Wagner DL, Anegon I. Super-Treg: Toward a New Era of Adoptive Treg Therapy Enabled by Genetic Modifications. Front Immunol 2021; 11:611638. [PMID: 33717052 PMCID: PMC7945682 DOI: 10.3389/fimmu.2020.611638] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/24/2020] [Indexed: 12/27/2022] Open
Abstract
Regulatory Tcells (Treg) are essential components of peripheral immune homeostasis. Adoptive Treg cell therapy has shown efficacy in a variety of immune-mediated diseases in preclinical studies and is now moving from phase I/IIa to larger phase II studies aiming to demonstrate efficacy. However, hurdles such as in vivo stability and efficacy remain to be addressed. Nevertheless, preclinical models have shown that Treg function and specificity can be increased by pharmacological substances or gene modifications, and even that conventional T cells can be converted to Treg potentially providing new sources of Treg and facilitating Treg cell therapy. The exponential growth in genetic engineering techniques and their application to T cells coupled to a large body of knowledge on Treg open numerous opportunities to generate Treg with "superpowers". This review summarizes the genetic engineering techniques available and their applications for the next-generation of Super-Treg with increased function, stability, redirected specificity and survival.
Collapse
Affiliation(s)
- Leila Amini
- BIH Center for Regenerative Therapies (BCRT) and Berlin Center for Advanced Therapies (BeCAT), Charité-Universitätsmedizin Berlin and Berlin Institute of Health (BIH), Berlin, Germany
| | - Jenny Greig
- INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | - Michael Schmueck-Henneresse
- BIH Center for Regenerative Therapies (BCRT) and Berlin Center for Advanced Therapies (BeCAT), Charité-Universitätsmedizin Berlin and Berlin Institute of Health (BIH), Berlin, Germany
| | - Hans-Dieter Volk
- BIH Center for Regenerative Therapies (BCRT) and Berlin Center for Advanced Therapies (BeCAT), Charité-Universitätsmedizin Berlin and Berlin Institute of Health (BIH), Berlin, Germany
| | - Séverine Bézie
- INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | - Petra Reinke
- BIH Center for Regenerative Therapies (BCRT) and Berlin Center for Advanced Therapies (BeCAT), Charité-Universitätsmedizin Berlin and Berlin Institute of Health (BIH), Berlin, Germany
| | - Carole Guillonneau
- INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | - Dimitrios L. Wagner
- BIH Center for Regenerative Therapies (BCRT) and Berlin Center for Advanced Therapies (BeCAT), Charité-Universitätsmedizin Berlin and Berlin Institute of Health (BIH), Berlin, Germany
| | - Ignacio Anegon
- INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| |
Collapse
|
14
|
Engineering a Human Plasmacytoid Dendritic Cell-Based Vaccine to Prime and Expand Multispecific Viral and Tumor Antigen-Specific T-Cells. Vaccines (Basel) 2021; 9:vaccines9020141. [PMID: 33578850 PMCID: PMC7916617 DOI: 10.3390/vaccines9020141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/03/2021] [Accepted: 02/08/2021] [Indexed: 11/17/2022] Open
Abstract
Because dendritic cells are crucial to prime and expand antigen-specific CD8+ T-cells, several strategies are designed to use them in therapeutic vaccines against infectious diseases or cancer. In this context, off-the-shelf allogeneic dendritic cell-based platforms are more attractive than individualized autologous vaccines tailored to each patient. In the present study, a unique dendritic cell line (PDC*line) platform of plasmacytoid origin, already used to prime and expand antitumor immunity in melanoma patients, was improved thanks to retroviral engineering. We demonstrated that the clinical-grade PDC*line, transduced with genes encoding viral or tumoral whole proteins, efficiently processed and stably presented the transduced antigens in different human leukocyte antigen (HLA) class I contexts. Moreover, the use of polyepitope constructs allowed the presentation of immunogenic peptides and the expansion of specific cytotoxic effectors. We also demonstrated that the addition of the Lysosome-associated membrane protein-1 (LAMP-1) sequence greatly improved the presentation of some peptides. Lastly, thanks to transduction of new HLA molecules, the PDC platform can benefit many patients through the easy addition of matched HLA-I molecules. The demonstration of the effective retroviral transduction of PDC*line cells strengthens and broadens the scope of the PDC*line platform, which can be used in adoptive or active immunotherapy for the treatment of infectious diseases or cancer.
Collapse
|
15
|
Annaloro C, Serpenti F, Saporiti G, Galassi G, Cavallaro F, Grifoni F, Goldaniga M, Baldini L, Onida F. Viral Infections in HSCT: Detection, Monitoring, Clinical Management, and Immunologic Implications. Front Immunol 2021; 11:569381. [PMID: 33552044 PMCID: PMC7854690 DOI: 10.3389/fimmu.2020.569381] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022] Open
Abstract
In spite of an increasing array of investigations, the relationships between viral infections and allogeneic hematopoietic stem cell transplantation (HSCT) are still controversial, and almost exclusively regard DNA viruses. Viral infections per se account for a considerable risk of morbidity and mortality among HSCT recipients, and available antiviral agents have proven to be of limited effectiveness. Therefore, an optimal management of viral infection represents a key point in HSCT strategies. On the other hand, viruses bear the potential of shaping immunologic recovery after HSCT, possibly interfering with control of the underlying disease and graft-versus-host disease (GvHD), and eventually with HSCT outcome. Moreover, preliminary data are available about the possible role of some virome components as markers of immunologic recovery after HSCT. Lastly, HSCT may exert an immunotherapeutic effect against some viral infections, notably HIV and HTLV-1, and has been considered as an eradicating approach in these indications.
Collapse
Affiliation(s)
- Claudio Annaloro
- Hematology-BMT Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milano, Italy
| | - Fabio Serpenti
- Hematology-BMT Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milano, Italy
| | - Giorgia Saporiti
- Hematology-BMT Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milano, Italy
| | - Giulia Galassi
- Hematology-BMT Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milano, Italy
| | - Francesca Cavallaro
- Hematology-BMT Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milano, Italy
| | - Federica Grifoni
- Hematology-BMT Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milano, Italy
| | - Maria Goldaniga
- Hematology-BMT Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milano, Italy
| | - Luca Baldini
- Hematology-BMT Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milano, Italy
| | - Francesco Onida
- Hematology-BMT Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milano, Italy
| |
Collapse
|
16
|
Heslop HE, Sharma S, Rooney CM. Adoptive T-Cell Therapy for Epstein-Barr Virus-Related Lymphomas. J Clin Oncol 2021; 39:514-524. [PMID: 33434061 DOI: 10.1200/jco.20.01709] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Helen E Heslop
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston, TX
| | - Sandhya Sharma
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston, TX
| | - Cliona M Rooney
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston, TX
| |
Collapse
|
17
|
Amini L, Wagner DL, Rössler U, Zarrinrad G, Wagner LF, Vollmer T, Wendering DJ, Kornak U, Volk HD, Reinke P, Schmueck-Henneresse M. CRISPR-Cas9-Edited Tacrolimus-Resistant Antiviral T Cells for Advanced Adoptive Immunotherapy in Transplant Recipients. Mol Ther 2021; 29:32-46. [PMID: 32956624 PMCID: PMC7791012 DOI: 10.1016/j.ymthe.2020.09.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/03/2020] [Indexed: 02/07/2023] Open
Abstract
Viral infections, such as with cytomegalovirus (CMV), remain a major risk factor for mortality and morbidity of transplant recipients because of their requirement for lifelong immunosuppression (IS). Antiviral drugs often cause toxicity and sometimes fail to control disease. Thus, regeneration of the antiviral immune response by adoptive antiviral T cell therapy is an attractive alternative. Our recent data, however, show only short-term efficacy in some solid organ recipients, possibly because of malfunction in transferred T cells caused by ongoing IS. We developed a vector-free clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9-based good manufacturing practice (GMP)-compliant protocol that efficiently targets and knocks out the gene for the adaptor protein FK506-binding protein 12 (FKBP12), required for the immunosuppressive function of tacrolimus. This was achieved by transient delivery of ribonucleoprotein complexes into CMV-specific T cells by electroporation. We confirmed the tacrolimus resistance of our gene-edited T cell products in vitro and demonstrated performance comparable with non-tacrolimus-treated unmodified T cells. The alternative calcineurin inhibitor cyclosporine A can be administered as a safety switch to shut down tacrolimus-resistant T cell activity in case of adverse effects. Furthermore, we performed safety assessments as a prerequisite for translation to first-in-human applications.
Collapse
Affiliation(s)
- Leila Amini
- Berlin Institute of Health (BIH) Center for Regenerative Therapies (B-CRT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Dimitrios Laurin Wagner
- Berlin Institute of Health (BIH) Center for Regenerative Therapies (B-CRT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Uta Rössler
- Berlin Institute of Health (BIH) Center for Regenerative Therapies (B-CRT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Ghazaleh Zarrinrad
- Berlin Institute of Health (BIH) Center for Regenerative Therapies (B-CRT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; Einstein Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Livia Felicitas Wagner
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Tino Vollmer
- Berlin Institute of Health (BIH) Center for Regenerative Therapies (B-CRT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Désirée Jacqueline Wendering
- Berlin Institute of Health (BIH) Center for Regenerative Therapies (B-CRT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Uwe Kornak
- Berlin Institute of Health (BIH) Center for Regenerative Therapies (B-CRT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Hans-Dieter Volk
- Berlin Institute of Health (BIH) Center for Regenerative Therapies (B-CRT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Petra Reinke
- Berlin Institute of Health (BIH) Center for Regenerative Therapies (B-CRT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Michael Schmueck-Henneresse
- Berlin Institute of Health (BIH) Center for Regenerative Therapies (B-CRT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany.
| |
Collapse
|
18
|
Ciccocioppo R, Comoli P, Astori G, Del Bufalo F, Prapa M, Dominici M, Locatelli F. Developing cell therapies as drug products. Br J Pharmacol 2020; 178:262-279. [PMID: 33140850 DOI: 10.1111/bph.15305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 02/06/2023] Open
Abstract
In the last 20 years, the global regulatory frameworks for drug assessment have been managing the challenges posed by using cellular products as new therapeutic tools. Currently, they are defined as "Advanced Therapy Medicinal Products", comprising a large group of cellular types that either alone or in combination with gene and tissue engineering technology. They have the potential to change the natural course of still lethal or highly debilitating diseases, including cancers, opportunistic infections and chronic inflammatory conditions. Globally, more than 50 cell-based products have obtained market authorization. This overview describes the advantages and unsolved challenges on developing cells as innovative therapeutic vehicles. The main cell therapy players and the legal framework are discussed, starting from chimeric antigen receptor T-cells for leukaemia and solid tumours, dealing then with lymphocytes as potent anti-microbiological tools and then focusing on mesenchymal stem/stromal cells whose role covers regenerative medicine, immunology and anti-tumour therapy.
Collapse
Affiliation(s)
- Rachele Ciccocioppo
- Gastroenterology Unit, Department of Medicine, A.O.U.I. Policlinico G.B. Rossi & University of Verona, Verona, Italy
| | - Patrizia Comoli
- Cell Factory and Paediatric Haematology/Oncology Unit, Fondazione I.R.C.C.S. Policlinico San Matteo, Pavia, Italy
| | - Giuseppe Astori
- Laboratory of Advanced Cellular Therapies, Haematology Unit, San Bortolo Hospital, A.U.L.S.S. 8 "Berica", Vicenza, Italy
| | - Francesca Del Bufalo
- Department of Paediatric Haematology and Oncology and Cell and Gene Therapy, I.R.C.C.S. Bambino Gesù Children's Hospital, Rome, Italy
| | - Malvina Prapa
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Massimo Dominici
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Franco Locatelli
- Department of Paediatric Haematology and Oncology and Cell and Gene Therapy, I.R.C.C.S. Bambino Gesù Children's Hospital, Rome, Italy.,Department of Paediatrics, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
19
|
Nannini F, Parekh F, Wawrzyniecka P, Mekkaoui L, Righi M, Dastjerdi FV, Yeung J, Roddie C, Bai Y, Ma B, Ferrari M, Onuoha S, Chester K, Pule M. A primer set for the rapid isolation of scFv fragments against cell surface antigens from immunised rats. Sci Rep 2020; 10:19168. [PMID: 33154441 PMCID: PMC7644676 DOI: 10.1038/s41598-020-76069-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/21/2020] [Indexed: 12/20/2022] Open
Abstract
Antibody phage display is a powerful platform for discovery of clinically applicable high affinity monoclonal antibodies against a broad range of targets. Libraries generated from immunized animals offer the advantage of in vivo affinity-maturation of V regions prior to library generation. Despite advantages, few studies have described isolation of antibodies from rats using immune phage display. In our study, we describe a novel primer set, covering the full rat heavy chain variable and kappa light chain variable regions repertoire for the generation of an unbiased immune libraries. Since the immune repertoire of rats is poorly understood, we first performed a deep sequencing analysis of the V(D)J regions of VH and VLK genes, demonstrating the high abundance of IGVH2 and IGVH5 families for VH and IGVLK12 and IGVLK22 for VLK. The comparison of gene's family usage in naïve rats have been used to validate the frequency's distribution of the primer set, confirming the absence of PCR-based biases. The primers were used to generate and assemble a phage display library from human CD160-vaccinated rats. CD160 represents a valid therapeutic target as it has been shown to be expressed on chronic lymphocytic leukaemia cells and on the surface of newly formed vessels. We utilised a novel phage display panning strategy to isolate a high affinity pool (KD range: 0.399-233 nM) of CD160 targeting monoclonal antibodies. Subsequently, identified binders were tested for function as third generation Chimeric Antigen Receptors (CAR) T cells demonstrating specific cytolytic activity. Our novel primer set coupled with a streamlined strategy for phage display panning enable the rapid isolation and identification of high affinity antibodies from immunised rats. The therapeutic utility of these antibodies was demonstrated in CAR format.
Collapse
Affiliation(s)
- Francesco Nannini
- Research Department of Haematology, UCL Cancer Institute, 72 Huntley Street, London, WC1E 6DD, UK
| | - Farhaan Parekh
- Research Department of Haematology, UCL Cancer Institute, 72 Huntley Street, London, WC1E 6DD, UK
| | - Patrycja Wawrzyniecka
- Research Department of Haematology, UCL Cancer Institute, 72 Huntley Street, London, WC1E 6DD, UK
| | - Leila Mekkaoui
- Research Department of Haematology, UCL Cancer Institute, 72 Huntley Street, London, WC1E 6DD, UK
| | - Matteo Righi
- Research Department of Haematology, UCL Cancer Institute, 72 Huntley Street, London, WC1E 6DD, UK
| | | | - Jenny Yeung
- Research Department of Oncology, UCL Cancer Institute, London, UK
| | - Claire Roddie
- Research Department of Haematology, UCL Cancer Institute, 72 Huntley Street, London, WC1E 6DD, UK
| | | | - Biao Ma
- Autolus Therapeutics, London, UK
| | | | | | - Kerry Chester
- Research Department of Oncology, UCL Cancer Institute, London, UK
| | - Martin Pule
- Research Department of Haematology, UCL Cancer Institute, 72 Huntley Street, London, WC1E 6DD, UK.
- Autolus Therapeutics, London, UK.
| |
Collapse
|
20
|
Shafat MS, Mehra V, Peggs KS, Roddie C. Cellular Therapeutic Approaches to Cytomegalovirus Infection Following Allogeneic Stem Cell Transplantation. Front Immunol 2020; 11:1694. [PMID: 32849591 PMCID: PMC7411136 DOI: 10.3389/fimmu.2020.01694] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/25/2020] [Indexed: 12/31/2022] Open
Abstract
Cytomegalovirus (CMV) infection is common following allogeneic hematopoietic stem cell transplant (HSCT) and is a major cause of morbidity and increased mortality. Whilst pharmacotherapy can be effective in the prevention and treatment of CMV, these agents are often expensive, toxic and in some cases ineffective due to viral resistance mechanisms. Immunotherapeutic approaches are compelling and early clinical trials of adoptively transferred donor-derived virus-specific T (VST) cells against CMV have demonstrated efficacy. However, significant logistical challenges limit their broad application. Strategies to optimize VST manufacture and cell banking alongside scientific developments to enhance efficacy whilst minimizing toxicity are ongoing. This review will discuss the development of CMV-specific T-cell therapies, the challenges of widespread delivery of VSTs for CMV and explore how VST therapy can change outcomes in CMV infection following HSCT.
Collapse
Affiliation(s)
- Manar S Shafat
- Research Department of Haematology, UCL Cancer Institute, University College London, Cancer Institute, London, United Kingdom
| | - Vedika Mehra
- Research Department of Haematology, UCL Cancer Institute, University College London, Cancer Institute, London, United Kingdom
| | - Karl S Peggs
- Research Department of Haematology, UCL Cancer Institute, University College London, Cancer Institute, London, United Kingdom.,Department of Haematology, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Claire Roddie
- Research Department of Haematology, UCL Cancer Institute, University College London, Cancer Institute, London, United Kingdom.,Department of Haematology, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
21
|
Keller MD, Bollard CM. Virus-specific T-cell therapies for patients with primary immune deficiency. Blood 2020; 135:620-628. [PMID: 31942610 PMCID: PMC7046606 DOI: 10.1182/blood.2019000924] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 09/23/2019] [Indexed: 02/07/2023] Open
Abstract
Viral infections are common and are potentially life-threatening in patients with moderate to severe primary immunodeficiency disorders. Because T-cell immunity contributes to the control of many viral pathogens, adoptive immunotherapy with virus-specific T cells (VSTs) has been a logical and effective way of combating severe viral disease in immunocompromised patients in multiple phase 1 and 2 clinical trials. Common viral targets include cytomegalovirus, Epstein-Barr virus, and adenovirus, though recent published studies have successfully targeted additional pathogens, including HHV6, BK virus, and JC virus. Though most studies have used VSTs derived from allogenic stem cell donors, the use of banked VSTs derived from partially HLA-matched donors has shown efficacy in multicenter settings. Hence, this approach could shorten the time for patients to receive VST therapy thus improving accessibility. In this review, we discuss the usage of VSTs for patients with primary immunodeficiency disorders in clinical trials, as well as future potential targets and methods to broaden the applicability of virus-directed T-cell immunotherapy for this vulnerable patient population.
Collapse
Affiliation(s)
- Michael D Keller
- Center for Cancer and Immunology Research and
- Division of Allergy and Immunology, Children's National Health System, Washington, DC
- GW Cancer Center, George Washington University, Washington, DC; and
| | - Catherine M Bollard
- Center for Cancer and Immunology Research and
- GW Cancer Center, George Washington University, Washington, DC; and
- Division of Blood and Marrow Transplantation, Children's National Health System, Washington, DC
| |
Collapse
|
22
|
McLaughlin LP, Bollard CM, Keller MD. Adoptive T Cell Therapy for Epstein-Barr Virus Complications in Patients With Primary Immunodeficiency Disorders. Front Immunol 2018; 9:556. [PMID: 29616044 PMCID: PMC5867312 DOI: 10.3389/fimmu.2018.00556] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/05/2018] [Indexed: 12/28/2022] Open
Abstract
Patients with primary immunodeficiency disorders (PID) have an increased risk from acute and chronic Epstein–Barr Virus (EBV) viral infections and EBV-associated malignancies. Hematopoietic stem cell transplantation (HSCT) is a curative strategy for many patients with PID, but EBV-related complications are common in the immediate post-transplant period due to delayed reconstitution of T cell immunity. Adoptive T cell therapy with EBV-specific T cells is a promising therapeutic strategy for patients with PID both before and after HSCT. Here we review the methods used to manufacture EBV-specific T cells, the clinical outcomes, and the ongoing challenges for future development of the strategy.
Collapse
Affiliation(s)
- Lauren P McLaughlin
- Center for Cancer and Immunology Research, Children's National Health System, The George Washington University, Washington, DC, United States.,Division of Oncology, Children's National Health System, Washington, DC, United States
| | - Catherine M Bollard
- Center for Cancer and Immunology Research, Children's National Health System, The George Washington University, Washington, DC, United States.,Division of Allergy and Immunology, Children's National Health System, Washington, DC, United States.,Division of Blood and Marrow Transplantation, Children's National Health System, Washington, DC, United States
| | - Michael D Keller
- Center for Cancer and Immunology Research, Children's National Health System, The George Washington University, Washington, DC, United States.,Division of Allergy and Immunology, Children's National Health System, Washington, DC, United States
| |
Collapse
|
23
|
Segal BH. Specific Adoptive T-Cell Therapy for Viral and Fungal Infections. MANAGEMENT OF INFECTIONS IN THE IMMUNOCOMPROMISED HOST 2018. [PMCID: PMC7121368 DOI: 10.1007/978-3-319-77674-3_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Despite advances in anti-infective agents, viral and fungal infections after hematopoietic stem cell transplantation (HSCT) continue to cause life-threatening complications that limit the success of HSCT. Early adoptive T-cell immunotherapy studies showed that administration of allogeneic virus-specific cytotoxic T lymphocytes (vCTL) can prevent and control viral infections and reconstitute antiviral immunity to cytomegalovirus (CMV) and Epstein-Barr virus (EBV). Advances in immunobiology, in vitro culture technology, and current good manufacturing practice (cGMP) have provided opportunities for advancing adoptive cell therapy for viral infections: (1) T cells have been expanded targeting multiple pathogens; (2) vCTL production no longer requires viral infection or viral vector transduction of antigen-presenting cells (APCs); (3) the source of lymphocytes is no longer restricted to donors who are immune to the pathogens; (4) naive T cells have been redirected with chimeric antigen receptor T cells (CARTs) or armed with bispecific antibody-armed T cells (BATs) to mediate vCTL activity; (5) these technologies could be combined to targeted multiple viral or fungal pathogens; and (6) pathogen-specific T-cell products manufactured from third parties and banked for “off-the-shelf” use post-HSCT may soon become a reality.
Collapse
Affiliation(s)
- Brahm H. Segal
- Departments of Medicine and Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York USA
| |
Collapse
|
24
|
Viral-specific T-cell transfer from HSCT donor for the treatment of viral infections or diseases after HSCT. Bone Marrow Transplant 2017; 53:114-122. [DOI: 10.1038/bmt.2017.232] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/28/2017] [Accepted: 08/30/2017] [Indexed: 12/19/2022]
|
25
|
Prockop SE, Vatsayan A. Epstein-Barr virus lymphoproliferative disease after solid organ transplantation. Cytotherapy 2017; 19:1270-1283. [PMID: 28965834 DOI: 10.1016/j.jcyt.2017.08.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 08/10/2017] [Indexed: 12/18/2022]
Abstract
Epstein-Barr virus (EBV) was the first identified human oncovirus and is also one of the most ubiquitous viral infections known with established infections in more than 90% of individuals by early adulthood. EBV establishes latency by controlling expression of the viral genome making it silent to immune surveillance. In immunocompetent individuals, up to 1% of circulating T cells are directed at maintaining control over EBV replication. In addition to being involved in oncogenesis of lymphoid and epithelial tumors in immune-competent individuals, loss of immune surveillance over EBV predisposes individuals to EBV malignancies. Lymphoid proliferations from EBV-infected B cells arise in up to 20% of recipients of solid organ transplants (SOTs). One question not answered is why, when EBV requires such active immune surveillance, EBV malignancies are not even more prevalent in severely immune-compromised individuals. A better understanding of who develops complications related to EBV and what the immunologic risks are will ultimately make it feasible to perform prophylactic trials in those at highest risk. This review summarizes our current understanding of factors in SOT recipients that predispose them to the development of an EBV malignancy and that predict response to initial therapy. We then review the current landscape of those therapies, focusing on the goal of restoring long-term EBV-directed immunity to patients at risk.
Collapse
Affiliation(s)
- Susan E Prockop
- Pediatric BMT Service, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA.
| | - Anant Vatsayan
- Pediatric BMT Service, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
26
|
Abstract
Epstein-Barr virus (EBV) infection is associated with several distinct hematological and epithelial malignancies, e.g., Burkitt lymphoma, Hodgkin lymphoma, nasopharyngeal carcinoma, gastric carcinoma, and others. The association with several malignant tumors of local and worldwide distribution makes EBV one of the most important tumor viruses. Furthermore, because EBV can cause posttransplant lymphoproliferative disease, transplant medicine has to deal with EBV as a major pathogenic virus second only to cytomegalovirus. In this review, we summarize briefly the natural history of EBV infection and outline some of the recent advances in the pathogenesis of the major EBV-associated neoplasms. We present alternative scenarios and discuss them in the light of most recent experimental data. Emerging research areas including EBV-induced patho-epigenetic alterations in host cells and the putative role of exosome-mediated information transfer in disease development are also within the scope of this review. This book contains an in-depth description of a series of modern methodologies used in EBV research. In this introductory chapter, we thoroughly refer to the applications of these methods and demonstrate how they contributed to the understanding of EBV-host cell interactions. The data gathered using recent technological advancements in molecular biology and immunology as well as the application of sophisticated in vitro and in vivo experimental models certainly provided deep and novel insights into the pathogenetic mechanisms of EBV infection and EBV-associated tumorigenesis. Furthermore, the development of adoptive T cell immunotherapy has provided a novel approach to the therapy of viral disease in transplant medicine and hematology.
Collapse
Affiliation(s)
- Janos Minarovits
- Faculty of Dentistry, Department of Oral Biology and Experimental Dental Research, University of Szeged, Tisza Lajos krt. 64, H-6720, Szeged, Hungary.
| | - Hans Helmut Niller
- Institute of Medical Microbiology and Hygiene, University of Regensburg, D-93053, Regensburg, Germany
| |
Collapse
|
27
|
Imai Y, Ohta E, Takeda S, Sunamura S, Ishibashi M, Tamura H, Wang YH, Deguchi A, Tanaka J, Maru Y, Motoji T. Histone deacetylase inhibitor panobinostat induces calcineurin degradation in multiple myeloma. JCI Insight 2016; 1:e85061. [PMID: 27699258 DOI: 10.1172/jci.insight.85061] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Multiple myeloma (MM) is a relapsed and refractory disease, one that highlights the need for developing new molecular therapies for overcoming of drug resistance. Addition of panobinostat, a histone deacetylase (HDAC) inhibitor, to bortezomib and dexamethasone improved progression-free survival (PFS) in relapsed and refractory MM patients. Here, we demonstrate how calcineurin, when inhibited by immunosuppressive drugs like FK506, is involved in myeloma cell growth and targeted by panobinostat. mRNA expression of PPP3CA, a catalytic subunit of calcineurin, was high in advanced patients. Panobinostat degraded PPP3CA, a degradation that should have been induced by inhibition of the chaperone function of heat shock protein 90 (HSP90). Cotreatment with HDAC inhibitors and FK506 led to an enhanced antimyeloma effect with a greater PPP3CA reduction compared with HDAC inhibitors alone both in vitro and in vivo. In addition, this combination treatment efficiently blocked osteoclast formation, which results in osteolytic lesions. The poor response and short PFS duration observed in the bortezomib-containing therapies of patients with high PPP3CA suggested its relevance to bortezomib resistance. Moreover, bortezomib and HDAC inhibitors synergistically suppressed MM cell viability through PPP3CA inhibition. Our findings underscore the usefulness of calcineurin-targeted therapy in MM patients, including patients who are resistant to bortezomib.
Collapse
Affiliation(s)
- Yoichi Imai
- Department of Hematology, Tokyo Women's Medical University, Tokyo, Japan
| | - Eri Ohta
- Department of Hematology, Tokyo Women's Medical University, Tokyo, Japan
| | - Shu Takeda
- Department of Physiology and Cell Biology, Graduate School of Medicine and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Satoko Sunamura
- Department of Physiology and Cell Biology, Graduate School of Medicine and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mariko Ishibashi
- Division of Hematology, Department of Medicine, Nippon Medical School, Tokyo, Japan
| | - Hideto Tamura
- Division of Hematology, Department of Medicine, Nippon Medical School, Tokyo, Japan
| | - Yan-Hua Wang
- Department of Hematology, Tokyo Women's Medical University, Tokyo, Japan
| | - Atsuko Deguchi
- Department of Pharmacology, Tokyo Women's Medical University, Tokyo, Japan
| | - Junji Tanaka
- Department of Hematology, Tokyo Women's Medical University, Tokyo, Japan
| | - Yoshiro Maru
- Department of Pharmacology, Tokyo Women's Medical University, Tokyo, Japan
| | - Toshiko Motoji
- Department of Hematology, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
28
|
Rushworth D, Alpert A, Santana-Carrero R, Olivares S, Spencer D, Cooper LJN. Antithymidylate resistance enables transgene selection and cell survival for T cells in the presence of 5-fluorouracil and antifolates. Gene Ther 2015; 23:119-28. [PMID: 26273805 DOI: 10.1038/gt.2015.88] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/11/2015] [Accepted: 08/05/2015] [Indexed: 12/31/2022]
Abstract
Antithymidylates (AThy) constitute a class of drugs used in the treatment of cancers such as lung, colon, breast and pancreas. These drugs inhibit DNA synthesis by targeting the enzymes dihydrofolate reductase (DHFR) and/or thymidylate synthase (TYMS). AThys effectively inhibit cancer cells, and also inhibit T cells, preventing anticancer immunity, which might otherwise develop from AThy-induced cancer destruction. We establish that T cells expressing mutant DHFR--DHFR L22F, F31S (DHFR(FS))--and/or mutant TYMS--TYMS T51S, G52S (TYMS(SS))-effectively survive in toxic concentrations of AThys methotrexate, pemetrexed and 5-fluorouracil. Furthermore, we show that DHFR(FS) permitted rapid selection of an inducible suicide transgene in T cells. These findings demonstrate that AThy resistances prevent AThy cytotoxicity to T cells while permitting selection of important transgenes. This technological development could enhance in vitro and in vivo survival and selection of T-cell therapeutics being designed for a broad range of cancers.
Collapse
Affiliation(s)
- D Rushworth
- Division of Pediatrics, Children's Cancer Hospital, The University of Texas MD Anderson Cancer Center, Unit 907, Houston, TX, USA.,The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
| | - A Alpert
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
| | - R Santana-Carrero
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA.,University of Puerto Rico School of Medicine, San Juan, Puerto Rico, United States Minor Outlying Islands
| | - S Olivares
- Division of Pediatrics, Children's Cancer Hospital, The University of Texas MD Anderson Cancer Center, Unit 907, Houston, TX, USA
| | - D Spencer
- Bellicum Pharmaceuticals, Houston, TX, USA
| | - L J N Cooper
- Division of Pediatrics, Children's Cancer Hospital, The University of Texas MD Anderson Cancer Center, Unit 907, Houston, TX, USA.,The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
| |
Collapse
|
29
|
Acute GVHD results in a severe DC defect that prevents T-cell priming and leads to fulminant cytomegalovirus disease in mice. Blood 2015; 126:1503-14. [PMID: 26130706 DOI: 10.1182/blood-2015-01-622837] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 06/13/2015] [Indexed: 11/20/2022] Open
Abstract
Viral infection is a common, life-threatening complication after allogeneic bone marrow transplantation (BMT), particularly in the presence of graft-versus-host disease (GVHD). Using cytomegalovirus (CMV) as the prototypic pathogen, we have delineated the mechanisms responsible for the inability to mount protective antiviral responses in this setting. Although CMV infection was self-limiting after syngeneic BMT, in the presence of GVHD after allogeneic BMT, CMV induced a striking cytopathy resulting in universal mortality in conjunction with a fulminant necrotizing hepatitis. Critically, GVHD induced a profound dendritic cell (DC) defect that led to a failure in the generation of CMV-specific CD8(+) T-cell responses. This was accompanied by a defect in antiviral CD8(+) T cells. In combination, these defects dramatically limited antiviral T-cell responses. The transfer of virus-specific cells circumvented the DC defects and provided protective immunity, despite concurrent GVHD. These data demonstrate the importance of avoiding GVHD when reconstructing antiviral immunity after BMT, and highlight the mechanisms by which the adoptive transfer of virus-specific T cells overcome the endogenous defects in priming invoked by GVHD.
Collapse
|
30
|
Abstract
Epstein-Barr virus (EBV) is associated with a range of malignancies involving B cells, T cells, natural killer (NK) cells, epithelial cells, and smooth muscle. All of these are associated with the latent life cycles of EBV, but the pattern of latency-associated viral antigens expressed in tumor cells depends on the type of tumor. EBV-specific T cells (EBVSTs) have been explored as prophylaxis and therapy for EBV-associated malignancies for more than two decades. EBVSTs have been most successful as prophylaxis and therapy for post-transplant lymphoproliferative disease (PTLD) , which expresses the full array of latent EBV antigens (type 3 latency), in hematopoietic stem-cell transplant (HSCT) recipients. While less effective, clinical studies have also demonstrated their therapeutic potential for PTLD post-solid organ transplant and for EBV-associated malignancies such as Hodgkin's lymphoma, non-Hodgkin's lymphoma, and nasopharyngeal carcinoma (NPC) that express a limited array of latent EBV antigens (type 2 latency). Several approaches are actively being pursued to improve the antitumor activity of EBVSTs including activation and expansion of T cells specific for the EBV antigens expressed in type 2 latency, genetic approaches to render EBVSTs resistant to the immunosuppressive tumor environment, and combination approaches with other immune-modulating modalities. Given the recent advances and renewed interest in cell therapy, we hope that EBVSTs will become an integral part of our treatment armamentarium against EBV-positive malignancies in the near-future.
Collapse
|
31
|
Towards gene therapy for EBV-associated posttransplant lymphoma with genetically modified EBV-specific cytotoxic T cells. Blood 2014; 124:2514-22. [PMID: 25185261 DOI: 10.1182/blood-2014-01-553362] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Epstein-Barr virus (EBV)-associated posttransplant lymphoma (PTLD) is a major cause of morbidity/mortality after hematopoietic stem cell (SCT) or solid organ (SOT) transplant. Adoptive immunotherapy with EBV-specific cytotoxic lymphocytes (CTLs), although effective in SCT, is less successful after SOT where lifelong immunosuppression therapy is necessary. We have genetically engineered EBV-CTLs to render them resistant to calcineurin (CN) inhibitor FK506 through retroviral transfer of a calcineurin A mutant (CNA12). Here we examined whether or not FK506-resistant EBV-CTLs control EBV-driven tumor progression in the presence of immunosuppression in a xenogeneic mouse model. NOD/SCID/IL2rγ(null) mice bearing human B-cell lymphoma were injected with autologous CTLs transduced with either CNA12 or eGFP in the presence/absence of FK506. Adoptive transfer of autologous CNA12-CTLs induced dramatic lymphoma regression despite the presence of FK506, whereas eGFP-CTLs did not. CNA12-CTLs persisted longer, homed to the tumor, and expanded more than eGFP-CTLs in mice treated with FK506. Mice receiving CNA12-CTLs and treated with FK506 survived significantly longer than control-treated animals. Our results demonstrate that CNA12-CTL induce regression of EBV-associated tumors in vivo despite ongoing immunosuppression. Clinical application of this novel approach may enhance the efficacy of adoptive transfer of EBV-CTL in SOT patients developing PTLD without the need for reduction in immunosuppressive therapy.
Collapse
|
32
|
Garber HR, Mirza A, Mittendorf EA, Alatrash G. Adoptive T-cell therapy for Leukemia. MOLECULAR AND CELLULAR THERAPIES 2014; 2:25. [PMID: 26056592 PMCID: PMC4452065 DOI: 10.1186/2052-8426-2-25] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 07/02/2014] [Indexed: 01/15/2023]
Abstract
Allogeneic stem cell transplantation (alloSCT) is the most robust form of adoptive cellular therapy (ACT) and has been tremendously effective in the treatment of leukemia. It is one of the original forms of cancer immunotherapy and illustrates that lymphocytes can specifically recognize and eliminate aberrant, malignant cells. However, because of the high morbidity and mortality that is associated with alloSCT including graft-versus-host disease (GvHD), refining the anti-leukemia immunity of alloSCT to target distinct antigens that mediate the graft-versus-leukemia (GvL) effect could transform our approach to treating leukemia, and possibly other hematologic malignancies. Over the past few decades, many leukemia antigens have been discovered that can separate malignant cells from normal host cells and render them vulnerable targets. In concert, the field of T-cell engineering has matured to enable transfer of ectopic high-affinity antigen receptors into host or donor cells with greater efficiency and potency. Many preclinical studies have demonstrated that engineered and conventional T-cells can mediate lysis and eradication of leukemia via one or more leukemia antigen targets. This evidence now serves as a foundation for clinical trials that aim to cure leukemia using T-cells. The recent clinical success of anti-CD19 chimeric antigen receptor (CAR) cells for treating patients with acute lymphoblastic leukemia and chronic lymphocytic leukemia displays the potential of this new therapeutic modality. In this review, we discuss some of the most promising leukemia antigens and the novel strategies that have been implemented for adoptive cellular immunotherapy of lymphoid and myeloid leukemias. It is important to summarize the data for ACT of leukemia for physicians in-training and in practice and for investigators who work in this and related fields as there are recent discoveries already being translated to the patient setting and numerous accruing clinical trials. We primarily focus on ACT that has been used in the clinical setting or that is currently undergoing preclinical testing with a foreseeable clinical endpoint.
Collapse
Affiliation(s)
- Haven R Garber
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center Houston, Houston, 77030 Texas
| | - Asma Mirza
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center Houston, Houston, 77030 Texas
| | - Elizabeth A Mittendorf
- Department Surgical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Gheath Alatrash
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center Houston, Houston, 77030 Texas
| |
Collapse
|
33
|
Jensen MC, Riddell SR. Design and implementation of adoptive therapy with chimeric antigen receptor-modified T cells. Immunol Rev 2014; 257:127-44. [PMID: 24329794 DOI: 10.1111/imr.12139] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A major advance in adoptive T-cell therapy (ACT) is the ability to efficiently endow patient's T cells with reactivity for tumor antigens through the stable or regulated introduction of genes that encode high affinity tumor-targeting T-cell receptors (TCRs) or synthetic chimeric antigen receptors (CARs). Case reports and small series of patients treated with TCR- or CAR-modified T cells have shown durable responses in a subset of patients, particularly with B-cell malignancies treated with T cells modified to express a CAR that targets the CD19 molecule. However, many patients do not respond to therapy and serious on and off-target toxicities have been observed with TCR- and CAR-modified T cells. Thus, challenges remain to make ACT with gene-modified T cells a reproducibly effective and safe therapy and to expand the breadth of patients that can be treated to include those with common epithelial malignancies. This review discusses research topics in our laboratories that focus on the design and implementation of ACT with CAR-modified T cells. These include cell intrinsic properties of distinct T-cell subsets that may facilitate preparing therapeutic T-cell products of defined composition for reproducible efficacy and safety, the design of tumor targeting receptors that optimize signaling of T-cell effector functions and facilitate tracking of migration of CAR-modified T cells in vivo, and novel CAR designs that have alternative ligand binding domains or confer regulated function and/or survival of transduced T cells.
Collapse
Affiliation(s)
- Michael C Jensen
- Seattle Children's Research Institute, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
34
|
Cieri N, Mastaglio S, Oliveira G, Casucci M, Bondanza A, Bonini C. Adoptive immunotherapy with genetically modified lymphocytes in allogeneic stem cell transplantation. Immunol Rev 2014; 257:165-80. [PMID: 24329796 DOI: 10.1111/imr.12130] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Hematopoietic stem cell transplantation from a healthy donor (allo-HSCT) represents the most potent form of cellular adoptive immunotherapy to treat malignancies. In allo-HSCT, donor T cells are double edge-swords: highly potent against residual tumor cells, but potentially highly toxic, and responsible for graft versus host disease (GVHD), a major clinical complication of transplantation. Gene transfer technologies coupled with current knowledge on cancer immunology have generated a wide range of approaches aimed at fostering the immunological response to cancer cells, while avoiding or controlling GVHD. In this review, we discuss cell and gene therapy approaches currently tested in preclinical models and in clinical trials.
Collapse
Affiliation(s)
- Nicoletta Cieri
- University Vita-Salute San Raffaele, Milan, Italy; Experimental Hematology Unit, Division of Regenerative Medicine, Stem Cells and Gene Therapy, PIBIC, San Raffaele Scientific Institute, Milan, Italy
| | | | | | | | | | | |
Collapse
|
35
|
Keller MD, Bollard CM. Immunologic special forces: anti-pathogen cytotoxic T-lymphocyte immunotherapy following hematopoietic stem cell transplantation. Immunotargets Ther 2014; 3:97-106. [PMID: 27274983 PMCID: PMC4889027 DOI: 10.2147/itt.s40082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Anti-pathogen adoptive T-cell immunotherapy has been proven to be highly effective in preventing or controlling viral infections following hematopoietic stem cell transplantation. Recent advances in manufacturing protocols allow an increased number of targeted pathogens, eliminate the need for viral transduction, broaden the potential donor pool to include pathogen-naïve sources, and reduce the time requirement for production. Early studies suggest that anti-fungal immunotherapy may also have clinical benefit. Future advances include further broadening of the pathogens that can be targeted and development of T-cells with resistance to pharmacologic immunosuppression.
Collapse
Affiliation(s)
- Michael D Keller
- Program for Cell Enhancement and Technologies for Immunotherapy, Sheikh Zayed Institute for Pediatric Surgical Innovation, and Center for Cancer and Immunology Research, Children’s National Health System, Washington, DC, USA
| | - Catherine M Bollard
- Program for Cell Enhancement and Technologies for Immunotherapy, Sheikh Zayed Institute for Pediatric Surgical Innovation, and Center for Cancer and Immunology Research, Children’s National Health System, Washington, DC, USA
| |
Collapse
|
36
|
Abstract
Proof-of-concept studies have demonstrated the therapeutic potential of engineered T cells. Transfer of recombinant antigen-specific T cell receptors (TCR) and chimaeric antigen receptors (CARs) against tumour and viral antigens are under investigation by multiple approaches, including viral- and nonviral-mediated gene transfer into both autologous and allogeneic T cell populations. There have been notable successes recently using viral vector-mediated transfer of CARs specific for B cell antigens, but also reports of anticipated and unanticipated complications in these and other studies. We review progress in this promising area of cellular therapy, and consider developments in antigen receptor therapies including the application of emerging gene-editing technologies.
Collapse
Affiliation(s)
- Waseem Qasim
- Molecular & Cellular Immunology, Institute of Child Health, University College London, London, UK; Great Ormond Street Hospital Trust, London, UK
| | | |
Collapse
|
37
|
Abstract
In the treatment of Epstein-Barr virus (EBV)-related lymphomas, there are few therapies specifically targeted against the latent virus within these tumors; in most cases the treatment approach is not different than the approach to EBV-negative lymphomas. Nonetheless, current and emerging therapies focused on exploiting aspects of EBV biology may offer more targeted strategies for EBV-positive lymphomas in the future. Conceptually, EBV-specific approaches include bolstering the antiviral/antitumor immune response with vaccines or EBV-specific cytotoxic T-lymphocytes, activating lytic viral genes to render the tumor cells susceptible to antiviral therapies, and inhibiting the downstream prosurvival or antiapoptotic pathways that may be activated by latent EBV proteins. EBV-specific cytotoxic T-cell infusions have proven effective in EBV-related posttransplantation lymphoproliferative disorder (EBV-PTLD) and expanding such adoptive immunotherapies to other EBV-related malignancies is an area of active research. However, other EBV-related lymphomas typically have more restricted, less immunogenic arrays of viral antigens to therapeutically target with adoptive immunotherapy compared with EBV-PTLD. Furthermore, the malignant EBV-positive tumor cells of Hodgkin lymphoma are scattered amid a dense infiltrate of regulatory T-cells, macrophages, and other cells that may dampen the antitumor efficacy of adoptive immunotherapy. Strategies to overcome these obstacles are areas of ongoing preclinical and clinical investigations. Some emerging approaches to EBV-related lymphomas include the coupling of agents that induce lytic viral replication with antiherpesvirus agents, or the use of small molecule inhibitors that block signaling pathways that are constitutively activated by EBV. EBV vaccines seem most promising for the treatment or prevention of EBV-related malignancies, rather than the prevention of primary EBV infection. EBV vaccine trials in patients with residual or low-bulk EBV-related malignancies or for the prevention of EBV-PTLD in EBV-seronegative patients awaiting solid organ transplantation are ongoing.
Collapse
|
38
|
Ricciardelli I, Brewin J, Lugthart G, Albon SJ, Pule M, Amrolia PJ. Rapid generation of EBV-specific cytotoxic T lymphocytes resistant to calcineurin inhibitors for adoptive immunotherapy. Am J Transplant 2013; 13:3244-52. [PMID: 24266973 DOI: 10.1111/ajt.12475] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 08/13/2013] [Accepted: 08/14/2013] [Indexed: 01/25/2023]
Abstract
Epstein-Barr virus (EBV)-associated posttransplant lymphoproliferative disorder (PTLD) remains a major cause of morbidity and mortality after hematopoietic stem cell (HSCT) or solid organ transplant (SOT). Strategies to reconstitute immunity by adoptive transfer of EBV-specific cytotoxic T lymphocyte (CTL) therapy while highly effective in the HSCT setting where immunosuppression can be withdrawn have been less successful in the SOT setting where continued immunosuppression therapy is necessary. Additionally, the complexity and time taken to generate EBV-CTLs for adoptive transfer limit the clinical applicability. We have developed a system for the rapid generation of EBV-CTLs resistant to immunosuppression based on selection of interferon-gamma (IFN-γ) secreting EBV-CTLs and retroviral transduction with a calcineurin B mutant. With this methodology, EBV-CTLs resistant to the calcineurin inhibitor Tacrolimus (TAC) can be produced in 14 days. These CTLs show high specificity for EBV with negligible alloreactivity in both proliferation and cytotoxicity assays and are able to proliferate and secrete IFN-γ in response to antigen stimulation in the presence of therapeutic doses of TAC. This strategy will substantially facilitate clinical application of this approach for the treatment of PTLD in SOT recipients.
Collapse
Affiliation(s)
- I Ricciardelli
- Molecular Immunology Unit, Institute of Child Health, UCL, London, UK; Department of Haematology, UCL Cancer Institute, London, UK
| | | | | | | | | | | |
Collapse
|
39
|
Cytotoxic T lymphocytes for the treatment of viral infections and posttransplant lymphoproliferative disorders in transplant recipients. Curr Opin Infect Dis 2012; 25:431-7. [PMID: 22614521 DOI: 10.1097/qco.0b013e3283551dd3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The continuous and successful expansion of organ transplants is unfortunately associated with increased incidence of severe opportunistic viral infections and Epstein-Barr virus (EBV)-related lymphomas secondary to immunosuppression. Here, we review the strengths and limitations of T-cell-based strategies used to treat viral infections in immunocompromised individuals. RECENT FINDINGS While current antiviral drugs are often suboptimal because of associated toxicities, a promising approach in the management of infections with viruses like cytomegalovirus (CMV), adenovirus (AdV) and EBV is the adoptive transfer of T cells targeting these viruses that can be directly isolated from the peripheral blood of the donor or expanded ex vivo prior to infusions in patients. SUMMARY T-cell-based immunotherapies are now being included in the clinical practice of transplant recipients to prevent and treat infections and complications associated with CMV, AdV and EBV. Improvement of current limitations will enable the extension of these approaches to all patients at risk and to other clinically relevant viruses and pathogens that are emerging as significant complications for immunocompromised patients.
Collapse
|
40
|
Bollard CM, Rooney CM, Heslop HE. T-cell therapy in the treatment of post-transplant lymphoproliferative disease. Nat Rev Clin Oncol 2012; 9:510-9. [PMID: 22801669 PMCID: PMC3743122 DOI: 10.1038/nrclinonc.2012.111] [Citation(s) in RCA: 178] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Post-transplant lymphoproliferative diseases (PTLD) associated with Epstein-Barr virus (EBV) infection often develop after organ and haematopoietic stem-cell transplantation. These lymphoproliferative diseases are tumours that usually express all latent EBV viral proteins, and are therefore amenable to T-cell-based immune therapies, such as donor lymphocyte infusions and the adoptive transfer of EBV-specific cytotoxic T lymphocytes. In this Review, we describe current approaches of T-cell-based therapies to treat PTLD, and describe strategies that improve the feasibility of such treatment.
Collapse
Affiliation(s)
- Catherine M Bollard
- Center for Cell and Gene Therapy, Department of Pediatrics, Baylor College of Medicine, The Methodist Hospital and Texas Children's Hospital, 1102 Bates Street, Houston, TX 77030, USA.
| | | | | |
Collapse
|
41
|
Hoyos V, Savoldo B, Dotti G. Genetic modification of human T lymphocytes for the treatment of hematologic malignancies. Haematologica 2012; 97:1622-31. [PMID: 22929977 DOI: 10.3324/haematol.2012.064303] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Modern chemotherapy regimens and supportive care have produced remarkable improvements in the overall survival of patients with hematologic malignancies. However, the development of targeted small molecules, monoclonal antibodies, and biological therapies that demonstrate greater efficacy and lower toxicity remains highly desirable in hematology, and oncology in general. In the context of biological therapies, T-lymphocyte based treatments have enormous potential. Donor lymphocyte infusion in patients relapsed after allogeneic hematopoietic stem cell transplant pioneered the concept that T lymphocytes can effectively control tumor growth, and this was then followed by the development of cell culture strategies to generate T lymphocytes with selective activity against tumor cells. Over the past decade, it has become clear that the adoptive transfer of ex vivo expanded antigen-specific cytotoxic T lymphocytes promotes sustained antitumor effects in patients with virus-associated lymphomas, such as Epstein-Barr virus related post-transplant lymphomas and Hodgkin's lymphomas. Because of this compelling clinical evidence and the concomitant development of methodologies for robust gene transfer to human T lymphocytes, the field has rapidly evolved, offering new opportunities to extend T-cell based therapies. This review summarizes the most recent biological and clinical developments using genetically manipulated T cells for the treatment of hematologic malignancies.
Collapse
Affiliation(s)
- Valentina Hoyos
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
42
|
Bleakley M, Turtle CJ, Riddell SR. Augmentation of anti-tumor immunity by adoptive T-cell transfer after allogeneic hematopoietic stem cell transplantation. Expert Rev Hematol 2012; 5:409-25. [PMID: 22992235 PMCID: PMC3590108 DOI: 10.1586/ehm.12.28] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Allogeneic hematopoietic stem cell transplantation (HCT) is currently the standard of care for most patients with high-risk acute leukemias and some other hematologic malignancies. Although HCT can be curative, many patients who undergo allogeneic HCT will later relapse. There is, therefore, a critical need for the development of novel post-HCT therapies for patients who are at high risk for disease recurrence following HCT. One potentially efficacious approach is adoptive T-cell immunotherapy, which is currently undergoing a renaissance that has been inspired by scientific insight into the key issues that impeded its previous clinical application. Translation of the next generation of adoptive T-cell therapies to the allogeneic HCT setting, using donor T cells of defined specificity and function, presents a unique set of challenges and opportunities. The challenges, progress and future of adoptive T-cell therapy following allogeneic HCT are discussed in this review.
Collapse
Affiliation(s)
- Marie Bleakley
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| | | | | |
Collapse
|
43
|
Uhlin M, Gertow J, Uzunel M, Okas M, Berglund S, Watz E, Brune M, Ljungman P, Maeurer M, Mattsson J. Rapid salvage treatment with virus-specific T cells for therapy-resistant disease. Clin Infect Dis 2012; 55:1064-73. [PMID: 22806594 DOI: 10.1093/cid/cis625] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Viral infections are major complications after allogeneic hematopoietic stem cell transplantation (HSCT). During posttransplant immunosuppression the regular T-cell control is compromised. Even if treatment strategies against infections caused by herpes viruses such as cytomegalovirus, Epstein-Barr virus, and adenovirus have improved, the mortality rate is still considerable. If primary antiviral therapy fails or cannot be tolerated, adoptive therapy with virus-specific cytotoxic T cells (CTL) can be utilized. METHODS In this study, we used virus-specific CTLs to treat 8 patients suffering from severe viral infections after allogeneic HSCT. Using positive selection with HLA multimers and magnetic beads, we isolated CTLs from both frozen donor material as well as third-party donors within hours. RESULTS At 90 days after CTL infusions 7 out of 8 patients were still living. CTLs infused from third-party donors were detected in 5 of 6 patients up to 76 days after infusion. No graft-versus-host disease associated with CTL infusions was observed. CONCLUSIONS Our separation approach offers a rapid alternative for adoptive CTL therapy if primary antiviral treatment strategies fail. Because no prolonged expansion steps are needed, this method may be used for early treatment of patients suffering from life-threatening infectious complications.
Collapse
Affiliation(s)
- Michael Uhlin
- Therapeutic Immunology Unit, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Infections and organ transplantation: new challenges for prevention and treatment--a colloquium. Transplantation 2012; 93:S4-S39. [PMID: 22374265 DOI: 10.1097/tp.0b013e3182481347] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
45
|
Hatton O, Martinez OM, Esquivel CO. Emerging therapeutic strategies for Epstein-Barr virus+ post-transplant lymphoproliferative disorder. Pediatr Transplant 2012; 16:220-9. [PMID: 22353174 PMCID: PMC4052840 DOI: 10.1111/j.1399-3046.2012.01656.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
De novo malignancies represent an increasing concern in the transplant population, particularly as long-term graft and patient survival improves. EBV-associated B-cell lymphoma in the setting of PTLD is the leading malignancy in children following solid organ transplantation. Therapeutic strategies can be categorized as pharmacologic, biologic, and cell-based but the variable efficacy of these approaches and the complexity of PTLD suggest that new treatment options are warranted. Here, we review current therapeutic strategies for treatment of PTLD. We also describe the life cycle of EBV, addressing the viral mechanisms that contribute to the genesis and persistence of EBV+ B-cell lymphomas. Specifically, we focus on the oncogenic signaling pathways activated by the EBV LMP1 and LMP2a to understand the underlying mechanisms and mediators of lymphomagenesis with the goal of identifying novel, rational therapeutic targets for the treatment of EBV-associated malignancies.
Collapse
Affiliation(s)
- Olivia Hatton
- Program in Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Surgery/Division of Abdominal Transplantation, Stanford University School of Medicine, Stanford, CA, USA
| | - Olivia M. Martinez
- Program in Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Surgery/Division of Abdominal Transplantation, Stanford University School of Medicine, Stanford, CA, USA
| | - Carlos O. Esquivel
- Department of Surgery/Division of Abdominal Transplantation, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
46
|
Exploiting the interplay between innate and adaptive immunity to improve immunotherapeutic strategies for Epstein-Barr-virus-driven disorders. Clin Dev Immunol 2012; 2012:931952. [PMID: 22319542 PMCID: PMC3272797 DOI: 10.1155/2012/931952] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 09/28/2011] [Accepted: 10/16/2011] [Indexed: 12/14/2022]
Abstract
The recent demonstration that immunotherapeutic approaches may be clinically effective for cancer patients has renewed the interest for this strategy of intervention. In particular, clinical trials using adoptive T-cell therapies disclosed encouraging results, particularly in the context of Epstein-Barr-virus- (EBV-) related tumors. Nevertheless, the rate of complete clinical responses is still limited, thus stimulating the development of more effective therapeutic protocols. Considering the relevance of innate immunity in controlling both infections and cancers, innovative immunotherapeutic approaches should take into account also this compartment to improve clinical efficacy. Evidence accumulated so far indicates that innate immunity effectors, particularly NK cells, can be exploited with therapeutic purposes and new targets have been recently identified. We herein review the complex interactions between EBV and innate immunity and summarize the therapeutic strategies involving both adaptive and innate immune system, in the light of a fruitful integration between these immunotherapeutic modalities for a better control of EBV-driven tumors.
Collapse
|
47
|
Casucci M, Bondanza A, Falcone L, Provasi E, Magnani Z, Bonini C. Genetic engineering of T cells for the immunotherapy of haematological malignancies. ACTA ACUST UNITED AC 2011; 79:4-14. [DOI: 10.1111/j.1399-0039.2011.01799.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
48
|
Abstract
Epstein-Barr virus (EBV)-associated lymphomas represent a broad spectrum of diseases and can be characterized by their pattern of viral latency. These pathologies display the importance of healthy T cell-mediated control of the EBV-infected B cells. Burkitt's lymphoma is the least immunogenic and has a type I latency pattern. Hodgkin's and a variety of non-Hodgkin's lymphomas exhibit antigens of type II latency. Posttransplant lymphoproliferative disease in the solid organ and hematopoietic stem cell transplant setting as well as lymphomas arising in primary immunodeficiency patients are tumors with type III latency. This last group expresses all 9 latent proteins and is the most immunogenic. T-cell approaches including donor lymphocyte infusions and the adoptive transfer of EBV-specific cytotoxic T lymphocytes can be used to treat these diseases. The authors describe the biology of these EBV-associated lymphomas and review the methodology and outcomes of existing T cell-based therapies as well as strategies to improve their efficacy.
Collapse
Affiliation(s)
- Javier El-Bietar
- Center for Cell and Gene Therapy , Baylor College of Medicine, Texas Children's Hospital, Houston, Texas 77030, USA.
| | | |
Collapse
|
49
|
Bonini C, Brenner MK, Heslop HE, Morgan RA. Genetic modification of T cells. Biol Blood Marrow Transplant 2011; 17:S15-20. [PMID: 21195304 DOI: 10.1016/j.bbmt.2010.09.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 09/30/2010] [Indexed: 10/18/2022]
Abstract
Adoptively transferred T cells have shown activity in treating viral infections after hemopoietic transplantation and anti-tumor activity against some malignancies such as melanoma and lymphoma. Current research focuses on defining the optimum type of cell for transfer to improve persistence and genetically modifying infused T cells to augment function, overcome tumor evasion strategies and allow ablation should adverse effects occur.
Collapse
Affiliation(s)
- Chiara Bonini
- Experimental Hematology Unit, Research Division of Regenerative Medicine, Gene Therapy and Stem Cells, Hematology and BMT Unit, Department of Oncology, San Raffaele Scientific Institute, Milano, Italy
| | | | | | | |
Collapse
|
50
|
Comoli P, Zecca M, Maccario R. Immunotherapy against EBV-lymphoma in recipients of HSCT. Expert Rev Hematol 2011; 3:625-32. [PMID: 21083478 DOI: 10.1586/ehm.10.56] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Epstein-Barr virus (EBV)-associated lymphoproliferations represent life-threatening complications of hematopoietic stem cell transplantation. In the last decade, immunological therapeutic strategies that allow us to selectively abrogate the origin of lymphoproliferation, namely B-cell compartment or EBV antigen-expressing tumor cells, have significantly reduced treatment-related toxicity while maintaining equal or superior efficacy. A further implementation is the possibility of preventing disease occurrence by delivering immunotherapy in the presymptomatic phase, on the basis of EBV-DNA blood levels. Despite the excellent results, T-cell therapy with EBV-specific cytotoxic T-lymphocytes has but a marginal role in the treatment of these forms. Promising implementations are underway, including logistic solutions to extend T-cell therapy beyond academic centers, delineation of strategies aimed at simplifying/shortening production and targeting immune evasion mechanisms exerted by tumor cells.
Collapse
Affiliation(s)
- Patrizia Comoli
- Fondazione IRCCS Policlinico S. Matteo, viale Golgi 19, 27100 Pavia, Italy
| | | | | |
Collapse
|