1
|
Zhang J, Xu M, Zhou W, Li D, Zhang H, Chen Y, Ning L, Zhang Y, Li S, Yu M, Chen Y, Zeng H, Cen L, Zhou T, Zhou X, Lu C, Yu C, Li Y, Sun J, Kong X, Shen Z. Deficiency in the anti-apoptotic protein DJ-1 promotes intestinal epithelial cell apoptosis and aggravates inflammatory bowel disease via p53. J Biol Chem 2020; 295:4237-4251. [PMID: 32075910 PMCID: PMC7105307 DOI: 10.1074/jbc.ra119.010143] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 02/11/2020] [Indexed: 12/31/2022] Open
Abstract
Parkinson disease autosomal recessive, early onset 7 (PARK7 or DJ-1) is involved in multiple physiological processes and exerts anti-apoptotic effects on multiple cell types. Increased intestinal epithelial cell (IEC) apoptosis and excessive activation of the p53 signaling pathway is a hallmark of inflammatory bowel disease (IBD), which includes ulcerative colitis (UC) and Crohn's disease (CD). However, whether DJ-1 plays a role in colitis is unclear. To determine whether DJ-1 deficiency is involved in the p53 activation that results in IEC apoptosis in colitis, here we performed immunostaining, real-time PCR, and immunoblotting analyses to assess DJ-1 expression in human UC and CD samples. In the inflamed intestines of individuals with IBD, DJ-1 expression was decreased and negatively correlated with p53 expression. DJ-1 deficiency significantly aggravated colitis, evidenced by increased intestinal inflammation and exacerbated IEC apoptosis. Moreover, DJ-1 directly interacted with p53, and reduced DJ-1 levels increased p53 levels both in vivo and in vitro and were associated with decreased p53 degradation via the lysosomal pathway. We also induced experimental colitis with dextran sulfate sodium in mice and found that compared with DJ-1-/- mice, DJ-1-/-p53-/- mice have reduced apoptosis and inflammation and increased epithelial barrier integrity. Furthermore, pharmacological inhibition of p53 relieved inflammation in the DJ-1-/- mice. In conclusion, reduced DJ-1 expression promotes inflammation and IEC apoptosis via p53 in colitis, suggesting that the modulation of DJ-1 expression may be a potential therapeutic strategy for managing colitis.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Min Xu
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Weihua Zhou
- Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Dejian Li
- Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Hong Zhang
- Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yi Chen
- Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Longgui Ning
- Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yuwei Zhang
- Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Sha Li
- Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Mengli Yu
- Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yishu Chen
- Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Hang Zeng
- Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Li Cen
- Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Tianyu Zhou
- Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Xinxin Zhou
- Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Chao Lu
- Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Chaohui Yu
- Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Youming Li
- Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.
| | - Jing Sun
- Department of Gastroenterology, Rui Jin Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200031, China.
| | - Xiaoni Kong
- Institute of Clinical Immunology, Department of Liver Diseases, ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China.
| | - Zhe Shen
- Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.
| |
Collapse
|
2
|
Liu R, Wang Y, Li B, Wang H, Guan F, Tan Z, Li X. Screening differentially expressed proteins from co-cultured hematopoietic cells and bone marrow-derived stromal cells by quantitative proteomics (SILAC) method. Clin Proteomics 2019; 16:32. [PMID: 31360146 PMCID: PMC6637644 DOI: 10.1186/s12014-019-9249-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 07/04/2019] [Indexed: 02/06/2023] Open
Abstract
Background Bone marrow stromal cells protect hematopoietic cells and provide drug resistance by delivering bunch of variable proteins. Thus, alterations of protein expression are typically associated with cell–cell signal transduction and regulation of cellular functions. Methods Co-culture models of bone marrow stromal cells and hematopoietic cells are often used in studies of their crosstalk. Studies of altered protein expression initiated by stromal cell/hematopoietic cell interactions are an important new trend in microenvironmental research. There has been no report to date of global quantitative proteomics analysis of crosstalk between hematopoietic cells and stromal cells. In this study, we analyzed quantitative proteomes in a co-culture system of stromal HS5 cells and hematopoietic KG1a cells, and simultaneously tracked differentially expressed proteins in two types of cells before and after co-culture by stable isotope labeling by amino acids in cell culture (SILAC) method. Results We have shown that in co-cultured KG1a, 40 proteins (including CKAP4, LMNA, and SERPINB2) were upregulated and 64 proteins (including CD44, CD99, and NCAM1) were downregulated relative to KG1a alone. We utilized IPA analysis to discover that the NOD-like receptor signaling pathway was upregulated, whereas platelet activation was downregulated in co-cultured KG1a cells. Furthermore, 95 proteins (including LCP1, ARHGAP4, and UNCX) were upregulated and 209 proteins (including CAPG, FLNC, and MAP4) were downregulated in co-cultured HS5 relative to HS5 alone. The tight junction pathway was downregulated and glycolysis/gluconeogenesis pathway was dysfunctional in co-cultured HS5. Most importantly, the significantly differentially expressed proteins can also be confirmed using different co-cultured cell lines. Conclusion Altogether, we recommend such quantitative proteomics approach for the studies of the hematopoietic–stroma cross-talk, differentially expressed proteins and related signaling pathways identification. The differentially expressed proteins identified from this current SILAC method will provide a useful basis for ongoing studies of crosstalk between stromal cells and hematopoietic cells in co-culture systems. All these result suggested our ongoing studies can focus on the mechanisms underlying CKAP4 increase and CD44 decrease in co-cultured hematopoietic cells, and the increase of LCP1 and decrease of CAPG in co-cultured stromal cell. The proteomic profiles from the KG1a/stromal cell co-culture system give new molecular insights into the roles of these cells in MDS pathophysiology and related bone disease. Electronic supplementary material The online version of this article (10.1186/s12014-019-9249-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rui Liu
- 1Joint International Research Laboratory of Glycobiology and Medicinal Chemistry, College of Life Science, Northwest University, 229 Taibai North Road, Xi'an, 710069 Shaanxi China
| | - Yi Wang
- Department of Hematology, Provincial People's Hospital, Xi'an, Shaanxi China
| | - Bingxin Li
- 1Joint International Research Laboratory of Glycobiology and Medicinal Chemistry, College of Life Science, Northwest University, 229 Taibai North Road, Xi'an, 710069 Shaanxi China
| | - Hui Wang
- Department of Hematology, Provincial People's Hospital, Xi'an, Shaanxi China
| | - Feng Guan
- 1Joint International Research Laboratory of Glycobiology and Medicinal Chemistry, College of Life Science, Northwest University, 229 Taibai North Road, Xi'an, 710069 Shaanxi China
| | - Zengqi Tan
- 1Joint International Research Laboratory of Glycobiology and Medicinal Chemistry, College of Life Science, Northwest University, 229 Taibai North Road, Xi'an, 710069 Shaanxi China
| | - Xiang Li
- 1Joint International Research Laboratory of Glycobiology and Medicinal Chemistry, College of Life Science, Northwest University, 229 Taibai North Road, Xi'an, 710069 Shaanxi China.,3Wuxi School of Medicine, Jiangnan University, Wu'xi, China
| |
Collapse
|
3
|
Quantitative proteomic analysis and comparison of two bone marrow stromal cell lines using the SILAC method. Exp Hematol 2016; 44:1059-1071. [PMID: 27539861 DOI: 10.1016/j.exphem.2016.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/11/2016] [Accepted: 08/04/2016] [Indexed: 01/10/2023]
Abstract
Two human bone marrow stromal cell lines, HS5 and HS27a, co-cultured with myeloid cells, have frequently been used in studies of cross talk between cells in the bone marrow microenvironment and hematopoietic cells. Altered expression of proteins is typically associated with cell-cell signal transduction and regulation of cellular functions. Many studies have focused on key proteins that contribute to functional differences in cell co-culture models, but global quantitative proteome analysis of HS5 and HS27a has not been performed. We employed the stable isotope labeling by amino acids in cell culture (SILAC) method using two stable isotopes each of arginine and lysine to label proteins in the two cell lines. Labeled proteins were analyzed by 2-D ultrahigh-resolution liquid chromatography- LTQ/Orbitrap mass spectrometry. Among 4,213 unique identified and annotated proteins in the cell lines, 1,462 were detected in two independent experiments. Of these, 69 exhibited significant upregulation and 48 significant downregulation (>95% confidence) in HS27a relative to HS5 cells. Gene ontology term and pathway analysis indicated that the differentially regulated proteins were involved in cellular movement, cell-to-cell signaling and interaction, and hematologic system development and function. A total of 55 items were identified in both genomic and proteomic databases. Quantitative reverse transcription polymerase chain reaction and Western blotting were performed on 7 proteins randomly selected from 28 differentially expressed proteins that were identified in both databases and were involved in the top networks/pathways. We observed a decrease in apoptosis in co-cultured KG1a cells when integrin αV was inhibited in HS27a cells, which suggested the functional role of integrin αV in the co-culture system. The integrated genomic/proteomic approach described here, and the identified proteins, will provide a useful basis for further elucidation of molecular mechanisms in the bone marrow microenvironment and for ongoing studies of cross talk among stromal cells and myeloma cells in co-culture systems.
Collapse
|
4
|
Kulasekararaj AG, Kordasti S, Basu T, Salisbury JR, Mufti GJ, du Vivier AWP. Chronic relapsing remitting Sweet syndrome--a harbinger of myelodysplastic syndrome. Br J Haematol 2015; 170:649-56. [PMID: 25962438 DOI: 10.1111/bjh.13485] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 03/24/2015] [Indexed: 12/13/2022]
Abstract
Sweet syndrome (SS) is an acute febrile neutrophilic dermatosis. It has been associated with malignant disease, especially acute myeloid leukaemia (AML), infections, autoimmune disorders and drugs, particularly granulocyte colony-stimulating factor (GCSF). No cause is found in the rest, which are labelled idiopathic. We describe 15 patients with SS, which we believe represent 'immune dysregulation' secondary to myelodysplastic syndrome (MDS). We initially identified 31 patients with SS in a cohort of 744 patients with MDS and 215 with AML seen over a 6-year period (2004-10). The cause in 16 patients could be attributed either to administration of GCSF or chemotherapy. The eruption was brief and resolved spontaneously or following withdrawal of GCSF. Fifteen patients however, had a chronic debilitating illness dominated by the skin eruptions. Diagnosis of chronic relapsing SS was delayed because the pathology was not always typical of classical neutrophil-rich SS and included lymphocytic and histiocytoid infiltrates and bone marrow was not always performed because the relevance of the eruption to MDS was often not immediately appreciated. All these patients had 'low risk' MDS, diagnosed at a median of 17 months (range 0-157) following the diagnosis of SS. We describe a chronic debilitating episodic clinically distinctive skin eruption with features of SS but not always definitive histopathology often associated with immunological abnormalities affecting other systems related to underlying low risk MDS.
Collapse
Affiliation(s)
- Austin G Kulasekararaj
- King's College London School of Medicine, Department of Haematological Medicine, London, UK.,Department of Haematology, King's College Hospital, London, UK
| | - Shahram Kordasti
- King's College London School of Medicine, Department of Haematological Medicine, London, UK.,Department of Haematology, King's College Hospital, London, UK
| | - Tanya Basu
- Department of Haematology, King's College Hospital, London, UK.,Department of Dermatology, King's College Hospital, London, UK
| | | | - Ghulam J Mufti
- King's College London School of Medicine, Department of Haematological Medicine, London, UK.,Department of Haematology, King's College Hospital, London, UK
| | | |
Collapse
|
5
|
Cao J, Lou S, Ying M, Yang B. DJ-1 as a human oncogene and potential therapeutic target. Biochem Pharmacol 2014; 93:241-50. [PMID: 25498803 DOI: 10.1016/j.bcp.2014.11.012] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 11/19/2014] [Accepted: 11/19/2014] [Indexed: 12/24/2022]
Abstract
DJ-1 is a cancer- and Parkinson's disease-associated protein that participates in different intracellular signaling pathways to protect cells from toxic stresses. DJ-1 expression, oxidation, localization, and phosphorylation are often altered in human tumors, and DJ-1 has been implicated in various aspects of transformation, including uncontrolled proliferation, invasion, metastasis, and resistance to chemotherapy and apoptosis. Despite the strong relationship between DJ-1 and cancer, which made it a particularly attractive therapeutic target for cancer treatment, the detailed mechanisms of how this oncogene coordinates altered signaling with cell survival remains elusive. In this commentary, we discuss the role of DJ-1 in transformation, highlight some of the significant aspects of and prospects for therapeutically targeting the DJ-1 signaling in cancer, and describe what the future may hold.
Collapse
Affiliation(s)
- Ji Cao
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Siyue Lou
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Meidan Ying
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bo Yang
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
6
|
Karoopongse E, Yeung C, Byon J, Ramakrishnan A, Holman ZJ, Jiang PYZ, Yu Q, Deeg HJ, Marcondes AM. The KDM2B- let-7b -EZH2 axis in myelodysplastic syndromes as a target for combined epigenetic therapy. PLoS One 2014; 9:e107817. [PMID: 25225797 PMCID: PMC4166605 DOI: 10.1371/journal.pone.0107817] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 08/14/2014] [Indexed: 12/02/2022] Open
Abstract
Both DNA and histone methylation are dysregulated in the myelodysplastic syndromes (MDS). Based on preliminary data we hypothesized that dysregulated interactions of KDM2B, let-7b and EZH2 signals lead to an aberrant epigenetic landscape. Gene expression in CD34+ cells from MDS marrows was analyzed by NanoString miR array and validated by real-time polymerase chain reaction (PCR). The functions of KDM2B, let-7b and EZH2 were characterized in myeloid cell lines and in primary MDS cells. Let-7b levels were significantly higher, and KDM2B and EZH2 expression was lower in primary CD34+ MDS marrow cells (n = 44) than in healthy controls (n = 21; p<0.013, and p<0.0001, respectively). Overexpression of let-7b reduced EZH2 and KDM2B protein levels, and decreased cells in S-phase while increasing G0/G1 cells (p = 0.0005), accompanied by decreased H3K27me3 and cyclin D1. Silencing of KDM2B increased let-7b expression. Treatment with the cyclopentanyl analog of 3-deazaadenosine, DZNep, combined with the DNA hypomethylating agent 5-azacitidine, decreased levels of EZH2, suppressed methylation of di- and tri-methylated H3K27, and increased p16 expression, associated with cell proliferation. Thus, KDM2B, via let-7b/EZH2, promotes transcriptional repression. DZNep bypassed the inhibitory KDM2B/let-7b/EZH2 axis by preventing H3K27 methylation and reducing cell proliferation. DZNep might be able to enhance the therapeutic effects of DNA hypomethylating agents such as 5-azacitidine, currently considered standard therapy for patients with MDS.
Collapse
Affiliation(s)
- Ekapun Karoopongse
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Cecilia Yeung
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Anatomic Pathology, University of Washington, Seattle, Washington, United States of America
| | - John Byon
- Department of Hematology, University of Washington, Seattle, Washington, United States of America
| | - Aravind Ramakrishnan
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Zaneta J. Holman
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Peter Y. Z. Jiang
- Medical Oncology, Providence Regional Cancer Partnership and the Everett Clinic, Everett, Washington, United States of America
| | - Qiang Yu
- Cancer Biology and Pharmacology, Genome Institute of Singapore, A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore, China
| | - H. Joachim Deeg
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - A. Mario Marcondes
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
7
|
DJ-1 protein regulates CD3+ T cell migration via overexpression of CXCR4 receptor. Atherosclerosis 2014; 235:503-9. [PMID: 24953490 DOI: 10.1016/j.atherosclerosis.2014.05.955] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Revised: 04/30/2014] [Accepted: 05/27/2014] [Indexed: 01/22/2023]
Abstract
OBJECTIVE DJ-1-a multifunctional protein responding to oxidative stress-is a possible regulator of the inflammatory response that plays an important role in atherosclerosis. Stromal cell-derived factor (SDF)-1 and its receptor, chemokine receptor type 4 (CXCR4), have been implicated in the recruitment of inflammatory cells during atherosclerosis. Here we investigated the hypothesis that DJ-1 protein might participate in CD3+ T cell functions in response to SDF-1 and contribute to the pathogenesis of atherosclerosis. METHODS AND RESULTS SDF-1 stimulated migration in mouse CD3+ T cells in a dose-dependent manner. SDF-1 also elevated the phosphorylation level of extracellular-regulated kinase (ERK) 1/2 in CD3+ T cells. These SDF-1-induced responses were greater in CD3+ T cells from DJ-1 gene knockout (DJ-1(-/-)) mice than in those from wild type (DJ-1(+/+)) mice and were abolished by treatment with WZ811 and PD98059, inhibitors of CXCR4 and ERK1/2, respectively. Flow cytometry revealed that expression of the CXCR4 receptor was greater in CD3+ T cells from DJ-1(-/-) mice than in those from the controls. Moreover, expression of the CD3 protein was observed in the neointimal plaque from carotid artery-ligated mice and was stronger in DJ-1(-/-) mice compared with controls. The CD3+ T cell subsets, Th1 and Th17, showed increased production of interferon-γ and interleukin-17 in DJ-1(-/-) compared with DJ-1(+/+) mice. CONCLUSION DJ-1 protein is involved in the SDF-1-induced CD3+ T cell migration via overexpression of the CXCR4 receptor, and that DJ-1 acts as an inhibitory regulator in vascular remodeling such as neointima formation.
Collapse
|
8
|
Li X, Marcondes AM, Ragoczy T, Telling A, Deeg HJ. Effect of intravenous coadministration of human stroma cell lines on engraftment of long-term repopulating clonal myelodysplastic syndrome cells in immunodeficient mice. Blood Cancer J 2013; 3:e113. [PMID: 23624784 PMCID: PMC3641319 DOI: 10.1038/bcj.2013.11] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Engraftment of clonal hematopoietic precursor cells from patients with myelodysplastic syndrome (MDS) in immunodeficient mice has been difficult to achieve by intravenous (i.v.) injection. We used i.v. coadministration of the human marrow stroma cell line HS27a with CD34+ MDS cells in Nod.cg-Prkdcscid Il2rgtm1wjll (NSG) mice to provide signals that would facilitate engraftment. Hematopoietic cells from 24 MDS patients were transplanted. Cells from all patients were engrafted, and engraftment was documented in 44 of 46 evaluable mice (95%). Immunohistochemistry revealed human HS27a stroma colocalizing with human hematopoietic cells in mouse spleens. Human CD34+ precursors harvested from marrow and spleen of primary murine recipients, when combined with HS27a cells, were also engrafted successfully in secondary NSG recipients, showing persistence of the original clonal characteristics. This observation supports the concept that clonal markers were present in long-term repopulating cells. We suggest that HS27a stroma cells ‘traveled' in direct contact with hematopoietic precursors and enabled their propagation. An essential signal for engraftment appears to be CD146, which is prominently expressed on HS27a cells. This xenotransplantation model will allow to further dissect signals that control engraftment of MDS cells and should be amenable to in vivo treatment studies.
Collapse
Affiliation(s)
- X Li
- 1] Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA [2] School of Medicine, Jiangnan University, Wuxi, China
| | | | | | | | | |
Collapse
|
9
|
DJ-1 protein expression as a predictor of pathological complete remission after neoadjuvant chemotherapy in breast cancer patients. Breast Cancer Res Treat 2013; 139:51-9. [DOI: 10.1007/s10549-013-2523-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 04/02/2013] [Indexed: 01/24/2023]
|
10
|
Li X, Xu F, Chang C, Byon J, Papayannopoulou T, Deeg HJ, Marcondes AM. Transcriptional regulation of miR-10a/b by TWIST-1 in myelodysplastic syndromes. Haematologica 2012; 98:414-9. [PMID: 22983574 DOI: 10.3324/haematol.2012.071753] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The transcription factor TWIST-1 is up-regulated in CD34(+) cells in myelodysplastic syndrome and is involved in resistance to apoptosis. There is evidence that TWIST-1 affects apoptosis via microRNAs (miRs). Expression of miRs was determined in myeloid cell lines and primary CD34(+) marrow cells from patients with myelodysplastic syndrome and healthy donors using NanoString/array and validated by real-time-polymerase chain reaction. Expression levels of miR10a and miR10b were significantly higher in CD34(+) marrow cells from 28 patients with myelodysplastic syndrome than in CD34(+) cells from healthy donors (P=0.05 and P=0.012, respectively). Levels of miR10a/b correlated with TWIST-1 miR levels in CD34(+) myelodysplastic marrow cells (miR10a, R=+0.69, P<0.0001; miR10b, R=+0.56, P=0.0008). Inhibition of miR10a/10b in clonal cells interfered with proliferation and enhanced sensitivity to apoptosis, which involved NF-κB-dependent p53 activation. These data support a role for miR10a/10b in the regulation of apoptosis in myelodysplastic syndrome and suggest the TWIST-1/miR10a/b-axis as a therapeutic target in myelodysplastic syndrome.
Collapse
Affiliation(s)
- Xiang Li
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Martin SE, Sausen M, Joseph A, Kingham BF, Martin ES. Identification of a HMGA2-EFCAB6 gene rearrangement following next-generation sequencing in a patient with a t(12;22)(q14.3;q13.2) and JAK2V617F-positive myeloproliferative neoplasm. Cancer Genet 2012; 205:295-303. [PMID: 22749035 DOI: 10.1016/j.cancergen.2012.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 03/19/2012] [Accepted: 03/31/2012] [Indexed: 12/15/2022]
Abstract
Myeloproliferative neoplasms (MPNs) result from genetically altered hematopoietic stem cells that retain the capacity for multilineage differentiation. The study of genomic mutations identified so far suggests that they occur after a common ancestral event or that different mutations result in similar MPN phenotypes. We report analysis of a chromosomal translocation, t(12;22)(q14.3;q13.2), in a patient with a BCR-ABL1-negative, JAK2V617F-positive MPN. Comparative genomic hybridization (CGH) array and targeted sequencing detected no mutation in nine genes reported to influence the JAK2V617F-driven MPNs (MPL, LNK, CBL, TET2, EZH2, IKZF1, IDH1, IDH2, ASXL1). Next-generation sequencing revealed a balanced HMGA2-EFCAB6 genomic rearrangement. The HMGA2 breakpoint leads to the loss of seven 3'UTR binding sites for the microRNA (miRNA) let-7 tumor suppressor. The breakpoint in the EFCAB6 gene abrogates transcription of EFCAB6. Measurement of expression showed retention of HMGA2 transcription and no detectable EFCAB6 transcript. Allele burden comparison in a sample containing the translocation, showed 90% HMGA2-EFCAB6 versus 50% JAK2V617F allele dose, suggesting HMGA2-EFCAB6 rearrangement plays a more ancestral role, pre-JAK2V617F, in the neoplastic process. The pathogenicity of the translocation may rest on collaborations among JAK2V617F-induced constitutive activation of JAK2, the oncogenic property of HMGA2, and disrupted pathways, such as alteration in DJ-1 expression, resulting from the impact of EFCAB6 abrogation.
Collapse
|
12
|
Baumunk D, Reichelt U, Hildebrandt J, Krause H, Ebbing J, Cash H, Miller K, Schostak M, Weikert S. Expression parameters of the metabolic pathway genes pyruvate dehydrogenase kinase-1 (PDK-1) and DJ-1/PARK7 in renal cell carcinoma (RCC). World J Urol 2012; 31:1191-6. [PMID: 22544372 DOI: 10.1007/s00345-012-0874-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 04/14/2012] [Indexed: 10/28/2022] Open
Abstract
PURPOSE Metabolic adaptations, such as increases in glucose and energy metabolism, play a pivotal role in the biology of RCC. PDK-1 and DJ-1/PARK7 are thought to control metabolic pathways in cancer. We investigated the expression of PDK-1 and DJ-1/PARK7 in RCC and their prognostic relevance. METHODS RCC tumor tissue and corresponding normal parenchyma samples were obtained from 91 patients with clear cell RCC. Expression of PDK-1 and DJ-1/PARK7 was determined on the mRNA and protein levels using quantitative RT-PCR and immunohistochemistry. Expression ratios tumor/normal were analyzed for associations with pathological stage and grade (Kruskal-Wallis ANOVA, chi-square test). Potential associations with progression-free and overall survival were analyzed using Cox regression models. RESULTS PDK-1 mRNA expression was up-regulated as compared to normal tissue (p < 0.001). Differences were observed by tumor stage (p < 0.05) with a trend toward lower expression with increasing stage (p > 0.01). Expression ratio tumor/normal also showed differences by tumor stage with the lowest ratio observed in advanced (pT3) disease. MRNA expression data were confirmed on the protein level with the lowest protein expression in pT3 tumors. PDK-1 expression ratio tumor/normal was inversely associated with outcome after adjustment for stage and grade (HR, 0.54; 95 % CI, 0.31-0.94). No associations observed for DJ-1/PARK7 expression. CONCLUSIONS PDK is up-regulated in RCC, but down-regulation may be associated with progression toward a metastasizing behavior. Given the role of PDK-1 in the control of glucose metabolism, aerobic glycolysis via up-regulation of PDK-1 may be an early event in RCC development, but less relevant for the progression toward an aggressive phenotype.
Collapse
Affiliation(s)
- Daniel Baumunk
- Department of Urology, Universitätsklinikum Magdeburg A. ö. R., Leipziger Straße 44, 39104, Magdeburg, Germany,
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Yoon JH, Song P, Jang JH, Kim DK, Choi S, Kim J, Ghim J, Kim D, Park S, Lee H, Kwak D, Yea K, Hwang D, Suh PG, Ryu SH. Proteomic analysis of tumor necrosis factor-alpha (TNF-α)-induced L6 myotube secretome reveals novel TNF-α-dependent myokines in diabetic skeletal muscle. J Proteome Res 2011; 10:5315-25. [PMID: 22023146 DOI: 10.1021/pr200573b] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
There is a strong possibility that skeletal muscle can respond to irregular metabolic states by secreting specific cytokines. Obesity-related chronic inflammation, mediated by pro-inflammatory cytokines, is believed to be one of the causes of insulin resistance that results in type 2 diabetes. Here, we attempted to identify and characterize the members of the skeletal muscle secretome in response to tumor necrosis factor-alpha (TNF-α)-induced insulin resistance. To conduct this study, we comparatively analyzed the media levels of proteins released from L6 skeletal muscle cells. We found 28 TNF-α modulated secretory proteins by using separate filtering methods: Gene Ontology, SignalP, and SecretomeP, as well as the normalized Spectral Index for label-free quantification. Ten of these secretory proteins were increased and 18 secretory proteins were decreased by TNF-α treatment. Using microarray analysis of Zuker diabetic rat skeletal muscle combined with bioinformatics and Q-PCR, we found a correlation between TNF-α-mediated insulin resistance and type 2 diabetes. This novel approach combining analysis of the conditioned secretome and transcriptome has identified several previously unknown, TNF-α-dependent secretory proteins, which establish a foothold for research on the different causes of insulin resistance and their relationships with each other.
Collapse
Affiliation(s)
- Jong Hyuk Yoon
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang, Kyungbuk, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Vasseur S, Afzal S, Tomasini R, Guillaumond F, Tardivel-Lacombe J, Mak TW, Iovanna JL. Consequences of DJ-1 upregulation following p53 loss and cell transformation. Oncogene 2011; 31:664-70. [PMID: 21725356 DOI: 10.1038/onc.2011.268] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
p53 is a tumor suppressor that responds to various stress signals by initiating cell-cycle arrest, senescence and apoptosis. Mutations of the p53 gene are found in over 50% of human tumors, highlighting the importance of p53 in tumor suppression. Numerous studies have reported on the interactions between p53, IGF-1-AKT and mTOR pathways as potentially explaining some of the tumor suppressive activities of p53. To further understand the basis of these interactions, we analyzed the involvement of DJ-1, an oncogene known to drive AKT-mediated cell survival, in the p53-AKT axis. In this study, we show that DJ-1 and p53 are tightly 'linked': p53 prevents the accumulation of DJ-1 protein, whereas loss of p53 leads to stabilization and enhancement of DJ-1 expression. Interestingly, this increase in DJ-1 level is only observed when p53 loss is accompanied by transformation of cells. Moreover, DJ-1 seems to be required for the enhanced activation of AKT observed in p53-deficient cells. Such observation confers a new property to DJ-1 associated to transforming-process to its oncogenic ability to drive AKT activation. We also show that DJ-1 is necessary for p53 activation following oxidative stress, suggesting the existence of a finely regulated loop between these two proteins in transformed cells. Finally, we demonstrate that in the absence of p53, DJ-1 is stabilized by ROS accumulation, and surprisingly seems to be required for this high intracellular ROS production. These data offer new insights into the regulation of DJ-1 and suggest that DJ-1 is a target of p53. Importantly, our study highlights that during transformation, DJ-1 is having a key role in the p53-regulated AKT pathway and p53-driven oxidative-stress response.
Collapse
Affiliation(s)
- S Vasseur
- Institut National de la Santé et de la Recherche Médicale Unité 624, Marseille, France
| | | | | | | | | | | | | |
Collapse
|
15
|
Li X, Marcondes AM, Gooley TA, Deeg HJ. The helix-loop-helix transcription factor TWIST is dysregulated in myelodysplastic syndromes. Blood 2010; 116:2304-14. [PMID: 20562331 PMCID: PMC2953837 DOI: 10.1182/blood-2009-09-242313] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Accepted: 06/04/2010] [Indexed: 11/20/2022] Open
Abstract
Patients with low-grade myelodysplastic syndromes (MDS) show high levels of tumor necrosis factor α (TNFα) and up-regulation of apoptosis in the marrow. In contrast, marrow cells in advanced MDS are typically resistant to TNFα-induced apoptosis but are rendered apoptosis-sensitive on coculture with stroma. The present studies show that CD34(+) marrow cells in advanced MDS express high levels of TWIST, a basic helix-loop-helix transcription factor that opposes p53 function. TWIST levels correlated with disease stage (advanced > low grade; P = .01). Coculture with HS5 stroma resulted in down-regulation of TWIST and increased apoptosis in response to TNFα in CD34(+) cells from advanced MDS; the same effect was achieved by TWIST-specific RNA interference in CD34(+) cells. In primary MDS marrow stroma TWIST expression was lower than in healthy controls; suppression of TWIST in stroma interfered with induction of apoptosis sensitivity in cocultured CD34(+) cells. Stroma cells so modified expressed reduced levels of intercellular adhesion molecule-1 (ICAM1; CD54); blockade of ICAM1 in unmodified stroma was associated with reduced apoptosis in cocultured CD34(+) MDS marrow cells. These data suggest role for dysregulation of TWIST in the pathophysiology of MDS. Conceivably, TWIST or components in the signaling pathway could serve as therapeutic targets for patients with MDS.
Collapse
Affiliation(s)
- Xiang Li
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | | | | |
Collapse
|