1
|
Petersdorf EW. HLA structure and function in hematopoietic-cell transplantation. Best Pract Res Clin Haematol 2024; 37:101564. [PMID: 39396254 DOI: 10.1016/j.beha.2024.101564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 07/11/2024] [Accepted: 07/23/2024] [Indexed: 10/15/2024]
Abstract
The degree of HLA compatibility between a patient and donor has formed the basis of donor selection since the development of allogeneic hematopoietic cell transplantation over 50 years ago and has advanced understanding of the basic immunobiology of HLA. New evidence supports a role for germline variation in the patient and the donor that do not require HLA matching for their effects to have clinical consequences. The discovery of novel non-coding polymorphisms, structural features of HLA molecules, and expression provide new models for donor selection and inspire the development of tools for clinical translation. Pairwise effects of HLA ligand/donor NK receptors may play an important role in transplant outcomes and showcase the value of understanding the role played by each constituent of the NK pathway in modulating donor responses to target antigens.
Collapse
Affiliation(s)
- Effie W Petersdorf
- Division of Translational Science and Therapeutics, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA.
| |
Collapse
|
2
|
Petersdorf EW, McKallor C, Malkki M, He M, Spellman SR, Hsu KC, Strong RK, Gooley T, Stevenson P. Role of NKG2D ligands and receptor in haploidentical related donor hematopoietic cell transplantation. Blood Adv 2023; 7:2888-2896. [PMID: 36763517 PMCID: PMC10300293 DOI: 10.1182/bloodadvances.2022008922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/10/2022] [Accepted: 12/06/2022] [Indexed: 02/11/2023] Open
Abstract
The recurrence of malignancy after hematopoietic cell transplantation (HCT) is the primary cause of transplantation failure. The NKG2D axis is a powerful pathway for antitumor responses, but its role in the control of malignancy after HCT is not well-defined. We tested the hypothesis that gene variation of the NKG2D receptor and its ligands MICA and MICB affect relapse and survival in 1629 patients who received a haploidentical HCT for the treatment of a malignant blood disorder. Patients and donors were characterized for MICA residue 129, the exon 5 short tandem repeat (STR), and MICB residues 52, 57, 98, and 189. Donors were additionally defined for the presence of NKG2D residue 72. Mortality was higher in patients with MICB-52Asn relative to those with 52Asp (hazard ratio [HR], 1.83; 95% confidence interval [CI], 1.24-2.71; P = .002) and lower in those with MICA-STR mismatch than in those with STR match (HR, 0.66; 95% CI, 0.54-0.79; P = .00002). Relapse was lower with NKG2D-72Thr donors than with 72Ala donors (relapse HR, 0.57; 95% CI, 0.35-0.91; P = .02). The protective effects of patient MICB-52Asp with donor MICA-STR mismatch and NKG2D-72Thr were enhanced when all 3 features were present. The NKG2D ligand/receptor pathway is a transplantation determinant. The immunobiology of relapse is defined by the concerted effects of MICA, MICB, and NKG2D germ line variation. Consideration of NKG2D ligand/receptor pairings may improve survival for future patients.
Collapse
Affiliation(s)
- Effie W. Petersdorf
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA
- Department of Medicine, University of Washington, Seattle, WA
| | - Caroline McKallor
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA
| | - Mari Malkki
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA
| | - Meilun He
- National Marrow Donor Program/BeTheMatch, Center for International Blood and Marrow Transplant Research, Minneapolis, MN
| | - Stephen R. Spellman
- National Marrow Donor Program/BeTheMatch, Center for International Blood and Marrow Transplant Research, Minneapolis, MN
| | - Katharine C. Hsu
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Roland K. Strong
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA
| | - Ted Gooley
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA
| | - Phil Stevenson
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA
| |
Collapse
|
3
|
Tchacrome I, Zhu Q, Saleh MA, Zou Y. Diseases association with the polymorphic major histocompatibility complex class I related chain a: MICA gene. Transpl Immunol 2022; 75:101665. [PMID: 35809815 DOI: 10.1016/j.trim.2022.101665] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/29/2022] [Accepted: 07/04/2022] [Indexed: 11/17/2022]
Abstract
The Major Histocompatibility Complex class I chain-related molecule A (MICA) genes encode a highly polymorphic glycoprotein among the cell surface antigens that trigger an immune response after allograft transplantation. It is encoded by the MICA gene, a member of the glycosylated MIC genes. Discovered in 1994, the MICA gene is located within the MHC class I region. Moreover, its biological function is achieved through the interaction with the NKG2D receptor. Unlike the classical HLA molecules, MICA protein is not associated with β2- microglobulin nor binds peptides. MICA gene expression may result in a cytotoxic response and IFN-γ secretion through the up-regulation by heat shock proteins in response to infection (Human Cytomegalovirus HCMV), mediated by NKG2D-expressing cells. Anti-MICA antibodies were identified as significant risk factors for antibody mediated rejection after being detected in sera of patients with graft rejection. In addition, soluble MICA proteins (sMICA) has been detected in the serum of transplant recipients with cancers. Furthermore, the association of MICA polymorphisms with infectious diseases, various autoimmune diseases, cancer, and allograft rejection or graft-versus-host disease (GVHD) has been studied. Moreover, numerous advanced disease studies centered on MICA polymorphism are independent of HLA association. In this review, we discussed the up-to-date data about MICA and the association of MICA polymorphism with infections, autoimmune diseases, graft-versus-host disease, and cancer.
Collapse
Affiliation(s)
- Imane Tchacrome
- Department of Immunology, Xiangya School of Medicine, Central South University, Hunan, China
| | - Quan Zhu
- Department of Immunology, Xiangya School of Medicine, Central South University, Hunan, China
| | - Mohammad Abu Saleh
- Department of Immunology, Xiangya School of Medicine, Central South University, Hunan, China
| | - Yizhou Zou
- Department of Immunology, Xiangya School of Medicine, Central South University, Hunan, China.
| |
Collapse
|
4
|
Bogunia-Kubik K, Łacina P. Non-KIR NK cell receptors: Role in transplantation of allogeneic haematopoietic stem cells. Int J Immunogenet 2020; 48:157-171. [PMID: 33352617 DOI: 10.1111/iji.12523] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/29/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022]
Abstract
Natural killer (NK) cells are of major significance in patients after allogeneic haematopoietic stem cell transplantation (HSCT). They are the first subset of lymphocytes to appear in peripheral blood after transplantation and play an important role in the immune responses against cancer and viral infections. The function of NK cells is controlled by various surface receptors, of which type I integral proteins with immunoglobulin-like domains (killer-cell immunoglobulin-like receptors, KIRs) have been the most extensively studied. The present review focuses on less studied NK cell receptors, such as type II integral proteins with lectin-like domains (CD94/NKG2, NKG2D), natural cytotoxicity receptors (NCRs), immunoglobulin-like transcripts (ILTs) and their ligands. Their potential role in patients with haematological disorders subjected to HSC transplant procedure in the context of post-transplant complications such as viral reactivation and acute graft-versus-host disease (GvHD) will be presented and discussed.
Collapse
Affiliation(s)
- Katarzyna Bogunia-Kubik
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Piotr Łacina
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| |
Collapse
|
5
|
Impact of MICA and NKG2D polymorphisms in HLA-fully matched related and unrelated hematopoietic stem cell transplantation. Bone Marrow Transplant 2018; 53:918-922. [PMID: 29379169 DOI: 10.1038/s41409-017-0083-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 12/13/2017] [Accepted: 12/18/2017] [Indexed: 12/31/2022]
|
6
|
Petersdorf EW. Role of major histocompatibility complex variation in graft-versus-host disease after hematopoietic cell transplantation. F1000Res 2017; 6:617. [PMID: 28529723 PMCID: PMC5419254 DOI: 10.12688/f1000research.10990.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/25/2017] [Indexed: 01/01/2023] Open
Abstract
Graft-versus-host disease (GVHD) remains a significant potentially life-threatening complication of allogeneic hematopoietic cell transplantation (HCT). Since the discovery of the human leukocyte antigen (HLA) system over 50 years ago, significant advances have clarified the nature of HLA variation between transplant recipients and donors as a chief etiology of GVHD. New information on coding and non-coding gene variation and GVHD risk provides clinicians with options to consider selected mismatched donors when matched donors are not available. These advances have increased the availability of unrelated donors for patients in need of a transplant and have lowered the overall morbidity and mortality of HCT.
Collapse
|
7
|
Gam R, Shah P, Crossland RE, Norden J, Dickinson AM, Dressel R. Genetic Association of Hematopoietic Stem Cell Transplantation Outcome beyond Histocompatibility Genes. Front Immunol 2017; 8:380. [PMID: 28421078 PMCID: PMC5377073 DOI: 10.3389/fimmu.2017.00380] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 03/16/2017] [Indexed: 12/18/2022] Open
Abstract
The outcome of hematopoietic stem cell transplantation (HSCT) is controlled by genetic factors among which the leukocyte antigen human leukocyte antigen (HLA) matching is most important. In addition, minor histocompatibility antigens and non-HLA gene polymorphisms in genes controlling immune responses are known to contribute to the risks associated with HSCT. Besides single-nucleotide polymorphisms (SNPs) in protein coding genes, SNPs in regulatory elements such as microRNAs (miRNAs) contribute to these genetic risks. However, genetic risks require for their realization the expression of the respective gene or miRNA. Thus, gene and miRNA expression studies may help to identify genes and SNPs that indeed affect the outcome of HSCT. In this review, we summarize gene expression profiling studies that were performed in recent years in both patients and animal models to identify genes regulated during HSCT. We discuss SNP–mRNA–miRNA regulatory networks and their contribution to the risks associated with HSCT in specific examples, including forkheadbox protein 3 and regulatory T cells, the role of the miR-155 and miR-146a regulatory network for graft-versus-host disease, and the function of MICA and its receptor NKG2D for the outcome of HSCT. These examples demonstrate how SNPs affect expression or function of proteins that modulate the alloimmune response and influence the outcome of HSCT. Specific miRNAs targeting these genes and directly affecting expression of mRNAs are identified. It might be valuable in the future to determine SNPs and to analyze miRNA and mRNA expression in parallel in cohorts of HSCT patients to further elucidate genetic risks of HSCT.
Collapse
Affiliation(s)
- Rihab Gam
- Hematological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Pranali Shah
- Institute of Cellular and Molecular Immunology, University Medical Centre Göttingen, Göttingen, Germany
| | - Rachel E Crossland
- Hematological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Jean Norden
- Hematological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Anne M Dickinson
- Hematological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Ralf Dressel
- Institute of Cellular and Molecular Immunology, University Medical Centre Göttingen, Göttingen, Germany
| |
Collapse
|
8
|
Askar M, Sobecks R, Wang T, Haagenson M, Majhail N, Madbouly A, Thomas D, Zhang A, Fleischhauer K, Hsu K, Verneris M, Lee SJ, Spellman SR, Fernández-Viña M. MHC Class I Chain-Related Gene A (MICA) Donor-Recipient Mismatches and MICA-129 Polymorphism in Unrelated Donor Hematopoietic Cell Transplantations Has No Impact on Outcomes in Acute Lymphoblastic Leukemia, Acute Myeloid Leukemia, or Myelodysplastic Syndrome: A Center for International Blood and Marrow Transplant Research Study. Biol Blood Marrow Transplant 2017; 23:436-444. [PMID: 27987385 PMCID: PMC5370205 DOI: 10.1016/j.bbmt.2016.11.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/24/2016] [Indexed: 11/26/2022]
Abstract
Single-center studies have previously reported associations of MHC Class I Chain-Related Gene A (MICA) polymorphisms and donor-recipient MICA mismatching with graft-versus-host disease (GVHD) after unrelated donor hematopoietic cell transplantation (HCT). In this study, we investigated the association of MICA polymorphism (MICA-129, MM versus MV versus VV) and MICA mismatches after HCT with 10/10 HLA-matched (n = 552) or 9/10 (n = 161) unrelated donors. Included were adult patients with a first unrelated bone marrow or peripheral blood HCT for acute lymphoblastic leukemia, acute myeloid leukemia, or myelodysplastic syndrome that were reported to the Center for International Blood and Marrow Transplant Research between 1999 and 2011. Our results showed that neither MICA mismatch nor MICA-129 polymorphism were associated with any transplantation outcome (P < .01), with the exception of a higher relapse in recipients of MICA-mismatched HLA 10/10 donors (hazard ratio [HR], 1.7; P = .003). There was a suggestion of association between MICA mismatches and a higher risk of acute GVHD grades II to IV (HR, 1.4; P = .013) There were no significant interactions between MICA mismatches and HLA matching (9/10 versus 10/10). In conclusion, the findings in this cohort did not confirm prior studies reporting that MICA polymorphism and MICA mismatches were associated with HCT outcomes.
Collapse
Affiliation(s)
- Medhat Askar
- Department of Pathology, Baylor University Medical Center, Dallas, Texas.
| | - Ronald Sobecks
- Blood and Marrow Transplant Program, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Tao Wang
- Center for International Blood and Marrow Transplant Research, Milwaukee, Wisconsin
| | - Mike Haagenson
- Center for International Blood and Marrow Transplant Research, Minneapolis, Minnesota
| | - Navneet Majhail
- Blood and Marrow Transplant Program, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Abeer Madbouly
- Center for International Blood and Marrow Transplant Research, Minneapolis, Minnesota
| | - Dawn Thomas
- Blood and Marrow Transplant Program, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Aiwen Zhang
- Blood and Marrow Transplant Program, Cleveland Clinic Foundation, Cleveland, Ohio
| | | | - Katharine Hsu
- Division of Hematologic Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center-Adults, New York, New York
| | - Michael Verneris
- Division of Hematology, Oncology, and Transplantation, Department of Pediatrics, University of Minnesota Medical Center, Minneapolis, Minnesota
| | - Stephanie J Lee
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Stephen R Spellman
- Center for International Blood and Marrow Transplant Research, Minneapolis, Minnesota
| | | |
Collapse
|
9
|
Chojecki A. Does MHC Class I Chain-Related Gene A Matter? Biol Blood Marrow Transplant 2017; 23:365-366. [PMID: 28088489 DOI: 10.1016/j.bbmt.2017.01.066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 01/09/2017] [Indexed: 11/25/2022]
Abstract
In this issue of Biology of Blood and Marrow Transplantation, Askar et al. evaluate the association of MHC class I chain-related gene A (MICA) polymorphisms with the development of graft-versus host-disease (GVHD) after unrelated donor hematopoietic stem cell transplantation (HCT) [1]. Prior reports have provided conflicting results, leaving the effect of MICA donor-recipient mismatch in HCT unanswered.
Collapse
Affiliation(s)
- Aleksander Chojecki
- Department of Hematologic Oncology and Blood Disorders, Levine Cancer Institute, Charlotte, North Carolina.
| |
Collapse
|
10
|
Matching for the MICA-129 polymorphism is beneficial in unrelated hematopoietic stem cell transplantation. Blood 2016; 128:3169-3176. [PMID: 27811019 DOI: 10.1182/blood-2016-05-716357] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 10/22/2016] [Indexed: 12/15/2022] Open
Abstract
Major histocompatibility complex class I polypeptide-related sequence A (MICA) is a highly polymorphic ligand of the activating NKG2D receptor on natural killer (NK) cells, γδ-T cells, and NKT cells. MICA incompatibilities have been associated with an increased graft-versus-host disease (GVHD) incidence, and the MICA-129 (met/val) dimorphism has been shown to influence NKG2D signaling in unrelated hematopoietic stem cell transplantation (uHSCT). We investigated the effect of MICA matching on survival after uHSCT. We sequenced 2172 patients and their respective donors for MICA. All patients and donors were high-resolution HLA-typed and matched for 10/10 (n = 1379), 9/10 (n = 636), or 8/10 (n = 157) HLA alleles. Within each HLA match group, cases matched and mismatched for MICA and MICA-129 were analyzed for the end points overall survival (OS), disease-free survival (DFS), nonrelapse mortality (NRM), relapse-incidence (RI), and GVHD. Mismatches at the MICA locus as well as MICA-129 increased with the number of HLA mismatches (MICA mismatched 10/10, 9.2% [n = 127]; 9/10, 22.3% [n = 142]; 8/10, 38.2% [n = 60]; MICA-129 mismatched 10/10, 3.9% [n = 54]; 9/10, 10.2% [n = 65]; 8/10, 17.2% [n = 27]). Adverse OS was observed in the 10/10 match group if MICA-129 was mismatched (10/10, hazard ratio [HR], 1.77; confidence interval [CI], 1.22-2.57; P = .003). MICA-129 mismatches correlated with a significantly worse outcome for DFS in the 10/10 HLA match group (HR, 1.77; CI, 1.26-2.50; P = .001). Higher rates of aGVHD were seen in MICA-129 mismatched cases. Our results indicate that MICA-129 matching is relevant in uHSCT. Prospective typing of patients and donors in unrelated donor search may identify mismatches for MICA-129, and compatible donor selection may improve outcome for this small but high-risk subgroup.
Collapse
|
11
|
Matching for the nonconventional MHC-I MICA gene significantly reduces the incidence of acute and chronic GVHD. Blood 2016; 128:1979-1986. [PMID: 27549307 DOI: 10.1182/blood-2016-05-719070] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/14/2016] [Indexed: 01/12/2023] Open
Abstract
Graft-versus-host disease (GVHD) is among the most challenging complications in unrelated donor hematopoietic cell transplantation (HCT). The highly polymorphic MHC class I chain-related gene A, MICA, encodes a stress-induced glycoprotein expressed primarily on epithelia. MICA interacts with the invariant activating receptor NKG2D, expressed by cytotoxic lymphocytes, and is located in the MHC, next to HLA-B Hence, MICA has the requisite attributes of a bona fide transplantation antigen. Using high-resolution sequence-based genotyping of MICA, we retrospectively analyzed the clinical effect of MICA mismatches in a multicenter cohort of 922 unrelated donor HLA-A, HLA-B, HLA-C, HLA-DRB1, and HLA-DQB1 10/10 allele-matched HCT pairs. Among the 922 pairs, 113 (12.3%) were mismatched in MICA MICA mismatches were significantly associated with an increased incidence of grade III-IV acute GVHD (hazard ratio [HR], 1.83; 95% confidence interval [CI], 1.50-2.23; P < .001), chronic GVHD (HR, 1.50; 95% CI, 1.45-1.55; P < .001), and nonelapse mortality (HR, 1.35; 95% CI, 1.24-1.46; P < .001). The increased risk for GVHD was mirrored by a lower risk for relapse (HR, 0.50; 95% CI, 0.43-0.59; P < .001), indicating a possible graft-versus-leukemia effect. In conclusion, when possible, selecting a MICA-matched donor significantly influences key clinical outcomes of HCT in which a marked reduction of GVHD is paramount. The tight linkage disequilibrium between MICA and HLA-B renders identifying a MICA-matched donor readily feasible in clinical practice.
Collapse
|
12
|
Isernhagen A, Malzahn D, Viktorova E, Elsner L, Monecke S, von Bonin F, Kilisch M, Wermuth JM, Walther N, Balavarca Y, Stahl-Hennig C, Engelke M, Walter L, Bickeböller H, Kube D, Wulf G, Dressel R. The MICA-129 dimorphism affects NKG2D signaling and outcome of hematopoietic stem cell transplantation. EMBO Mol Med 2016; 7:1480-502. [PMID: 26483398 PMCID: PMC4644379 DOI: 10.15252/emmm.201505246] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The MHC class I chain-related molecule A (MICA) is a highly polymorphic ligand for the activating natural killer (NK)-cell receptor NKG2D. A single nucleotide polymorphism causes a valine to methionine exchange at position 129. Presence of a MICA-129Met allele in patients (n = 452) undergoing hematopoietic stem cell transplantation (HSCT) increased the chance of overall survival (hazard ratio [HR] = 0.77, P = 0.0445) and reduced the risk to die due to acute graft-versus-host disease (aGVHD) (odds ratio [OR] = 0.57, P = 0.0400) although homozygous carriers had an increased risk to experience this complication (OR = 1.92, P = 0.0371). Overall survival of MICA-129Val/Val genotype carriers was improved when treated with anti-thymocyte globulin (HR = 0.54, P = 0.0166). Functionally, the MICA-129Met isoform was characterized by stronger NKG2D signaling, triggering more NK-cell cytotoxicity and interferon-γ release, and faster co-stimulation of CD8+ T cells. The MICA-129Met variant also induced a faster and stronger down-regulation of NKG2D on NK and CD8+ T cells than the MICA-129Val isoform. The reduced cell surface expression of NKG2D in response to engagement by MICA-129Met variants appeared to reduce the severity of aGVHD.
Collapse
Affiliation(s)
- Antje Isernhagen
- Institute of Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Dörthe Malzahn
- Institute of Genetic Epidemiology, University Medical Center Göttingen, Göttingen, Germany
| | - Elena Viktorova
- Institute of Genetic Epidemiology, University Medical Center Göttingen, Göttingen, Germany
| | - Leslie Elsner
- Institute of Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Sebastian Monecke
- Institute of Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Frederike von Bonin
- Department of Hematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Markus Kilisch
- Institute of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany
| | - Janne Marieke Wermuth
- Department of Hematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Neele Walther
- Department of Hematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Yesilda Balavarca
- Institute of Genetic Epidemiology, University Medical Center Göttingen, Göttingen, Germany
| | | | - Michael Engelke
- Institute of Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Lutz Walter
- Primate Genetics Laboratory, German Primate Center, Göttingen, Germany
| | - Heike Bickeböller
- Institute of Genetic Epidemiology, University Medical Center Göttingen, Göttingen, Germany
| | - Dieter Kube
- Department of Hematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Gerald Wulf
- Department of Hematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Ralf Dressel
- Institute of Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
13
|
Askar M, Sun Y, Rybicki L, Zhang A, Thomas D, Kalaycio M, Pohlman B, Dean R, Duong H, Hanna R, Maciejewski J, Majhail NS, Bolwell B, Sobecks R. Synergistic effect of major histocompatibility complex class I-related chain a and human leukocyte antigen-DPB1 mismatches in association with acute graft-versus-host disease after unrelated donor hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 2014; 20:1835-40. [PMID: 25064744 DOI: 10.1016/j.bbmt.2014.07.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 07/15/2014] [Indexed: 11/12/2022]
Abstract
The clinical relevance of mismatches at the MHC class I-related chain A (MICA) in hematopoietic stem cell transplantation (HSCT) remains unclear. We investigated the association of MICA donor/recipient mismatch and whether there is an interaction between these and HLA-DPB1 mismatch on clinical outcomes after unrelated donor HSCT. Our study included 227 patients who underwent unrelated donor allogeneic HSCT at our institution between 2000 and 2010. Among these, 177 (78%) received HSCT from a 10/10 HLA-matched donor. MICA genotyping was performed using commercially available kits. In univariable analysis, the risk of grade II to IV acute graft-versus-host disease (GVHD) was greater for patients with MICA mismatch (hazard ratio [HR], 1.73; P = .02) than for those with HLA-DPB1 mismatch (HR, 1.62; P = .07). When MICA and HLA-DPB1 were assessed simultaneously, patients mismatched at both loci had the greatest risk (HR, 2.51; P < .01) and those mismatched at only 1 locus had somewhat greater risk (HR, 1.53; P = .12) than patients matched at both loci; this remained significant in multivariable analysis. The 100-day incidence was 66%, 45%, and 31%, respectively (P = .03). Results were similar for grade III and IV acute GVHD, with 100-day incidence 34%, 16%, and 8% (P = .01). These results are clinically pertinent to donor selection strategies and indicate that patients with mismatch at both MICA and HLA-DPB1 are at increased risk for acute GVHD.
Collapse
Affiliation(s)
- Medhat Askar
- Allogen Laboratory, Cleveland Clinic, Cleveland, Ohio.
| | - Yuchu Sun
- Medical University of the Americas, Charlestown, Nevis
| | - Lisa Rybicki
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio
| | - Aiwen Zhang
- Allogen Laboratory, Cleveland Clinic, Cleveland, Ohio
| | - Dawn Thomas
- Allogen Laboratory, Cleveland Clinic, Cleveland, Ohio
| | - Matt Kalaycio
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio
| | - Brad Pohlman
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio
| | - Robert Dean
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio
| | - Hien Duong
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio
| | - Rabi Hanna
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio
| | - Jaroslaw Maciejewski
- Department of Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, Ohio
| | | | - Brian Bolwell
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio
| | - Ronald Sobecks
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
14
|
Abstract
Acute graft-versus-host disease (GVHD) afflicts as much as 80% of all patients who receive an unrelated donor hematopoietic cell transplant (HCT) for the treatment of blood disorders, even with optimal donor HLA matching and use of prophylactic immunosuppressive agents. Of patients who develop acute GVHD, many are at risk for chronic GVHD and bear the burden of considerable morbidity and lowered quality of life years after transplantation. The immunogenetic basis of GVHD has been the subject of intensive investigation, with the classic HLA genetic loci being the best-characterized determinants. Recent information on the major histocompatibility complex (MHC) region of chromosome 6 as an important source of untyped genetic variation has shed light on novel GVHD determinants. These data open new paradigms for understanding the genetic basis of GVHD.
Collapse
|
15
|
Wenda S, Faé I, Sanchez-Mazas A, Nunes JM, Mayr WR, Fischer GF. The distribution of MICA alleles in an Austrian population: evidence for increasing polymorphism. Hum Immunol 2013; 74:1295-9. [PMID: 23777932 DOI: 10.1016/j.humimm.2013.06.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 04/26/2013] [Accepted: 06/07/2013] [Indexed: 10/26/2022]
Abstract
The Major Histocompatibility Complex Class I Chain-Related Gene A (MICA) is located 46.4 Kb centromeric to HLA-B locus on chromosome 6; 84 alleles have been described so far. To assess the distribution of MICA alleles in an Austrian population, 322 unrelated Austrian blood donors have been typed for MICA by direct sequencing of amplified exons 2-5; sequencing of exon 6 and separating alleles by haplotype specific primers or by cloning was performed to resolve ambiguities. HLA-B was typed at low level resolution and linkage disequilibrium was determined. We observed 20 already known and four novel MICA alleles. MICA*008:01/04 was the most frequent allele (42%), followed by MICA*002:01 (11%) and MICA*009:01 (9%), three alleles (MICA*029, *067 and *068) were observed only once. No deviation from the Hardy Weinberg equilibrium was observed. Linkage disequilibrium between MICA and HLA-B alleles was observed, most extensively between MICA*008:01/04 and HLA-B*07. Our population data are in agreement with other European populations. The fact that four novel alleles have been observed indicates that the polymorphism of MICA is larger than currently estimated.
Collapse
Affiliation(s)
- Sabine Wenda
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | |
Collapse
|
16
|
Abstract
A novel MICA allele, MICA*070, was defined by sequencing. The new allele differs from the MICA*008:04 sequence in exon 2, encoding a C instead of G corresponding to cDNA nucleotide position 183. This nucleotide substitution is predicted to encode serine instead of arginine at residue 38 of the α1 domain of the MICA molecule.
Collapse
|
17
|
Abstract
Graft-versus-host disease (GVHD) is a potentially life-threatening complication of allogeneic hematopoietic cell transplantation. Many genes are presumed to be involved in GVHD, but the best characterized genetic system is that of the human major histocompatibility complex (MHC) located on chromosome 6. Among the hundreds of genes located within the MHC region, the best known and characterized are the classical HLA genes, HLA-A, C, B, DRB1, DQB1, and DPB1. They play a fundamental role in T cell immune responses, and HLA-A, C, and B also function as ligands for the natural killer cell immunoglobulin-like receptors involved in innate immunity. This review highlights the state-of-the art in the field of histocompatibility and immunogenetics of the MHC with respect to genetic risk factors for GVHD.
Collapse
|
18
|
Effect of MHC and non-MHC donor/recipient genetic disparity on the outcome of allogeneic HCT. Blood 2012; 120:2796-806. [PMID: 22859606 DOI: 10.1182/blood-2012-04-347286] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The outcome of allogeneic hematopoietic cell transplantation is influenced by donor/recipient genetic disparity at loci both inside and outside the MHC on chromosome 6p. Although disparity at loci within the MHC is the most important risk factor for the development of severe GVHD, disparity at loci outside the MHC that encode minor histocompatibility (H) antigens can elicit GVHD and GVL activity in donor/recipient pairs who are otherwise genetically identical across the MHC. Minor H antigens are created by sequence and structural variations within the genome. The enormous variation that characterizes the human genome suggests that the total number of minor H loci is probably large and ensures that all donor/recipient pairs, despite selection for identity at the MHC, will be mismatched for many minor H antigens. In addition to mismatch at minor H loci, unrelated donor/recipient pairs exhibit genetic disparity at numerous loci within the MHC, particularly HLA-DP, despite selection for identity at HLA-A, -B, -C, and -DRB1. Disparity at HLA-DP exists in 80% of unrelated pairs and clearly influences the outcome of unrelated hematopoietic cell transplantation; the magnitude of this effect probably exceeds that associated with disparity at any locus outside the MHC.
Collapse
|
19
|
Zhang A, Sun Y, Thomas D, Kawczak P, Zhang S, Askar M. Identification of three MICA alleles in the genotype of a patient with chronic lymphocytic leukemia. ACTA ACUST UNITED AC 2011; 79:64-7. [PMID: 22150370 DOI: 10.1111/j.1399-0039.2011.01800.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Major histocompatibility complex (MHC) class I-related chain A gene (MICA) sequence-based genotyping (SBT) was attempted on a peripheral blood sample collected from a patient evaluated for hematopoietic stem cell retransplant. The electropherogram pattern of MICA SBT indicated the possibility of carrying more than two MICA alleles. Subsequent cloning and sequencing of the polymerase chain reaction products revealed the presence of three distinct MICA alleles: MICA*008:01/:04 (A5.1), MICA*007:01(A4), and MICA*002:01 (A9) in the genotype of this patient. The origin of the third extra MICA allele could not be determined and would require MICA genotyping information from other family members, which is unavailable.
Collapse
Affiliation(s)
- A Zhang
- Allogen Laboratories, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | | | | | | | | |
Collapse
|