1
|
Chen X, Jaiswal A, Costliow Z, Herbst P, Creasey EA, Oshiro-Rapley N, Daly MJ, Carey KL, Graham DB, Xavier RJ. pH sensing controls tissue inflammation by modulating cellular metabolism and endo-lysosomal function of immune cells. Nat Immunol 2022; 23:1063-1075. [PMID: 35668320 PMCID: PMC9720675 DOI: 10.1038/s41590-022-01231-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 04/26/2022] [Indexed: 02/08/2023]
Abstract
Extracellular acidification occurs in inflamed tissue and the tumor microenvironment; however, a systematic study on how pH sensing contributes to tissue homeostasis is lacking. In the present study, we examine cell type-specific roles of the pH sensor G protein-coupled receptor 65 (GPR65) and its inflammatory disease-associated Ile231Leu-coding variant in inflammation control. GPR65 Ile231Leu knock-in mice are highly susceptible to both bacterial infection-induced and T cell-driven colitis. Mechanistically, GPR65 Ile231Leu elicits a cytokine imbalance through impaired helper type 17 T cell (TH17 cell) and TH22 cell differentiation and interleukin (IL)-22 production in association with altered cellular metabolism controlled through the cAMP-CREB-DGAT1 axis. In dendritic cells, GPR65 Ile231Leu elevates IL-12 and IL-23 release at acidic pH and alters endo-lysosomal fusion and degradation capacity, resulting in enhanced antigen presentation. The present study highlights GPR65 Ile231Leu as a multistep risk factor in intestinal inflammation and illuminates a mechanism by which pH sensing controls inflammatory circuits and tissue homeostasis.
Collapse
Affiliation(s)
- Xiangjun Chen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Experimental Medicine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Alok Jaiswal
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Paula Herbst
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Elizabeth A Creasey
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Noriko Oshiro-Rapley
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Experimental Medicine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Mark J Daly
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Institute for Molecular Medicine Finland, Helsinki, Finland
| | | | - Daniel B Graham
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Experimental Medicine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ramnik J Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA.
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
2
|
Sharma J, Carson CS, Douglas T, Wilson JT, Joyce S. Nano-Particulate Platforms for Vaccine Delivery to Enhance Antigen-Specific CD8 + T-Cell Response. Methods Mol Biol 2022; 2412:367-398. [PMID: 34918256 PMCID: PMC10053628 DOI: 10.1007/978-1-0716-1892-9_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Vaccines remain the most effective way to protect populations against deathly infectious diseases. Several disadvantages associated with the traditional vaccines that use whole pathogens have led to the development of alternative strategies including the use of recombinant subunit vaccines. Subunit vaccines are, in general, safer than whole pathogens but tend to be less immunogenic due to the lack of molecular cues that are typically found on whole pathogens. To enhance immunogenicity, the subunit antigen can be administered with adjuvants that stimulate the innate immune system as a means to steer the quality and magnitude of the adaptive immune response. Novel classes of adjuvants are formulated using particle-based platforms such as virus-like particles, liposomes, and polymeric nanoparticles. These particle-based systems present antigens in ways reminiscent of whole pathogens. Such platforms offer several advantages that include co-delivery of antigen along with innate immune stimulators in a highly immunogenic format. Here we describe our recent efforts to synthesize, characterize, and validate two promising nanoparticle-based delivery systems and demonstrate their potential to induce antigen-specific CD8+ T cell responses, essential in clearing infection with intracellular pathogens, such as viruses and bacteria, and eradicating tumors.
Collapse
Affiliation(s)
- Jhanvi Sharma
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Carcia S Carson
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Trevor Douglas
- Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - John T Wilson
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Sebastian Joyce
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA.
| |
Collapse
|
3
|
Lu HC, Kim S, Steelman AJ, Tracy K, Zhou B, Michaud D, Hillhouse AE, Konganti K, Li J. STAT3 signaling in myeloid cells promotes pathogenic myelin-specific T cell differentiation and autoimmune demyelination. Proc Natl Acad Sci U S A 2020; 117:5430-5441. [PMID: 32094172 PMCID: PMC7071888 DOI: 10.1073/pnas.1913997117] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune inflammatory demyelinating disease of the central nervous system. Dysregulation of STAT3, a transcription factor pivotal to various cellular processes including Th17 cell differentiation, has been implicated in MS. Here, we report that STAT3 is activated in infiltrating monocytic cells near active MS lesions and that activation of STAT3 in myeloid cells is essential for leukocyte infiltration, neuroinflammation, and demyelination in experimental autoimmune encephalomyelitis (EAE). Genetic disruption of Stat3 in peripheral myeloid lineage cells abrogated EAE, which was associated with decreased antigen-specific T helper cell responses. Myeloid cells from immunized Stat3 mutant mice exhibited impaired antigen-presenting functions and were ineffective in driving encephalitogenic T cell differentiation. Single-cell transcriptome analyses of myeloid lineage cells from preclinical wild-type and mutant mice revealed that loss of myeloid STAT3 signaling disrupted antigen-dependent cross-activation of myeloid cells and T helper cells. This study identifies a previously unrecognized requisite for myeloid cell STAT3 in the activation of myelin-reactive T cells and suggests myeloid STAT3 as a potential therapeutic target for autoimmune demyelinating disease.
Collapse
Affiliation(s)
- Hsueh Chung Lu
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843
| | - Sunja Kim
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843
| | - Andrew J Steelman
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843
| | - Kevin Tracy
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, TX 77843
| | - Beiyan Zhou
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843
| | - Danielle Michaud
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843
| | - Andrew E Hillhouse
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, TX 77843
| | - Kranti Konganti
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, TX 77843
| | - Jianrong Li
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843;
- Institute for Neuroscience, Texas A&M University, College Station, TX 77843
| |
Collapse
|
4
|
Clarke F, Purvis HA, Sanchez-Blanco C, Gutiérrez-Martinez E, Cornish GH, Zamoyska R, Guermonprez P, Cope AP. The protein tyrosine phosphatase PTPN22 negatively regulates presentation of immune complex derived antigens. Sci Rep 2018; 8:12692. [PMID: 30139951 PMCID: PMC6107551 DOI: 10.1038/s41598-018-31179-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 08/06/2018] [Indexed: 12/11/2022] Open
Abstract
A C1858T single nucleotide polymorphism within PTPN22 (which encodes PTPN22R620W) is associated with an enhanced susceptibility to multiple autoimmune diseases including type 1 diabetes and rheumatoid arthritis. Many of the associated autoimmune diseases have an autoantibody component to their pathology. Fc receptors (FcRs) recognise autoantibodies when they bind to autoantigens and form immune complexes. After immune complex binding and receptor crosslinking, FcRs signal via Src and Syk family kinases, leading to antigen uptake, presentation and cytokine secretion. Ptpn22 encodes a protein tyrosine phosphatase that negatively regulates Src and Syk family kinases proximal to immunoreceptor signalling cascades. We therefore hypothesised that PTPN22 regulates immune complex stimulated FcR responses in dendritic cells (DCs). Bone marrow derived DCs (BMDCs) from wild type (WT) or Ptpn22-/- mice were pulsed with ovalbumin:anti-ovalbumin immune complexes (ova ICs). Co-culture with WT OT-II T cells revealed that ova IC pulsed Ptpn22-/- BMDCs have an enhanced capability to induce T cell proliferation. This was associated with an increased capability of Ptpn22-/- BMDCs to present immune complex derived antigens and to form ova IC dependent DC-T cell conjugates. These findings highlight PTPN22 as a regulator of FcR mediated responses and provide a link between the association of PTPN22R620W with autoantibody associated autoimmune diseases.
Collapse
Affiliation(s)
- Fiona Clarke
- Centre for Inflammation Biology and Cancer Immunology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, SE1 1UL, United Kingdom.
| | - Harriet A Purvis
- Centre for Inflammation Biology and Cancer Immunology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, SE1 1UL, United Kingdom
| | - Cristina Sanchez-Blanco
- Centre for Inflammation Biology and Cancer Immunology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, SE1 1UL, United Kingdom
| | - Enrique Gutiérrez-Martinez
- Centre for Inflammation Biology and Cancer Immunology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, SE1 1UL, United Kingdom
| | - Georgina H Cornish
- Centre for Inflammation Biology and Cancer Immunology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, SE1 1UL, United Kingdom
| | - Rose Zamoyska
- Institute of Immunology and Infection Research, Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, EH9 3FL, United Kingdom
| | - Pierre Guermonprez
- Centre for Inflammation Biology and Cancer Immunology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, SE1 1UL, United Kingdom
| | - Andrew P Cope
- Centre for Inflammation Biology and Cancer Immunology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, SE1 1UL, United Kingdom
| |
Collapse
|
5
|
Maggi J, Schinnerling K, Pesce B, Hilkens CM, Catalán D, Aguillón JC. Dexamethasone and Monophosphoryl Lipid A-Modulated Dendritic Cells Promote Antigen-Specific Tolerogenic Properties on Naive and Memory CD4 + T Cells. Front Immunol 2016; 7:359. [PMID: 27698654 PMCID: PMC5027201 DOI: 10.3389/fimmu.2016.00359] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 09/01/2016] [Indexed: 12/20/2022] Open
Abstract
Tolerogenic dendritic cells (DCs) are a promising tool to control T cell-mediated autoimmunity. Here, we evaluate the ability of dexamethasone-modulated and monophosphoryl lipid A (MPLA)-activated DCs [MPLA-tolerogenic DCs (tDCs)] to exert immunomodulatory effects on naive and memory CD4+ T cells in an antigen-specific manner. For this purpose, MPLA-tDCs were loaded with purified protein derivative (PPD) as antigen and co-cultured with autologous naive or memory CD4+ T cells. Lymphocytes were re-challenged with autologous PPD-pulsed mature DCs (mDCs), evaluating proliferation and cytokine production by flow cytometry. On primed-naive CD4+ T cells, the expression of regulatory T cell markers was evaluated and their suppressive ability was assessed in autologous co-cultures with CD4+ effector T cells and PPD-pulsed mDCs. We detected that memory CD4+ T cells primed by MPLA-tDCs presented reduced proliferation and proinflammatory cytokine expression in response to PPD and were refractory to subsequent stimulation. Naive CD4+ T cells were instructed by MPLA-tDCs to be hyporesponsive to antigen-specific restimulation and to suppress the induction of T helper cell type 1 and 17 responses. In conclusion, MPLA-tDCs are able to modulate antigen-specific responses of both naive and memory CD4+ T cells and might be a promising strategy to “turn off” self-reactive CD4+ effector T cells in autoimmunity.
Collapse
Affiliation(s)
- Jaxaira Maggi
- Programa Disciplinario de Inmunología, Immune Regulation and Tolerance Research Group, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy (MIII), Santiago, Chile
| | - Katina Schinnerling
- Programa Disciplinario de Inmunología, Immune Regulation and Tolerance Research Group, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy (MIII), Santiago, Chile
| | - Bárbara Pesce
- Programa Disciplinario de Inmunología, Immune Regulation and Tolerance Research Group, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile , Santiago , Chile
| | - Catharien M Hilkens
- Musculoskeletal Research Group, Faculty of Medical Sciences, Institute of Cellular Medicine, Newcastle University , Newcastle upon Tyne , UK
| | - Diego Catalán
- Programa Disciplinario de Inmunología, Immune Regulation and Tolerance Research Group, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy (MIII), Santiago, Chile
| | - Juan C Aguillón
- Programa Disciplinario de Inmunología, Immune Regulation and Tolerance Research Group, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy (MIII), Santiago, Chile
| |
Collapse
|
6
|
Uptake of HLA Alloantigens via CD89 and CD206 Does Not Enhance Antigen Presentation by Indirect Allorecognition. J Immunol Res 2016; 2016:4215684. [PMID: 27413760 PMCID: PMC4931073 DOI: 10.1155/2016/4215684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 05/01/2016] [Accepted: 05/16/2016] [Indexed: 11/17/2022] Open
Abstract
In organ transplantation, alloantigens are taken up by antigen presenting cells and presented via the indirect pathway to T-cells which in turn can induce allograft rejection. Monitoring of these T-cells is of major importance; however no reliable assay is available to routinely monitor indirect allorecognition. Recently we showed that HLA monomers can be successfully used to monitor indirect allorecognition. Targeting antigens to endocytic receptors on antigen presenting cells may further enhance the presentation of antigens via HLA class II and improve the efficiency of this assay. In the current study we explored targeting of HLA monomers to either CD89 expressing monocytes or mannose receptor expressing dendritic cells. Monomer-antibody complexes were generated using biotin-labeled monomers and avidin labeling of the antibodies. We demonstrate that targeting the complexes to these receptors resulted in a dose-dependent HLA class II mediated presentation to a T-cell clone. The immune-complexes were efficiently taken up and presented to T-cells. However, the level of T-cell reactivity was similar to that when only exogenous antigen was added. We conclude that HLA-A2 monomers targeted for presentation through CD89 on monocytes or mannose receptor on dendritic cells lead to proper antigen presentation but do not enhance indirect allorecognition via HLA-DR.
Collapse
|
7
|
Bonifaz LC, Cervantes-Silva MP, Ontiveros-Dotor E, López-Villegas EO, Sánchez-García FJ. A Role For Mitochondria In Antigen Processing And Presentation. Immunology 2014; 144:461-471. [PMID: 25251370 PMCID: PMC4557683 DOI: 10.1111/imm.12392] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 09/18/2014] [Accepted: 09/19/2014] [Indexed: 12/15/2022] Open
Abstract
Immune synapse formation is critical for T lymphocyte activation, and mitochondria have a role in this process, by localizing close to the immune synapse, regulating intracellular calcium concentration, and providing locally required ATP. The interaction between antigen presenting cells (APCs) and T lymphocytes is a two-way signaling process. However, the role of mitochondria in antigen presenting cells during this process remains unknown. For APCs to be able to activate T lymphocytes, they must first engage in an antigen-uptake, -processing, and -presentation process. Here we show that HEL-loaded B lymphocytes, as a type of APCs, undergo a small but significant mitochondrial depolarization by 1-2 h following antigen exposure thus suggesting an increase in their metabolic demands. Inhibition of ATP synthase (oligomycin) or mitochondrial Ca2+ uniporter (MCU) (Ruthenium red) had no effect on antigen uptake. Therefore, antigen processing and antigen presentation were further analyzed. Oligomycin treatment reduced the amount of specific MHC-peptide complexes but not total MHC II on the cell membrane of B lymphocytes which correlated with a decrease in antigen presentation. However, oligomycin also reduced antigen presentation by B lymphocytes that endogenously express HEL and by B lymphocytes loaded with the HEL48-62 peptide, although to a lesser extent. ATP synthase inhibition and MCU inhibition had a clear inhibitory effect on antigen processing (DQ-OVA). Taking together these results suggest that ATP synthase and MCU are relevant for antigen processing and presentation. Finally, APCs mitochondria were found to re-organize towards the APC-T immune synapse. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Laura C Bonifaz
- Unidad de Investigación Médica en Inmunoquímica, Hospital de especialidades, Instituto Mexicano del Seguro SocialMéxico, D.F., México
| | - Mariana P Cervantes-Silva
- Unidad de Investigación Médica en Inmunoquímica, Hospital de especialidades, Instituto Mexicano del Seguro SocialMéxico, D.F., México
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico NacionalMéxico, D.F., México
| | - Elizabeth Ontiveros-Dotor
- Unidad de Investigación Médica en Inmunoquímica, Hospital de especialidades, Instituto Mexicano del Seguro SocialMéxico, D.F., México
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico NacionalMéxico, D.F., México
| | - Edgar O López-Villegas
- Central de Microscopía, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico NacionalMéxico, D.F., México
| | - F Javier Sánchez-García
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico NacionalMéxico, D.F., México
| |
Collapse
|
8
|
Graham DB, Osborne DG, Piotrowski JT, Gomez TS, Gmyrek GB, Akilesh HM, Dani A, Billadeau DD, Swat W. Dendritic cells utilize the evolutionarily conserved WASH and retromer complexes to promote MHCII recycling and helper T cell priming. PLoS One 2014; 9:e98606. [PMID: 24886983 PMCID: PMC4041763 DOI: 10.1371/journal.pone.0098606] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 05/06/2014] [Indexed: 01/19/2023] Open
Abstract
Immature dendritic cells (DCs) maintain a highly dynamic pool of recycling MHCII that promotes sampling of environmental antigens for presentation to T helper cells. However, the molecular basis of MHCII recycling and the cellular machinery that orchestrates MHCII trafficking are incompletely understood. Using a mouse model we show that WASH, an actin regulatory protein that facilitates retromer function, is essential for MHCII recycling and efficient priming of T helper cells. We further demonstrate that WASH deficiency results in impaired MHCII surface levels, recycling, and an accumulation of polyubiquitinated MHCII complexes, which are subsequently slated for premature lysosomal degradation. Consequently, conditional deletion of the Wash gene in DCs impairs priming of both conventional and autoimmune T helper cells in vivo and attenuates disease progression in a model of experimental autoimmune encephalitis (EAE). Thus, we identify a novel mechanism in which DCs employ the evolutionarily conserved WASH and retromer complex for MHCII recycling in order to regulate T helper cell priming.
Collapse
Affiliation(s)
- Daniel B. Graham
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, Missouri, United States of America,
| | - Douglas G. Osborne
- Department of Immunology, Division of Oncology Research and Schulze Center for Novel Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Joshua T. Piotrowski
- Department of Immunology, Division of Oncology Research and Schulze Center for Novel Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Timothy S. Gomez
- Department of Immunology, Division of Oncology Research and Schulze Center for Novel Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Grzegorz B. Gmyrek
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, Missouri, United States of America,
| | - Holly M. Akilesh
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, Missouri, United States of America,
| | - Adish Dani
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, Missouri, United States of America,
| | - Daniel D. Billadeau
- Department of Immunology, Division of Oncology Research and Schulze Center for Novel Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
- * E-mail: (WS); (DDB)
| | - Wojciech Swat
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, Missouri, United States of America,
- * E-mail: (WS); (DDB)
| |
Collapse
|
9
|
Shcherbinin DN, Esmagambetov IB, Noskov AN, Selyaninov YO, Tutykhina IL, Shmarov MM, Logunov DY, Naroditskiy BS, Gintsburg AL. Protective Immune Response against Bacillus anthracis Induced by Intranasal Introduction of a Recombinant Adenovirus Expressing the Protective Antigen Fused to the Fc-fragment of IgG2a. Acta Naturae 2014; 6:76-84. [PMID: 24772330 PMCID: PMC3999469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Anthrax is a particularly dangerous infectious disease that affects humans and livestock. It is characterized by intoxication, serosanguineous skin lesions, development of lymph nodes and internal organs, and may manifest itsself in either a cutaneous or septic form. The pathogenic agent is Bacillus anthracis, a grampositive, endospore-forming, rod-shaped aerobic bacterium. Efficacious vaccines that can rapidly induce a long-term immune response are required to prevent anthrax infection in humans. In this study, we designed three recombinant human adenovirus serotype-5-based vectors containing various modifications of the fourth domain of the B. anthracis protective antigen (PA). Three PA modifications were constructed: a secretable form (Ad-sPA), a non-secretable form (Ad-cPA), and a form with the protective antigen fused to the Fc fragment of immunoglobulin G2a (Ad-PA-Fc). All these forms exhibited protective properties against Bacillus anthracis. The highest level of protection was induced by the Ad-PA-Fc recombinant adenovirus. Our findings indicate that the introduction of the Fc antibody fragment into the protective antigen significantly improves the protective properties of the Ad-PA-Fc adenovirus against B. anthracis.
Collapse
Affiliation(s)
- D. N. Shcherbinin
- Gamaleya Research Institute for Epidemiology and Microbiology, Ministry of Public Health of the Russian Federation, Gamaleya Street 18, 123098, Moscow, Russia
| | - I. B. Esmagambetov
- Gamaleya Research Institute for Epidemiology and Microbiology, Ministry of Public Health of the Russian Federation, Gamaleya Street 18, 123098, Moscow, Russia
| | - A. N. Noskov
- Gamaleya Research Institute for Epidemiology and Microbiology, Ministry of Public Health of the Russian Federation, Gamaleya Street 18, 123098, Moscow, Russia
| | - Yu. O. Selyaninov
- National Research Institute for Veterinary Virology and Microbiology of Russia, Russian Academy of Agricultural Sciences, 601120, Pokrov, Vladimir region, Russia
| | - I. L. Tutykhina
- Gamaleya Research Institute for Epidemiology and Microbiology, Ministry of Public Health of the Russian Federation, Gamaleya Street 18, 123098, Moscow, Russia
| | - M. M. Shmarov
- Gamaleya Research Institute for Epidemiology and Microbiology, Ministry of Public Health of the Russian Federation, Gamaleya Street 18, 123098, Moscow, Russia
| | - D. Yu. Logunov
- Gamaleya Research Institute for Epidemiology and Microbiology, Ministry of Public Health of the Russian Federation, Gamaleya Street 18, 123098, Moscow, Russia
| | - B. S. Naroditskiy
- Gamaleya Research Institute for Epidemiology and Microbiology, Ministry of Public Health of the Russian Federation, Gamaleya Street 18, 123098, Moscow, Russia
| | - A. L. Gintsburg
- Gamaleya Research Institute for Epidemiology and Microbiology, Ministry of Public Health of the Russian Federation, Gamaleya Street 18, 123098, Moscow, Russia
| |
Collapse
|
10
|
Loss of DAP12 and FcRγ drives exaggerated IL-12 production and CD8(+) T cell response by CCR2(+) Mo-DCs. PLoS One 2013; 8:e76145. [PMID: 24155889 PMCID: PMC3796521 DOI: 10.1371/journal.pone.0076145] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 08/19/2013] [Indexed: 11/24/2022] Open
Abstract
Dap12 and FcRγ, the two transmembrane ITAM-containing signaling adaptors expressed in dendritic cells (DC), are implicated in the regulation of DC function. Several activating and adhesion receptors including integrins require these chains for their function in triggering downstream signaling and effector pathways, however the exact role(s) for Dap12 and FcRγ remains elusive as their loss can lead to both attenuating and enhancing effects. Here, we report that mice congenitally lacking both Dap12 and FcRγ chains (DF) show a massively enhanced effector CD8+ T cell response to protein antigen immunization or West Nile Virus (WNV) infection. Thus, immunization of DF mice with MHCI-restricted OVA peptide leads to accumulation of IL-12-producing monocyte-derived dendritic cells (Mo-DC) in draining lymph nodes, followed by vastly enhanced generation of antigen-specific IFNγ-producing CD8+ T cells. Moreover, DF mice show increased viral clearance in the WNV infection model. Depletion of CCR2+ monocytes/macrophages in vivo by administration anti-CCR2 antibodies or clodronate liposomes completely prevents the exaggerated CD8+ T cell response in DF mice. Mechanistically, we show that the loss of Dap12 and FcRγ-mediated signals in Mo-DC leads to a disruption of GM-CSF receptor-induced STAT5 activation resulting in upregulation of expression of IRF8, a transcription factor. Consequently, Dap12- and FcRγ-deficiency exacerbates GM-CSF-driven monocyte differentiation and production of inflammatory Mo-DC. Our data suggest a novel cross-talk between DC-ITAM and GM-CSF signaling pathways, which controls Mo-DC differentiation, IL-12 production, and CD8+ T cell responses.
Collapse
|
11
|
Gmyrek GB, Graham DB, Sandoval GJ, Blaufuss GS, Akilesh HM, Fujikawa K, Xavier RJ, Swat W. Polarity gene discs large homolog 1 regulates the generation of memory T cells. Eur J Immunol 2013; 43:1185-94. [PMID: 23436244 DOI: 10.1002/eji.201142362] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 01/10/2013] [Accepted: 02/20/2013] [Indexed: 11/11/2022]
Abstract
Mammalian ortholog of Drosophila cell polarity protein, Dlg1, plays a critical role in neural synapse formation, epithelial cell homeostasis, and urogenital development. More recently, it has been proposed that Dlg1 may also be involved in the regulation of T-cell proliferation, migration, and Ag-receptor signaling. However, a requirement for Dlg1 in development and function of T lineage cells remains to be established. In this study, we investigated a role for Dlg1 during T-cell development and function using a combination of conditional Dlg1 KO and two different Cre expression systems where Dlg1 deficiency is restricted to the T-cell lineage only, or all hematopoietic cells. Here, using three different TCR models, we show that Dlg1 is not required during development and selection of thymocytes bearing functionally rearranged TCR transgenes. Moreover, Dlg1 is dispensable in the activation and proliferative expansion of Ag-specific TCR-transgenic CD4(+) and CD8(+) T cells in vitro and in vivo. Surprisingly, however, we show that Dlg1 is required for normal generation of memory T cells during endogenous response to cognate Ag. Thus, Dlg1 is not required for the thymocyte selection or the activation of primary T cells, however it is involved in the generation of memory T cells.
Collapse
Affiliation(s)
- Grzegorz B Gmyrek
- Divison of Immunobiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Jux B, Staratschek-Jox A, Penninger JM, Schultze JL, Kolanus W. Vav1 regulates MHCII expression in murine resting and activated B cells. Int Immunol 2013; 25:307-17. [PMID: 23391492 DOI: 10.1093/intimm/dxs157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Vav1 is a guanine nucleotide exchange factor (GEF) for Rho GTPases, which is exclusively expressed in cells of the hematopoietic system. In addition to its well-documented GEF activity, it was suggested to have other functions due to the presence of multiple domains and nuclear localization signals in its protein structure. Although GEF-dependent and GEF-independent functions of vav have been implicated in T-cell development and T-cell receptor signaling, the role of vav1 in antigen-presenting cells is poorly understood. We found that vav1 is an important regulator of MHCII expression and transport. Microarray analysis of unstimulated bone marrow-derived macrophages revealed a novel role of vav1 in transcriptional regulation of the MHCII locus, possibly by indirect means. Primary immune cells from vav1-deficient mice had a significantly lower constitutive surface expression of MHCII with the strongest impact observed on splenic and peritoneal B cells. Impaired MHCII expression resulted in a diminished capacity for T-cell activation. Using 6-thio-GTP, a specific inhibitor of the GEF function of vav1, we were able to show that the GEF activity is required for MHCII upregulation in B cells after stimulation with LPS. Furthermore, our data show that vav1 not only affects transcription of the MHCII locus but also is an important regulator of MHCII protein transport to the cell surface.
Collapse
Affiliation(s)
- Bettina Jux
- Department of Molecular Immune and Cell Biology, Life and Medical Sciences (LIMES) Institute, University of Bonn, Germany.
| | | | | | | | | |
Collapse
|
13
|
Compeer EB, Flinsenberg TWH, van der Grein SG, Boes M. Antigen processing and remodeling of the endosomal pathway: requirements for antigen cross-presentation. Front Immunol 2012; 3:37. [PMID: 22566920 PMCID: PMC3342355 DOI: 10.3389/fimmu.2012.00037] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 02/16/2012] [Indexed: 12/29/2022] Open
Abstract
Cross-presentation of endocytosed antigen as peptide/class I major histocompatibility complex complexes plays a central role in the elicitation of CD8+ T cell clones that mediate anti-viral and anti-tumor immune responses. While it has been clear that there are specific subsets of professional antigen presenting cells capable of antigen cross-presentation, identification of mechanisms involved is still ongoing. Especially amongst dendritic cells (DC), there are specialized subsets that are highly proficient at antigen cross-presentation. We here present a focused survey on the cell biological processes in the endosomal pathway that support antigen cross-presentation. This review highlights DC-intrinsic mechanisms that facilitate the cross-presentation of endocytosed antigen, including receptor-mediated uptake, maturation-induced endosomal sorting of membrane proteins, dynamic remodeling of endosomal structures and cell surface-directed endosomal trafficking. We will conclude with the description of pathogen-induced deviation of endosomal processing, and discuss how immune evasion strategies pertaining endosomal trafficking may preclude antigen cross-presentation.
Collapse
Affiliation(s)
- Ewoud Bernardus Compeer
- Department of Pediatric Immunology, University Medical Center Utrecht/Wilhelmina Children's Hospital Utrecht, Netherlands
| | | | | | | |
Collapse
|
14
|
|
15
|
Role of ITAM signaling module in signal integration. Curr Opin Immunol 2012; 24:58-66. [PMID: 22240121 DOI: 10.1016/j.coi.2011.12.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 12/21/2011] [Indexed: 12/17/2022]
Abstract
Diverse cell types use a small number of evolutionarily conserved signaling modules to integrate external cues and elicit distinct functions. A question thus arises as to how does a receptor, which contains a single signaling module, produce distinct outcomes to diverse signals, particularly if such module is shared amongst a family of receptors? Emerging data suggest that many immunoreceptors, all of which use a conserved ITAM-module for their signaling, can couple with members of additional classes of membrane receptors to deliver unique signal(s) to the cell. We discuss the possible biological purposes and mechanisms behind these interactions at the plasma membrane. We offer a conceptual framework to understand information processing within the immune system and discuss the new biology of old receptors involving their structural and functional collaborations that evolved to deliver unique signal(s) to the cell using a limited set of conserved signaling modules.
Collapse
|