1
|
Byun H, Singh GB, Xu WK, Das P, Reyes A, Battenhouse A, Wylie DC, Santiago ML, Lozano MM, Dudley JP. Apobec-mediated retroviral hypermutation in vivo is dependent on mouse strain. PLoS Pathog 2024; 20:e1012505. [PMID: 39208378 PMCID: PMC11389910 DOI: 10.1371/journal.ppat.1012505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 09/11/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Replication of the complex retrovirus mouse mammary tumor virus (MMTV) is antagonized by murine Apobec3 (mA3), a member of the Apobec family of cytidine deaminases. We have shown that MMTV-encoded Rem protein inhibits proviral mutagenesis by the Apobec enzyme, activation-induced cytidine deaminase (AID) during viral replication in BALB/c mice. To further study the role of Rem in vivo, we have infected C57BL/6 (B6) mice with a superantigen-independent lymphomagenic strain of MMTV (TBLV-WT) or a mutant strain that is defective in Rem and its cleavage product Rem-CT (TBLV-SD). Compared to BALB/c, B6 mice were more susceptible to TBLV infection and tumorigenesis. Furthermore, unlike MMTV, TBLV induced T-cell tumors in B6 μMT mice, which lack membrane-bound IgM and conventional B-2 cells. At limiting viral doses, loss of Rem expression in TBLV-SD-infected B6 mice accelerated tumorigenesis compared to TBLV-WT in either wild-type B6 or AID-knockout mice. Unlike BALB/c results, high-throughput sequencing indicated that proviral G-to-A or C-to-T mutations were unchanged regardless of Rem expression in B6 tumors. However, knockout of both AID and mA3 reduced G-to-A mutations. Ex vivo stimulation showed higher levels of mA3 relative to AID in B6 compared to BALB/c splenocytes, and effects of agonists differed in the two strains. RNA-Seq revealed increased transcripts related to growth factor and cytokine signaling in TBLV-SD-induced tumors relative to TBLV-WT-induced tumors, consistent with another Rem function. Thus, Rem-mediated effects on tumorigenesis in B6 mice are independent of Apobec-mediated proviral hypermutation.
Collapse
Affiliation(s)
- Hyewon Byun
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Gurvani B Singh
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Wendy Kaichun Xu
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Poulami Das
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Alejandro Reyes
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Anna Battenhouse
- Center for Biomedical Research Support, The University of Texas at Austin, Austin, Texas, United States of America
| | - Dennis C Wylie
- Center for Biomedical Research Support, The University of Texas at Austin, Austin, Texas, United States of America
| | - Mario L Santiago
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Mary M Lozano
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Jaquelin P Dudley
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
- LaMontagne Center for Infectious Disease, The University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
2
|
Byun H, Singh GB, Xu WK, Das P, Reyes A, Battenhouse A, Wylie DC, Lozano MM, Dudley JP. Apobec-Mediated Retroviral Hypermutation In Vivo is Dependent on Mouse Strain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.02.565355. [PMID: 37961113 PMCID: PMC10635078 DOI: 10.1101/2023.11.02.565355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Replication of the complex retrovirus mouse mammary tumor virus (MMTV) is antagonized by murine Apobec3 (mA3), a member of the Apobec family of cytidine deaminases. We have shown that MMTV-encoded Rem protein inhibits proviral mutagenesis by the Apobec enzyme, activation-induced cytidine deaminase (AID) during viral replication in BALB/c mice. To further study the role of Rem in vivo , we have infected C57BL/6 (B6) mice with a superantigen-independent lymphomagenic strain of MMTV (TBLV-WT) or a mutant strain (TBLV-SD) that is defective in Rem and its cleavage product Rem-CT. Unlike MMTV, TBLV induced T-cell tumors in µMT mice, indicating that mature B cells, which express the highest AID levels, are not required for TBLV replication. Compared to BALB/c, B6 mice were more susceptible to TBLV infection and tumorigenesis. The lack of Rem expression accelerated B6 tumorigenesis at limiting doses compared to TBLV-WT in either wild-type B6 or AID-deficient mice. However, unlike proviruses from BALB/c mice, high-throughput sequencing indicated that proviral G-to-A or C-to-T changes did not significantly differ in the presence and absence of Rem expression. Ex vivo stimulation showed higher levels of mA3 relative to AID in B6 compared to BALB/c splenocytes, but effects of agonists differed in the two strains. RNA-Seq revealed increased transcripts related to growth factor and cytokine signaling in TBLV-SD-induced tumors relative to those from TBLV-WT, consistent with a third Rem function. Thus, Rem-mediated effects on tumorigenesis in B6 mice are independent of Apobec-mediated proviral hypermutation.
Collapse
|
3
|
Hamza E, Vallejo-Mudarra M, Ouled-Haddou H, García-Caballero C, Guerrero-Hue M, Santier L, Rayego-Mateos S, Larabi IA, Alvarez JC, Garçon L, Massy ZA, Choukroun G, Moreno JA, Metzinger L, Meuth VML. Indoxyl sulfate impairs erythropoiesis at BFU-E stage in chronic kidney disease. Cell Signal 2023; 104:110583. [PMID: 36596353 DOI: 10.1016/j.cellsig.2022.110583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/16/2022] [Accepted: 12/29/2022] [Indexed: 01/01/2023]
Abstract
Chronic kidney disease (CKD) is a global health condition characterized by a progressive deterioration of kidney function. It is associated with high serum levels of uremic toxins (UT), such as Indoxyl Sulfate (IS), which may participate in the genesis of several uremic complications. Anemia is one of the major complications in CKD patients that contribute to cardiovascular disease, increase morbi-mortality, and is associated with a deterioration of kidney failure in these patients. Our study aimed to characterize the impact of IS on CKD-related erythropoiesis. Using cellular and pre-clinical models, we studied cellular and molecular effects of IS on the growth and differentiation of erythroid cells. First, we examined the effect of clinically relevant concentrations of IS (up to 250 μM) in the UT7/EPO cell line. IS at 250 μM increased apoptosis of UT7/EPO cells at 48 h compared to the control condition. We confirmed this apoptotic effect of IS in erythropoiesis in human primary CD34+ cells during the later stages of erythropoiesis. Then, in IS-treated human primary CD34+ cells and in a (5/6 Nx) mice model, a blockage at the burst-forming unit-erythroid (BFU-E) stage of erythropoiesis was also observed. Finally, IS deregulates a number of erythropoietic related genes such as GATA-1, Erythropoietin-Receptor (EPO-R), and β-globin. Our findings suggest that IS could affect cell viability and differentiation of erythroid progenitors by altering erythropoiesis and contributing to the development of anemia in CKD.
Collapse
Affiliation(s)
- Eya Hamza
- HEMATIM UR 4666, C.U.R.S, University of Picardie Jules Verne, CEDEX 1, 80025, Amiens, France
| | - Mercedes Vallejo-Mudarra
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), UGC Nephrology, Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
| | - Hakim Ouled-Haddou
- HEMATIM UR 4666, C.U.R.S, University of Picardie Jules Verne, CEDEX 1, 80025, Amiens, France
| | - Cristina García-Caballero
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), UGC Nephrology, Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
| | - Melania Guerrero-Hue
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), UGC Nephrology, Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
| | - Laure Santier
- HEMATIM UR 4666, C.U.R.S, University of Picardie Jules Verne, CEDEX 1, 80025, Amiens, France
| | - Sandra Rayego-Mateos
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain
| | - Islam Amine Larabi
- Service de Pharmacologie-Toxicologie, Groupe Hospitalier Universitaires AP-HP, Paris-Saclay, Hôpital Raymond Poincaré, FHU Sepsis, 92380 Garches, France; MasSpecLab, Plateforme de spectrométrie de masse, Inserm U-1173, Université Paris Saclay (Versailles Saint Quentin-en-Yvelines), 78180 Montigny-le-Bretonneux, France
| | - Jean-Claude Alvarez
- Service de Pharmacologie-Toxicologie, Groupe Hospitalier Universitaires AP-HP, Paris-Saclay, Hôpital Raymond Poincaré, FHU Sepsis, 92380 Garches, France; MasSpecLab, Plateforme de spectrométrie de masse, Inserm U-1173, Université Paris Saclay (Versailles Saint Quentin-en-Yvelines), 78180 Montigny-le-Bretonneux, France
| | - Loïc Garçon
- HEMATIM UR 4666, C.U.R.S, University of Picardie Jules Verne, CEDEX 1, 80025, Amiens, France; Service d'Hématologie Biologique, Centre Hospitalier Universitaire, Amiens, France
| | - Ziad A Massy
- Centre for Research in Epidemiology and Population Health (CESP), University Paris-Saclay, University Versailles-Saint Quentin, Inserm UMRS 1018, Clinical Epidemiology Team, Villejuif, France; Department of Nephrology, CHU Ambroise Paré, APHP, 92104 Boulogne Billancourt, Paris Cedex, France
| | - Gabriel Choukroun
- Department of Nephrology Dialysis Transplantation, Amiens University Medical Center, F-80000 Amiens, France; MP3CV Laboratory, EA7517, Jules Verne University of Picardie, F-80000 Amiens, France
| | - Juan Antonio Moreno
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), UGC Nephrology, Hospital Universitario Reina Sofía, 14004 Córdoba, Spain; Biomedical Research Networking Center on Cardiovascular Diseases (CIBERCV), 28029 Madrid, Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14014 Cordoba, Spain
| | - Laurent Metzinger
- HEMATIM UR 4666, C.U.R.S, University of Picardie Jules Verne, CEDEX 1, 80025, Amiens, France.
| | - Valérie Metzinger-Le Meuth
- HEMATIM UR 4666, C.U.R.S, University of Picardie Jules Verne, CEDEX 1, 80025, Amiens, France; INSERM UMRS 1148, Laboratory for Vascular Translational Science (LVTS), UFR SMBH, University Sorbonne Paris Nord, 93000 Bobigny, France
| |
Collapse
|
4
|
Mathangasinghe Y, Fauvet B, Jane SM, Goloubinoff P, Nillegoda NB. The Hsp70 chaperone system: distinct roles in erythrocyte formation and maintenance. Haematologica 2021; 106:1519-1534. [PMID: 33832207 PMCID: PMC8168490 DOI: 10.3324/haematol.2019.233056] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Indexed: 01/14/2023] Open
Abstract
Erythropoiesis is a tightly regulated cell differentiation process in which specialized oxygen- and carbon dioxide-carrying red blood cells are generated in vertebrates. Extensive reorganization and depletion of the erythroblast proteome leading to the deterioration of general cellular protein quality control pathways and rapid hemoglobin biogenesis rates could generate misfolded/aggregated proteins and trigger proteotoxic stresses during erythropoiesis. Such cytotoxic conditions could prevent proper cell differentiation resulting in premature apoptosis of erythroblasts (ineffective erythropoiesis). The heat shock protein 70 (Hsp70) molecular chaperone system supports a plethora of functions that help maintain cellular protein homeostasis (proteostasis) and promote red blood cell differentiation and survival. Recent findings show that abnormalities in the expression, localization and function of the members of this chaperone system are linked to ineffective erythropoiesis in multiple hematological diseases in humans. In this review, we present latest advances in our understanding of the distinct functions of this chaperone system in differentiating erythroblasts and terminally differentiated mature erythrocytes. We present new insights into the protein repair-only function(s) of the Hsp70 system, perhaps to minimize protein degradation in mature erythrocytes to warrant their optimal function and survival in the vasculature under healthy conditions. The work also discusses the modulatory roles of this chaperone system in a wide range of hematological diseases and the therapeutic gain of targeting Hsp70.
Collapse
Affiliation(s)
| | - Bruno Fauvet
- Department of Plant Molecular Biology, Lausanne University, Lausanne
| | - Stephen M Jane
- Central Clinical School, Monash University, Prahran, Victoria, Australia; Department of Hematology, Alfred Hospital, Monash University, Prahran, Victoria
| | | | - Nadinath B Nillegoda
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria.
| |
Collapse
|
5
|
Pierce SE, Granja JM, Greenleaf WJ. High-throughput single-cell chromatin accessibility CRISPR screens enable unbiased identification of regulatory networks in cancer. Nat Commun 2021; 12:2969. [PMID: 34016988 PMCID: PMC8137922 DOI: 10.1038/s41467-021-23213-w] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 04/12/2021] [Indexed: 01/07/2023] Open
Abstract
Chromatin accessibility profiling can identify putative regulatory regions genome wide; however, pooled single-cell methods for assessing the effects of regulatory perturbations on accessibility are limited. Here, we report a modified droplet-based single-cell ATAC-seq protocol for perturbing and evaluating dynamic single-cell epigenetic states. This method (Spear-ATAC) enables simultaneous read-out of chromatin accessibility profiles and integrated sgRNA spacer sequences from thousands of individual cells at once. Spear-ATAC profiling of 104,592 cells representing 414 sgRNA knock-down populations reveals the temporal dynamics of epigenetic responses to regulatory perturbations in cancer cells and the associations between transcription factor binding profiles.
Collapse
Affiliation(s)
- Sarah E Pierce
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Jeffrey M Granja
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Center for Personal and Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
| | - William J Greenleaf
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
- Center for Personal and Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
6
|
Yang L, Hu M, Lu Y, Han S, Wang J. Inflammasomes and the Maintenance of Hematopoietic Homeostasis: New Perspectives and Opportunities. Molecules 2021; 26:molecules26020309. [PMID: 33435298 PMCID: PMC7827629 DOI: 10.3390/molecules26020309] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 12/14/2022] Open
Abstract
Hematopoietic stem cells (HSCs) regularly produce various blood cells throughout life via their self-renewal, proliferation, and differentiation abilities. Most HSCs remain quiescent in the bone marrow (BM) and respond in a timely manner to either physiological or pathological cues, but the underlying mechanisms remain to be further elucidated. In the past few years, accumulating evidence has highlighted an intermediate role of inflammasome activation in hematopoietic maintenance, post-hematopoietic transplantation complications, and senescence. As a cytosolic protein complex, the inflammasome participates in immune responses by generating a caspase cascade and inducing cytokine secretion. This process is generally triggered by signals from purinergic receptors that integrate extracellular stimuli such as the metabolic factor ATP via P2 receptors. Furthermore, targeted modulation/inhibition of specific inflammasomes may help to maintain/restore adequate hematopoietic homeostasis. In this review, we will first summarize the possible relationships between inflammasome activation and homeostasis based on certain interesting phenomena. The cellular and molecular mechanism by which purinergic receptors integrate extracellular cues to activate inflammasomes inside HSCs will then be described. We will also discuss the therapeutic potential of targeting inflammasomes and their components in some diseases through pharmacological or genetic strategies.
Collapse
|
7
|
Maurer B, Kollmann S, Pickem J, Hoelbl-Kovacic A, Sexl V. STAT5A and STAT5B-Twins with Different Personalities in Hematopoiesis and Leukemia. Cancers (Basel) 2019; 11:E1726. [PMID: 31690038 PMCID: PMC6895831 DOI: 10.3390/cancers11111726] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/25/2019] [Accepted: 11/01/2019] [Indexed: 12/14/2022] Open
Abstract
The transcription factors STAT5A and STAT5B have essential roles in survival and proliferation of hematopoietic cells-which have been considered largely redundant. Mutations of upstream kinases, copy number gains, or activating mutations in STAT5A, or more frequently in STAT5B, cause altered hematopoiesis and cancer. Interfering with their activity by pharmacological intervention is an up-and-coming therapeutic avenue. Precision medicine requests detailed knowledge of STAT5A's and STAT5B's individual functions. Recent evidence highlights the privileged role for STAT5B over STAT5A in normal and malignant hematopoiesis. Here, we provide an overview on their individual functions within the hematopoietic system.
Collapse
Affiliation(s)
- Barbara Maurer
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, 1210 Vienna, Austria.
| | - Sebastian Kollmann
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Judith Pickem
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Andrea Hoelbl-Kovacic
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Veronika Sexl
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, 1210 Vienna, Austria
| |
Collapse
|
8
|
Kampen KR, Scherpen FJG, Mahmud H, Ter Elst A, Mulder AB, Guryev V, Verhagen HJMP, De Keersmaecker K, Smit L, Kornblau SM, De Bont ESJM. VEGFC Antibody Therapy Drives Differentiation of AML. Cancer Res 2018; 78:5940-5948. [PMID: 30185550 DOI: 10.1158/0008-5472.can-18-0250] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 08/06/2018] [Accepted: 08/28/2018] [Indexed: 11/16/2022]
Abstract
High expression of VEGFC predicts adverse prognosis in acute myeloid leukemia (AML). We therefore explored VEGFC-targeting efficacy as an AML therapy using a VEGFC mAb. VEGFC antibody therapy enforced myelocytic differentiation of clonal CD34+ AML blasts. Treatment of CD34+ AML blasts with the antibody reduced expansion potential by 30% to 50% and enhanced differentiation via FOXO3A suppression and inhibition of MAPK/ERK proliferative signals. VEGFC antibody therapy also accelerated leukemia cell differentiation in a systemic humanized AML mouse model. Collectively, these results define a regulatory function of VEGFC in CD34+ AML cell fate decisions via FOXO3A and serve as a new potential differentiation therapy for patients with AML.Significance: These findings reveal VEGFC targeting as a promising new differentiation therapy in AML. Cancer Res; 78(20); 5940-8. ©2018 AACR.
Collapse
Affiliation(s)
- Kim R Kampen
- Division of Pediatric Oncology/Hematology, Department of Pediatrics, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands. .,Laboratory for Disease Mechanisms in Cancer, Department of Oncology, KU Leuven, University of Leuven, Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Frank J G Scherpen
- Division of Pediatric Oncology/Hematology, Department of Pediatrics, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Hasan Mahmud
- Division of Pediatric Oncology/Hematology, Department of Pediatrics, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Arja Ter Elst
- Division of Pediatric Oncology/Hematology, Department of Pediatrics, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - André B Mulder
- Department of Laboratory Medicine, University Medical Center Groningen, Groningen, the Netherlands
| | - Victor Guryev
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Han J M P Verhagen
- Department of Hematology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Kim De Keersmaecker
- Laboratory for Disease Mechanisms in Cancer, Department of Oncology, KU Leuven, University of Leuven, Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Linda Smit
- Department of Hematology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Steven M Kornblau
- Department of Leukemia, The University of Texas M.D. Anderson Cancer, Houston, Texas
| | - Eveline S J M De Bont
- Division of Pediatric Oncology/Hematology, Department of Pediatrics, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
9
|
Gillinder KR, Tuckey H, Bell CC, Magor GW, Huang S, Ilsley MD, Perkins AC. Direct targets of pSTAT5 signalling in erythropoiesis. PLoS One 2017; 12:e0180922. [PMID: 28732065 PMCID: PMC5521770 DOI: 10.1371/journal.pone.0180922] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 06/25/2017] [Indexed: 12/29/2022] Open
Abstract
Erythropoietin (EPO) acts through the dimeric erythropoietin receptor to stimulate proliferation, survival, differentiation and enucleation of erythroid progenitor cells. We undertook two complimentary approaches to find EPO-dependent pSTAT5 target genes in murine erythroid cells: RNA-seq of newly transcribed (4sU-labelled) RNA, and ChIP-seq for pSTAT5 30 minutes after EPO stimulation. We found 302 pSTAT5-occupied sites: ~15% of these reside in promoters while the rest reside within intronic enhancers or intergenic regions, some >100kb from the nearest TSS. The majority of pSTAT5 peaks contain a central palindromic GAS element, TTCYXRGAA. There was significant enrichment for GATA motifs and CACCC-box motifs within the neighbourhood of pSTAT5-bound peaks, and GATA1 and/or KLF1 co-occupancy at many sites. Using 4sU-RNA-seq we determined the EPO-induced transcriptome and validated differentially expressed genes using dynamic CAGE data and qRT-PCR. We identified known direct pSTAT5 target genes such as Bcl2l1, Pim1 and Cish, and many new targets likely to be involved in driving erythroid cell differentiation including those involved in mRNA splicing (Rbm25), epigenetic regulation (Suv420h2), and EpoR turnover (Clint1/EpsinR). Some of these new EpoR-JAK2-pSTAT5 target genes could be used as biomarkers for monitoring disease activity in polycythaemia vera, and for monitoring responses to JAK inhibitors.
Collapse
Affiliation(s)
- Kevin R. Gillinder
- Cancer Genomics Group, Mater Research Institute - University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Queensland, Australia
| | - Hugh Tuckey
- Cancer Genomics Group, Mater Research Institute - University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Queensland, Australia
- Faculty of Medicine and Biomedical Sciences, University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| | - Charles C. Bell
- Cancer Genomics Group, Mater Research Institute - University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Queensland, Australia
| | - Graham W. Magor
- Cancer Genomics Group, Mater Research Institute - University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Queensland, Australia
| | - Stephen Huang
- Cancer Genomics Group, Mater Research Institute - University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Queensland, Australia
- Faculty of Medicine and Biomedical Sciences, University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| | - Melissa D. Ilsley
- Cancer Genomics Group, Mater Research Institute - University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Queensland, Australia
- Faculty of Medicine and Biomedical Sciences, University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| | - Andrew C. Perkins
- Cancer Genomics Group, Mater Research Institute - University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Queensland, Australia
- Faculty of Medicine and Biomedical Sciences, University of Queensland, St. Lucia, Brisbane, Queensland, Australia
- Princess Alexandra Hospital, Brisbane, Queensland, Australia
- * E-mail:
| |
Collapse
|
10
|
Ducassou S, Prouzet-Mauléon V, Deau MC, Brunet de la Grange P, Cardinaud B, Soueidan H, Quelen C, Brousset P, Pasquet JM, Moreau-Gaudry F, Arock M, Mahon FX, Lippert E. MYB-GATA1 fusion promotes basophilic leukaemia: involvement of interleukin-33 and nerve growth factor receptors. J Pathol 2017; 242:347-357. [PMID: 28418072 DOI: 10.1002/path.4908] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 03/02/2017] [Accepted: 03/31/2017] [Indexed: 12/29/2022]
Abstract
Acute basophilic leukaemia (ABL) is a rare subtype of acute myeloblastic leukaemia. We previously described a recurrent t(X;6)(p11;q23) translocation generating an MYB-GATA1 fusion gene in male infants with ABL. To better understand its role, the chimeric MYB-GATA1 transcription factor was expressed in CD34-positive haematopoietic progenitors, which were transplanted into immunodeficient mice. Cells expressing MYB-GATA1 showed increased expression of markers of immaturity (CD34), of granulocytic lineage (CD33 and CD117), and of basophilic differentiation (CD203c and FcϵRI). UT-7 cells also showed basophilic differentiation after MYB-GATA1 transfection. A transcriptomic study identified nine genes deregulated by both MYB-GATA1 and basophilic differentiation. Induction of three of these genes (CCL23, IL1RL1, and NTRK1) was confirmed in MYB-GATA1-expressing CD34-positive cells by reverse transcription quantitative polymerase chain reaction. Interleukin (IL)-33 and nerve growth factor (NGF), the ligands of IL-1 receptor-like 1 (IL1RL1) and neurotrophic receptor tyrosine kinase 1 (NTRK1), respectively, enhanced the basophilic differentiation of MYB-GATA1-expressing UT-7 cells, thus demonstrating the importance of this pathway in the basophilic differentiation of leukaemic cells and CD34-positive primary cells. Finally, gene reporter assays confirmed that MYB and MYB-GATA1 directly activated NTRK1 and IL1RL1 transcription, leading to basophilic skewing of the blasts. MYB-GATA1 is more efficient than MYB, because of better stability. Our results highlight the role of IL-33 and NGF receptors in the basophilic differentiation of normal and leukaemic cells. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Stéphane Ducassou
- ACTION Laboratory, INSERM Unit 1218, University of Bordeaux, Bordeaux, France.,Unité d'hématologie oncologie pédiatrique, CHU de Bordeaux, Bordeaux, France
| | | | - Marie-Céline Deau
- ACTION Laboratory, INSERM Unit 1218, University of Bordeaux, Bordeaux, France
| | - Philippe Brunet de la Grange
- Laboratoire R&D d'Ingénierie Cellulaire, Etablissement Français du Sang - Aquitaine Limousin, CIRID UMR5164, University of Bordeaux, Bordeaux, France
| | - Bruno Cardinaud
- ACTION Laboratory, INSERM Unit 1218, University of Bordeaux, Bordeaux, France.,Bordeaux INP, Bordeaux, France
| | - Hayssam Soueidan
- ACTION Laboratory, INSERM Unit 1218, University of Bordeaux, Bordeaux, France
| | - Cathy Quelen
- Centre de Recherches en Cancérologie de Toulouse, INSERM U1037, Toulouse, France
| | - Pierre Brousset
- Centre de Recherches en Cancérologie de Toulouse, INSERM U1037, Toulouse, France
| | - Jean-Max Pasquet
- Equipe thérapie génique, INSERM U 1035 Biothérapie des maladies génétiques et cancers, University of Bordeaux, Bordeaux, France
| | - François Moreau-Gaudry
- Equipe thérapie génique, INSERM U 1035 Biothérapie des maladies génétiques et cancers, University of Bordeaux, Bordeaux, France
| | - Michel Arock
- Laboratoire d'Hématologie, CHU Pitié-Salpêtrière, Paris, France
| | - François-Xavier Mahon
- ACTION Laboratory, INSERM Unit 1218, University of Bordeaux, Bordeaux, France.,Bergonié Cancer Institute, INSERM Unit 916, University of Bordeaux, Bordeaux, France
| | - Eric Lippert
- Equipe thérapie génique, INSERM U 1035 Biothérapie des maladies génétiques et cancers, University of Bordeaux, Bordeaux, France.,CHU de Brest and INSERM U1078, Université de Bretagne Occidentale, Brest, France
| |
Collapse
|
11
|
Wang Z, Medrzycki M, Bunting ST, Bunting KD. Stat5-deficient hematopoiesis is permissive for Myc-induced B-cell leukemogenesis. Oncotarget 2016; 6:28961-72. [PMID: 26338970 PMCID: PMC4745704 DOI: 10.18632/oncotarget.5009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 08/12/2015] [Indexed: 11/28/2022] Open
Abstract
Despite being an attractive molecular target for both lymphoid and myeloid leukemias characterized by activated tyrosine kinases, the molecular and physiological consequences of reduced signal transducer and activator of transcription-5 (Stat5) during leukemogenesis are not well known. Stat5 is a critical regulator of mouse hematopoietic stem cell (HSC) self-renewal and is essential for normal lymphocyte development. We report that pan-hematopoietic deletion in viable adult Vav1-Cre conditional knockout mice as well as Stat5abnull/null fetal liver transplant chimeras generated HSCs with reduced expression of quiescence regulating genes (Tie2, Mpl, Slamf1, Spi1, Cited2) and increased expression of B-cell development genes (Satb1, Dntt, Btla, Flk2). Using a classical murine B-cell acute lymphoblastic leukemia (B-ALL) model, we demonstrate that these HSCs were also poised to produce a burst of B-cell precursors upon expression of Bcl-2 combined with oncogenic Myc. This strong selective advantage for leukemic transformation in the background of Stat5 deficient hematopoiesis was permissive for faster initiation of Myc-induced transformation to B-ALL. However, once established, the B-ALL progression in secondary transplant recipients was Stat5-independent. Overall, these studies suggest that Stat5 can play multiple important roles that not only preserve the HSC compartment but can limit accumulation of potential pre-leukemic lymphoid populations.
Collapse
Affiliation(s)
- Zhengqi Wang
- Department of Pediatrics, Division of Hematology-Oncology-BMT, Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta and Emory University, Atlanta GA, USA
| | - Magdalena Medrzycki
- Department of Pediatrics, Division of Hematology-Oncology-BMT, Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta and Emory University, Atlanta GA, USA
| | - Silvia T Bunting
- Department of Pathology, Children's Healthcare of Atlanta, Atlanta GA, USA
| | - Kevin D Bunting
- Department of Pediatrics, Division of Hematology-Oncology-BMT, Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta and Emory University, Atlanta GA, USA
| |
Collapse
|
12
|
Sontakke P, Koczula KM, Jaques J, Wierenga ATJ, Brouwers-Vos AZ, Pruis M, Günther UL, Vellenga E, Schuringa JJ. Hypoxia-Like Signatures Induced by BCR-ABL Potentially Alter the Glutamine Uptake for Maintaining Oxidative Phosphorylation. PLoS One 2016; 11:e0153226. [PMID: 27055152 PMCID: PMC4824381 DOI: 10.1371/journal.pone.0153226] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 03/27/2016] [Indexed: 01/30/2023] Open
Abstract
The Warburg effect is probably the most prominent metabolic feature of cancer cells, although little is known about the underlying mechanisms and consequences. Here, we set out to study these features in detail in a number of leukemia backgrounds. The transcriptomes of human CB CD34+ cells transduced with various oncogenes, including BCR-ABL, MLL-AF9, FLT3-ITD, NUP98-HOXA9, STAT5A and KRASG12V were analyzed in detail. Our data indicate that in particular BCR-ABL, KRASG12V and STAT5 could impose hypoxic signaling under normoxic conditions. This coincided with an upregulation of glucose importers SLC2A1/3, hexokinases and HIF1 and 2. NMR-based metabolic profiling was performed in CB CD34+ cells transduced with BCR-ABL versus controls, both cultured under normoxia and hypoxia. Lactate and pyruvate levels were increased in BCR-ABL-expressing cells even under normoxia, coinciding with enhanced glutaminolysis which occurred in an HIF1/2-dependent manner. Expression of the glutamine importer SLC1A5 was increased in BCR-ABL+ cells, coinciding with an increased susceptibility to the glutaminase inhibitor BPTES. Oxygen consumption rates also decreased upon BPTES treatment, indicating a glutamine dependency for oxidative phosphorylation. The current study suggests that BCR-ABL-positive cancer cells make use of enhanced glutamine metabolism to maintain TCA cell cycle activity in glycolytic cells.
Collapse
MESH Headings
- Antigens, CD34/metabolism
- Apoptosis
- Blotting, Western
- Cell Cycle
- Cell Proliferation
- Cells, Cultured
- Fetal Blood/cytology
- Fetal Blood/metabolism
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Glutamine/metabolism
- Humans
- Hypoxia/physiopathology
- Immunoenzyme Techniques
- Infant, Newborn
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Magnetic Resonance Spectroscopy
- Metabolomics
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Oxidative Phosphorylation
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
Collapse
Affiliation(s)
- Pallavi Sontakke
- Department of Experimental Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Katarzyna M. Koczula
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Jennifer Jaques
- Department of Experimental Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Albertus T. J. Wierenga
- Department of Experimental Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Annet Z. Brouwers-Vos
- Department of Experimental Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Maurien Pruis
- Department of Experimental Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ulrich L. Günther
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Edo Vellenga
- Department of Experimental Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jan Jacob Schuringa
- Department of Experimental Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- * E-mail:
| |
Collapse
|
13
|
Joseph JV, Conroy S, Pavlov K, Sontakke P, Tomar T, Eggens-Meijer E, Balasubramaniyan V, Wagemakers M, den Dunnen WFA, Kruyt FAE. Hypoxia enhances migration and invasion in glioblastoma by promoting a mesenchymal shift mediated by the HIF1α-ZEB1 axis. Cancer Lett 2015; 359:107-16. [PMID: 25592037 DOI: 10.1016/j.canlet.2015.01.010] [Citation(s) in RCA: 221] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/23/2014] [Accepted: 01/06/2015] [Indexed: 12/17/2022]
Abstract
Glioblastoma (GBM) is the most common brain tumor in adults and the mesenchymal GBM subtype was reported to be the most malignant, presenting severe hypoxia and necrosis. Here, we investigated the possible role of a hypoxic microenvironment for inducing a mesenchymal and invasive phenotype. The exposure of non-mesenchymal SNB75 and U87 cells to hypoxia induced a strong change in cell morphology that was accompanied by enhanced invasive capacity and the acquisition of mesenchymal marker expression. Further analyses showed the induction of HIF1α and HIF2α by hypoxia and exposure to digoxin, a cardiac glycoside known to inhibit HIF1/2 expression, was able to prevent hypoxia-induced mesenchymal transition. ShRNA-mediated knockdown of HIF1α, and not HIF2α, prevented this transition, as well as the knockdown of the EMT transcription factor ZEB1. We provide further evidence for a hypoxia-induced mesenchymal shift in GBM primary material by showing co-localization of GLUT1, ZEB1 and the mesenchymal marker YKL40 in hypoxic regions of the tumor. Collectively, our results identify a HIF1α-ZEB1 signaling axis that promotes hypoxia induced mesenchymal shift and invasion in GBM in a cell line dependent fashion.
Collapse
Affiliation(s)
- Justin V Joseph
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Siobhan Conroy
- Department of Pathology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Kirill Pavlov
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Pallavi Sontakke
- Department of Experimental Hematology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Tushar Tomar
- Department of Gynecologic Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Ellie Eggens-Meijer
- Department of Neuroscience, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Veerakumar Balasubramaniyan
- Department of Neuroscience, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Michiel Wagemakers
- Department of Neuro-surgery, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Wilfred F A den Dunnen
- Department of Pathology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Frank A E Kruyt
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands.
| |
Collapse
|
14
|
Wu H, Wu Y, Ai Z, Yang L, Gao Y, Du J, Guo Z, Zhang Y. Vitamin C enhances Nanog expression via activation of the JAK/STAT signaling pathway. Stem Cells 2014; 32:166-76. [PMID: 23963652 DOI: 10.1002/stem.1523] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Revised: 06/08/2013] [Accepted: 07/31/2013] [Indexed: 11/09/2022]
Abstract
Vitamin C (Vc), also known as ascorbic acid, is involved in many important metabolic and physiological reactions in the body. Here, we report that Vc enhances the expression of Nanog and inhibits retinoic acid-induced differentiation of embryonic stem cells. We investigated Vc regulation of Nanog through Janus kinase/signal transducer and activator of transcription pathway using cell signaling pathway profiling systems, and further confirmed by specific pathway inhibition. Using overexpression and knockdown strategies, we demonstrated that STAT2 is a new positive regulator of Nanog and is activated by phosphorylation following Vc treatment. In addition, site mutation analysis identified that STAT2 physically occupies the Nanog promoter, which was confirmed by chromatin immunoprecipitation and electrophoretic mobility shift assays. Taken together, our data suggest a role for Vc in Nanog regulation networks and reveal a novel role for STAT2 in regulating Nanog expression.
Collapse
Affiliation(s)
- Haibo Wu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Wierenga ATJ, Vellenga E, Schuringa JJ. Convergence of hypoxia and TGFβ pathways on cell cycle regulation in human hematopoietic stem/progenitor cells. PLoS One 2014; 9:e93494. [PMID: 24686421 PMCID: PMC3970968 DOI: 10.1371/journal.pone.0093494] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 03/06/2014] [Indexed: 12/16/2022] Open
Abstract
Although it has been shown that HIF1 and 2 fulfill essential roles within the hematopoietic system and in the regulation of HSC fate, little is currently known about the specific mechanisms that are involved. We identified transcriptome changes induced by hypoxia, constitutively active HIF1(P402/564) and HIF2(P405/531) in human cord blood CD34+ cells. Thus, we were able to identify common hypoxia-HIF1-HIF2 gene signatures, but we also identified specific target genes that were exclusively regulated by HIF1, HIF2 or hypoxia. Geneset enrichment analysis (GSEA) revealed that, besides known pathways associated with "hypoxia-induced signaling", also significant enrichment for the Transforming Growth Factor beta (TGFβ) pathway was observed within the hypoxia/HIF1/HIF2 transcriptomes. One of the most significantly upregulated genes in both gene sets was the cyclin dependent kinase inhibitor CDKN1C (p57kip2). Combined hypoxia treatment or HIF overexpression together with TGFβ stimulation resulted in enhanced expression of CDKN1C and enhanced cell cycle arrest within the CD34+/CD38- stem cell compartment. Interestingly, we observed that CD34+ cells cultured under hypoxic conditions secreted high levels of latent TGFβ, suggesting an auto- or paracrine role of TGFβ in the regulation of quiescence of these cells. However, knockdown of SMAD4 could not rescue the hypoxia induced cell cycle arrest, arguing against direct effects of hypoxia-induced secreted TGFβ. Finally, the Gα-coupled receptor GTPase RGS1 was identified as a HIF-dependent hypoxia target that dampens SDF1-induced migration and signal transduction in human CD34+ stem/progenitor cells.
Collapse
Affiliation(s)
- Albertus T. J. Wierenga
- Department of Experimental Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Edo Vellenga
- Department of Experimental Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jan Jacob Schuringa
- Department of Experimental Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- * E-mail:
| |
Collapse
|
16
|
Wang Z, Bunting KD. STAT5 in hematopoietic stem cell biology and transplantation. JAKSTAT 2013; 2:e27159. [PMID: 24498540 DOI: 10.4161/jkst.27159] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 11/05/2013] [Accepted: 11/11/2013] [Indexed: 01/21/2023] Open
Abstract
Signal transducer and activator of transcription 5 (STAT5) regulates normal lympho-myeloid development through activation downstream of early-acting cytokines, their receptors, and Janus kinases (JAKs). Despite a general understanding of the role of STAT5 in hematopoietic stem cell (HSC) proliferation, survival, and self-renewal, the transcriptional targets and mechanisms of gene regulation that control multi-lineage engraftment following transplantation for the most part remain to be understood. In this review, we focus on the role of STAT5 in HSC transplantation and recent developments toward identifying the relevant downstream target genes and their role as part of a pleiotropic STAT5 mediated signaling response.
Collapse
Affiliation(s)
- Zhengqi Wang
- Aflac Cancer and Blood Disorders Center; Children's Healthcare of Atlanta; Department of Pediatrics; Emory University School of Medicine; Atlanta, GA USA
| | - Kevin D Bunting
- Aflac Cancer and Blood Disorders Center; Children's Healthcare of Atlanta; Department of Pediatrics; Emory University School of Medicine; Atlanta, GA USA
| |
Collapse
|
17
|
Shen WW, Zeng Z, Zhu WX, Fu GH. MiR-142-3p functions as a tumor suppressor by targeting CD133, ABCG2, and Lgr5 in colon cancer cells. J Mol Med (Berl) 2013; 91:989-1000. [PMID: 23619912 DOI: 10.1007/s00109-013-1037-x] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 03/14/2013] [Accepted: 03/28/2013] [Indexed: 12/14/2022]
Abstract
Studies have shown that the expression of CD133, leucine-rich-repeat-containing G-protein-coupled receptor 5 (Lgr5), and ATP binding cassette (ABC)G2 proteins is associated with malignancy and poor prognosis in colon cancer. However, molecular regulation mechanism of the three proteins has not been elucidated. Here, we report that microRNA-142-3p (miR-142-3p) inhibits the expression of CD133, Lgr5, and ABCG2 in colon cancer cells by binding to both the 3'-untranslated region and the coding sequences of the three genes. The miR-142-3p was markedly decreased in colon cancer specimens, in which it was negatively correlated with the expression of CD133, Lgr5, and ABCG2. Reduction of miR-142-3p corresponds to poor differentiation and bigger tumor size in colon cancers. Moreover, miR-142-3p levels were reduced in cells that formed spheres compared to cells that were cultured in regular media. Transfection of miR-142-3p mimics in colon cancer cells downregulated cyclin D1 expression, induced G1 phase cell cycle arrest, and elevated the sensitivity of the cells to 5-fluorouracil. Furthermore, OCT4 suppressed miR-142-3p, and hypomethylation of the OCT4 promoter was associated with a reduction in miR-142-3p. Finally, the miR-142-3p inhibited the growth of colon cancer cells in vivo, which was accompanied by the downregulation of CD133, Lgr5, and ABCG2 in tumor tissues. Our results elucidate a novel regulation pathway in colon cancer cells and suggest a potential therapeutic approach for colon cancer therapy.
Collapse
Affiliation(s)
- Wei-Wei Shen
- Department of Pathology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | | | | | | |
Collapse
|
18
|
Pourcher G, Mazurier C, King YY, Giarratana MC, Kobari L, Boehm D, Douay L, Lapillonne H. Human fetal liver: an in vitro model of erythropoiesis. Stem Cells Int 2011; 2011:405429. [PMID: 21961016 PMCID: PMC3179878 DOI: 10.4061/2011/405429] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 05/24/2011] [Indexed: 01/15/2023] Open
Abstract
We previously described the large-scale production of RBCs from hematopoietic stem cells (HSCs) of diverse sources. Our present efforts are focused to produce RBCs thanks to an unlimited source of stem cells. Human embryonic stem (ES) cells or induced pluripotent stem cell (iPS) are the natural candidates. Even if the proof of RBCs production from these sources has been done, their amplification ability is to date not sufficient for a transfusion application. In this work, our protocol of RBC production was applied to HSC isolated from fetal liver (FL) as an intermediate source between embryonic and adult stem cells. We studied the erythroid potential of FL-derived CD34(+) cells. In this in vitro model, maturation that is enucleation reaches a lower level compared to adult sources as observed for embryonic or iP, but, interestingly, they (i) displayed a dramatic in vitro expansion (100-fold more when compared to CB CD34(+)) and (ii) 100% cloning efficiency in hematopoietic progenitor assays after 3 days of erythroid induction, as compared to 10-15% cloning efficiency for adult CD34(+) cells. This work supports the idea that FL remains a model of study and is not a candidate for ex vivo RBCS production for blood transfusion as a direct source of stem cells but could be helpful to understand and enhance proliferation abilities for primitive cells such as ES cells or iPS.
Collapse
Affiliation(s)
- Guillaume Pourcher
- Prolifération et Différenciation des Cellules Souches: Application à la Thérapie Cellulaire Hématopoïétique, INSERM, UMR_S938, CDR Saint-Antoine, 75012 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Chen AY, Kleiboeker S, Qiu J. Productive parvovirus B19 infection of primary human erythroid progenitor cells at hypoxia is regulated by STAT5A and MEK signaling but not HIFα. PLoS Pathog 2011; 7:e1002088. [PMID: 21698228 PMCID: PMC3116823 DOI: 10.1371/journal.ppat.1002088] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 04/12/2011] [Indexed: 01/30/2023] Open
Abstract
Human parvovirus B19 (B19V) causes a variety of human diseases. Disease outcomes of bone marrow failure in patients with high turnover of red blood cells and immunocompromised conditions, and fetal hydrops in pregnant women are resulted from the targeting and destruction of specifically erythroid progenitors of the human bone marrow by B19V. Although the ex vivo expanded erythroid progenitor cells recently used for studies of B19V infection are highly permissive, they produce progeny viruses inefficiently. In the current study, we aimed to identify the mechanism that underlies productive B19V infection of erythroid progenitor cells cultured in a physiologically relevant environment. Here, we demonstrate an effective reverse genetic system of B19V, and that B19V infection of ex vivo expanded erythroid progenitor cells at 1% O(2) (hypoxia) produces progeny viruses continuously and efficiently at a level of approximately 10 times higher than that seen in the context of normoxia. With regard to mechanism, we show that hypoxia promotes replication of the B19V genome within the nucleus, and that this is independent of the canonical PHD/HIFα pathway, but dependent on STAT5A and MEK/ERK signaling. We further show that simultaneous upregulation of STAT5A signaling and down-regulation of MEK/ERK signaling boosts the level of B19V infection in erythroid progenitor cells under normoxia to that in cells under hypoxia. We conclude that B19V infection of ex vivo expanded erythroid progenitor cells at hypoxia closely mimics native infection of erythroid progenitors in human bone marrow, maintains erythroid progenitors at a stage conducive to efficient production of progeny viruses, and is regulated by the STAT5A and MEK/ERK pathways.
Collapse
Affiliation(s)
- Aaron Yun Chen
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Steve Kleiboeker
- ViraCor-IBT Laboratories, Lee's Summit, Missouri, United States of America
| | - Jianming Qiu
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| |
Collapse
|
20
|
van de Laar L, van den Bosch A, Wierenga ATJ, Janssen HLA, Coffer PJ, Woltman AM. Tight Control of STAT5 Activity Determines Human CD34-Derived Interstitial Dendritic Cell and Langerhans Cell Development. THE JOURNAL OF IMMUNOLOGY 2011; 186:7016-24. [DOI: 10.4049/jimmunol.1003977] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Identification of HIF2alpha as an important STAT5 target gene in human hematopoietic stem cells. Blood 2011; 117:3320-30. [PMID: 21263150 DOI: 10.1182/blood-2010-08-303669] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The transcription factor signal transducer and activator of transcription 5 (STAT5) fulfills essential roles in self-renewal in mouse and human hematopoietic stem cells (HSCs), and its persistent activation contributes to leukemic transformation, although little molecular insight into the underlying mechanisms has been obtained. In the present study, we show that STAT5 can impose long-term expansion exclusively on human HSCs, not on progenitors. This was associated with an enhanced cobblestone formation under bone marrow stromal cells of STAT5-transduced HSCs. Hypoxia-induced factor 2α (HIF2α) was identified as a STAT5 target gene in HSCs, and chromatin immunoprecipitation studies revealed STAT5 binding to a site 344 base pairs upstream of the start codon of HIF2α. Lentiviral RNA interference (RNAi)-mediated down-modulation of HIF2α impaired STAT5-induced long-term expansion and HSC frequencies, whereas differentiation was not affected. Glucose uptake was elevated in STAT5-activated HSCs, and several genes associated with glucose metabolism were up-regulated by STAT5 in an HIF2α-dependent manner. Our studies indicate that pathways normally activated under hypoxia might be used by STAT5 under higher oxygen conditions to maintain and/or impose HSC self-renewal properties.
Collapse
|
22
|
Ferbeyre G, Moriggl R. The role of Stat5 transcription factors as tumor suppressors or oncogenes. Biochim Biophys Acta Rev Cancer 2010; 1815:104-14. [PMID: 20969928 DOI: 10.1016/j.bbcan.2010.10.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 10/08/2010] [Accepted: 10/08/2010] [Indexed: 02/06/2023]
Abstract
Stat5 is constitutively activated in many human cancers affecting the expression of cell proliferation and cell survival controlling genes. These oncogenic functions of Stat5 have been elegantly reproduced in mouse models. Aberrant Stat5 activity induces also mitochondrial dysfunction and reactive oxygen species leading to DNA damage. Although DNA damage can stimulate tumorigenesis, it can also prevent it. Stat5 can inhibit tumor progression like in the liver and it is a tumor suppressor in fibroblasts. Stat5 proteins are able to regulate cell differentiation and senescence activating the tumor suppressors SOCS1, p53 and PML. Understanding the context dependent regulation of tumorigenesis through Stat5 function will be central to understand proliferation, survival, differentiation or senescence of cancer cells.
Collapse
Affiliation(s)
- G Ferbeyre
- Département de Biochimie, Université de Montréal, Montréal, Québec H3C 3J7, Canada.
| | | |
Collapse
|