1
|
Zhong C, Li N, Wang S, Li D, Yang Z, Du L, Huang G, Li H, Yeung WS, He S, Ma S, Wang Z, Jiang H, Zhang H, Li Z, Wen X, Xue S, Tao X, Li H, Xie D, Zhang Y, Chen Z, Wang J, Yan J, Liang Z, Zhang Z, Zhong Z, Wu Z, Wan C, Liang C, Wang L, Yu S, Ma Y, Yu Y, Li F, Chen Y, Zhang B, Lyu A, Ren F, Zhou H, Liu J, Zhang G. Targeting osteoblastic 11β-HSD1 to combat high-fat diet-induced bone loss and obesity. Nat Commun 2024; 15:8588. [PMID: 39362888 PMCID: PMC11449908 DOI: 10.1038/s41467-024-52965-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 09/27/2024] [Indexed: 10/05/2024] Open
Abstract
Excessive glucocorticoid (GC) action is linked to various metabolic disorders. Recent findings suggest that disrupting skeletal GC signaling prevents bone loss and alleviates metabolic disorders in high-fat diet (HFD)-fed obese mice, underpinning the neglected contribution of skeletal GC action to obesity and related bone loss. Here, we show that the elevated expression of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), the enzyme driving local GC activation, and GC signaling in osteoblasts, are associated with bone loss and obesity in HFD-fed male mice. Osteoblast-specific 11β-HSD1 knockout male mice exhibit resistance to HFD-induced bone loss and metabolic disorders. Mechanistically, elevated 11β-HSD1 restrains glucose uptake and osteogenic activity in osteoblast. Pharmacologically inhibiting osteoblastic 11β-HSD1 by using bone-targeted 11β-HSD1 inhibitor markedly promotes bone formation, ameliorates glucose handling and mitigated obesity in HFD-fed male mice. Taken together, our study demonstrates that osteoblastic 11β-HSD1 directly contributes to HFD-induced bone loss, glucose handling impairment and obesity.
Collapse
Affiliation(s)
- Chuanxin Zhong
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong SAR, China
- Institute of Systems Medicine and Health Sciences, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Nanxi Li
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Systems Medicine and Health Sciences, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Shengzheng Wang
- Department of Medicinal Chemistry, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Dijie Li
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangxi Universities Key Laboratory of Stem cell and Biopharmaceutical Technology, College of Life Sciences, Guangxi Normal University, Gui Lin, China
| | - Zhihua Yang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lin Du
- Sports Medicine Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Guangxin Huang
- Department of Joint Surgery, The Third Affiliated Hospital of Southern Medical University, The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Haitian Li
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Wing Sze Yeung
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Shan He
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Shuting Ma
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Zhuqian Wang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Hewen Jiang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Huarui Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zhanghao Li
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Xiaoxin Wen
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Song Xue
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, China
| | - Xiaohui Tao
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Haorui Li
- Sports Medicine Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Duoli Xie
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yihao Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Zefeng Chen
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Junqin Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Jianfeng Yan
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Zhengming Liang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Zongkang Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zhigang Zhong
- Sports Medicine Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Zeting Wu
- International Medical Service Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Chao Wan
- Key Laboratory of Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Chao Liang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Luyao Wang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong SAR, China
- Institute of Systems Medicine and Health Sciences, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Sifan Yu
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong SAR, China
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yuan Ma
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong SAR, China
| | - Yuanyuan Yu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong SAR, China
- Institute of Systems Medicine and Health Sciences, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Fangfei Li
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong SAR, China
- Institute of Systems Medicine and Health Sciences, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yang Chen
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Baoting Zhang
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong SAR, China
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Aiping Lyu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China.
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong SAR, China.
- Institute of Systems Medicine and Health Sciences, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China.
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Hong Kong, China.
| | - Fuzeng Ren
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Hong Zhou
- Bone Research Program, ANZAC Research Institute, The University of Sydney, Sydney, Australia.
| | - Jin Liu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China.
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong SAR, China.
- Institute of Systems Medicine and Health Sciences, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China.
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China.
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong SAR, China.
- Institute of Systems Medicine and Health Sciences, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China.
| |
Collapse
|
2
|
Geng S, Liu SB, He W, Pan X, Sun Y, Xue T, Han S, Lou J, Chang Y, Zheng J, Shi X, Li Y, Song YH. Deletion of TECRL promotes skeletal muscle repair by up-regulating EGR2. Proc Natl Acad Sci U S A 2024; 121:e2317495121. [PMID: 38753506 PMCID: PMC11126978 DOI: 10.1073/pnas.2317495121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 04/10/2024] [Indexed: 05/18/2024] Open
Abstract
Myogenic regeneration relies on the proliferation and differentiation of satellite cells. TECRL (trans-2,3-enoyl-CoA reductase like) is an endoplasmic reticulum protein only expressed in cardiac and skeletal muscle. However, its role in myogenesis remains unknown. We show that TECRL expression is increased in response to injury. Satellite cell-specific deletion of TECRL enhances muscle repair by increasing the expression of EGR2 through the activation of the ERK1/2 signaling pathway, which in turn promotes the expression of PAX7. We further show that TECRL deletion led to the upregulation of the histone acetyltransferase general control nonderepressible 5, which enhances the transcription of EGR2 through acetylation. Importantly, we showed that AAV9-mediated TECRL silencing improved muscle repair in mice. These findings shed light on myogenic regeneration and muscle repair.
Collapse
Affiliation(s)
- Sha Geng
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou215123, People’s Republic of China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou215123, People’s Republic of China
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, SuzhouJiangsu215000, People’s Republic of China
| | - Song-Bai Liu
- Suzhou Key Laboratory of Medical Biotechnology, Suzhou Vocational Health College, Suzhou215009, People’s Republic of China
| | - Wei He
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou215123, People’s Republic of China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou215123, People’s Republic of China
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, SuzhouJiangsu215000, People’s Republic of China
| | - Xiangbin Pan
- Department of Structural Heart Disease, National Center for Cardiovascular Disease, China and Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100037, People’s Republic of China
| | - Yi Sun
- Department of Cardiovascular Surgery, Fuwai Yunnan Cardiovascular Hospital, Kunming650102, People’s Republic of China
| | - Ting Xue
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou215123, People’s Republic of China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou215123, People’s Republic of China
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, SuzhouJiangsu215000, People’s Republic of China
| | - Shiyuan Han
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou215123, People’s Republic of China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou215123, People’s Republic of China
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, SuzhouJiangsu215000, People’s Republic of China
| | - Jing Lou
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou215123, People’s Republic of China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou215123, People’s Republic of China
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, SuzhouJiangsu215000, People’s Republic of China
| | - Ying Chang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou215123, People’s Republic of China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou215123, People’s Republic of China
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, SuzhouJiangsu215000, People’s Republic of China
| | - Jiqing Zheng
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou215123, People’s Republic of China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou215123, People’s Republic of China
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, SuzhouJiangsu215000, People’s Republic of China
| | - Xinghong Shi
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou215123, People’s Republic of China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou215123, People’s Republic of China
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, SuzhouJiangsu215000, People’s Republic of China
| | - Yangxin Li
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, SuzhouJiangsu215000, People’s Republic of China
| | - Yao-Hua Song
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou215123, People’s Republic of China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou215123, People’s Republic of China
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, SuzhouJiangsu215000, People’s Republic of China
| |
Collapse
|
3
|
Bleichman I, Hiram-Bab S, Gabet Y, Savion N. S-Allylmercapto-N-Acetylcysteine (ASSNAC) Attenuates Osteoporosis in Ovariectomized (OVX) Mice. Antioxidants (Basel) 2024; 13:474. [PMID: 38671921 PMCID: PMC11047400 DOI: 10.3390/antiox13040474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/11/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Osteoporosis is a bone-debilitating disease, demonstrating a higher prevalence in post-menopausal women due to estrogen deprivation. One of the main mechanisms underlying menopause-related bone loss is oxidative stress. S-allylmercapto-N-acetylcysteine (ASSNAC) is a nuclear factor erythroid 2-related factor 2 (Nrf2) activator and cysteine supplier, previously shown to have anti-oxidation protective effects in cultured cells and animal models. Here, we studied the therapeutic potential of ASSNAC with and without Alendronate in ovariectomized (OVX) female mice. The experimental outcome included (i) femur and L3 lumbar vertebra morphometry via Micro-Computed Tomography (μCT); (ii) bone remodeling (formation vs. resorption); and (iii) oxidative stress markers in bone marrow (BM) cells. Four weeks after OVX, there was a significant bone loss that remained evident after 8 weeks, as demonstrated via µCT in the femur (cortical and trabecular bone compartments) and vertebra (trabecular bone). ASSNAC at a dose of 50 mg/Kg/day prevented bone loss after the four-week treatment but had no significant effect after 8 weeks, while ASSNAC at a dose of 20 mg/Kg/day significantly protected against bone loss after 8 weeks of treatment. Alendronate prevented ovariectomy-induced bone loss, and combining it with ASSNAC further augmented this effect. OVX mice demonstrated high serum levels of both C-terminal cross-linked telopeptides of type I collagen (CTX) (bone resorption) and procollagen I N-terminal propeptide (P1NP) (bone formation) after 2 weeks, and these returned to control levels after 8 weeks. Alendronate, ASSNAC and their combination decreased CTX and increased P1NP. Alendronate induced oxidative stress as reflected by decreased glutathione and increased malondialdehyde (MDA) levels, and combining it with ASSNAC partially attenuated these changes. These results portray the therapeutic potential of ASSNAC for the management of post-menopausal osteoporosis. Furthermore, ASSNAC ameliorates the Alendronate-associated oxidative stress, suggesting its potential to prevent Alendronate side effects as well as improve its bone-protective effect.
Collapse
Affiliation(s)
- Itay Bleichman
- Department of Human Molecular Genetics and Biochemistry and Goldschleger Eye Research Institute, School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel-Aviv 6997801, Israel;
| | - Sahar Hiram-Bab
- Department of Anatomy and Anthropology, School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel-Aviv 6997801, Israel; (S.H.-B.); (Y.G.)
| | - Yankel Gabet
- Department of Anatomy and Anthropology, School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel-Aviv 6997801, Israel; (S.H.-B.); (Y.G.)
| | - Naphtali Savion
- Department of Human Molecular Genetics and Biochemistry and Goldschleger Eye Research Institute, School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel-Aviv 6997801, Israel;
| |
Collapse
|
4
|
Kaspersky U, Levy R, Nashef A, Iraqi FA, Gabet Y. A study of the influence of genetic variance and sex on the density and thickness of the calvarial bone in collaborative cross mice. Animal Model Exp Med 2023; 6:355-361. [PMID: 37448168 PMCID: PMC10486330 DOI: 10.1002/ame2.12319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/13/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Bone microarchitecture is affected by multiple genes, each having a small effect on the external appearance. It is thus challenging to characterize the genes and their specific effect on bone thickness and porosity. The purpose of this study was to assess the heritability and the genetic variation effect, as well as the sex effect on the calvarial bone thickness (Ca.Th) and calvarial porosity (%PoV) using the Collaborative Cross (CC) mouse population. METHODS In the study we examined the parietal bones of 56 mice from 9 lines of CC mice. Morphometric parameters were evaluated using microcomputed tomography (μCT) and included Ca.Th and %PoV. We then evaluated heritability, genetic versus environmental variance and the sex effect for these parameters. RESULTS Our morphometric analysis showed that Ca.Th and %PoV are both significantly different among the CC lines with a broad sense heritability of 0.78 and 0.90, respectively. The sex effect within the lines was significant in line IL111 and showed higher values of Ca.Th and %PoV in females compared to males. In line IL19 there was a borderline sex effect in Ca.Th in which males showed higher values than females. CONCLUSIONS These results stress the complexity of sex and genotype interactions controlling Ca.Th and %PoV, as the skeletal sexual dimorphism was dependent on the genetic background. This study also shows that the CC population is a powerful tool for establishing the genetic effect on these traits.
Collapse
Affiliation(s)
- Uriel Kaspersky
- Department of Anatomy and AnthropologyTel Aviv UniversityTel AvivIsrael
| | - Roei Levy
- Department of Anatomy and AnthropologyTel Aviv UniversityTel AvivIsrael
| | - Aysar Nashef
- Department of Clinical Microbiology and Immunology, Sackler Faculty of MedicineTel Aviv UniversityTel Aviv69978Israel
- Department of Oral and Maxillofacial SurgeryBaruch Padeh medical centerPoriyaIsrael
| | - Fuad A. Iraqi
- Department of Clinical Microbiology and Immunology, Sackler Faculty of MedicineTel Aviv UniversityTel Aviv69978Israel
| | - Yankel Gabet
- Department of Anatomy and AnthropologyTel Aviv UniversityTel AvivIsrael
| |
Collapse
|
5
|
Kowalczyk M, Kowalczyk E, Gogolewska M, Skrzypek M, Talarowska M, Majsterek I, Poplawski T, Kwiatkowski P, Sienkiewicz M. Association of polymorphic variants in GEMIN genes with the risk of depression in a Polish population. PeerJ 2022; 10:e14317. [PMID: 36405016 PMCID: PMC9673762 DOI: 10.7717/peerj.14317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/09/2022] [Indexed: 11/16/2022] Open
Abstract
Background The role of miRNA in depression is widely described by many researchers. miRNA is a final product of many genes involved in its formation (maturation). One of the final steps in the formation of miRNAs is the formation of the RISC complex, called the RNA-induced silencing complex, which includes, among others, GEMIN proteins. Single-nucleotide polymorphisms (SNPs) may lead to disturbance of miRNA biogenesis and function. The objective of our research was to assess the relationship between the appearance of depression and single nucleotide polymorphisms in the GEMIN3 (rs197388) and GEMIN4 (rs7813; rs3744741) genes. Our research provides new knowledge on the genetic factors that influence the risk of depression. They can be used as an element of diagnostics helpful in identifying people at increased risk, as well as indicating people not at risk of depression. Methods A total of 218 participants were examined, including individuals with depressive disorders (n = 102; study group) and healthy people (n = 116, control group). All the patients in the study group and the people in the control group were non-related native Caucasian Poles from central Poland. Blood was collected from study and control groups in order to assess the SNPs of GEMIN genes. Results An analysis of the results obtained showed that in patient population, the risk of depression is almost doubled by polymorphic variants of the genes: rs197388/GEMIN3 genotype A/A in the recessive model and rs3744741/GEMIN4 genotype T/T, codominant and recessive model. The dual role of rs7813/GEMIN4 is noteworthy, where the G/A genotype in the codominant and over dominant model protects against depression.
Collapse
Affiliation(s)
| | - Edward Kowalczyk
- Department of Pharmacology and Toxicology, Medical University of Lodz, Lodz, Poland
| | - Monika Gogolewska
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Maciej Skrzypek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Monika Talarowska
- Department of Clinical Psychology and Psychopathology, University of Lodz, Lodz, Poland
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Tomasz Poplawski
- Department of Microbiology and Pharmaceutical Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Paweł Kwiatkowski
- Department of Diagnostic Immunology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Monika Sienkiewicz
- Department of Pharmaceutical Microbiology and Microbiological Diagnostic, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
6
|
Awida Z, Hiram-Bab S, Bachar A, Saed H, Zyc D, Gorodov A, Ben-Califa N, Omari S, Omar J, Younis L, Iden JA, Graniewitz Visacovsky L, Gluzman I, Liron T, Raphael-Mizrahi B, Kolomansky A, Rauner M, Wielockx B, Gabet Y, Neumann D. Erythropoietin Receptor (EPOR) Signaling in the Osteoclast Lineage Contributes to EPO-Induced Bone Loss in Mice. Int J Mol Sci 2022; 23:ijms231912051. [PMID: 36233351 PMCID: PMC9570419 DOI: 10.3390/ijms231912051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/29/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022] Open
Abstract
Erythropoietin (EPO) is a pleiotropic cytokine that classically drives erythropoiesis but can also induce bone loss by decreasing bone formation and increasing resorption. Deletion of the EPO receptor (EPOR) on osteoblasts or B cells partially mitigates the skeletal effects of EPO, thereby implicating a contribution by EPOR on other cell lineages. This study was designed to define the role of monocyte EPOR in EPO-mediated bone loss, by using two mouse lines with conditional deletion of EPOR in the monocytic lineage. Low-dose EPO attenuated the reduction in bone volume (BV/TV) in Cx3cr1Cre EPORf/f female mice (27.05%) compared to controls (39.26%), but the difference was not statistically significant. To validate these findings, we increased the EPO dose in LysMCre model mice, a model more commonly used to target preosteoclasts. There was a significant reduction in both the increase in the proportion of bone marrow preosteoclasts (CD115+) observed following high-dose EPO administration and the resulting bone loss in LysMCre EPORf/f female mice (44.46% reduction in BV/TV) as compared to controls (77.28%), without interference with the erythropoietic activity. Our data suggest that EPOR in the monocytic lineage is at least partially responsible for driving the effect of EPO on bone mass.
Collapse
Affiliation(s)
- Zamzam Awida
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Sahar Hiram-Bab
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Almog Bachar
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Hussam Saed
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Dan Zyc
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Anton Gorodov
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Nathalie Ben-Califa
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Sewar Omari
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Jana Omar
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Liana Younis
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Jennifer Ana Iden
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Liad Graniewitz Visacovsky
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ida Gluzman
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Tamar Liron
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Bitya Raphael-Mizrahi
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Albert Kolomansky
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Medicine A, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6423906, Israel
| | - Martina Rauner
- Department of Medicine III & Center for Healthy Aging, Technische Universität Dresden, 01307 Dresden, Germany
| | - Ben Wielockx
- Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Yankel Gabet
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Correspondence: (Y.G.); (D.N.); Tel.: +972-3-6407684 (Y.G.); +972-3-6407256 (D.N.)
| | - Drorit Neumann
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Correspondence: (Y.G.); (D.N.); Tel.: +972-3-6407684 (Y.G.); +972-3-6407256 (D.N.)
| |
Collapse
|
7
|
Kang H, Yan G, Zhang W, Xu J, Guo J, Yang J, Liu X, Sun A, Chen Z, Fan Y, Deng X. Impaired endothelial cell proliferative, migratory, and adhesive abilities are associated with the slow endothelialization of polycaprolactone vascular grafts implanted into a hypercholesterolemia rat model. Acta Biomater 2022; 149:233-247. [PMID: 35811068 DOI: 10.1016/j.actbio.2022.06.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/17/2022] [Accepted: 06/30/2022] [Indexed: 11/27/2022]
Abstract
Most small diameter vascular grafts (inner diameter<6 mm) evaluation studies are performed in healthy animals that cannot represent the clinical situation. Herein, an hypercholesterolemia (HC) rat model with thickened intima and elevated expression of pro-inflammatory intercellular adhesion molecular-1 (ICAM-1) in the carotid branch is established. Electrospun polycaprolactone (PCL) vascular grafts (length: 1 cm; inner diameter: 2 mm) are implanted into the HC rat abdominal aortas in an end to end fashion and followed up to 43 days, showing a relative lower patency accompanied by significant neointima hyperplasia, abundant collagen deposition, and slower endothelialization than those implanted into healthy ones. Moreover, the proliferation, migration, and adhesion behavior of endothelial cells (ECs) isolated from the HC aortas are impaired as evaluated under both static and pulsatile flow conditions. DNA microarray studies of the HC aortic endothelium suggest genes involved in EC proliferation (Egr2), apoptosis (Zbtb16 and Mt1), and metabolism (Slc7a11 and Hamp) are down regulated. These results suggest the impaired proliferative, migratory, and adhesive abilities of ECs are associated with the bad performances of grafts in HC rat. Future pre-clinical evaluation of small diameter vascular grafts may concern more disease animal models with clinical complications. STATEMENT OF SIGNIFICANCE: During the development of small diameter vascular grafts (D<6 mm), young and healthy animal models from pigs, sheep, dogs, to rabbits and rats are preferred. However, it cannot represent the clinic situation, where most cardiovascular grafting procedures are performed in the elderly and age is the primary risk factor for disease development or death. Herein, the performance of electrospun polycaprolactone (PCL) vascular grafts implanted into hypercholesterolemia (HC) or healthy rats were evaluated. Results suggest the proliferative, migratory, and adhesive abilities of endothelial cells (ECs) are already impaired in HC rats, which contributes to the observed slower endothelialization of implanted PCL grafts. Future pre-clinical evaluation of small diameter vascular grafts may concern more disease animal models with clinical complications.
Collapse
Affiliation(s)
- Hongyan Kang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Guiqin Yan
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Weichen Zhang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Junwei Xu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Jiaxin Guo
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Jiali Yang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Xiao Liu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Anqiang Sun
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Zengsheng Chen
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Road, Haidian District, Beijing, 100083, China.
| | - Xiaoyan Deng
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Road, Haidian District, Beijing, 100083, China.
| |
Collapse
|
8
|
The Non-Erythropoietic EPO Analogue Cibinetide Inhibits Osteoclastogenesis In Vitro and Increases Bone Mineral Density in Mice. Int J Mol Sci 2021; 23:ijms23010055. [PMID: 35008482 PMCID: PMC8744753 DOI: 10.3390/ijms23010055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 01/21/2023] Open
Abstract
The two erythropoietin (EPO) receptor forms mediate different cellular responses to erythropoietin. While hematopoiesis is mediated via the homodimeric EPO receptor (EPOR), tissue protection is conferred via a heteromer composed of EPOR and CD131. In the skeletal system, EPO stimulates osteoclast precursors and induces bone loss. However, the underlying molecular mechanisms are still elusive. Here, we evaluated the role of the heteromeric complex in bone metabolism in vivo and in vitro by using Cibinetide (CIB), a non-erythropoietic EPO analogue that exclusively binds the heteromeric receptor. CIB is administered either alone or in combination with EPO. One month of CIB treatment significantly increased the cortical (~5.8%) and trabecular (~5.2%) bone mineral density in C57BL/6J WT female mice. Similarly, administration of CIB for five consecutive days to female mice that concurrently received EPO on days one and four, reduced the number of osteoclast progenitors, defined by flow cytometry as Lin−CD11b−Ly6Chi CD115+, by 42.8% compared to treatment with EPO alone. In addition, CIB alone or in combination with EPO inhibited osteoclastogenesis in vitro. Our findings introduce CIB either as a stand-alone treatment, or in combination with EPO, as an appealing candidate for the treatment of the bone loss that accompanies EPO treatment.
Collapse
|
9
|
Kim M, Jeon SJ, Custodio RJ, Lee HJ, Sayson LV, Ortiz DMD, Cheong JH, Kim HJ. Gene Expression Profiling in the Striatum of Per2 KO Mice Exhibiting More Vulnerable Responses against Methamphetamine. Biomol Ther (Seoul) 2021; 29:135-143. [PMID: 33342769 PMCID: PMC7921858 DOI: 10.4062/biomolther.2020.123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/20/2020] [Accepted: 08/23/2020] [Indexed: 11/05/2022] Open
Abstract
Drug addiction influences most communities directly or indirectly. Increasing studies have reported the relationship between circadian-related genes and drug addiction. Per2 disrupted mice exhibited more vulnerable behavioral responses against some drugs including methamphetamine (METH). However, its roles and mechanisms are still not clear. Transcriptional profiling analysis in Per2 knockout (KO) mice may provide a valuable tool to identify potential genetic involvement and pathways in enhanced behavioral responses against drugs. To explore the potential genetic involvement, we examined common differentially expressed genes (DEGs) in the striatum of drug naïve Per2 KO/wild-type (WT) mice, and before/after METH treatment in Per2 KO mice, but not in WT mice. We selected 9 common DEGs (Ncald, Cpa6, Pklr, Ttc29, Cbr2, Egr2, Prg4, Lcn2, and Camsap2) based on literature research. Among the common DEGs, Ncald, Cpa6, Pklr, and Ttc29 showed higher expression levels in drug naïve Per2 KO mice than in WT mice, while they were downregulated in Per2 KO mice after METH treatment. In contrast, Cbr2, Egr2, Prg4, Lcn2, and Camsap2 exhibited lower expression levels in drug naïve Per2 KO mice than in WT mice, while they were upregulated after METH treatment in Per2 KO mice. qRT-PCR analyses validated the expression patterns of 9 target genes before/after METH treatment in Per2 KO and WT mice. Although further research is required to deeply understand the relationship and roles of the 9 target genes in drug addiction, the findings from the present study indicate that the target genes might play important roles in drug addiction.
Collapse
Affiliation(s)
- Mikyung Kim
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea.,Department of Chemistry Life Science, Sahmyook University, Seoul 01795, Republic of Korea
| | - Se Jin Jeon
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Republic of Korea
| | - Raly James Custodio
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea
| | - Hyun Jun Lee
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea
| | - Leandro Val Sayson
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea
| | - Darlene Mae D Ortiz
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea
| | - Jae Hoon Cheong
- School of Pharmacy, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Hee Jin Kim
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea
| |
Collapse
|
10
|
Maia J, Otake AH, Poças J, Carvalho AS, Beck HC, Magalhães A, Matthiesen R, Strano Moraes MC, Costa-Silva B. Transcriptome Reprogramming of CD11b + Bone Marrow Cells by Pancreatic Cancer Extracellular Vesicles. Front Cell Dev Biol 2020; 8:592518. [PMID: 33330473 PMCID: PMC7729189 DOI: 10.3389/fcell.2020.592518] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/27/2020] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancers (PC) are highly metastatic with poor prognosis, mainly due to delayed detection. We previously showed that PC-derived extracellular vesicles (EVs) act on macrophages residing in the liver, eliciting extracellular matrix remodeling in this organ and marked hepatic accumulation of CD11b+ bone marrow (BM) cells, which support PC liver metastasis. We here show that PC-EVs also bind to CD11b+ BM cells and induce the expansion of this cell population. Transcriptomic characterization of these cells shows that PC-EVs upregulate IgG and IgA genes, which have been linked to the presence of monocytes/macrophages in tumor microenvironments. We also report here the transcriptional downregulation of genes linked to monocyte/macrophage activation, trafficking, and expression of inflammatory molecules. Together, these results show for the first time the existence of a PC-BM communication axis mediated by EVs with a potential role in PC tumor microenvironments.
Collapse
Affiliation(s)
- Joana Maia
- Champalimaud Centre for the Unknown, Champalimaud Foundation, Lisbon, Portugal
- Graduate Program in Areas of Basic and Applied Biology, University of Porto, Porto, Portugal
| | - Andreia Hanada Otake
- Champalimaud Centre for the Unknown, Champalimaud Foundation, Lisbon, Portugal
- Center for Translational Research in Oncology, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Juliana Poças
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP – Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Ana Sofia Carvalho
- Computational and Experimental Biology Group, CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Faculdade de Ciencias Medicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Hans Christian Beck
- Centre for Clinical Proteomics, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - Ana Magalhães
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP – Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
| | - Rune Matthiesen
- Computational and Experimental Biology Group, CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Faculdade de Ciencias Medicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | | | - Bruno Costa-Silva
- Champalimaud Centre for the Unknown, Champalimaud Foundation, Lisbon, Portugal
| |
Collapse
|
11
|
Kolomansky A, Kaye I, Ben-Califa N, Gorodov A, Awida Z, Sadovnic O, Ibrahim M, Liron T, Hiram-Bab S, Oster HS, Sarid N, Perry C, Gabet Y, Mittelman M, Neumann D. Anti-CD20-Mediated B Cell Depletion Is Associated With Bone Preservation in Lymphoma Patients and Bone Mass Increase in Mice. Front Immunol 2020; 11:561294. [PMID: 33193330 PMCID: PMC7604358 DOI: 10.3389/fimmu.2020.561294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/21/2020] [Indexed: 12/14/2022] Open
Abstract
Immunotherapy with anti-CD20-specific antibodies (rituximab), has become the standard of care for B cell lymphoproliferative disorders and many autoimmune diseases. In rheumatological patients the effect of rituximab on bone mass yielded conflicting results, while in lymphoma patients it has not yet been described. Here, we used cross-sectional X-ray imaging (CT/PET-CT) to serially assess bone density in patients with follicular lymphoma receiving rituximab maintenance therapy. Remarkably, this treatment prevented the decline in bone mass observed in the control group of patients who did not receive active maintenance therapy. In accordance with these data, anti-CD20-mediated B cell depletion in normal C57BL/6J female mice led to a significant increase in bone mass, as reflected by a 7.7% increase in bone mineral density (whole femur), and a ~5% increase in cortical as well as trabecular tissue mineral density. Administration of anti-CD20 antibodies resulted in a significant decrease in osteoclastogenic signals, including RANKL, which correlated with a reduction in osteoclastogenic potential of bone marrow cells derived from B-cell-depleted animals. Taken together, our data suggest that in addition to its anti-tumor activity, anti-CD20 treatment has a favorable effect on bone mass. Our murine studies indicate that B cell depletion has a direct effect on bone remodeling.
Collapse
Affiliation(s)
- Albert Kolomansky
- Department of Cell and Developmental Biology, Tel Aviv University, Tel Aviv, Israel.,Department of Medicine A, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Irit Kaye
- Department of Medicine A, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nathalie Ben-Califa
- Department of Cell and Developmental Biology, Tel Aviv University, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Anton Gorodov
- Department of Cell and Developmental Biology, Tel Aviv University, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Open University of Israel, Ra'anana, Israel
| | - Zamzam Awida
- Department of Cell and Developmental Biology, Tel Aviv University, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ofer Sadovnic
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Radiology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Maria Ibrahim
- Department of Cell and Developmental Biology, Tel Aviv University, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tamar Liron
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Anatomy and Anthropology, Tel Aviv University, Tel Aviv, Israel
| | - Sahar Hiram-Bab
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Anatomy and Anthropology, Tel Aviv University, Tel Aviv, Israel
| | - Howard S Oster
- Department of Medicine A, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nadav Sarid
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Tel Aviv Sourasky Medical Center, Institute of Hematology, Tel Aviv, Israel
| | - Chava Perry
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Tel Aviv Sourasky Medical Center, Institute of Hematology, Tel Aviv, Israel
| | - Yankel Gabet
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Anatomy and Anthropology, Tel Aviv University, Tel Aviv, Israel
| | - Moshe Mittelman
- Department of Medicine A, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Drorit Neumann
- Department of Cell and Developmental Biology, Tel Aviv University, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
12
|
Deshet-Unger N, Kolomansky A, Ben-Califa N, Hiram-Bab S, Gilboa D, Liron T, Ibrahim M, Awida Z, Gorodov A, Oster HS, Mittelman M, Rauner M, Wielockx B, Gabet Y, Neumann D. Erythropoietin receptor in B cells plays a role in bone remodeling in mice. Theranostics 2020; 10:8744-8756. [PMID: 32754275 PMCID: PMC7392011 DOI: 10.7150/thno.45845] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/02/2020] [Indexed: 12/13/2022] Open
Abstract
Erythropoietin (EPO) is a key regulator of erythropoiesis. However, EPO receptors (EPO-Rs) are also expressed on non-erythroid cell types, including myeloid and bone cells. Immune cells also participate in bone homeostasis. B cells produce receptor activator of nuclear factor kappa-Β ligand (RANKL) and osteoprotegerin (OPG), two pivotal regulators of bone metabolism. Here we explored the ability of B cells to transdifferentiate into functional osteoclasts and examined the role of EPO in this process in a murine model. Methods: We have combined specifically-designed experimental mouse models and in vitro based osteoclastogenesis assays, as well as PCR analysis of gene expression. Results: (i) EPO treatment in vivo increased RANKL expression in bone marrow (BM) B cells, suggesting a paracrine effect on osteoclastogenesis; (ii) B cell-derived osteoclastogenesis occured in vivo and in vitro, as demonstrated by B cell lineage tracing in murine models; (iii) B-cell-derived osteoclastogenesis in vitro was restricted to Pro-B cells expressing CD115/CSF1-R and is enhanced by EPO; (iv) EPO treatment increased the number of B-cell-derived preosteoclasts (β3+CD115+), suggesting a physiological rationale for B cell derived osteoclastogenesis; (v) finally, mice with conditional EPO-R knockdown in the B cell lineage (cKD) displayed a higher cortical and trabecular bone mass. Moreover, cKD displayed attenuated EPO-driven trabecular bone loss, an effect that was observed despite the fact that cKD mice attained higher hemoglobin levels following EPO treatment. Conclusions: Our work highlights B cells as an important extra-erythropoietic target of EPO-EPO-R signaling and suggests their involvement in the regulation of bone homeostasis and possibly in EPO-stimulated erythropoietic response. Importantly, we present here for the first time, histological evidence for B cell-derived osteoclastogenesis in vivo.
Collapse
|
13
|
Sabag E, Halperin E, Liron T, Hiram-Bab S, Frenkel B, Gabet Y. Hormone-Independent Sexual Dimorphism in the Regulation of Bone Resorption by Krox20. J Bone Miner Res 2019; 34:2277-2286. [PMID: 31398266 DOI: 10.1002/jbmr.3847] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 06/28/2019] [Accepted: 07/28/2019] [Indexed: 12/22/2022]
Abstract
Krox20/EGR2 is a zinc finger transcription factor, implicated in the development of the hindbrain, nerve myelination, and tumor suppression. In skeletal biology, we have demonstrated that Krox20 also regulates adult bone metabolism. We and others have characterized several functions of Krox20 in the osteoclast lineage, namely, preosteoclast proliferation and differentiation, and mature osteoclast apoptosis. We have previously reported that systemically Krox20-haploinsufficient mice have a low bone mass with increased bone resorption. However, new data have now revealed that this phenotype is restricted to females. In addition, we discovered that conditional knockout of Krox20 (cKO) restricted to osteoclast progenitors is sufficient to induce the same female-specific bone loss observed in systemic mutants. To test whether this sexual dimorphism results from an interaction between Krox20 and sex hormones, we examined the sex- and hormone-dependent role of Krox20 deficiency on proliferation and apoptosis in osteoclastic cells. Our results indicate that male and female sex hormones (dihydrotestosterone [DHT] and estradiol [E2], respectively) as well as Krox20 inhibit preosteoclast proliferation and augment osteoclast apoptosis. The observation that Krox20 expression is inhibited by DHT and E2 negates the hypothesis that the effect of sex hormones is mediated by an increase in Krox20 expression. Interestingly, the effect of Krox20 deficiency was observed only with cells derived from female animals, regardless of any sex hormones added in vitro. In addition, we have identified sexual dimorphism in the expression of several Krox20-related genes, including NAB2. This sex-specific epigenetic profile was established at puberty, maintained in the absence of sex hormones, and explains the female-specific skeletal importance of Krox20. The findings described in this study emphasize the medical importance of sex differences, which may be determined at the epigenetic level. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Elias Sabag
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Elinor Halperin
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tamar Liron
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sahar Hiram-Bab
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Baruch Frenkel
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA.,Department of Orthopedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Yankel Gabet
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
14
|
Amzaleg Y, Ji J, Kittivanichkul D, E Törnqvist A, Windahl S, Sabag E, Khalid AB, Sternberg H, West M, Katzenellenbogen JA, Krum SA, Chimge NO, Schones DE, Gabet Y, Ohlsson C, Frenkel B. Estrogens and selective estrogen receptor modulators differentially antagonize Runx2 in ST2 mesenchymal progenitor cells. J Steroid Biochem Mol Biol 2018; 183:10-17. [PMID: 29751107 PMCID: PMC6128776 DOI: 10.1016/j.jsbmb.2018.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/05/2018] [Accepted: 05/07/2018] [Indexed: 12/13/2022]
Abstract
Estrogens attenuate bone turnover by inhibiting both osteoclasts and osteoblasts, in part through antagonizing Runx2. Apparently conflicting, stimulatory effects in osteoblast lineage cells, however, sway the balance between bone resorption and bone formation in favor of the latter. Consistent with this dualism, 17ß-estradiol (E2) both stimulates and inhibits Runx2 in a locus-specific manner, and here we provide evidence for such locus-specific regulation of Runx2 by E2 in vivo. We also demonstrate dual, negative and positive, regulation of Runx2-driven alkaline phosphatase (ALP) activity by increasing E2 concentrations in ST2 osteoblast progenitor cells. We further compared the effects of E2 to those of the Selective Estrogen Receptor Modulators (SERMs) raloxifene (ral) and lasofoxifene (las) and the phytoestrogen puerarin. We found that E2 at the physiological concentrations of 0.1-1 nM, as well as ral and las, but not puerarin, antagonize Runx2-driven ALP activity. At ≥10 nM, E2 and puerarin, but not ral or las, stimulate ALP relative to the activity measured at 0.1-1 nM. Contrasting the difference between E2 and SERMs in ST2 cells, they all shared a similar dose-response profile when inhibiting pre-osteoclast proliferation. That ral and las poorly mimic the locus- and concentration-dependent effects of E2 in mesenchymal progenitor cells may help explain their limited clinical efficacy.
Collapse
Affiliation(s)
- Yonatan Amzaleg
- Center of Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA; Institute for Genetic Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Jie Ji
- Departments of Biochemistry and Molecular Medicine, Los Angeles, CA, USA; Institute for Genetic Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | | | - Anna E Törnqvist
- Center for Bone and Arthritis Research, Institute of Medicine, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Sara Windahl
- Center for Bone and Arthritis Research, Institute of Medicine, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Elias Sabag
- Center of Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA; Departments of Biochemistry and Molecular Medicine, Los Angeles, CA, USA
| | - Aysha B Khalid
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Hal Sternberg
- BioTime, Inc., 1301 Harbor Bay Parkway, Alameda, CA, USA
| | - Michael West
- BioTime, Inc., 1301 Harbor Bay Parkway, Alameda, CA, USA
| | | | - Susan A Krum
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, TN, USA
| | | | - Dustin E Schones
- Department of Cancer Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Yankel Gabet
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Claes Ohlsson
- Center for Bone and Arthritis Research, Institute of Medicine, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Baruch Frenkel
- Center of Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA; Departments of Biochemistry and Molecular Medicine, Los Angeles, CA, USA; Institute for Genetic Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA; Departments of Orthopedic Surgery, Los Angeles, CA, USA.
| |
Collapse
|
15
|
Clonal Analysis Delineates Transcriptional Programs of Osteogenic and Adipogenic Lineages of Adult Mouse Skeletal Progenitors. Stem Cell Reports 2018; 11:212-227. [PMID: 29937146 PMCID: PMC6067065 DOI: 10.1016/j.stemcr.2018.05.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 05/22/2018] [Accepted: 05/23/2018] [Indexed: 12/23/2022] Open
Abstract
Bone, cartilage, and marrow adipocytes are generated by skeletal progenitors, but the relationships between lineages and mechanisms controlling their differentiation are poorly understood. We established mouse clonal skeletal progenitors with distinct differentiation properties and analyzed their transcriptome. Unipotent osteogenic and adipogenic cells expressed specific transcriptional programs, whereas bipotent clones combined expression of those genes and did not show a unique signature. We tested potential regulators of lineage commitment and found that in the presence of interferon-γ (IFNγ) adipogenic clones can be induced to osteogenesis and that their adipogenic capacity is inhibited. Analysis of IFNγ-regulated genes showed that lineage signatures and fate commitment of skeletal progenitors were controlled by EGR1 and EGR2. Knockdown experiments revealed that EGR1 is a positive regulator of the adipogenic transcriptional program and differentiation capacity, whereas EGR2 inhibits the osteogenic program and potency. Therefore, our work revealed transcriptional signatures of osteogenic and adipogenic lineages and mechanism triggering cell fate. Bone marrow osteo- and adipogenic progenitors have specific transcriptional profiles Bipotent progenitors combine expression of osteogenic and adipogenic programs IFNγ inhibits adipogenesis and induces osteogenesis via downregulation of Egr1/Egr2 Egr1 maintains adipogenic and Egr2 suppresses osteogenic lineage commitment
Collapse
|
16
|
Early growth response 2 and Egr3 are unique regulators in immune system. Cent Eur J Immunol 2017; 42:205-209. [PMID: 28860938 PMCID: PMC5573894 DOI: 10.5114/ceji.2017.69363] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 06/28/2016] [Indexed: 11/17/2022] Open
Abstract
The immune system is evolved to defend the body against pathogens and is composed of thousands of complicated and intertwined pathways, which are highly controlled by processes such as transcription and repression of cellular genes. Sometimes the immune system malfunctions and a break down in self-tolerance occurs. This lead to the inability to distinguish between self and non-self and cause attacks on host tissues, a condition also known as autoimmunity, which can result in chronic debilitating diseases. Early growth response genes are family of transcription factors comprising of four members, Egr1, Egr2, Egr3 and Egr4. All of which contain three cyc2-His2 zinc fingers. Initially, Egr2 function was identified in the regulation of peripheral nerve myelination, hindbrain segmentation. Egr3, on the other hand, is highly expressed in muscle spindle development. Egr2 and Egr3 are induced due to the antigen stimulation and this signaling is implemented through the B and T cell receptors in the adaptive immunity. T cell receptor signaling plays a key role in Egr 2 and 3 expressions via their interaction with NFAT molecules. Egr 2 and 3 play a crucial role in regulation of the immune system and their involvement in B and T cell activation, anergy induction and preventing the autoimmune disease has been investigated. The deficiency of these transcription factors has been associated to deficient Cbl-b expression, a resistant to anergy phenotype, and expression of effector and activated T cells.
Collapse
|
17
|
Aqmasheh S, Shamsasanjan K, Akbarzadehlaleh P, Pashoutan Sarvar D, Timari H. Effects of Mesenchymal Stem Cell Derivatives on Hematopoiesis and Hematopoietic Stem Cells. Adv Pharm Bull 2017; 7:165-177. [PMID: 28761818 PMCID: PMC5527230 DOI: 10.15171/apb.2017.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 04/08/2017] [Accepted: 04/18/2017] [Indexed: 12/11/2022] Open
Abstract
Hematopoiesis is a balance among quiescence, self-renewal, proliferation, and differentiation, which is believed to be firmly adjusted through interactions between hematopoietic stem and progenitor cells (HSPCs) with the microenvironment. This microenvironment is derived from a common progenitor of mesenchymal origin and its signals should be capable of regulating the cellular memory of transcriptional situation and lead to an exchange of stem cell genes expression. Mesenchymal stem cells (MSCs) have self-renewal and differentiation capacity into tissues of mesodermal origin, and these cells can support hematopoiesis through release various molecules that play a crucial role in migration, homing, self-renewal, proliferation, and differentiation of HSPCs. Studies on the effects of MSCs on HSPC differentiation can develop modern solutions in the treatment of patients with hematologic disorders for more effective Bone Marrow (BM) transplantation in the near future. However, considerable challenges remain on realization of how paracrine mechanisms of MSCs act on the target tissues, and how to design a therapeutic regimen with various paracrine factors in order to achieve optimal results for tissue conservation and regeneration. The aim of this review is to characterize and consider the related aspects of the ability of MSCs secretome in protection of hematopoiesis.
Collapse
Affiliation(s)
- Sara Aqmasheh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Karim Shamsasanjan
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Akbarzadehlaleh
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Hamze Timari
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
18
|
Zeng T, Wang D, Chen J, Tian Y, Cai X, Peng H, Zhu L, Huang A, Tang H. LncRNA-AF113014 promotes the expression of Egr2 by interaction with miR-20a to inhibit proliferation of hepatocellular carcinoma cells. PLoS One 2017; 12:e0177843. [PMID: 28542387 PMCID: PMC5438171 DOI: 10.1371/journal.pone.0177843] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 05/04/2017] [Indexed: 12/17/2022] Open
Abstract
Long non-coding RNAs (lncRNAs), tentatively identified as non-protein coding RNA, are transcripts more than 200nt in length and accounting for 98% of the whole genome of human being. Accumulating evidence showed aberrant expressions of lncRNAs are strongly correlated to the development of cancers. In this study, AF113014 is a new lncRNA identified from Microarray. We found AF113014 is differentially expressed between HCC cell lines and normal hepatocytes. Functionally, AF113014 inhibited proliferation of HCC cells both in vitro and in vivo, whereas the opposite effect was observed when AF113014 knockdown. Moreover, we identified that Egr2, a tumor suppressor gene, was a downstream target gene of AF113014. Furthermore, we discovered that AF113014 up-regulated Egr2 expression through interacting with miR-20a by using dual-luciferase reporter assay, qRT-PCR and Western blotting analysis. Our data provides a new insight for understanding the mechanisms of HCC.
Collapse
Affiliation(s)
- Tao Zeng
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Dan Wang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Juan Chen
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | | | - Xuefei Cai
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hong Peng
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Liying Zhu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ailong Huang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China
- * E-mail: (HT); (AH)
| | - Hua Tang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- * E-mail: (HT); (AH)
| |
Collapse
|
19
|
De Luca L, Trino S, Laurenzana I, Simeon V, Calice G, Raimondo S, Podestà M, Santodirocco M, Di Mauro L, La Rocca F, Caivano A, Morano A, Frassoni F, Cilloni D, Del Vecchio L, Musto P. MiRNAs and piRNAs from bone marrow mesenchymal stem cell extracellular vesicles induce cell survival and inhibit cell differentiation of cord blood hematopoietic stem cells: a new insight in transplantation. Oncotarget 2017; 7:6676-92. [PMID: 26760763 PMCID: PMC4872742 DOI: 10.18632/oncotarget.6791] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 12/05/2015] [Indexed: 12/18/2022] Open
Abstract
Hematopoietic stem cells (HSC), including umbilical cord blood CD34+ stem cells (UCB-CD34+), are used for the treatment of several diseases. Although different studies suggest that bone marrow mesenchymal stem cells (BM-MSC) support hematopoiesis, the exact mechanism remains unclear. Recently, extracellular vesicles (EVs) have been described as a novel avenue of cell communication, which may mediate BM-MSC effect on HSC. In this work, we studied the interaction between UCB-CD34+ cells and BM-MSC derived EVs. First, by sequencing EV derived miRNAs and piRNAs we found that EVs contain RNAs able to influence UCB-CD34+ cell fate. Accordingly, a gene expression profile of UCB-CD34+ cells treated with EVs, identified about 100 down-regulated genes among those targeted by EV-derived miRNAs and piRNAs (e.g. miR-27b/MPL, miR-21/ANXA1, miR-181/EGR2), indicating that EV content was able to modify gene expression profile of receiving cells. Moreover, we demonstrated that UCB-CD34+ cells, exposed to EVs, significantly changed different biological functions, becoming more viable and less differentiated. UCB-CD34+ gene expression profile also identified 103 up-regulated genes, most of them codifying for chemokines, cytokines and their receptors, involved in chemotaxis of different BM cells, an essential function of hematopoietic reconstitution. Finally, the exposure of UCB-CD34+ cells to EVs caused an increased expression CXCR4, paralleled by an in vivo augmented migration from peripheral blood to BM niche in NSG mice. This study demonstrates the existence of a powerful cross talk between BM-MSC and UCB-CD34+ cells, mediated by EVs, providing new insight in the biology of cord blood transplantation.
Collapse
Affiliation(s)
- Luciana De Luca
- Laboratory of Preclinical and Translational Research, IRCCS-Centro di Riferimento Oncologico della Basilicata (CROB), Rionero in Vulture, 85028 (PZ), Italy
| | - Stefania Trino
- Laboratory of Preclinical and Translational Research, IRCCS-Centro di Riferimento Oncologico della Basilicata (CROB), Rionero in Vulture, 85028 (PZ), Italy
| | - Ilaria Laurenzana
- Laboratory of Preclinical and Translational Research, IRCCS-Centro di Riferimento Oncologico della Basilicata (CROB), Rionero in Vulture, 85028 (PZ), Italy
| | - Vittorio Simeon
- Laboratory of Preclinical and Translational Research, IRCCS-Centro di Riferimento Oncologico della Basilicata (CROB), Rionero in Vulture, 85028 (PZ), Italy
| | - Giovanni Calice
- Laboratory of Preclinical and Translational Research, IRCCS-Centro di Riferimento Oncologico della Basilicata (CROB), Rionero in Vulture, 85028 (PZ), Italy
| | - Stefania Raimondo
- Department of Clinical and Biological Sciences, University of Turin, Turin 10126, Italy
| | - Marina Podestà
- Stem Cell Center, S. Martino Hospital, Genova 16132, Italy
| | - Michele Santodirocco
- Transfusion Medicine Unit, Puglia Cord Blood Bank, IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013 (FG), Italy
| | - Lazzaro Di Mauro
- Transfusion Medicine Unit, Puglia Cord Blood Bank, IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013 (FG), Italy
| | - Francesco La Rocca
- Laboratory of Preclinical and Translational Research, IRCCS-Centro di Riferimento Oncologico della Basilicata (CROB), Rionero in Vulture, 85028 (PZ), Italy
| | - Antonella Caivano
- Laboratory of Preclinical and Translational Research, IRCCS-Centro di Riferimento Oncologico della Basilicata (CROB), Rionero in Vulture, 85028 (PZ), Italy
| | - Annalisa Morano
- Laboratory of Preclinical and Translational Research, IRCCS-Centro di Riferimento Oncologico della Basilicata (CROB), Rionero in Vulture, 85028 (PZ), Italy
| | - Francesco Frassoni
- Laboratorio Cellule Staminali Post Natali e Terapie Cellulari, Giannina Gaslini Institute, Genova 16148, Italy
| | - Daniela Cilloni
- Department of Clinical and Biological Sciences, University of Turin, Turin 10126, Italy
| | - Luigi Del Vecchio
- CEINGE-Biotecnologie Avanzate S.C.a R.L., Naples, 80145, Italy.,Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Naples 80131, Italy
| | - Pellegrino Musto
- Scientific Direction, IRCCS-Centro di Riferimento Oncologico Basilicata (CROB), Rionero in Vulture, 85028 (PZ), Italy
| |
Collapse
|
20
|
Abstract
Classically (M1) and alternatively activated (M2) macrophages exhibit distinct phenotypes and functions. It has been difficult to dissect macrophage phenotypes in vivo, where a spectrum of macrophage phenotypes exists, and also in vitro, where low or non-selective M2 marker protein expression is observed. To provide a foundation for the complexity of in vivo macrophage phenotypes, we performed a comprehensive analysis of the transcriptional signature of murine M0, M1 and M2 macrophages and identified genes common or exclusive to either subset. We validated by real-time PCR an M1-exclusive pattern of expression for CD38, G-protein coupled receptor 18 (Gpr18) and Formyl peptide receptor 2 (Fpr2) whereas Early growth response protein 2 (Egr2) and c-Myc were M2-exclusive. We further confirmed these data by flow cytometry and show that M1 and M2 macrophages can be distinguished by their relative expression of CD38 and Egr2. Egr2 labeled more M2 macrophages (~70%) than the canonical M2 macrophage marker Arginase-1, which labels 24% of M2 macrophages. Conversely, CD38 labeled most (71%) in vitro M1 macrophages. In vivo, a similar CD38+ population greatly increased after LPS exposure. Overall, this work defines exclusive and common M1 and M2 signatures and provides novel and improved tools to distinguish M1 and M2 murine macrophages.
Collapse
|
21
|
Ferreira A, Alho I, Casimiro S, Costa L. Bone remodeling markers and bone metastases: From cancer research to clinical implications. BONEKEY REPORTS 2015; 4:668. [PMID: 25908969 DOI: 10.1038/bonekey.2015.35] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 02/19/2015] [Indexed: 12/12/2022]
Abstract
Bone metastasis is a frequent finding in the natural history of several types of cancers. However, its anticipated risk, diagnosis and response to therapy are still challenging to assess in clinical practice. Markers of bone metabolism are biochemical by-products that provide insight into the tumor-bone interaction, with potential to enhance the clinical management of patients with bone metastases. In fact, these markers had a cornerstone role in the development of bone-targeted agents; however, its translation to routine practice is still unclear, as reflected by current international guidelines. In this review, we aimed to capture several of the research and clinical translational challenges regarding the use of bone metabolism markers that we consider relevant for future research in bone metastasis.
Collapse
Affiliation(s)
- Arlindo Ferreira
- Hospital de Santa Maria , Lisbon, Portugal ; Instituto de Medicina Molecular, Faculdade de Medicina , Universidade de Lisboa, Lisbon, Portugal
| | - Irina Alho
- Instituto de Medicina Molecular, Faculdade de Medicina , Universidade de Lisboa, Lisbon, Portugal
| | - Sandra Casimiro
- Instituto de Medicina Molecular, Faculdade de Medicina , Universidade de Lisboa, Lisbon, Portugal
| | - Luís Costa
- Hospital de Santa Maria , Lisbon, Portugal ; Instituto de Medicina Molecular, Faculdade de Medicina , Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
22
|
Hiram-Bab S, Liron T, Deshet-Unger N, Mittelman M, Gassmann M, Rauner M, Franke K, Wielockx B, Neumann D, Gabet Y. Erythropoietin directly stimulates osteoclast precursors and induces bone loss. FASEB J 2015; 29:1890-900. [PMID: 25630969 DOI: 10.1096/fj.14-259085] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 12/23/2014] [Indexed: 12/24/2022]
Abstract
Erythropoietin (EPO) primarily regulates red blood cell formation, and EPO serum levels are increased on hypoxic stress (e.g., anemia and altitude). In addition to anemia, recent discoveries suggest new therapeutic indications for EPO, unrelated to erythropoiesis. We investigated the skeletal role of EPO using several models of overexpression (Tg6 mice) and EPO administration (intermittent/continuous, high/low doses) in adult C57Bl6 female mice. Using microcomputed tomography, histology, and serum markers, we found that EPO induced a 32%-61% trabecular bone loss caused by increased bone resorption (+60%-88% osteoclast number) and reduced bone formation rate (-19 to -74%; P < 0.05 throughout). EPO targeted the monocytic lineage by increasing the number of bone monocytes/macrophages, preosteoclasts, and mature osteoclasts. In contrast to the attenuated bone formation in vivo, EPO treatment in vitro did not inhibit osteoblast differentiation and activity, suggesting an indirect effect of EPO on osteoblasts. However, EPO had a direct effect on preosteoclasts by stimulating osteoclastogenesis in isolated cultures (+60%) via the Jak2 and PI3K pathways. In summary, our findings demonstrate that EPO negatively regulates bone mass and thus bears significant clinical implications for the potential management of patients with endogenously or therapeutically elevated EPO levels.
Collapse
Affiliation(s)
- Sahar Hiram-Bab
- *Department of Cell and Developmental Biology, Department of Anatomy and Anthropology, and Department of Medicine, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Institute of Veterinary Physiology, Vetsuisse Faculty, and Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland; Department of Medicine III, Dresden University Medical Center, Dresden, Germany; and Institute of Pathology, University of Technology, Dresden, Germany
| | - Tamar Liron
- *Department of Cell and Developmental Biology, Department of Anatomy and Anthropology, and Department of Medicine, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Institute of Veterinary Physiology, Vetsuisse Faculty, and Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland; Department of Medicine III, Dresden University Medical Center, Dresden, Germany; and Institute of Pathology, University of Technology, Dresden, Germany
| | - Naamit Deshet-Unger
- *Department of Cell and Developmental Biology, Department of Anatomy and Anthropology, and Department of Medicine, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Institute of Veterinary Physiology, Vetsuisse Faculty, and Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland; Department of Medicine III, Dresden University Medical Center, Dresden, Germany; and Institute of Pathology, University of Technology, Dresden, Germany
| | - Moshe Mittelman
- *Department of Cell and Developmental Biology, Department of Anatomy and Anthropology, and Department of Medicine, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Institute of Veterinary Physiology, Vetsuisse Faculty, and Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland; Department of Medicine III, Dresden University Medical Center, Dresden, Germany; and Institute of Pathology, University of Technology, Dresden, Germany
| | - Max Gassmann
- *Department of Cell and Developmental Biology, Department of Anatomy and Anthropology, and Department of Medicine, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Institute of Veterinary Physiology, Vetsuisse Faculty, and Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland; Department of Medicine III, Dresden University Medical Center, Dresden, Germany; and Institute of Pathology, University of Technology, Dresden, Germany
| | - Martina Rauner
- *Department of Cell and Developmental Biology, Department of Anatomy and Anthropology, and Department of Medicine, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Institute of Veterinary Physiology, Vetsuisse Faculty, and Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland; Department of Medicine III, Dresden University Medical Center, Dresden, Germany; and Institute of Pathology, University of Technology, Dresden, Germany
| | - Kristin Franke
- *Department of Cell and Developmental Biology, Department of Anatomy and Anthropology, and Department of Medicine, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Institute of Veterinary Physiology, Vetsuisse Faculty, and Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland; Department of Medicine III, Dresden University Medical Center, Dresden, Germany; and Institute of Pathology, University of Technology, Dresden, Germany
| | - Ben Wielockx
- *Department of Cell and Developmental Biology, Department of Anatomy and Anthropology, and Department of Medicine, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Institute of Veterinary Physiology, Vetsuisse Faculty, and Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland; Department of Medicine III, Dresden University Medical Center, Dresden, Germany; and Institute of Pathology, University of Technology, Dresden, Germany
| | - Drorit Neumann
- *Department of Cell and Developmental Biology, Department of Anatomy and Anthropology, and Department of Medicine, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Institute of Veterinary Physiology, Vetsuisse Faculty, and Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland; Department of Medicine III, Dresden University Medical Center, Dresden, Germany; and Institute of Pathology, University of Technology, Dresden, Germany
| | - Yankel Gabet
- *Department of Cell and Developmental Biology, Department of Anatomy and Anthropology, and Department of Medicine, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Institute of Veterinary Physiology, Vetsuisse Faculty, and Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland; Department of Medicine III, Dresden University Medical Center, Dresden, Germany; and Institute of Pathology, University of Technology, Dresden, Germany
| |
Collapse
|
23
|
Odelin G, Faure E, Kober F, Maurel-Zaffran C, Théron A, Coulpier F, Guillet B, Bernard M, Avierinos JF, Charnay P, Topilko P, Zaffran S. Loss of Krox20 results in aortic valve regurgitation and impaired transcriptional activation of fibrillar collagen genes. Cardiovasc Res 2014; 104:443-55. [PMID: 25344368 DOI: 10.1093/cvr/cvu233] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS Heart valve maturation is achieved by the organization of extracellular matrix (ECM) and the distribution of valvular interstitial cells. However, the factors that regulate matrix components required for valvular structure and function are unknown. Based on the discovery of its specific expression in cardiac valves, we aimed to uncover the role of Krox20 (Egr-2) during valve development and disease. METHODS AND RESULTS Using series of mouse genetic tools, we demonstrated that loss of function of Krox20 caused significant hyperplasia of the semilunar valves, while atrioventricular valves appeared normal. This defect was associated with an increase in valvular interstitial cell number and ECM volume. Echo Doppler analysis revealed that adult mutant mice had aortic insufficiency. Defective aortic valves (AoVs) in Krox20(-/-) mice had features of human AoV disease, including excess of proteoglycan deposition and reduction of collagen fibres. Furthermore, examination of diseased human AoVs revealed decreased expression of KROX20. To identify downstream targets of Krox20, we examined expression of fibrillar collagens in the AoV leaflets at different stages in the mouse. We found significant down-regulation of Col1a1, Col1a2, and Col3a1 in the semilunar valves of Krox20 mutant mice. Utilizing in vitro and in vivo experiments, we demonstrated that Col1a1 and Col3a1 are direct targets of Krox20 activation in interstitial cells of the AoV. CONCLUSION This study identifies a previously unknown function of Krox20 during heart valve development. These results indicate that Krox20-mediated activation of fibrillar Col1a1 and Col3a1 genes is crucial to avoid postnatal degeneration of the AoV leaflets.
Collapse
Affiliation(s)
- Gaëlle Odelin
- Aix Marseille Université, GMGF UMR_S910, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille, France Inserm, U910, Faculté de Médecine, 27 Bd Jean Moulin, 13005 Marseille, France
| | - Emilie Faure
- Aix Marseille Université, GMGF UMR_S910, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille, France Inserm, U910, Faculté de Médecine, 27 Bd Jean Moulin, 13005 Marseille, France
| | - Frank Kober
- Faculté de Médecine, Aix Marseille Université, CNRS, CRMBM UMR7339, Marseille, France
| | | | - Alexis Théron
- Aix Marseille Université, GMGF UMR_S910, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille, France Inserm, U910, Faculté de Médecine, 27 Bd Jean Moulin, 13005 Marseille, France Département de Cardiologie, AP-HM, Hôpital de la Timone, Marseille, France
| | - Fanny Coulpier
- Inserm, U1024, IBENS, École Normale Supérieure, Paris, France CNRS, UMR8197, IBENS, École Normale Supérieure, Paris, France
| | - Benjamin Guillet
- Faculté de Médecine, Aix Marseille Université, CERIMED, Marseille, France
| | - Monique Bernard
- Faculté de Médecine, Aix Marseille Université, CNRS, CRMBM UMR7339, Marseille, France
| | - Jean-François Avierinos
- Aix Marseille Université, GMGF UMR_S910, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille, France Inserm, U910, Faculté de Médecine, 27 Bd Jean Moulin, 13005 Marseille, France Département de Cardiologie, AP-HM, Hôpital de la Timone, Marseille, France
| | - Patrick Charnay
- Inserm, U1024, IBENS, École Normale Supérieure, Paris, France CNRS, UMR8197, IBENS, École Normale Supérieure, Paris, France
| | - Piotr Topilko
- Inserm, U1024, IBENS, École Normale Supérieure, Paris, France CNRS, UMR8197, IBENS, École Normale Supérieure, Paris, France
| | - Stéphane Zaffran
- Aix Marseille Université, GMGF UMR_S910, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille, France Inserm, U910, Faculté de Médecine, 27 Bd Jean Moulin, 13005 Marseille, France
| |
Collapse
|
24
|
Nenasheva VV, Kovaleva GV, Khaidarova NV, Novosadova EV, Manuilova ES, Antonov SA, Tarantul VZ. Trim14 overexpression causes the same transcriptional changes in mouse embryonic stem cells and human HEK293 cells. In Vitro Cell Dev Biol Anim 2013; 50:121-8. [PMID: 24092016 DOI: 10.1007/s11626-013-9683-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Accepted: 08/05/2013] [Indexed: 12/11/2022]
Abstract
The trim14 (pub, KIAA0129) gene encodes the TRIM14 protein which is a member of the tripartite motif (TRIM) family. Previously, we revealed high expression levels of trim14 in HIV- or SIV-associated lymphomas and demonstrated the influence of trim14 on mesodermal differentiation of mouse embryonic stem cells (mESC). In the present work, to elucidate the role of trim14 in normal and pathological processes in the cell, we used two different types of cells transfected with trim14: mESC and human HEK293. Using subtractive hybridization and real-time PCR, we found a number of genes which expression was elevated in trim14-transfected mESC: hsp90ab1, prr13, pu.1, tnfrsf13c (baff-r), tnfrsf13b (taci), hlx1, hbp1, junb, and pdgfrb. A further analysis of the trim14-transfected mESC at the initial stage of differentiation (embryoid bodies (EB) formation) showed essential changes in the expression of these upregulated genes. The transfection of trim14 into HEK293 also induced an enhanced expression of the several genes upregulated in trim14-transfected mESC (hsp90ab1, prr13, pu.1, tnfrsf13c (baff-r), tnfrsf13b (taci), and hlx1). Summarizing, we found similar genes that participated in trim14-directed processes both in mESC and in HEK293. These results demonstrate the presence of the similar mechanism of trim14 gene action in different types of mammalian cells.
Collapse
Affiliation(s)
- Valentina V Nenasheva
- Department of viral and cellular molecular genetics, Institute of Molecular Genetics, Russian Academy of Sciences, 2 Kurchatov Square, Moscow, 123182, Russia,
| | | | | | | | | | | | | |
Collapse
|
25
|
Giacopelli F, Cappato S, Tonachini L, Mura M, Di Lascio S, Fornasari D, Ravazzolo R, Bocciardi R. Identification and characterization of regulatory elements in the promoter of ACVR1, the gene mutated in Fibrodysplasia Ossificans Progressiva. Orphanet J Rare Dis 2013; 8:145. [PMID: 24047559 PMCID: PMC4015442 DOI: 10.1186/1750-1172-8-145] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 09/03/2013] [Indexed: 12/12/2022] Open
Abstract
Background The ACVR1 gene encodes a type I receptor for bone morphogenetic proteins (BMPs). Mutations in the ACVR1 gene are associated with Fibrodysplasia Ossificans Progressiva (FOP), a rare and extremely disabling disorder characterized by congenital malformation of the great toes and progressive heterotopic endochondral ossification in muscles and other non-skeletal tissues. Several aspects of FOP pathophysiology are still poorly understood, including mechanisms regulating ACVR1 expression. This work aimed to identify regulatory elements that control ACVR1 gene transcription. Methods and results We first characterized the structure and composition of human ACVR1 gene transcripts by identifying the transcription start site, and then characterized a 2.9 kb upstream region. This region showed strong activating activity when tested by reporter gene assays in transfected cells. We identified specific elements within the 2.9 kb region that are important for transcription factor binding using deletion constructs, co-transfection experiments with plasmids expressing selected transcription factors, site-directed mutagenesis of consensus binding-site sequences, and by protein/DNA binding assays. We also characterized a GC-rich minimal promoter region containing binding sites for the Sp1 transcription factor. Conclusions Our results showed that several transcription factors such as Egr-1, Egr-2, ZBTB7A/LRF, and Hey1, regulate the ACVR1 promoter by binding to the -762/-308 region, which is essential to confer maximal transcriptional activity. The Sp1 transcription factor acts at the most proximal promoter segment upstream of the transcription start site. We observed significant differences in different cell types suggesting tissue specificity of transcriptional regulation. These findings provide novel insights into the molecular mechanisms that regulate expression of the ACVR1 gene and that could be targets of new strategies for future therapeutic treatments.
Collapse
Affiliation(s)
- Francesca Giacopelli
- Department of Neurosciences, Rehabilitation, Ophthalmogy, Genetics, Maternal and Child Health and CEBR, Università degli Studi di Genova, Genova, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
|
27
|
Wang SS, Huang HY, Chen SZ, Li X, Liu Y, Zhang WT, Tang QQ. Early growth response 2 (Egr2) plays opposing roles in committing C3H10T1/2 stem cells to adipocytes and smooth muscle-like cells. Int J Biochem Cell Biol 2013; 45:1825-32. [DOI: 10.1016/j.biocel.2013.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 05/27/2013] [Accepted: 06/02/2013] [Indexed: 12/20/2022]
|
28
|
Chandra A, Lan S, Zhu J, Siclari VA, Qin L. Epidermal growth factor receptor (EGFR) signaling promotes proliferation and survival in osteoprogenitors by increasing early growth response 2 (EGR2) expression. J Biol Chem 2013; 288:20488-98. [PMID: 23720781 DOI: 10.1074/jbc.m112.447250] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Maintaining bone architecture requires continuous generation of osteoblasts from osteoprogenitor pools. Our previous study of mice with epidermal growth factor receptor (EGFR) specifically inactivated in osteoblast lineage cells revealed that EGFR stimulates bone formation by expanding the population of mesenchymal progenitors. EGFR ligands are potent regulators for the osteoprogenitor pool, but the underlying mechanisms are largely unknown. Here we demonstrate that activation of EGFR increases the number of osteoprogenitors by promoting cell proliferation and suppressing either serum depletion-induced or TNFα-induced apoptosis mainly through the MAPK/ERK pathway. Mouse calvarial organ culture revealed that EGF elevated the number of proliferative cells and decreased the number of apoptotic cells, which led to increased osteoblasts. Microarray analysis of MC3T3 cells, an osteoprogenitor cell line, revealed that EGFR signaling stimulates the expression of MCL1, an antiapoptotic protein, and a family of EGR transcription factors (EGR1, -2, and -3). The up-regulation of MCL1 and EGR2 by EGF was further confirmed in osteoprogenitors close to the calvarial bone surface. Overexpression of NAB2, a co-repressor for EGRs, attenuated the EGF-induced increase in osteoprogenitor number. Interestingly, knocking down the expression of EGR2, but not EGR1 or -3, resulted in a similar effect. Using inhibitor, adenovirus overexpression, and siRNA approaches, we demonstrate that EGFR signaling activates the MAPK/ERK pathway to stimulate the expression of EGR2, which in turn leads to cell growth and MCL1-mediated cell survival. Taken together, our data clearly demonstrate that EGFR-induced EGR2 expression is critical for osteoprogenitor maintenance and new bone formation.
Collapse
Affiliation(s)
- Abhishek Chandra
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
29
|
Promoter analysis of the DHCR24 (3β-hydroxysterol Δ(24)-reductase) gene: characterization of SREBP (sterol-regulatory-element-binding protein)-mediated activation. Biosci Rep 2012; 33:57-69. [PMID: 23050906 PMCID: PMC3522477 DOI: 10.1042/bsr20120095] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
DHCR24 (3β-hydroxysterol Δ24-reductase) catalyses the reduction of the C-24 double bond of sterol intermediates during cholesterol biosynthesis. DHCR24 has also been involved in cell growth, senescence and cellular response to oncogenic and oxidative stress. Despite its important roles, little is known about the transcriptional mechanisms controlling DHCR24 gene expression. We analysed the proximal promoter region and the cholesterol-mediated regulation of DHCR24. A putative SRE (sterol-regulatory element) at −98/−90 bp of the transcription start site was identified. Other putative regulatory elements commonly found in SREBP (SRE-binding protein)-targeted genes were also identified. Sterol responsiveness was analysed by luciferase reporter assays of approximately 1 kb 5′-flanking region of the human DHCR24 gene in HepG2 and SK-N-MC cells. EMSAs (electrophoretic mobility-shift assays) and ChIP (chromatin immunoprecipitation) assays demonstrated cholesterol-dependent recruitment and binding of SREBPs to the putative SRE. Given the presence of several CACCC-boxes in the DHCR24 proximal promoter, we assessed the role of KLF5 (Krüppel-like factor 5) in androgen-regulated DHCR24 expression. DHT (dihydrotestosterone) increased DHCR24 expression synergistically with lovastatin. However, DHT was unable to activate the DHCR24 proximal promoter, whereas KLF5 did, indicating that this mechanism is not involved in the androgen-induced stimulation of DHCR24 expression. The results of the present study allow the elucidation of the mechanism of regulation of the DHCR24 gene by cholesterol availability and identification of other putative cis-acting elements which may be relevant for the regulation of DHCR24 expression.
Collapse
|
30
|
Kim HJ, Hong JM, Yoon KA, Kim N, Cho DW, Choi JY, Lee IK, Kim SY. Early growth response 2 negatively modulates osteoclast differentiation through upregulation of Id helix-loop-helix proteins. Bone 2012; 51:643-50. [PMID: 22842221 DOI: 10.1016/j.bone.2012.07.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 07/11/2012] [Accepted: 07/17/2012] [Indexed: 12/25/2022]
Abstract
Early growth response 2 (Egr2) is a zinc finger transcription factor that acts as an important modulator of various physiological processes. In this study, we show that Egr2 negatively regulates receptor activator of NF-κB ligand (RANKL)-induced osteoclast differentiation. The overexpression of Egr2 in bone marrow-derived macrophages (BMMs) suppresses the formation of multinuclear osteoclasts and the expression of osteoclastogenic markers, including nuclear factor of activated T cells c1 (NFATc1). On the other hand, Egr2 overexpression does not impact the phagocytic activity of osteoclast precursors or the expression of macrophage-specific markers in the presence of the osteoclastogenic stimuli, RANKL and M-CSF. We further demonstrate that Egr2 induces the expression of the inhibitors of differentiation/DNA binding (Ids) helix-loop-helix (HLH) transcription factors, which are important repressors in RANKL-mediated osteoclastogenesis. Egr2 transactivates the Id2 promoter and increases its recruitment to the Id2 promoter region. In addition, Egr2-dependent induction of Id2 promoter activity, and its binding to the Id2 promoter is abrogated by the overexpression of the Egr2 repressor, NGFI-A binding protein 2 (Nab2). Accordingly, coexpression with Nab2 restores Egr2-mediated suppression of osteoclast differentiation. Furthermore, knockdown of Egr2 using shRNA enhances osteoclastogenesis and decreases Id2 gene expression. Ectopic expression of Id2 reverses the phenotype mediated by Egr2 silencing. Taken together, our results identify Egr2 as an important modulator of RANKL-induced osteoclast differentiation and provide the link between RANKL, Egr2 and Id proteins in osteoclast-lineage cells.
Collapse
Affiliation(s)
- Hyun-Ju Kim
- Skeletal Diseases Genome Research Center, Kyungpook National University and Hospital, Daegu 700-412, Republic of Korea.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Xiao H, Shan L, Zhu H, Xue F. Detection of significant pathways in osteoporosis based on graph clustering. Mol Med Rep 2012; 6:1325-32. [PMID: 22992777 DOI: 10.3892/mmr.2012.1082] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 08/08/2012] [Indexed: 11/06/2022] Open
Abstract
Osteoporosis is the most common and serious skeletal disorder among the elderly, characterized by a low bone mineral density (BMD). Low bone mass in the elderly is highly dependent on their peak bone mass (PBM) as young adults. Circulating monocytes serve as early progenitors of osteoclasts and produce significant molecules for bone metabolism. An improved understanding of the biology and genetics of osteoclast differentiation at the pathway level is likely to be beneficial for the development of novel targeted approaches for osteoporosis. The objective of this study was to explore gene expression profiles comprehensively by grouping individual differentially expressed genes (DEGs) into gene sets and pathways using the graph clustering approach and Gene Ontology (GO) term enrichment analysis. The results indicated that the DEGs between high and low PBM samples were grouped into nine gene sets. The genes in clusters 1 and 8 (including GBP1, STAT1, CXCL10 and EIF2AK2) may be associated with osteoclast differentiation by the immune system response. The genes in clusters 2, 7 and 9 (including SOCS3, SOD2, ATF3, ADM EGR2 and BCL2A1) may be associated with osteoclast differentiation by responses to various stimuli. This study provides a number of candidate genes that warrant further investigation, including DDX60, HERC5, RSAD2, SIGLEC1, CMPK2, MX1, SEPING1, EPSTI1, C9orf72, PHLDA2, PFKFB3, PLEKHG2, ANKRD28, IL1RN and RNF19B.
Collapse
Affiliation(s)
- Haijun Xiao
- Department of Orthopedics, Fengxian Central Hospital, Shanghai 201400, P.R. China
| | | | | | | |
Collapse
|
32
|
Baniwal SK, Shah PK, Shi Y, Haduong JH, Declerck YA, Gabet Y, Frenkel B. Runx2 promotes both osteoblastogenesis and novel osteoclastogenic signals in ST2 mesenchymal progenitor cells. Osteoporos Int 2012; 23:1399-413. [PMID: 21881969 PMCID: PMC5771409 DOI: 10.1007/s00198-011-1728-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 06/28/2011] [Indexed: 12/19/2022]
Abstract
UNLABELLED We profiled the global gene expression of a bone marrow-derived mesenchymal pluripotent cell line in response to Runx2 expression. Besides osteoblast differentiation, Runx2 promoted the osteoclastogenesis of co-cultured splenocytes. This was attributable to the upregulation of many novel osteoclastogenic genes and the downregulation of anti-osteoclastogenic genes. INTRODUCTION In addition to being a master regulator for osteoblast differentiation, Runx2 controls osteoblast-driven osteoclastogenesis. Previous studies profiling gene expression during osteoblast differentiation had limited focus on Runx2 or paid little attention to its role in mediating osteoblast-driven osteoclastogenesis. METHODS ST2/Rx2(dox), a bone marrow-derived mesenchymal pluripotent cell line that expresses Runx2 in response to Doxycycline (Dox), was used to profile Runx2-induced gene expression changes. Runx2-induced osteoblast differentiation was assessed based on alkaline phosphatase staining and expression of classical marker genes. Osteoclastogenic potential was evaluated by TRAP staining of osteoclasts that differentiated from primary murine splenocytes co-cultured with the ST2/Rx2(dox) cells. The BeadChip™ platform (Illumina) was used to interrogate genome-wide expression changes in ST2/Rx2(dox) cultures after treatment with Dox or vehicle for 24 or 48 h. Expression of selected genes was also measured by RT-qPCR. RESULTS Dox-mediated Runx2 induction in ST2 cells stimulated their own differentiation along the osteoblast lineage and the differentiation of co-cultured splenocytes into osteoclasts. The latter was attributable to the stimulation of osteoclastogenic genes such as Sema7a, Ltc4s, Efnb1, Apcdd1, and Tnc as well as the inhibition of anti-osteoclastogenic genes such as Tnfrsf11b (OPG), Sema3a, Slco2b1, Ogn, Clec2d (Ocil), Il1rn, and Rspo2. CONCLUSION Direct control of osteoblast differentiation and concomitant indirect control of osteoclast differentiation, both through the activity of Runx2 in pre-osteoblasts, constitute a novel mechanism of coordination with a potential crucial role in coupling bone formation and resorption.
Collapse
Affiliation(s)
- S K Baniwal
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Postel-Vinay S, Véron AS, Tirode F, Pierron G, Reynaud S, Kovar H, Oberlin O, Lapouble E, Ballet S, Lucchesi C, Kontny U, González-Neira A, Picci P, Alonso J, Patino-Garcia A, de Paillerets BB, Laud K, Dina C, Froguel P, Clavel-Chapelon F, Doz F, Michon J, Chanock SJ, Thomas G, Cox DG, Delattre O. Common variants near TARDBP and EGR2 are associated with susceptibility to Ewing sarcoma. Nat Genet 2012; 44:323-7. [PMID: 22327514 DOI: 10.1038/ng.1085] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 12/22/2011] [Indexed: 01/23/2023]
Abstract
Ewing sarcoma, a pediatric tumor characterized by EWSR1-ETS fusions, is predominantly observed in populations of European ancestry. We performed a genome-wide association study (GWAS) of 401 French individuals with Ewing sarcoma, 684 unaffected French individuals and 3,668 unaffected individuals of European descent and living in the United States. We identified candidate risk loci at 1p36.22, 10q21 and 15q15. We replicated these loci in two independent sets of cases and controls. Joint analysis identified associations with rs9430161 (P = 1.4 × 10(-20); odds ratio (OR) = 2.2) located 25 kb upstream of TARDBP, rs224278 (P = 4.0 × 10(-17); OR = 1.7) located 5 kb upstream of EGR2 and, to a lesser extent, rs4924410 at 15q15 (P = 6.6 × 10(-9); OR = 1.5). The major risk haplotypes were less prevalent in Africans, suggesting that these loci could contribute to geographical differences in Ewing sarcoma incidence. TARDBP shares structural similarities with EWSR1 and FUS, which encode RNA binding proteins, and EGR2 is a target gene of EWSR1-ETS. Variants at these loci were associated with expression levels of TARDBP, ADO (encoding cysteamine dioxygenase) and EGR2.
Collapse
|
34
|
Gabet Y, Noh T, Lee C, Frenkel B. Developmentally regulated inhibition of cell cycle progression by glucocorticoids through repression of cyclin a transcription in primary osteoblast cultures. J Cell Physiol 2011; 226:991-8. [DOI: 10.1002/jcp.22412] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|