1
|
Pergel E, Tóth DJ, Baukál D, Veres I, Czirják G. The Ubiquitin Ligase Adaptor NDFIP1 Interacts with TRESK and Negatively Regulates the Background K + Current. Int J Mol Sci 2024; 25:8879. [PMID: 39201565 PMCID: PMC11355008 DOI: 10.3390/ijms25168879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
The TRESK (K2P18.1, KCNK18) background potassium channel is expressed in primary sensory neurons and has been reported to contribute to the regulation of pain sensations. In the present study, we examined the interaction of TRESK with NDFIP1 (Nedd4 family-interacting protein 1) in the Xenopus oocyte expression system by two-electrode voltage clamp and biochemical methods. We showed that the coexpression of NDFIP1 abolished the TRESK current under the condition where the other K+ channels were not affected. Mutations in the three PPxY motifs of NDFIP1, which are responsible for the interaction with the Nedd4 ubiquitin ligase, prevented a reduction in the TRESK current. Furthermore, the overexpression of a dominant-negative Nedd4 construct in the oocytes coexpressing TRESK with NDFIP1 partially reversed the down-modulating effect of the adaptor protein on the K+ current. The biochemical data were also consistent with the functional results. An interaction between epitope-tagged versions of TRESK and NDFIP1 was verified by co-immunoprecipitation experiments. The coexpression of NDFIP1 with TRESK induced the ubiquitination of the channel protein. Altogether, the results suggest that TRESK is directly controlled by and highly sensitive to the activation of the NDFIP1-Nedd4 system. The NDFIP1-mediated reduction in the TRESK component may induce depolarization, increase excitability, and attenuate the calcium dependence of the membrane potential by reducing the calcineurin-activated fraction in the ensemble background K+ current.
Collapse
Affiliation(s)
- Enikő Pergel
- Department of Physiology, Semmelweis University, 1094 Budapest, Hungary; (E.P.); (D.B.); (I.V.)
| | - Dániel J. Tóth
- Department of Physiology, Semmelweis University, 1094 Budapest, Hungary; (E.P.); (D.B.); (I.V.)
- HUN-REN-SU Molecular Physiology Research Group, Hungarian Research Network and Semmelweis University, 1094 Budapest, Hungary
| | - Dóra Baukál
- Department of Physiology, Semmelweis University, 1094 Budapest, Hungary; (E.P.); (D.B.); (I.V.)
| | - Irén Veres
- Department of Physiology, Semmelweis University, 1094 Budapest, Hungary; (E.P.); (D.B.); (I.V.)
| | - Gábor Czirják
- Department of Physiology, Semmelweis University, 1094 Budapest, Hungary; (E.P.); (D.B.); (I.V.)
| |
Collapse
|
2
|
Research progress on the role of Ndfip1 (Nedd4 family interacting protein 1) in immune cells. Allergol Immunopathol (Madr) 2023; 51:77-83. [PMID: 36617825 DOI: 10.15586/aei.v51i1.739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/23/2022] [Indexed: 01/03/2023]
Abstract
Nedd4 family interacting protein 1 (Ndfip1) was first mentioned in an article in 2000. Since its discovery, related studies have shown that this protein is associated with apoptosis, neuroprotection, substance transport, ubiquitination, and immune regulation. It is noteworthy that the lack of Ndfip1 can lead to death in fetal mice. Researchers generally believe that the function of Ndfip1 is closely related to individual immune capacity and have published a large number of articles. However, a comprehensive classification of the immune regulatory function of Ndfip1 is still lacking. In this review, we will overview and discuss this new perspective, focusing on the role of Ndfip1 in the proliferation, differentiation, and cell activity of CD4+ T cells, CD8+ T cells, mast cells, and eosinophils. This review provides an updated summary of Ndfip1, which will unveil novel therapeutic targets. Finally, the conclusion is that Ndfip1 mainly plays a negative regulatory role in immune cells by maintaining the stability of the immune response and limiting its overexpression.
Collapse
|
3
|
Farooq AU, Gembus K, Sandow JJ, Webb A, Mathivanan S, Manning JA, Shah SS, Foot NJ, Kumar S. K-29 linked ubiquitination of Arrdc4 regulates its function in extracellular vesicle biogenesis. J Extracell Vesicles 2022; 11:e12188. [PMID: 35106941 PMCID: PMC8807422 DOI: 10.1002/jev2.12188] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 12/14/2021] [Accepted: 01/02/2022] [Indexed: 12/04/2022] Open
Abstract
Extracellular vesicles (EVs) are important mediators of intercellular communication. However, EV biogenesis remains poorly understood. We previously defined a role for Arrdc4 (Arrestin domain containing protein 4), an adaptor for Nedd4 family ubiquitin ligases, in the biogenesis of EVs. Here we report that ubiquitination of Arrdc4 is critical for its role in EV secretion. We identified five potential ubiquitinated lysine residues in Arrdc4 using mass spectrometry. By analysing Arrdc4 lysine mutants we discovered that lysine 270 (K270) is critical for Arrdc4 function in EV biogenesis. Arrdc4K270R mutation caused a decrease in the number of EVs released by cells compared to Arrdc4WT , and a reduction in trafficking of divalent metal transporter (DMT1) into EVs. Furthermore, we also observed a decrease in DMT1 activity and an increase in its intracellular degradation in the presence of Arrdc4K270R . K270 was found to be ubiquitinated with K-29 polyubiquitin chains by the ubiquitin ligase Nedd4-2. Thus, our results uncover a novel role of K-29 polyubiquitin chains in Arrdc4-mediated EV biogenesis and protein trafficking.
Collapse
Affiliation(s)
- Ammara Usman Farooq
- Centre for Cancer BiologyUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Kelly Gembus
- Centre for Cancer BiologyUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | | | - Andrew Webb
- Walter and Eliza Hall InstituteParkvilleVictoriaAustralia
| | - Suresh Mathivanan
- La Trobe Institute for Molecular ScienceLa Trobe UniversityVictoriaAustralia
| | - Jantina A. Manning
- Centre for Cancer BiologyUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Sonia S. Shah
- Centre for Cancer BiologyUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Natalie J. Foot
- Centre for Cancer BiologyUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Sharad Kumar
- Centre for Cancer BiologyUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| |
Collapse
|
4
|
Traeger L, Wiegand SB, Sauer AJ, Corman BHP, Peneyra KM, Wunderer F, Fischbach A, Bagchi A, Malhotra R, Zapol WM, Bloch DB. UBA6 and NDFIP1 regulate the degradation of ferroportin. Haematologica 2021; 107:478-488. [PMID: 34320783 PMCID: PMC8804582 DOI: 10.3324/haematol.2021.278530] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Indexed: 11/17/2022] Open
Abstract
Hepcidin regulates iron homeostasis by controlling the level of ferroportin, the only membrane channel that facilitates export of iron from within cells. Binding of hepcidin to ferroportin induces the ubiquitination of ferroportin at multiple lysine residues and subsequently causes the internalization and degradation of the ligand-channel complex within lysosomes. The objective of this study was to identify components of the ubiquitin system that are involved in ferroportin degradation. A HepG2 cell line, which inducibly expresses ferroportingreen fluorescent protein (FPN-GFP), was established to test the ability of small interfering (siRNA) directed against components of the ubiquitin system to prevent BMP6- and exogenous hepcidin-induced ferroportin degradation. Of the 88 siRNA directed against components of the ubiquitin pathway that were tested, siRNA-mediated depletion of the alternative E1 enzyme UBA6 as well as the adaptor protein NDFIP1 prevented BMP6- and hepcidin-induced degradation of ferroportin in vitro. A third component of the ubiquitin pathway, ARIH1, indirectly inhibited ferroportin degradation by impairing BMP6-mediated induction of hepcidin. In mice, the AAV-mediated silencing of Ndfip1 in the murine liver increased the level of hepatic ferroportin and increased circulating iron. The results suggest that the E1 enzyme UBA6 and the adaptor protein NDFIP1 are involved in iron homeostasis by regulating the degradation of ferroportin. These specific components of the ubiquitin system may be promising targets for the treatment of iron-related diseases, including iron overload and anemia of inflammation.
Collapse
Affiliation(s)
- Lisa Traeger
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston.
| | - Steffen B Wiegand
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Andrew J Sauer
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Benjamin H P Corman
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Kathryn M Peneyra
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Florian Wunderer
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, United States; Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Goethe University, Frankfurt
| | - Anna Fischbach
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Aranya Bagchi
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Rajeev Malhotra
- Cardiovascular Research Center and the Cardiology Division of the Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Warren M Zapol
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Donald B Bloch
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, United States; Division of Rheumatology, Allergy and Immunology of the Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston.
| |
Collapse
|
5
|
Neu3 neuraminidase induction triggers intestinal inflammation and colitis in a model of recurrent human food-poisoning. Proc Natl Acad Sci U S A 2021; 118:2100937118. [PMID: 34266954 DOI: 10.1073/pnas.2100937118] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Intestinal inflammation is the underlying basis of colitis and the inflammatory bowel diseases. These syndromes originate from genetic and environmental factors that remain to be fully identified. Infections are possible disease triggers, including recurrent human food-poisoning by the common foodborne pathogen Salmonella enterica Typhimurium (ST), which in laboratory mice causes progressive intestinal inflammation leading to an enduring colitis. In this colitis model, disease onset has been linked to Toll-like receptor-4-dependent induction of intestinal neuraminidase activity, leading to the desialylation, reduced half-life, and acquired deficiency of anti-inflammatory intestinal alkaline phosphatase (IAP). Neuraminidase (Neu) inhibition protected against disease onset; however, the source and identity of the Neu enzyme(s) responsible remained unknown. Herein, we report that the mammalian Neu3 neuraminidase is responsible for intestinal IAP desialylation and deficiency. Absence of Neu3 thereby prevented the accumulation of lipopolysaccharide-phosphate and inflammatory cytokine expression in providing protection against the development of severe colitis.
Collapse
|
6
|
Xia M, Liang S, Li S, Ji M, Chen B, Zhang M, Dong C, Chen B, Gong W, Wen G, Zhan X, Zhang D, Li X, Zhou Y, Guan D, Verkhratsky A, Li B. Iatrogenic Iron Promotes Neurodegeneration and Activates Self-Protection of Neural Cells against Exogenous Iron Attacks. FUNCTION 2021; 2:zqab003. [PMID: 35330817 PMCID: PMC8788796 DOI: 10.1093/function/zqab003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 01/06/2023] Open
Abstract
Metal implants are used worldwide, with millions of nails, plates, and fixtures grafted during orthopedic surgeries. Iron is the most common element of these metal implants. As time passes, implants can be corroded and iron can be released. Ionized iron permeates the surrounding tissues and enters circulation; importantly, iron ions pass through the blood-brain barrier. Can iron from implants represent a risk factor for neurological diseases? This remains an unanswered question. In this study, we discovered that patients with metal implants delivered through orthopedic surgeries have higher incidence of Parkinson's disease or ischemic stroke compared to patients who underwent similar surgeries but did not have implants. Concentration of serum iron and ferritin was increased in subjects with metal implants. In experiments in vivo, we found that injection of iron dextran selectively decreased the presence of divalent metal transporter 1 (DMT1) in neurons through increasing the expression of Ndfip1, which degrades DMT1 and does not exist in glial cells. At the same time, excess of iron increased expression of DMT1 in astrocytes and microglial cells and triggered reactive astrogliosis and microgliosis. Facing the attack of excess iron, glial cells act as neuroprotectors to accumulate more extracellular iron by upregulating DMT1, whereas neurons limit iron uptake through increasing DMT1 degradation. Cerebral accumulation of iron in animals is associated with impaired cognition, locomotion, and mood. Excess iron from surgical implants thus can affect neural cells and may be regarded as a risk factor for neurodegeneration.
Collapse
Affiliation(s)
- Maosheng Xia
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, People’s Republic of China
- Department of Orthopaedics, The First Hospital, China Medical University, Shenyang, People’s Republic of China
| | - Shanshan Liang
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, People’s Republic of China
| | - Shuai Li
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, People’s Republic of China
| | - Ming Ji
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, People’s Republic of China
| | - Beina Chen
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, People’s Republic of China
| | - Manman Zhang
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, People’s Republic of China
| | - Chengyi Dong
- Department of Orthopaedics, The First Hospital, China Medical University, Shenyang, People’s Republic of China
| | - Binjie Chen
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, People’s Republic of China
| | - Wenliang Gong
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, People’s Republic of China
| | - Gehua Wen
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, People’s Republic of China
| | - Xiaoni Zhan
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, People’s Republic of China
| | - Dianjun Zhang
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, People’s Republic of China
| | - Xinyu Li
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, People’s Republic of China
| | - Yuefei Zhou
- Department of Orthopaedics, The First Hospital, China Medical University, Shenyang, People’s Republic of China
| | - Dawei Guan
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Alexei Verkhratsky
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, People’s Republic of China
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
- Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain
| | - Baoman Li
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, People’s Republic of China
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
| |
Collapse
|
7
|
Adaptors as the regulators of HECT ubiquitin ligases. Cell Death Differ 2021; 28:455-472. [PMID: 33402750 DOI: 10.1038/s41418-020-00707-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/04/2020] [Accepted: 11/04/2020] [Indexed: 12/15/2022] Open
Abstract
The HECT (homologous to E6AP C-terminus) ubiquitin ligases (E3s) are a small family of highly conserved enzymes involved in diverse cellular functions and pathological conditions. Characterised by a C-terminal HECT domain that accepts ubiquitin from E2 ubiquitin conjugating enzymes, these E3s regulate key signalling pathways. The activity and functional regulation of HECT E3s are controlled by several factors including post-translational modifications, inter- and intramolecular interactions and binding of co-activators and adaptor proteins. In this review, we focus on the regulation of HECT E3s by accessory proteins or adaptors and discuss various ways by which adaptors mediate their regulatory roles to affect physiological outcomes. We discuss common features that are conserved from yeast to mammals, regardless of the type of E3s as well as shed light on recent discoveries explaining some existing enigmas in the field.
Collapse
|
8
|
Control of Systemic Iron Homeostasis by the 3' Iron-Responsive Element of Divalent Metal Transporter 1 in Mice. Hemasphere 2020; 4:e459. [PMID: 33062942 PMCID: PMC7523796 DOI: 10.1097/hs9.0000000000000459] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/26/2020] [Indexed: 11/27/2022] Open
Abstract
Supplemental Digital Content is available in the text.
Collapse
|
9
|
Ingrassia R, Garavaglia B, Memo M. DMT1 Expression and Iron Levels at the Crossroads Between Aging and Neurodegeneration. Front Neurosci 2019; 13:575. [PMID: 31231185 PMCID: PMC6560079 DOI: 10.3389/fnins.2019.00575] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 05/20/2019] [Indexed: 12/15/2022] Open
Abstract
Iron homeostasis is an essential prerequisite for metabolic and neurological functions throughout the healthy human life, with a dynamic interplay between intracellular and systemic iron metabolism. The development of different neurodegenerative diseases is associated with alterations of the intracellular transport of iron and heavy metals, principally mediated by Divalent Metal Transporter 1 (DMT1), responsible for Non-Transferrin Bound Iron transport (NTBI). In addition, DMT1 regulation and its compartmentalization in specific brain regions play important roles during aging. This review highlights the contribution of DMT1 to the physiological exchange and distribution of body iron and heavy metals during aging and neurodegenerative diseases. DMT1 also mediates the crosstalk between central nervous system and peripheral tissues, by systemic diffusion through the Blood Brain Barrier (BBB), with the involvement of peripheral iron homeostasis in association with inflammation. In conclusion, a survey about the role of DMT1 and iron will illustrate the complex panel of interrelationship with aging, neurodegeneration and neuroinflammation.
Collapse
Affiliation(s)
- Rosaria Ingrassia
- Section of Biotechnologies, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Barbara Garavaglia
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Maurizio Memo
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
10
|
Zhao L, Bartnikas T, Chu X, Klein J, Yun C, Srinivasan S, He P. Hyperglycemia promotes microvillus membrane expression of DMT1 in intestinal epithelial cells in a PKCα-dependent manner. FASEB J 2018; 33:3549-3561. [PMID: 30423260 DOI: 10.1096/fj.201801855r] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Excessive iron increases the incidence of diabetes and worsens diabetic complications. Reciprocally, diabetes induces iron loading, partially attributable to elevated intestinal iron export according to a recent report. Herein, we show that iron uptake and the mRNA expression of iron importer divalent metal transporter 1 (DMT1) were significantly increased in the duodenum of streptozotocin-induced diabetic mice. Immunofluorescence staining of human intestinal biopsies revealed increased brush border membrane (BBM) and decreased cytoplasmic DMT1 expression in patients with diabetes, suggesting translocation of DMT1. This pattern of DMT1 regulation was corroborated by immunoblotting results in diabetic mice showing that BBM DMT1 expression was increased by 210%, in contrast to a 60% increase in total DMT1. PKC mediates many diabetic complications, and PKCα activity was increased in diabetic mouse intestine. Intriguingly, diabetic mice with PKCα deficiency did not show increases in iron uptake and BBM DMT1 expression. High-glucose treatment increased plasma membrane DMT1 expression via the activation of PKCα in cultured IECs. Inhibition of PKCα potentiated the ubiquitination and degradation of DMT1 protein. We further showed that high glucose suppressed membrane DMT1 internalization. These findings demonstrate that PKCα promotes microvillus membrane DMT1 expression and intestinal iron uptake, contributing to diabetic iron loading.-Zhao, L., Bartnikas, T., Chu, X., Klein, J., Yun, C., Srinivasan, S., He, P. Hyperglycemia promotes microvillus membrane expression of DMT1 in intestinal epithelial cells in a PKCα-dependent manner.
Collapse
Affiliation(s)
- Luqing Zhao
- Department of Gastroenterology, Beijing Hospital of Traditional Chinese Medicine Affiliated With Capital Medical University, Beijing, China.,Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Thomas Bartnikas
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | - Xiangpeng Chu
- Department of Thoracic Surgery, People's Hospital of Rizhao, Shandong, China
| | - Janet Klein
- Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA; and
| | - Chris Yun
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA.,Atlanta Veterans Administration Medical Center, Decatur, Georgia, USA
| | - Shanthi Srinivasan
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA.,Atlanta Veterans Administration Medical Center, Decatur, Georgia, USA
| | - Peijian He
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
11
|
Tian J, Zheng W, Li XL, Cui YH, Wang ZY. Lower Expression of Ndfip1 Is Associated With Alzheimer Disease Pathogenesis Through Decreasing DMT1 Degradation and Increasing Iron Influx. Front Aging Neurosci 2018; 10:165. [PMID: 29937728 PMCID: PMC6002492 DOI: 10.3389/fnagi.2018.00165] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/15/2018] [Indexed: 01/23/2023] Open
Abstract
We have previously reported that high expression of divalent metal transporter 1 (DMT1) plays a crucial role in iron dyshomeostasis and β-amyloid (Aβ) peptide generation in the brain of Alzheimer’s disease (AD). Recent studies have shown that Nedd4 family interacting protein 1 (Ndfip1) can degrade DMT1 through ubiquitination pathway and reduce the accumulation of intracellular iron. The present study aims to evaluate whether Ndfip1 is involved in AD pathogenesis through mediating DMT1 degradation and iron metabolism. β-amyloid precursor protein/presenilin 1 (APP/PS1) transgenic mouse and Ndfip1 transfected SH-SY5Y cells were used in this study. Immunohistochemistry and Western blot were performed to examine the distribution and expression levels of Ndfip1 and DMT1. In addition, ELISA and calcein fluorescence were carried out for analyzing the levels of Aβ peptide and iron influx, respectively. The results showed that Ndfip1 immunoreactivity was decreased in the cortex and hippocampus of APP/PS1 mice, compared with wild type (WT) controls. Colocalization of Ndfip1 and Aβ within senile plaques could be observed. Immunoblot analyses showed that low expression of Ndfip1 and high expression of DMT1 proteins were detected in APP/PS1 mouse brain, compared with age-matched WT animals. Overexpression of Ndfip1 down-regulated DMT1 expression, and reduced iron influx and Aβ secretion in SH-SY5Y cells. Further, overexpressed Ndfip1 significantly attenuated iron-induced cell damage in Ndfip1 transfected cells. The present study suggests that lower expression of Ndfip1 might be associated with the pathogenesis of AD, through decreasing DMT1 degradation and increasing iron accumulation in the brain.
Collapse
Affiliation(s)
- Juan Tian
- Institute of Health Sciences, Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, Shenyang, China.,Department of Histology and Embryology, Jinzhou Medical University, Jinzhou, China
| | - Wei Zheng
- Institute of Health Sciences, Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, Shenyang, China
| | - Xin-Lu Li
- Institute of Health Sciences, Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, Shenyang, China
| | - Yuan-Hong Cui
- Science and Technology Innovation System Construction Service Center of Liaoning Province, Shenyang, China
| | - Zhan-You Wang
- Institute of Health Sciences, Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, Shenyang, China
| |
Collapse
|
12
|
Yang WH, Heithoff DM, Aziz PV, Sperandio M, Nizet V, Mahan MJ, Marth JD. Recurrent infection progressively disables host protection against intestinal inflammation. Science 2018; 358:358/6370/eaao5610. [PMID: 29269445 DOI: 10.1126/science.aao5610] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 11/13/2017] [Indexed: 12/15/2022]
Abstract
Intestinal inflammation is the central pathological feature of colitis and the inflammatory bowel diseases. These syndromes arise from unidentified environmental factors. We found that recurrent nonlethal gastric infections of Gram-negative Salmonella enterica Typhimurium (ST), a major source of human food poisoning, caused inflammation of murine intestinal tissue, predominantly the colon, which persisted after pathogen clearance and irreversibly escalated in severity with repeated infections. ST progressively disabled a host mechanism of protection by inducing endogenous neuraminidase activity, which accelerated the molecular aging and clearance of intestinal alkaline phosphatase (IAP). Disease was linked to a Toll-like receptor 4 (TLR4)-dependent mechanism of IAP desialylation with accumulation of the IAP substrate and TLR4 ligand, lipopolysaccharide-phosphate. The administration of IAP or the antiviral neuraminidase inhibitor zanamivir was therapeutic by maintaining IAP abundance and function.
Collapse
Affiliation(s)
- Won Ho Yang
- Center for Nanomedicine, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.,Sanford Burnham Prebys Medical Discovery Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.,Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Douglas M Heithoff
- Center for Nanomedicine, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.,Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Peter V Aziz
- Center for Nanomedicine, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.,Sanford Burnham Prebys Medical Discovery Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.,Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Markus Sperandio
- Walter-Brendel-Centre for Experimental Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Victor Nizet
- Department of Pediatrics and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Michael J Mahan
- Center for Nanomedicine, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.,Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Jamey D Marth
- Center for Nanomedicine, University of California, Santa Barbara, Santa Barbara, CA 93106, USA. .,Sanford Burnham Prebys Medical Discovery Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.,Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
13
|
Daher R, Manceau H, Karim Z. Iron metabolism and the role of the iron-regulating hormone hepcidin in health and disease. Presse Med 2017; 46:e272-e278. [DOI: 10.1016/j.lpm.2017.10.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 09/26/2017] [Accepted: 10/04/2017] [Indexed: 02/06/2023] Open
|
14
|
Okazaki Y, Glass J. Protoporphyrin IX regulates peripheral benzodiazepine receptor associated protein 7 (PAP7) and divalent metal transporter 1 (DMT1) in K562 cells. Biochem Biophys Rep 2017; 10:26-31. [PMID: 28955733 PMCID: PMC5614651 DOI: 10.1016/j.bbrep.2017.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 02/17/2017] [Accepted: 02/25/2017] [Indexed: 11/28/2022] Open
Abstract
Background Protoporphyrin IX (PP IX), the immediate precursor to heme, combines with ferrous iron to make this product. The effects of exogenous PP IX on iron metabolism remain to be elucidated. Peripheral-type benzodiazepine receptor (PBR) is implicated in the transport of coproporphyrinogen into the mitochondria for conversion to PP IX. We have demonstrated that PBR-Associated Protein 7 (PAP7) bound to the Iron Responsive Element (IRE) isoform of divalent metal transporter 1 (DMT1). PP IX and PAP7 are ligands for PBR, thus, we hypothesized that PAP7 interact with PP IX via PBR. Methods We have examined in K562 cells, which can be induced to undergo erythroid differentiation by PP IX and hemin, the effects of PP IX on the expression of PAP7 and other proteins involved in cellular iron metabolism, transferrin receptor 1 (TfR1), DMT1, ferritin heavy chain (FTH), c-Myc and C/EBPα by western blot and quantitative real time PCR analyses. Results PP IX significantly decreased mRNA levels of DMT1 (IRE) and (non-IRE) from 4 h. PP IX markedly decreased protein levels of C/EBPα, PAP7 and DMT1. In contrast, hemin, which like PP IX also induces K562 cell differentiation, had no effect on PAP7 or DMT1 expression. Conclusion We hypothesize that PP IX binds to PBR displacing PAP7 protein, which is then degraded, decreasing the interaction of PAP7 with DMT1 (IRE) and resulting in increased turnover of DMT1. General significance These results suggest that exogenous PP IX disrupts iron metabolism by decreasing the protein expression levels of PAP7, DMT1 and C/EBPα. Protoporphyrin IX (PP IX) decreased protein levels of PAP7 and DMT1 in K562. PP IX decreased mRNA levels of DMT1 (IRE) and (non-IRE) isoforms in K562. PP IX decreased protein level of C/EBPα, which transcribes DMT1 mRNA, in K562.
Collapse
Affiliation(s)
- Yasumasa Okazaki
- Feist-Weiller Cancer Center and the Department of Medicine, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71130, USA
| | - Jonathan Glass
- Feist-Weiller Cancer Center and the Department of Medicine, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71130, USA
| |
Collapse
|
15
|
Trimpert C, Wesche D, de Groot T, Pimentel Rodriguez MM, Wong V, van den Berg DTM, Cheval L, Ariza CA, Doucet A, Stagljar I, Deen PMT. NDFIP allows NEDD4/NEDD4L-induced AQP2 ubiquitination and degradation. PLoS One 2017; 12:e0183774. [PMID: 28931009 PMCID: PMC5606929 DOI: 10.1371/journal.pone.0183774] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 08/10/2017] [Indexed: 12/13/2022] Open
Abstract
Regulation of our water homeostasis is fine-tuned by dynamic translocation of Aquaporin-2 (AQP2)-bearing vesicles to and from the plasma membrane of renal principal cells. Whereas binding of vasopressin to its type-2 receptor initiates a cAMP-protein kinase A cascade and AQP2 translocation to the apical membrane, this is counteracted by protein kinase C-activating hormones, resulting in ubiquitination-dependent internalization of AQP2. The proteins targeting AQP2 for ubiquitin-mediated degradation are unknown. In collecting duct mpkCCD cells, siRNA knockdown of NEDD4 and NEDD4L E3 ligases yielded increased AQP2 abundance, but they did not bind AQP2. Membrane Yeast Two-Hybrid assays using full-length AQP2 as bait, identified NEDD4 family interacting protein 2 (NDFIP2) to bind AQP2. NDFIP2 and its homologue NDFIP1 have PY motifs by which they bind NEDD4 family members and bring them close to target proteins. In HEK293 cells, NDFIP1 and NDFIP2 bound AQP2 and were essential for NEDD4/NEDD4L-mediated ubiquitination and degradation of AQP2, an effect not observed with PY-lacking NDFIP1/2 proteins. In mpkCCD cells, downregulation of NDFIP1, NEDD4 and NEDD4L, but not NDFIP2, increased AQP2 abundance. In mouse kidney, Ndfip1 and Ndfip2 mRNA distribution was similar and high in proximal tubules and collecting ducts, which was also found for NDFIP1 proteins. Our results reveal that NEDD4/NEDD4L mediate ubiquitination and degradation of AQP2, but that NDFIP proteins are needed to connect NEDD4/NEDD4L to AQP2. As NDFIP1/2 bind many NEDD4 family E3 ligases, which are implicated in several cellular processes, NDFIP1/2 may be the missing link for AQP2 ubiquitination and degradation from different subcellular locations.
Collapse
Affiliation(s)
- Christiane Trimpert
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Daniel Wesche
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Theun de Groot
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Martha M. Pimentel Rodriguez
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
- Donnelly Centre for Cellular and Biomolecular Research, Departments of Biochemistry and Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Victoria Wong
- Donnelly Centre for Cellular and Biomolecular Research, Departments of Biochemistry and Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | | | - Lydie Cheval
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Université Paris Descartes, Sorbonne Paris Cité, CNRS, Centre de Recherche des Cordeliers, Paris, France
| | - Carolina A. Ariza
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alain Doucet
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Université Paris Descartes, Sorbonne Paris Cité, CNRS, Centre de Recherche des Cordeliers, Paris, France
| | - Igor Stagljar
- Donnelly Centre for Cellular and Biomolecular Research, Departments of Biochemistry and Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Peter M. T. Deen
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
- * E-mail:
| |
Collapse
|
16
|
Abstract
Newly synthesized transmembrane proteins undergo a series of steps to ensure that only the required amount of correctly folded protein is localized to the membrane. The regulation of protein quality and its abundance at the membrane are often controlled by ubiquitination, a multistep enzymatic process that results in the attachment of ubiquitin, or chains of ubiquitin to the target protein. Protein ubiquitination acts as a signal for sorting, trafficking, and the removal of membrane proteins via endocytosis, a process through which multiple ubiquitin ligases are known to specifically regulate the functions of a number of ion channels, transporters, and signaling receptors. Endocytic removal of these proteins through ubiquitin-dependent endocytosis provides a way to rapidly downregulate the physiological outcomes, and defects in such controls are directly linked to human pathologies. Recent evidence suggests that ubiquitination is also involved in the shedding of membranes and associated proteins as extracellular vesicles, thereby not only controlling the cell surface levels of some membrane proteins, but also their potential transport to neighboring cells. In this review, we summarize the mechanisms and functions of ubiquitination of membrane proteins and provide specific examples of ubiquitin-dependent regulation of membrane proteins.
Collapse
Affiliation(s)
- Natalie Foot
- Centre for Cancer Biology, University of South Australia, Adelaide, Australia
| | - Tanya Henshall
- Centre for Cancer Biology, University of South Australia, Adelaide, Australia
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia, Adelaide, Australia
| |
Collapse
|
17
|
Regulation of divalent metal transporter-1 by serine phosphorylation. Biochem J 2016; 473:4243-4254. [PMID: 27681840 PMCID: PMC5103878 DOI: 10.1042/bcj20160674] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/22/2016] [Accepted: 09/28/2016] [Indexed: 01/14/2023]
Abstract
Divalent metal transporter-1 (DMT1) mediates dietary iron uptake across the intestinal mucosa and facilitates peripheral delivery of iron released by transferrin in the endosome. Here, we report that classical cannabinoids (Δ9-tetrahydrocannabinol, Δ9-THC), nonclassical cannabinoids (CP 55,940), aminoalkylindoles (WIN 55,212-2) and endocannabinoids (anandamide) reduce 55Fe and 54Mn uptake by HEK293T(DMT1) cells stably expressing the transporter. siRNA knockdown of cannabinoid receptor type 2 (CB2) abrogated inhibition. CB2 is a G-protein (GTP-binding protein)-coupled receptor that negatively regulates signal transduction cascades involving serine/threonine kinases. Immunoprecipitation experiments showed that DMT1 is serine-phosphorylated under basal conditions, but that treatment with Δ9-THC reduced phosphorylation. Site-directed mutation of predicted DMT1 phosphosites further showed that substitution of serine with alanine at N-terminal position 43 (S43A) abolished basal phosphorylation. Concordantly, both the rate and extent of 55Fe uptake in cells expressing DMT1(S43A) was reduced compared with those expressing wild-type DMT1. Among kinase inhibitors that affected DMT1-mediated iron uptake, staurosporine also reduced DMT1 phosphorylation confirming a role for serine phosphorylation in iron transport regulation. These combined data indicate that phosphorylation at serine 43 of DMT1 promotes transport activity, whereas dephosphorylation is associated with loss of iron uptake. Since anti-inflammatory actions mediated through CB2 would be associated with reduced DMT1 phosphorylation, we postulate that this pathway provides a means to reduce oxidative stress by limiting iron uptake.
Collapse
|
18
|
Regulation of the divalent metal ion transporter via membrane budding. Cell Discov 2016; 2:16011. [PMID: 27462458 PMCID: PMC4914834 DOI: 10.1038/celldisc.2016.11] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 02/28/2016] [Indexed: 12/19/2022] Open
Abstract
The release of extracellular vesicles (EVs) is important for both normal physiology and disease. However, a basic understanding of the targeting of EV cargoes, composition and mechanism of release is lacking. Here we present evidence that the divalent metal ion transporter (DMT1) is unexpectedly regulated through release in EVs. This process involves the Nedd4-2 ubiquitin ligase, and the adaptor proteins Arrdc1 and Arrdc4 via different budding mechanisms. We show that mouse gut explants release endogenous DMT1 in EVs. Although we observed no change in the relative amount of DMT1 released in EVs from gut explants in Arrdc1 or Arrdc4 deficient mice, the extent of EVs released was significantly reduced indicating an adaptor role in biogenesis. Furthermore, using Arrdc1 or Arrdc4 knockout mouse embryonic fibroblasts, we show that both Arrdc1 and Arrdc4 are non-redundant positive regulators of EV release. Our results suggest that DMT1 release from the plasma membrane into EVs may represent a novel mechanism for the maintenance of iron homeostasis, which may also be important for the regulation of other membrane proteins.
Collapse
|
19
|
Ndfip2 is a potential regulator of the iron transporter DMT1 in the liver. Sci Rep 2016; 6:24045. [PMID: 27048792 PMCID: PMC4822147 DOI: 10.1038/srep24045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/21/2016] [Indexed: 02/07/2023] Open
Abstract
The regulation of divalent metal ion transporter DMT1, the primary non-heme iron importer in mammals, is critical for maintaining iron homeostasis. Previously we identified ubiquitin-dependent regulation of DMT1 involving the Nedd4 family of ubiquitin ligases and the Ndfip1 and Ndfip2 adaptors. We also established the in vivo function of Ndfip1 in the regulation of DMT1 in the duodenum of mice. Here we have studied the function of Ndfip2 using Ndfip2-deficient mice. The DMT1 protein levels in the duodenum were comparable in wild type and Ndfip2−/− mice, as was the transport activity of isolated enterocytes. A complete blood examination showed no significant differences between wild type and Ndfip2−/− mice in any of the hematological parameters measured. However, when fed a low iron diet, female Ndfip2−/− mice showed a decrease in liver iron content, although they maintained normal serum iron levels and transferrin saturation, compared to wild type female mice that showed a reduction in serum iron and transferrin saturation. Ndfip2−/− female mice also showed an increase in DMT1 expression in the liver, with no change in male mice. We suggest that Ndfip2 controls DMT1 in the liver with female mice showing a greater response to altered dietary iron than the male mice.
Collapse
|
20
|
Boase NA, Kumar S. NEDD4: The founding member of a family of ubiquitin-protein ligases. Gene 2014; 557:113-22. [PMID: 25527121 DOI: 10.1016/j.gene.2014.12.020] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 12/01/2014] [Accepted: 12/10/2014] [Indexed: 01/31/2023]
Abstract
Ubiquitination plays a crucial role in regulating proteins post-translationally. The focus of this review is on NEDD4, the founding member of the NEDD4 family of ubiquitin ligases that is evolutionarily conserved in eukaryotes. Many potential substrates of NEDD4 have been identified and NEDD4 has been shown to play a critical role in the regulation of a number of membrane receptors, endocytic machinery components and the tumour suppressor PTEN. In this review we will discuss the diverse pathways in which NEDD4 is involved, and the patho-physiological significance of this important ubiquitin ligase.
Collapse
Affiliation(s)
- Natasha Anne Boase
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5001, Australia
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5001, Australia.
| |
Collapse
|
21
|
Lin C, Lin CN, Wang YC, Liu FY, Chien YW, Chuang YJ, Lan CY, Hsieh WP, Chen BS. Robustness analysis on interspecies interaction network for iron and glucose competition between Candida albicans and zebrafish during infection. BMC SYSTEMS BIOLOGY 2014; 8 Suppl 5:S6. [PMID: 25603810 PMCID: PMC4305985 DOI: 10.1186/1752-0509-8-s5-s6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Candida albicans has emerged as an important model organism for the study of infectious disease. Using high-throughput simultaneously quantified time-course transcriptomics, this study constructed host-pathogen interspecies interaction networks between C. albicans and zebrafish during the adhesion, invasion, and damage stages. Given that iron and glucose have been identified as crucial resources required during the infection process between C. albicans and zebrafish, we focused on the construction of the interspecies networks associated with them. Furthermore, a randomization technique was proposed to identify differentially regulated proteins that are statistically eminent for the three infection stages. The behaviors of the highly connected or differentially regulated proteins identified from the resulting networks were further investigated. "Robustness" is an important system property that measures the ability of the system tolerating the intrinsic perturbations in a dynamic network. This characteristic provides a systematic and quantitative view to elucidate the dynamics of iron and glucose competition in terms of the interspecies interaction networks. Here, we further estimated the robustness of our constructed interspecies interaction networks for the three infection stages. The constructed networks and robustness analysis provided significant insight into dynamic interactions related to iron and glucose competition during infection and enabled us to quantify the system's intrinsic perturbation tolerance ability during iron and glucose competition throughout the three infection stages. Moreover, the networks also assist in elucidating the offensive and defensive mechanisms of C. albicans and zebrafish during their competition for iron and glucose. Our proposed method can be easily extended to identify other such networks involved in the competition for essential resources during infection.
Collapse
|
22
|
Howitt J, Gysbers AM, Ayton S, Carew-Jones F, Putz U, Finkelstein DI, Halliday GM, Tan SS. Increased Ndfip1 in the substantia nigra of Parkinsonian brains is associated with elevated iron levels. PLoS One 2014; 9:e87119. [PMID: 24475238 PMCID: PMC3901732 DOI: 10.1371/journal.pone.0087119] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 12/19/2013] [Indexed: 12/04/2022] Open
Abstract
Iron misregulation is a central component in the neuropathology of Parkinson's disease. The iron transport protein DMT1 is known to be increased in Parkinson's brains linking functional transport mechanisms with iron accumulation. The regulation of DMT1 is therefore critical to the management of iron uptake in the disease setting. We previously identified post-translational control of DMT1 levels through a ubiquitin-mediated pathway led by Ndfip1, an adaptor for Nedd4 family of E3 ligases. Here we show that loss of Ndfip1 from mouse dopaminergic neurons resulted in misregulation of DMT1 levels and increased susceptibility to iron induced death. We report that in human Parkinson's brains increased iron concentrations in the substantia nigra are associated with upregulated levels of Ndfip1 in dopaminergic neurons containing α-synuclein deposits. Additionally, Ndfip1 was also found to be misexpressed in astrocytes, a cell type normally devoid of this protein. We suggest that in Parkinson's disease, increased iron levels are associated with increased Ndfip1 expression for the regulation of DMT1, including abnormal Ndfip1 activation in non-neuronal cell types such as astrocytes.
Collapse
Affiliation(s)
- Jason Howitt
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - Amanda M. Gysbers
- Neuroscience Research Australia and the University of New South Wales, Sydney, Australia
| | - Scott Ayton
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - Francine Carew-Jones
- Neuroscience Research Australia and the University of New South Wales, Sydney, Australia
| | - Ulrich Putz
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - David I. Finkelstein
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - Glenda M. Halliday
- Neuroscience Research Australia and the University of New South Wales, Sydney, Australia
| | - Seong-Seng Tan
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
- * E-mail:
| |
Collapse
|
23
|
Piper RC, Dikic I, Lukacs GL. Ubiquitin-dependent sorting in endocytosis. Cold Spring Harb Perspect Biol 2014; 6:6/1/a016808. [PMID: 24384571 DOI: 10.1101/cshperspect.a016808] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
When ubiquitin (Ub) is attached to membrane proteins on the plasma membrane, it directs them through a series of sorting steps that culminate in their delivery to the lumen of the lysosome where they undergo complete proteolysis. Ubiquitin is recognized by a series of complexes that operate at a number of vesicle transport steps. Ubiquitin serves as a sorting signal for internalization at the plasma membrane and is the major signal for incorporation into intraluminal vesicles of multivesicular late endosomes. The sorting machineries that catalyze these steps can bind Ub via a variety of Ub-binding domains. At the same time, many of these complexes are themselves ubiquitinated, thus providing a plethora of potential mechanisms to regulate their activity. Here we provide an overview of how membrane proteins are selected for ubiquitination and deubiquitination within the endocytic pathway and how that ubiquitin signal is interpreted by endocytic sorting machineries.
Collapse
Affiliation(s)
- Robert C Piper
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa 52242
| | | | | |
Collapse
|
24
|
Iron status and lipopolysaccharide regulate Ndfip1 by activation of nuclear factor-kappa B. Biometals 2013; 26:981-8. [DOI: 10.1007/s10534-013-9674-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 09/02/2013] [Indexed: 02/08/2023]
|
25
|
Scheffner M, Kumar S. Mammalian HECT ubiquitin-protein ligases: biological and pathophysiological aspects. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:61-74. [PMID: 23545411 DOI: 10.1016/j.bbamcr.2013.03.024] [Citation(s) in RCA: 217] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 02/18/2013] [Accepted: 03/22/2013] [Indexed: 10/27/2022]
Abstract
Members of the HECT family of E3 ubiquitin-protein ligases are characterized by a C-terminal HECT domain that catalyzes the covalent attachment of ubiquitin to substrate proteins and by N-terminal extensions of variable length and domain architecture that determine the substrate spectrum of a respective HECT E3. Since their discovery in 1995, it has become clear that deregulation of distinct HECT E3s plays an eminent role in human disease or disease-related processes including cancer, cardiovascular and neurological disorders, viral infections, and immune response. Thus, a detailed understanding of the structure-function aspects of HECT E3s as well as the identification and characterization of the substrates and regulators of HECT E3s is critical in developing new approaches in the treatment of respective diseases. In this review, we summarize what is currently known about mammalian HECT E3s, with a focus on their biological functions and roles in pathophysiology.This article is part of a Special Issue entitled: Ubiquitin-Proteasome System. Guest Editors: Thomas Sommer and Dieter H. Wolf.
Collapse
Affiliation(s)
- Martin Scheffner
- Department of Biology, Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany.
| | | |
Collapse
|
26
|
Bartnikas TB, Fleming MD, Schmidt PJ. Murine mutants in the study of systemic iron metabolism and its disorders: an update on recent advances. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1823:1444-50. [PMID: 22306267 PMCID: PMC3360922 DOI: 10.1016/j.bbamcr.2012.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 01/09/2012] [Accepted: 01/18/2012] [Indexed: 02/08/2023]
Abstract
Many past and recent advances in the field of iron metabolism have relied upon the use of mouse models of disease. These models have arisen spontaneously in breeder colonies or have been engineered for global or conditional ablation or overexpression of select genes. Full phenotypic characterization of these models typically involves maintenance on iron-loaded or -deficient diets, treatment with oxidative or hemolytic agents, breeding to other mutant lines or other stresses. In this review, we focus on systemic iron biology and the contributions that mouse model-based studies have made to the field. We have divided the field into three broad areas of research: dietary iron absorption, regulation of hepcidin expression and cellular iron metabolism. For each area, we begin with an overview of the current understanding of key molecular and cellular determinants then discuss recent advances. Finally, we conclude with brief comments on prospects for future study. This article is part of a Special Issue entitled: Cell Biology of Metals.
Collapse
|
27
|
Xue X, Taylor M, Anderson E, Hao C, Qu A, Greenson JK, Zimmermann EM, Gonzalez FJ, Shah YM. Hypoxia-inducible factor-2α activation promotes colorectal cancer progression by dysregulating iron homeostasis. Cancer Res 2012; 72:2285-93. [PMID: 22419665 DOI: 10.1158/0008-5472.can-11-3836] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hypoxia-inducible factor (HIF), a key modulator of the transcriptional response to hypoxia, is increased in colon cancer. However, the role of HIF in colon carcinogenesis in vivo remains unclear. In this study, we found that intestinal epithelium-specific disruption of the von Hippel-Lindau tumor suppressor protein (VHL) resulted in constitutive HIF signaling, and increased HIF expression augmented colon tumorigenesis in the Apc(min/+) intestinal tumor model. Intestine-specific disruption of Vhl increased colon tumor multiplicity and progression from adenomas to carcinomas. These effects were ameliorated in mice with double disruption of Vhl and HIF-2α. Activation of HIF signaling resulted in increased cell survival in normal colon tissue; however, tumor apoptosis was not affected. Interestingly, a robust activation of cyclin D1 was observed in tumors of Apc(min/+) mice in which HIF-2α was activated in the intestine. Consistent with this result, bromodeoxyuridine incorporation indicated that cellular proliferation was increased in colon tumors following HIF activation. Further analysis showed that dysregulation of the intestinal iron absorption transporter divalent metal transporter-1 (DMT-1) was a critical event in HIF-2α-mediated colon carcinogenesis. These data provide a mechanistic basis for the widely reported link between iron accumulation and colon cancer risk. Together, our findings show that a chronic increase in HIF-2α in the colon initiates protumorigenic signaling, which may have important implications in developing preventive and therapeutic strategies for colon cancer.
Collapse
Affiliation(s)
- Xiang Xue
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Thompson JW, Bruick RK. Protein degradation and iron homeostasis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1484-90. [PMID: 22349011 DOI: 10.1016/j.bbamcr.2012.02.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 02/01/2012] [Accepted: 02/03/2012] [Indexed: 12/21/2022]
Abstract
Regulation of both systemic and cellular iron homeostasis requires the capacity to sense iron levels and appropriately modify the expression of iron metabolism genes. These responses are coordinated through the efforts of several key regulatory factors including F-box and Leucine-rich Repeat Protein 5 (FBXL5), Iron Regulatory Proteins (IRPs), Hypoxia Inducible Factor (HIF), and ferroportin. Notably, the stability of each of these proteins is regulated in response to iron. Recent discoveries have greatly advanced our understanding of the molecular mechanisms governing iron-sensing and protein degradation within these pathways. It has become clear that iron's privileged roles in both enzyme catalysis and protein structure contribute to its regulation of protein stability. Moreover, these multiple pathways intersect with one another in larger regulatory networks to maintain iron homeostasis. This article is part of a Special Issue entitled: Cell Biology of Metals.
Collapse
Affiliation(s)
- Joel W Thompson
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | | |
Collapse
|
29
|
Garrick MD, Zhao L, Roth JA, Jiang H, Feng J, Foot NJ, Dalton H, Kumar S, Garrick LM. Isoform specific regulation of divalent metal (ion) transporter (DMT1) by proteasomal degradation. Biometals 2012; 25:787-93. [PMID: 22310887 DOI: 10.1007/s10534-012-9522-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Accepted: 01/09/2012] [Indexed: 11/24/2022]
Abstract
Divalent metal ion transporter (DMT1) is the major transporter for iron entrance into mammalian cells and iron exit from endosomes during the transferrin cycle. Four major mRNA isoforms correspond to four protein isoforms, differing at 5'/3' and N-/C-termini, respectively. Isoforms are designated 1A versus 1B reflecting where transcription starts or +iron responsive element (+IRE) versus -IRE reflecting the presence/absence of an IRE in the 3' end of the mRNA. These differences imply regulation at transcriptional and posttranscriptional levels. Many proteins are degraded by a ubiquitination-dependent mechanism. Two different ubiquitin ligases (E3s) appear to be involved in DMT1 ubiquitination: Parkin or neuronal precursor cell-expressed developmentally downregulated 4 (Nedd4) family E3s which often utilize Nedd4 family interacting protein-1 and -2 (Ndfip1 and 2) to ubiquitinate their substrate proteins. Prior data suggest that Parkin ubiquitinates 1B DMT1 but not 1A DMT1 while Nedd4/Ndfips ligate ubiquitin to DMT1 in the duodenum where 1A/+IRE DMT1 predominates. Our assay for whether these systems target DMT1 depends on two HEK293 cell lines that express permanently transfected 1A/+IRE DMT1 or 1B/-IRE DMT1 after induction by doxycycline. Transient transfection with a Parkin construct before induction diminishes 1B/-IRE DMT1 detected by immune-blots but not 1A/+IRE DMT1. Mutant Parkin serves as a control that does not affect DMT1 levels. Thus DMT1 regulation in an isoform specific fashion can occur by ubiquitination and the events involved have implications for DMT1 function and disease processes.
Collapse
Affiliation(s)
- Michael D Garrick
- Department of Biochemistry, University at Buffalo, Buffalo, NY, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Shawki A, Knight PB, Maliken BD, Niespodzany EJ, Mackenzie B. H(+)-coupled divalent metal-ion transporter-1: functional properties, physiological roles and therapeutics. CURRENT TOPICS IN MEMBRANES 2012. [PMID: 23177986 DOI: 10.1016/b978-0-12-394316-3.00005-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Divalent metal-ion transporter-1 (DMT1) is a widely expressed, iron-preferring membrane transport protein. Animal models establish that DMT1 plays indispensable roles in intestinal nonheme-iron absorption and iron acquisition by erythroid precursor cells. Rare mutations in human DMT1 result in severe microcytic-hypochromic anemia. When we express DMT1 in RNA-injected Xenopus oocytes, we observe rheogenic Fe(2+) transport that is driven by the proton electrochemical potential gradient. In that same preparation, DMT1 also transports cadmium and manganese but not copper. Whether manganese metabolism relies upon DMT1 remains unclear but DMT1 contributes to the effects of overexposure to cadmium and manganese in some tissues. There exist at least four DMT1 isoforms that arise from variant transcription of the SLC11A2 gene. Whereas these isoforms display identical functional properties, N- and C-terminal variations contain cues that direct the cell-specific targeting of DMT1 isoforms to discrete subcellular compartments (plasma membrane, endosomes, and lysosomes). An iron-responsive element (IRE) in the mRNA 3'-untranslated region permits the regulation of some isoforms by iron status, and additional mechanisms by which DMT1 is regulated are emerging. Natural-resistance-associated macrophage protein-1 (NRAMP1)-the only other member of the mammalian SLC11 gene family-contributes to antimicrobial function by extruding from the phagolysosome divalent metal ions (e.g. Mn(2+)) that may be essential cofactors for bacteria-derived enzymes or required for bacterial growth. The principal or only intestinal nonheme-iron transporter, DMT1 is a validated therapeutic target in hereditary hemochromatosis (HHC) and other iron-overload disorders.
Collapse
Affiliation(s)
- Ali Shawki
- Department of Molecular & Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | | | | | | | |
Collapse
|
31
|
|
32
|
De Domenico I, Lo E, Yang B, Korolnek T, Hamza I, Ward DM, Kaplan J. The role of ubiquitination in hepcidin-independent and hepcidin-dependent degradation of ferroportin. Cell Metab 2011; 14:635-46. [PMID: 22019085 PMCID: PMC3229915 DOI: 10.1016/j.cmet.2011.09.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 08/02/2011] [Accepted: 09/12/2011] [Indexed: 11/18/2022]
Abstract
The iron exporter ferroportin (Fpn) is essential to transfer iron from cells to plasma. Systemic iron homeostasis in vertebrates is regulated by the hepcidin-mediated internalization of Fpn. Here, we demonstrate a second route for Fpn internalization; when cytosolic iron levels are low, Fpn is internalized in a hepcidin-independent manner dependent upon the E3 ubiquitin ligase Nedd4-2 and the Nedd4-2 binding protein Nfdip-1. Retention of cell-surface Fpn through reductions in Nedd4-2 results in cell death through depletion of cytosolic iron. Nedd4-2 is also required for internalization of Fpn in the absence of ferroxidase activity as well as for the entry of hepcidin-induced Fpn into the multivesicular body. C. elegans lacks hepcidin genes, and C. elegans Fpn expressed in mammalian cells is not internalized by hepcidin but is internalized in response to iron deprivation in a Nedd4-2-dependent manner, supporting the hypothesis that Nedd4-2-induced internalization of Fpn is evolutionarily conserved.
Collapse
Affiliation(s)
- Ivana De Domenico
- Department of Internal Medicine, School of Medicine, University of Utah, Salt Lake City, Utah 84132
| | - Eric Lo
- Department of Pathology, School of Medicine, University of Utah, Salt Lake City, Utah 84132
| | - Baoli Yang
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Tamara Korolnek
- Departments of Animal & Avian Sciences and Cell Biology & Molecular Genetics, University of Maryland, College Park, Maryland 20742
| | - Iqbal Hamza
- Departments of Animal & Avian Sciences and Cell Biology & Molecular Genetics, University of Maryland, College Park, Maryland 20742
| | - Diane McVey Ward
- Department of Pathology, School of Medicine, University of Utah, Salt Lake City, Utah 84132
| | - Jerry Kaplan
- Department of Pathology, School of Medicine, University of Utah, Salt Lake City, Utah 84132
| |
Collapse
|
33
|
Lin Z, Fernández-Robledo JA, Cellier MFM, Vasta GR. The natural resistance-associated macrophage protein from the protozoan parasite Perkinsus marinus mediates iron uptake. Biochemistry 2011; 50:6340-55. [PMID: 21661746 DOI: 10.1021/bi200343h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Microbial pathogens succeed in acquiring essential metals such as iron and manganese despite their limited availability because of the host's immune response. The eukaryotic natural resistance-associated macrophage proteins mediate uptake of divalent metals and, during infection, may compete directly for metal acquisition with the pathogens' transporters. In this study, we characterize the Nramp gene family of Perkinsus marinus, an intracellular parasite of the eastern oyster, and through yeast complementation, we demonstrate for the first time for a protozoan parasite that Nramp imports environmental Fe. Three PmNramp isogenes differ in their exon-intron structures and encode transcripts that display a trans splicing leader at the 5' end. The protein sequences share conserved properties predicted for the Nramp/Solute carrier 11 (Slc11) family, such as 12-transmembrane segment (TMS) topology (N- and C-termini cytoplasmic) and preferential conservation of four TMS predicted to form a pseudosymmetric proton/metal symport pathway. Yeast fet3fet4 mutant complementation assays showed iron transport activity for PmNramp1 and a fusion chimera of the PmNramp3 hydrophobic core and PmNramp1 N- and C-termini. PmNramp1 site-directed mutagenesis demonstrated that Slc11 invariant and predicted pseudosymmetric motifs (TMS1 Asp-Pro-Gly and TMS6 Met-Pro-His) are key for transport function. PmNramp1 TMS1 mutants D76E, G78A, and D76E/G78A prevented membrane protein expression, while TMS6 M250A, H252Y, and M250A/H252Y specifically abrogated Fe uptake; the TMS6 H252Y mutation also correlates with divergence from Nramp specificity for divalent metals.
Collapse
Affiliation(s)
- Zhuoer Lin
- Department of Microbiology and Immunology, University of Maryland School of Medicine, IMET, 701 East Pratt Street, Suite 236, Baltimore, Maryland 21202-3101, USA
| | | | | | | |
Collapse
|