1
|
Romano L, Seu KG, Papoin J, Muench DE, Konstantinidis D, Olsson A, Schlum K, Chetal K, Chasis JA, Mohandas N, Barnes BJ, Zheng Y, Grimes HL, Salomonis N, Blanc L, Kalfa TA. Erythroblastic islands foster granulopoiesis in parallel to terminal erythropoiesis. Blood 2022; 140:1621-1634. [PMID: 35862735 PMCID: PMC9707396 DOI: 10.1182/blood.2022015724] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 06/26/2022] [Indexed: 12/14/2022] Open
Abstract
The erythroblastic island (EBI), composed of a central macrophage surrounded by maturing erythroblasts, is the erythroid precursor niche. Despite numerous studies, its precise composition is still unclear. Using multispectral imaging flow cytometry, in vitro island reconstitution, and single-cell RNA sequencing of adult mouse bone marrow (BM) EBI-component cells enriched by gradient sedimentation, we present evidence that the CD11b+ cells present in the EBIs are neutrophil precursors specifically associated with BM EBI macrophages, indicating that erythro-(myelo)-blastic islands are a site for terminal granulopoiesis and erythropoiesis. We further demonstrate that the balance between these dominant and terminal differentiation programs is dynamically regulated within this BM niche by pathophysiological states that favor granulopoiesis during anemia of inflammation and favor erythropoiesis after erythropoietin stimulation. Finally, by molecular profiling, we reveal the heterogeneity of EBI macrophages by cellular indexing of transcriptome and epitope sequencing of mouse BM EBIs at baseline and after erythropoietin stimulation in vivo and provide a searchable online viewer of these data characterizing the macrophage subsets serving as hematopoietic niches. Taken together, our findings demonstrate that EBIs serve a dual role as niches for terminal erythropoiesis and granulopoiesis and the central macrophages adapt to optimize production of red blood cells or neutrophils.
Collapse
Affiliation(s)
- Laurel Romano
- Division of Hematology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Katie G Seu
- Division of Hematology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Julien Papoin
- Laboratory of Developmental Erythropoiesis, Les Nelkin Memorial Laboratory of Pediatric Oncology, Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY
| | - David E Muench
- Immunology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company, San Diego, CA
| | | | | | - Katrina Schlum
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Kashish Chetal
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA
| | - Joel Anne Chasis
- Life Sciences Division, University of California, Lawrence Berkeley National Laboratory, Berkeley, CA
| | - Narla Mohandas
- Red Cell Physiology Laboratory, New York Blood Center, New York, NY
| | - Betsy J Barnes
- Department of Molecular Medicine and Pediatrics, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institutes for Medical Research, Manhasset, NY
| | - Yi Zheng
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - H Leighton Grimes
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Nathan Salomonis
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Lionel Blanc
- Laboratory of Developmental Erythropoiesis, Les Nelkin Memorial Laboratory of Pediatric Oncology, Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY
- Department of Molecular Medicine and Pediatrics, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY
| | - Theodosia A Kalfa
- Division of Hematology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| |
Collapse
|
2
|
Human Cord Blood and Bone Marrow CD34+ Cells Generate Macrophages That Support Erythroid Islands. PLoS One 2017; 12:e0171096. [PMID: 28135323 PMCID: PMC5279789 DOI: 10.1371/journal.pone.0171096] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 01/16/2017] [Indexed: 02/05/2023] Open
Abstract
Recently, we developed a small molecule responsive hyperactive Mpl-based Cell Growth Switch (CGS) that drives erythropoiesis associated with macrophages in the absence of exogenous cytokines. Here, we compare the physical, cellular and molecular interaction between the macrophages and erythroid cells in CGS expanded CD34+ cells harvested from cord blood, marrow or G-CSF-mobilized peripheral blood. Results indicated that macrophage based erythroid islands could be generated from cord blood and marrow CD34+ cells but not from G-CSF-mobilized CD34+ cells. Additional studies suggest that the deficiency resides with the G-CSF-mobilized CD34+ derived monocytes. Gene expression and proteomics studies of the in vitro generated erythroid islands detected the expression of erythroblast macrophage protein (EMP), intercellular adhesion molecule 4 (ICAM-4), CD163 and DNASE2. 78% of the erythroblasts in contact with macrophages reached the pre reticulocyte orthochromatic stage of differentiation within 14 days of culture. The addition of conditioned medium from cultures of CD146+ marrow fibroblasts resulted in a 700-fold increase in total cell number and a 90-fold increase in erythroid cell number. This novel CD34+ cell derived erythroid island may serve as a platform to explore the molecular basis of red cell maturation and production under normal, stress and pathological conditions.
Collapse
|