1
|
Atre T, Nguyen V, Chow V, Reid GSD, Vercauteren S. A Comparative Study of B Cell Blast Isolation Methods from Bone Marrow Aspirates of Pediatric Leukemia Patients. Biopreserv Biobank 2024. [PMID: 38686645 DOI: 10.1089/bio.2023.0133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
Density gradient centrifugation is a conventional technique widely utilized to isolate bone marrow mononuclear cells (BM-MNC) from bone marrow (BM) aspirates obtained from pediatric B-cell acute lymphoblastic leukemia (B-ALL) patients. Nevertheless, this technique achieves incomplete recovery of mononuclear cells and is relatively time-consuming and expensive. Given that B-ALL is the most common childhood malignancy, alternative methods for processing B-ALL samples may be more cost-effective. In this pilot study, we use several readouts, including immune phenotype, cell viability, and leukemia-initiating capacity in immune-deficient mice, to directly compare the density gradient centrifugation and buffy coat processing methods. Our findings indicate that buffy coat isolation yields comparable BM-MNC product in terms of both immune and leukemia cell content and could provide a viable, lower cost alternative for biobanks processing pediatric leukemia samples.
Collapse
Affiliation(s)
- Tanmaya Atre
- Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, Vancouver, Canada
| | - Vi Nguyen
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
- BC Children's Hospital BioBank, BC Children's Hospital, Vancouver, Canada
| | - Veronica Chow
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
- BC Children's Hospital BioBank, BC Children's Hospital, Vancouver, Canada
| | - Gregor S D Reid
- Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, Vancouver, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, Canada
| | - Suzanne Vercauteren
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
- BC Children's Hospital BioBank, BC Children's Hospital, Vancouver, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, Canada
- Division of Hematopathology, BC Children's Hospital, Vancouver, Canada
| |
Collapse
|
2
|
Chen GM, Chen CH, Perazzelli J, Grupp SA, Barrett DM, Tan K. Characterization of Leukemic Resistance to CD19-Targeted CAR T-cell Therapy through Deep Genomic Sequencing. Cancer Immunol Res 2023; 11:13-19. [PMID: 36255409 PMCID: PMC9808313 DOI: 10.1158/2326-6066.cir-22-0095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/27/2022] [Accepted: 10/12/2022] [Indexed: 01/07/2023]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy targeting CD19 has been a clinical breakthrough for pediatric B-cell acute lymphoblastic leukemia (B-ALL), and loss of the CD19 target antigen on leukemic cells represents a major mechanism of relapse. Previous studies have observed CD19 mutations specific to CD19- relapses, and we sought to clarify and strengthen this relationship using deep whole-exome sequencing in leukemic cells expanded in a patient-derived xenograft. By assessing pre-treatment and relapse cells from 13 patients treated with CAR T-cell therapy, 8 of whom developed CD19- relapse and 5 of whom developed CD19+ relapse, we demonstrate that relapse-specific single-nucleotide variants and small indels with high allele frequency combined with deletions in the CD19 gene in a manner specific to those patients with CD19- relapse. Before CAR T-cell infusion, one patient was found to harbor a pre-existing CD19 deletion in the context of genomic instability, which likely represented the first hit leading to the patient's subsequent CD19- relapse. Across patients, preexisting mutations and genomic instability were not significant predictors of subsequent CD19- relapse across patients, with sample size as a potential limiting factor. Together, our results clarify and strengthen the relationship between genomic events and CD19- relapse, demonstrating this intriguing mechanism of resistance to a targeted cancer immunotherapy.
Collapse
Affiliation(s)
- Gregory M. Chen
- Graduate Group in Genomics and Computational Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Chia-Hui Chen
- Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Jessica Perazzelli
- Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Stephan A. Grupp
- Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Pediatrics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David M. Barrett
- Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Pediatrics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kai Tan
- Graduate Group in Genomics and Computational Biology, University of Pennsylvania, Philadelphia, Pennsylvania.,Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Pediatrics, University of Pennsylvania, Philadelphia, Pennsylvania.,Corresponding Author: Kai Tan, University of Pennsylvania, 3501 Civic Center Boulevard, Philadelphia, PA 19104. Phone: 267-425-0050; E-mail:
| |
Collapse
|
3
|
Gökçe F, Kaestli A, Lohasz C, de Geus M, Kaltenbach H, Renggli K, Bornhauser B, Hierlemann A, Modena M. Microphysiological Drug-Testing Platform for Identifying Responses to Prodrug Treatment in Primary Leukemia. Adv Healthc Mater 2023; 12:e2202506. [PMID: 36651229 PMCID: PMC11469234 DOI: 10.1002/adhm.202202506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/20/2022] [Indexed: 01/19/2023]
Abstract
Despite increasing survival rates of pediatric leukemia patients over the past decades, the outcome of some leukemia subtypes has remained dismal. Drug sensitivity and resistance testing on patient-derived leukemia samples provide important information to tailor treatments for high-risk patients. However, currently used well-based drug screening platforms have limitations in predicting the effects of prodrugs, a class of therapeutics that require metabolic activation to become effective. To address this issue, a microphysiological drug-testing platform is developed that enables co-culturing of patient-derived leukemia cells, human bone marrow mesenchymal stromal cells, and human liver microtissues within the same microfluidic platform. This platform also enables to control the physical interaction between the diverse cell types. Herein, it is made possible to recapitulate hepatic prodrug activation of ifosfamide in their platform, which is very difficult in traditional well-based assays. By testing the susceptibility of primary patient-derived leukemia samples to the prodrug ifosfamide, sample-specific sensitivities to ifosfamide in primary leukemia samples are identified. The microfluidic platform is found to enable the recapitulation of physiologically relevant conditions and the testing of prodrugs including short-lived and unstable metabolites. The platform holds great potential for clinical translation and precision chemotherapy selection.
Collapse
Affiliation(s)
- Furkan Gökçe
- Department of Biosystems Science and EngineeringETH ZurichBaselBS, 4058Switzerland
| | - Alicia Kaestli
- Department of Biosystems Science and EngineeringETH ZurichBaselBS, 4058Switzerland
| | - Christian Lohasz
- Department of Biosystems Science and EngineeringETH ZurichBaselBS, 4058Switzerland
| | - Martina de Geus
- Department of Biosystems Science and EngineeringETH ZurichBaselBS, 4058Switzerland
| | | | - Kasper Renggli
- Department of Biosystems Science and EngineeringETH ZurichBaselBS, 4058Switzerland
| | - Beat Bornhauser
- Children's Research CenterUniversity Children's Hospital ZurichZurichZH, 8008Switzerland
| | - Andreas Hierlemann
- Department of Biosystems Science and EngineeringETH ZurichBaselBS, 4058Switzerland
| | - Mario Modena
- Department of Biosystems Science and EngineeringETH ZurichBaselBS, 4058Switzerland
| |
Collapse
|
4
|
Jeong H, Grimes K, Rauwolf KK, Bruch PM, Rausch T, Hasenfeld P, Benito E, Roider T, Sabarinathan R, Porubsky D, Herbst SA, Erarslan-Uysal B, Jann JC, Marschall T, Nowak D, Bourquin JP, Kulozik AE, Dietrich S, Bornhauser B, Sanders AD, Korbel JO. Functional analysis of structural variants in single cells using Strand-seq. Nat Biotechnol 2022:10.1038/s41587-022-01551-4. [PMID: 36424487 DOI: 10.1038/s41587-022-01551-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 10/07/2022] [Indexed: 11/27/2022]
Abstract
Somatic structural variants (SVs) are widespread in cancer, but their impact on disease evolution is understudied due to a lack of methods to directly characterize their functional consequences. We present a computational method, scNOVA, which uses Strand-seq to perform haplotype-aware integration of SV discovery and molecular phenotyping in single cells by using nucleosome occupancy to infer gene expression as a readout. Application to leukemias and cell lines identifies local effects of copy-balanced rearrangements on gene deregulation, and consequences of SVs on aberrant signaling pathways in subclones. We discovered distinct SV subclones with dysregulated Wnt signaling in a chronic lymphocytic leukemia patient. We further uncovered the consequences of subclonal chromothripsis in T cell acute lymphoblastic leukemia, which revealed c-Myb activation, enrichment of a primitive cell state and informed successful targeting of the subclone in cell culture, using a Notch inhibitor. By directly linking SVs to their functional effects, scNOVA enables systematic single-cell multiomic studies of structural variation in heterogeneous cell populations.
Collapse
Affiliation(s)
- Hyobin Jeong
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.,Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Republic of Korea
| | - Karen Grimes
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.,Faculty of Biosciences, EMBL and Heidelberg University, Heidelberg, Germany
| | - Kerstin K Rauwolf
- Division of Pediatric Oncology, University Children's Hospital, Zürich, Switzerland
| | - Peter-Martin Bruch
- Department of Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany.,Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, University of Heidelberg, Heidelberg, Germany.,Department of Hematology and Oncology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Tobias Rausch
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.,Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, University of Heidelberg, Heidelberg, Germany
| | - Patrick Hasenfeld
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Eva Benito
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Tobias Roider
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.,Department of Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany.,Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, University of Heidelberg, Heidelberg, Germany
| | | | - David Porubsky
- Center for Bioinformatics, Saarland University, Saarbrücken, Germany.,Max Planck Institute for Informatics, Saarbrücken, Germany.,Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Sophie A Herbst
- Department of Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany.,Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, University of Heidelberg, Heidelberg, Germany
| | - Büşra Erarslan-Uysal
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, University of Heidelberg, Heidelberg, Germany.,Department of Pediatric Oncology, Hematology, and Immunology, University of Heidelberg and Hopp Children's Cancer Center, Heidelberg, Germany
| | - Johann-Christoph Jann
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Heidelberg, Germany
| | - Tobias Marschall
- Institute for Medical Biometry and Bioinformatics, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Daniel Nowak
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Heidelberg, Germany
| | - Jean-Pierre Bourquin
- Division of Pediatric Oncology, University Children's Hospital, Zürich, Switzerland
| | - Andreas E Kulozik
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, University of Heidelberg, Heidelberg, Germany.,Department of Pediatric Oncology, Hematology, and Immunology, University of Heidelberg and Hopp Children's Cancer Center, Heidelberg, Germany
| | - Sascha Dietrich
- Department of Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany.,Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, University of Heidelberg, Heidelberg, Germany.,Department of Hematology and Oncology, University Hospital Düsseldorf, Düsseldorf, Germany.,Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Beat Bornhauser
- Division of Pediatric Oncology, University Children's Hospital, Zürich, Switzerland
| | - Ashley D Sanders
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany. .,Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany. .,Berlin Institute of Health (BIH), Berlin, Germany. .,Charité-Universitätsmedizin, Berlin, Germany.
| | - Jan O Korbel
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany. .,Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, University of Heidelberg, Heidelberg, Germany. .,Bridging Research Division on Mechanisms of Genomic Variation and Data Science, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
5
|
Michalek S, Goj T, Plazzo AP, Marovca B, Bornhauser B, Brunner T. LRH
‐1/
NR5A2
interacts with the glucocorticoid receptor to regulate glucocorticoid resistance. EMBO Rep 2022; 23:e54195. [PMID: 35801407 PMCID: PMC9442305 DOI: 10.15252/embr.202154195] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 11/09/2022] Open
Affiliation(s)
- Svenja Michalek
- Department of Biology, Biochemical Pharmacology University of Konstanz Konstanz Germany
- Konstanz Research School Chemical Biology KORS‐CB University of Konstanz Konstanz Germany
| | - Thomas Goj
- Department of Biology, Biochemical Pharmacology University of Konstanz Konstanz Germany
| | - Anna Pia Plazzo
- Department of Biology, Biochemical Pharmacology University of Konstanz Konstanz Germany
| | - Blerim Marovca
- Division of Oncology and Children's Research Centre University Children's Hospital Zurich Zurich Switzerland
| | - Beat Bornhauser
- Division of Oncology and Children's Research Centre University Children's Hospital Zurich Zurich Switzerland
| | - Thomas Brunner
- Department of Biology, Biochemical Pharmacology University of Konstanz Konstanz Germany
- Konstanz Research School Chemical Biology KORS‐CB University of Konstanz Konstanz Germany
| |
Collapse
|
6
|
Butler M, Vervoort BM, van Ingen Schenau DS, Jongeneel L, van der Zwet JC, Marke R, Meijerink JP, Scheijen B, van der Meer LT, van Leeuwen FN. Reversal of IKZF1-induced glucocorticoid resistance by dual targeting of AKT and ERK signaling pathways. Front Oncol 2022; 12:905665. [PMID: 36119546 PMCID: PMC9478899 DOI: 10.3389/fonc.2022.905665] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Although long-term survival in pediatric acute lymphoblastic leukemia (ALL) currently exceeds 90%, some subgroups, defined by specific genomic aberrations, respond poorly to treatment. We previously reported that leukemias harboring deletions or mutations affecting the B-cell transcription factor IKZF1 exhibit a tumor cell intrinsic resistance to glucocorticoids (GCs), one of the cornerstone drugs used in the treatment of ALL. Here, we identified increased activation of both AKT and ERK signaling pathways as drivers of GC resistance in IKZF1-deficient leukemic cells. Indeed, combined pharmacological inhibition of AKT and ERK signaling effectively reversed GC resistance in IKZF1-deficient leukemias. As inhibitors for both pathways are under clinical investigation, their combined use may enhance the efficacy of prednisolone-based therapy in this high-risk patient group.
Collapse
Affiliation(s)
- Miriam Butler
- Princess Maxima Center for Pediatric Oncology, Utrecht, Netherlands
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | | | | | | | | | - René Marke
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Blanca Scheijen
- Department of Pathology, Radboud University Medical Center, Nijmegen, Netherlands
- Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
| | | | - Frank N. van Leeuwen
- Princess Maxima Center for Pediatric Oncology, Utrecht, Netherlands
- *Correspondence: Frank N. van Leeuwen,
| |
Collapse
|
7
|
Benard BA, Leak LB, Azizi A, Thomas D, Gentles AJ, Majeti R. Clonal architecture predicts clinical outcomes and drug sensitivity in acute myeloid leukemia. Nat Commun 2021; 12:7244. [PMID: 34903734 PMCID: PMC8669028 DOI: 10.1038/s41467-021-27472-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 11/17/2021] [Indexed: 12/17/2022] Open
Abstract
The impact of clonal heterogeneity on disease behavior or drug response in acute myeloid leukemia remains poorly understood. Using a cohort of 2,829 patients, we identify features of clonality associated with clinical features and drug sensitivities. High variant allele frequency for 7 mutations (including NRAS and TET2) associate with dismal prognosis; elevated GATA2 variant allele frequency correlates with better outcomes. Clinical features such as white blood cell count and blast percentage correlate with the subclonal abundance of mutations such as TP53 and IDH1. Furthermore, patients with cohesin mutations occurring before NPM1, or transcription factor mutations occurring before splicing factor mutations, show shorter survival. Surprisingly, a branched pattern of clonal evolution is associated with superior clinical outcomes. Finally, several mutations (including NRAS and IDH1) predict drug sensitivity based on their subclonal abundance. Together, these results demonstrate the importance of assessing clonal heterogeneity with implications for prognosis and actionable biomarkers for therapy.
Collapse
Affiliation(s)
- Brooks A Benard
- Department of Medicine, Division of Hematology, Cancer Institute, Stanford University, Stanford, CA, USA
- Cancer Biology Program, Stanford University, Stanford, CA, USA
| | - Logan B Leak
- Cancer Biology Program, Stanford University, Stanford, CA, USA
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Armon Azizi
- Department of Medicine, Division of Hematology, Cancer Institute, Stanford University, Stanford, CA, USA
| | - Daniel Thomas
- Department of Medicine, Division of Hematology, Cancer Institute, Stanford University, Stanford, CA, USA
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Andrew J Gentles
- Department of Medicine (Biomedical Informatics/Quantitative Sciences unit), Stanford University, Stanford, CA, USA
| | - Ravindra Majeti
- Department of Medicine, Division of Hematology, Cancer Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
8
|
Butler M, van Ingen Schenau DS, Yu J, Jenni S, Dobay MP, Hagelaar R, Vervoort BMT, Tee TM, Hoff FW, Meijerink JP, Kornblau SM, Bornhauser B, Bourquin JP, Kuiper RP, van der Meer LT, van Leeuwen FN. BTK inhibition sensitizes acute lymphoblastic leukemia to asparaginase by suppressing the amino acid response pathway. Blood 2021; 138:2383-2395. [PMID: 34280258 PMCID: PMC8832462 DOI: 10.1182/blood.2021011787] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 07/02/2021] [Indexed: 11/20/2022] Open
Abstract
Asparaginase (ASNase) therapy has been a mainstay of acute lymphoblastic leukemia (ALL) protocols for decades and shows promise in the treatment of a variety of other cancers. To improve the efficacy of ASNase treatment, we used a CRISPR/Cas9-based screen to identify actionable signaling intermediates that improve the response to ASNase. Both genetic inactivation of Bruton's tyrosine kinase (BTK) and pharmacological inhibition by the BTK inhibitor ibrutinib strongly synergize with ASNase by inhibiting the amino acid response pathway, a mechanism involving c-Myc-mediated suppression of GCN2 activity. This synthetic lethal interaction was observed in 90% of patient-derived xenografts, regardless of the genomic subtype. Moreover, ibrutinib substantially improved ASNase treatment response in a murine PDX model. Hence, ibrutinib may be used to enhance the clinical efficacy of ASNase in ALL. This trial was registered at www.clinicaltrials.gov as # NCT02884453.
Collapse
Affiliation(s)
- Miriam Butler
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Laboratory of Pediatric Oncology, Department of Pediatrics, and
| | | | - Jiangyan Yu
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands Radboud University Medical Center, Nijmegen, The Netherlands
| | - Silvia Jenni
- Department of Pediatric Oncology, Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| | - Maria P Dobay
- Department of Pediatric Oncology, Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| | - Rico Hagelaar
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | | | - Trisha M Tee
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Fieke W Hoff
- Department of Leukemia and Department of Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston, TX
- Department of Pediatric Oncology/Hematology, Beatrix Children's Hospital University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; and
| | - Jules P Meijerink
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Steven M Kornblau
- Department of Leukemia and Department of Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston, TX
| | - Beat Bornhauser
- Department of Pediatric Oncology, Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| | - Jean-Pierre Bourquin
- Department of Pediatric Oncology, Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| | - Roland P Kuiper
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | |
Collapse
|
9
|
Rolf N, Liu LYT, Tsang A, Lange PF, Lim CJ, Maxwell CA, Vercauteren SM, Reid GSD. A cross-standardized flow cytometry platform to assess phenotypic stability in precursor B-cell acute lymphoblastic leukemia (B-ALL) xenografts. Cytometry A 2021; 101:57-71. [PMID: 34128309 PMCID: PMC9292200 DOI: 10.1002/cyto.a.24473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/07/2021] [Accepted: 06/10/2021] [Indexed: 11/17/2022]
Abstract
With the continued poor outcome of relapsed acute lymphoblastic leukemia (ALL), new patient‐specific approaches for disease progression monitoring and therapeutic intervention are urgently needed. Patient‐derived xenografts (PDX) of primary ALL in immune‐deficient mice have become a powerful tool for studying leukemia biology and therapy response. In PDX mice, the immunophenotype of the patient's leukemia is commonly believed to be stably propagated. In patients, however, the surface marker expression profile of the leukemic population often displays poorly understood immunophenotypic shifts during chemotherapy and ALL progression. We therefore developed a translational flow cytometry platform to study whether the patient‐specific immunophenotype is faithfully recapitulated in PDX mice. To enable valid assessment of immunophenotypic stability and subpopulation complexity of the patient's leukemia after xenotransplantation, we comprehensively immunophenotyped diagnostic B‐ALL from children and their matched PDX using identical, clinically standardized flow protocols and instrument settings. This cross‐standardized approach ensured longitudinal stability and cross‐platform comparability of marker expression intensity at high phenotyping depth. This analysis revealed readily detectable changes to the patient leukemia‐associated immunophenotype (LAIP) after xenotransplantation. To further investigate the mechanism underlying these complex immunophenotypic shifts, we applied an integrated analytical approach that combined clinical phenotyping depth and high analytical sensitivity with unbiased high‐dimensional algorithm‐based analysis. This high‐resolution analysis revealed that xenotransplantation achieves patient‐specific propagation of phenotypically stable B‐ALL subpopulations and that the immunophenotypic shifts observed at the level of bulk leukemia were consistent with changes in underlying subpopulation abundance. By incorporating the immunophenotypic complexity of leukemic populations, this novel cross‐standardized analytical platform could greatly expand the utility of PDX for investigating ALL progression biology and assessing therapies directed at eliminating relapse‐driving leukemic subpopulations.
Collapse
Affiliation(s)
- Nina Rolf
- Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lorraine Y T Liu
- Clinical Immunology Lab, Division of Hematopathology, BC Children's Hospital, Vancouver, British Columbia, Canada
| | - Angela Tsang
- Clinical Immunology Lab, Division of Hematopathology, BC Children's Hospital, Vancouver, British Columbia, Canada
| | - Philipp F Lange
- Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Chinten James Lim
- Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher A Maxwell
- Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Suzanne M Vercauteren
- Clinical Immunology Lab, Division of Hematopathology, BC Children's Hospital, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Gregor S D Reid
- Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
10
|
González-Gil C, Ribera J, Ribera JM, Genescà E. The Yin and Yang-Like Clinical Implications of the CDKN2A/ARF/CDKN2B Gene Cluster in Acute Lymphoblastic Leukemia. Genes (Basel) 2021; 12:genes12010079. [PMID: 33435487 PMCID: PMC7827355 DOI: 10.3390/genes12010079] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 12/13/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is a malignant clonal expansion of lymphoid hematopoietic precursors that exhibit developmental arrest at varying stages of differentiation. Similar to what occurs in solid cancers, transformation of normal hematopoietic precursors is governed by a multistep oncogenic process that drives initiation, clonal expansion and metastasis. In this process, alterations in genes encoding proteins that govern processes such as cell proliferation, differentiation, and growth provide us with some of the clearest mechanistic insights into how and why cancer arises. In such a scenario, deletions in the 9p21.3 cluster involving CDKN2A/ARF/CDKN2B genes arise as one of the oncogenic hallmarks of ALL. Deletions in this region are the most frequent structural alteration in T-cell acute lymphoblastic leukemia (T-ALL) and account for roughly 30% of copy number alterations found in B-cell-precursor acute lymphoblastic leukemia (BCP-ALL). Here, we review the literature concerning the involvement of the CDKN2A/B genes as a prognosis marker of good or bad response in the two ALL subtypes (BCP-ALL and T-ALL). We compare frequencies observed in studies performed on several ALL cohorts (adult and child), which mainly consider genetic data produced by genomic techniques. We also summarize what we have learned from mouse models designed to evaluate the functional involvement of the gene cluster in ALL development and in relapse/resistance to treatment. Finally, we examine the range of possibilities for targeting the abnormal function of the protein-coding genes of this cluster and their potential to act as anti-leukemic agents in patients.
Collapse
Affiliation(s)
- Celia González-Gil
- Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona (UAB), 08916 Badalona, Spain; (C.G.-G.); (J.R.); (J.M.R.)
| | - Jordi Ribera
- Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona (UAB), 08916 Badalona, Spain; (C.G.-G.); (J.R.); (J.M.R.)
| | - Josep Maria Ribera
- Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona (UAB), 08916 Badalona, Spain; (C.G.-G.); (J.R.); (J.M.R.)
- Clinical Hematology Department, ICO-Hospital Germans Trias i Pujol, 08916 Badalona, Spain
| | - Eulàlia Genescà
- Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona (UAB), 08916 Badalona, Spain; (C.G.-G.); (J.R.); (J.M.R.)
- Correspondence: ; Tel.: +34-93-557-28-08
| |
Collapse
|
11
|
Forde S, Matthews JD, Jahangiri L, Lee LC, Prokoph N, Malcolm TIM, Giger OT, Bell N, Blair H, O'Marcaigh A, Smith O, Kenner L, Bomken S, Burke GAA, Turner SD. Paediatric Burkitt lymphoma patient-derived xenografts capture disease characteristics over time and are a model for therapy. Br J Haematol 2021; 192:354-365. [PMID: 32880915 DOI: 10.1111/bjh.17043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/26/2020] [Indexed: 12/28/2022]
Abstract
Burkitt lymphoma (BL) accounts for almost two-thirds of all B-cell non-Hodgkin lymphoma (B-NHL) in children and adolescents and is characterised by a MYC translocation and rapid cell turnover. Intensive chemotherapeutic regimens have been developed in recent decades, including the lymphomes malins B (LMB) protocol, which have resulted in a survival rate in excess of 90%. Recent clinical trials have focused on immunochemotherapy, with the addition of rituximab to chemotherapeutic backbones, showing encouraging results. Despite these advances, relapse and refractory disease occurs in up to 10% of patients and salvage options for these carry a dismal prognosis. Efforts to better understand the molecular and functional characteristics driving relapse and refractory disease may help improve this prognosis. This study has established a paediatric BL patient-derived xenograft (PDX) resource which captures and maintains tumour heterogeneity, may be used to better characterise tumours and identify cell populations responsible for therapy resistance.
Collapse
Affiliation(s)
- Sorcha Forde
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Jamie D Matthews
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Leila Jahangiri
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge, UK.,Department of Life Sciences, Birmingham City University, Birmingham, UK
| | - Liam C Lee
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Nina Prokoph
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Tim I M Malcolm
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Olivier T Giger
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Natalie Bell
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Helen Blair
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | | | - Owen Smith
- Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Lukas Kenner
- Department of Pathology, Medical University of Vienna, Vienna, Austria.,Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, Austria.,Christian Doppler Laboratory for Applied Metabolomics, Vienna, Austria
| | - Simon Bomken
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.,The Great North Children's Hospital, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.,Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - Gladstone A A Burke
- Department of Paediatric Oncology and Haematology, Addenbrooke's Hospital, Cambridge, UK
| | - Suzanne D Turner
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge, UK.,Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| |
Collapse
|
12
|
Aguadé-Gorgorió J, McComb S, Eckert C, Guinot A, Marovca B, Mezzatesta C, Jenni S, Abduli L, Schrappe M, Dobay MP, Stanulla M, von Stackelberg A, Cario G, Bourquin JP, Bornhauser BC. TNFR2 is required for RIP1-dependent cell death in human leukemia. Blood Adv 2020; 4:4823-4833. [PMID: 33027529 PMCID: PMC7556136 DOI: 10.1182/bloodadvances.2019000796] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 08/19/2020] [Indexed: 12/16/2022] Open
Abstract
Despite major advances in the treatment of patients with acute lymphoblastic leukemia in the last decades, refractory and/or relapsed disease remains a clinical challenge, and relapsed leukemia patients have an exceedingly dismal prognosis. Dysregulation of apoptotic cell death pathways is a leading cause of drug resistance; thus, alternative cell death mechanisms, such as necroptosis, represent an appealing target for the treatment of high-risk malignancies. We and other investigators have shown that activation of receptor interacting protein kinase 1 (RIP1)-dependent apoptosis and necroptosis by second mitochondria derived activator of caspase mimetics (SMs) is an attractive antileukemic strategy not currently exploited by standard chemotherapy. However, the underlying molecular mechanisms that determine sensitivity to SMs have remained elusive. We show that tumor necrosis factor receptor 2 (TNFR2) messenger RNA expression correlates with sensitivity to SMs in primary human leukemia. Functional genetic experiments using clustered regularly interspaced short palindromic repeats/Cas9 demonstrate that TNFR2 and TNFR1, but not the ligand TNF-α, are essential for the response to SMs, revealing a ligand-independent interplay between TNFR1 and TNFR2 in the induction of RIP1-dependent cell death. Further potential TNFR ligands, such as lymphotoxins, were not required for SM sensitivity. Instead, TNFR2 promotes the formation of a RIP1/TNFR1-containing death signaling complex that induces RIP1 phosphorylation and RIP1-dependent apoptosis and necroptosis. Our data reveal an alternative paradigm for TNFR2 function in cell death signaling and provide a rationale to develop strategies for the identification of leukemias with vulnerability to RIP1-dependent cell death for tailored therapeutic interventions.
Collapse
Affiliation(s)
- Júlia Aguadé-Gorgorió
- Department of Oncology and Children's Research Centre, University Children's Hospital Zurich, Zürich, Switzerland
| | - Scott McComb
- Department of Oncology and Children's Research Centre, University Children's Hospital Zurich, Zürich, Switzerland
| | - Cornelia Eckert
- Department of Pediatric Oncology/Hematology, Charité Medical University Berlin, Berlin, Germany
| | - Anna Guinot
- Department of Oncology and Children's Research Centre, University Children's Hospital Zurich, Zürich, Switzerland
| | - Blerim Marovca
- Department of Oncology and Children's Research Centre, University Children's Hospital Zurich, Zürich, Switzerland
| | - Caterina Mezzatesta
- Department of Oncology and Children's Research Centre, University Children's Hospital Zurich, Zürich, Switzerland
| | - Silvia Jenni
- Department of Oncology and Children's Research Centre, University Children's Hospital Zurich, Zürich, Switzerland
| | - Liridon Abduli
- Department of Oncology and Children's Research Centre, University Children's Hospital Zurich, Zürich, Switzerland
| | - Martin Schrappe
- Department of General Pediatrics, University Hospital Schleswig-Holstein, Kiel, Germany; and
| | - Maria Pamela Dobay
- Department of Oncology and Children's Research Centre, University Children's Hospital Zurich, Zürich, Switzerland
| | - Martin Stanulla
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Arend von Stackelberg
- Department of Pediatric Oncology/Hematology, Charité Medical University Berlin, Berlin, Germany
| | - Gunnar Cario
- Department of General Pediatrics, University Hospital Schleswig-Holstein, Kiel, Germany; and
| | - Jean-Pierre Bourquin
- Department of Oncology and Children's Research Centre, University Children's Hospital Zurich, Zürich, Switzerland
| | - Beat C Bornhauser
- Department of Oncology and Children's Research Centre, University Children's Hospital Zurich, Zürich, Switzerland
| |
Collapse
|
13
|
Erarslan-Uysal B, Kunz JB, Rausch T, Richter-Pechańska P, van Belzen IA, Frismantas V, Bornhauser B, Ordoñez-Rueada D, Paulsen M, Benes V, Stanulla M, Schrappe M, Cario G, Escherich G, Bakharevich K, Kirschner-Schwabe R, Eckert C, Loukanov T, Gorenflo M, Waszak SM, Bourquin JP, Muckenthaler MU, Korbel JO, Kulozik AE. Chromatin accessibility landscape of pediatric T-lymphoblastic leukemia and human T-cell precursors. EMBO Mol Med 2020; 12:e12104. [PMID: 32755029 PMCID: PMC7507092 DOI: 10.15252/emmm.202012104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 06/19/2020] [Accepted: 06/24/2020] [Indexed: 01/11/2023] Open
Abstract
We aimed at identifying the developmental stage at which leukemic cells of pediatric T-ALLs are arrested and at defining leukemogenic mechanisms based on ATAC-Seq. Chromatin accessibility maps of seven developmental stages of human healthy T cells revealed progressive chromatin condensation during T-cell maturation. Developmental stages were distinguished by 2,823 signature chromatin regions with 95% accuracy. Open chromatin surrounding SAE1 was identified to best distinguish thymic developmental stages suggesting a potential role of SUMOylation in T-cell development. Deconvolution using signature regions revealed that T-ALLs, including those with mature immunophenotypes, resemble the most immature populations, which was confirmed by TF-binding motif profiles. We integrated ATAC-Seq and RNA-Seq and found DAB1, a gene not related to leukemia previously, to be overexpressed, abnormally spliced and hyper-accessible in T-ALLs. DAB1-negative patients formed a distinct subgroup with particularly immature chromatin profiles and hyper-accessible binding sites for SPI1 (PU.1), a TF crucial for normal T-cell maturation. In conclusion, our analyses of chromatin accessibility and TF-binding motifs showed that pediatric T-ALL cells are most similar to immature thymic precursors, indicating an early developmental arrest.
Collapse
Affiliation(s)
- Büşra Erarslan-Uysal
- Department of Pediatric Oncology, Hematology, and Immunology, University of Heidelberg, Heidelberg, Germany.,Hopp Children's Cancer Center (KiTZ) Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Joachim B Kunz
- Department of Pediatric Oncology, Hematology, and Immunology, University of Heidelberg, Heidelberg, Germany.,Hopp Children's Cancer Center (KiTZ) Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.,German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Tobias Rausch
- Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.,Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.,Genomics Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Paulina Richter-Pechańska
- Department of Pediatric Oncology, Hematology, and Immunology, University of Heidelberg, Heidelberg, Germany.,Hopp Children's Cancer Center (KiTZ) Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Ianthe Aem van Belzen
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Viktoras Frismantas
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Beat Bornhauser
- Division of Pediatric Oncology, University Children's Hospital, Zürich, Switzerland
| | - Diana Ordoñez-Rueada
- Flow Cytometry Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Malte Paulsen
- Flow Cytometry Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Vladimir Benes
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Martin Stanulla
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Martin Schrappe
- Department of Pediatrics, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Gunnar Cario
- Department of Pediatrics, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Gabriele Escherich
- Clinic of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kseniya Bakharevich
- Clinic of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Renate Kirschner-Schwabe
- Department of Pediatric Oncology/Hematology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Cornelia Eckert
- Department of Pediatric Oncology/Hematology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Tsvetomir Loukanov
- Department of Cardiac Surgery, University of Heidelberg, Heidelberg, Germany
| | - Matthias Gorenflo
- Department of Pediatric Cardiology and Congenital Heart Diseases, University of Heidelberg, Heidelberg, Germany
| | - Sebastian M Waszak
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Jean-Pierre Bourquin
- Division of Pediatric Oncology, University Children's Hospital, Zürich, Switzerland
| | - Martina U Muckenthaler
- Department of Pediatric Oncology, Hematology, and Immunology, University of Heidelberg, Heidelberg, Germany.,Hopp Children's Cancer Center (KiTZ) Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Jan O Korbel
- Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.,Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Andreas E Kulozik
- Department of Pediatric Oncology, Hematology, and Immunology, University of Heidelberg, Heidelberg, Germany.,Hopp Children's Cancer Center (KiTZ) Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| |
Collapse
|
14
|
Gauert A, Olk N, Pimentel-Gutiérrez H, Astrahantseff K, Jensen LD, Cao Y, Eggert A, Eckert C, Hagemann AI. Fast, In Vivo Model for Drug-Response Prediction in Patients with B-Cell Precursor Acute Lymphoblastic Leukemia. Cancers (Basel) 2020; 12:cancers12071883. [PMID: 32668722 PMCID: PMC7408814 DOI: 10.3390/cancers12071883] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/15/2022] Open
Abstract
Only half of patients with relapsed B-cell precursor (BCP) acute lymphoblastic leukemia (ALL) currently survive with standard treatment protocols. Predicting individual patient responses to defined drugs prior to application would help therapy stratification and could improve survival. With the purpose to aid personalized targeted treatment approaches, we developed a human–zebrafish xenograft (ALL-ZeFiX) assay to predict drug response in a patient in 5 days. Leukemia blast cells were pericardially engrafted into transiently immunosuppressed Danio rerio embryos, and engrafted embryos treated for the test case, venetoclax, before single-cell dissolution for quantitative whole blast cell analysis. Bone marrow blasts from patients with newly diagnosed or relapsed BCP-ALL were successfully expanded in 60% of transplants in immunosuppressed zebrafish embryos. The response of BCP-ALL cell lines to venetoclax in ALL-ZeFiX assays mirrored responses in 2D cultures. Venetoclax produced varied responses in patient-derived BCP-ALL grafts, including two results mirroring treatment responses in two refractory BCP-ALL patients treated with venetoclax. Here we demonstrate proof-of-concept for our 5-day ALL-ZeFiX assay with primary patient blasts and the test case, venetoclax, which after expanded testing for further targeted drugs could support personalized treatment decisions within the clinical time window for decision-making.
Collapse
Affiliation(s)
- Anton Gauert
- Department of Hematology/Oncology, Charité–Universitätsmedizin Berlin, 13353 Berlin, Germany; (A.G.); (N.O.); (H.P.-G.); (K.A.); (A.E.); (C.E.)
| | - Nadine Olk
- Department of Hematology/Oncology, Charité–Universitätsmedizin Berlin, 13353 Berlin, Germany; (A.G.); (N.O.); (H.P.-G.); (K.A.); (A.E.); (C.E.)
| | - Helia Pimentel-Gutiérrez
- Department of Hematology/Oncology, Charité–Universitätsmedizin Berlin, 13353 Berlin, Germany; (A.G.); (N.O.); (H.P.-G.); (K.A.); (A.E.); (C.E.)
- German Cancer Consortium (DKTK)—German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Kathy Astrahantseff
- Department of Hematology/Oncology, Charité–Universitätsmedizin Berlin, 13353 Berlin, Germany; (A.G.); (N.O.); (H.P.-G.); (K.A.); (A.E.); (C.E.)
| | - Lasse D. Jensen
- Department of Health, Medical and Caring Sciences, Linköping University, 58183 Linköping, Sweden;
| | - Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17165 Stockholm, Sweden;
| | - Angelika Eggert
- Department of Hematology/Oncology, Charité–Universitätsmedizin Berlin, 13353 Berlin, Germany; (A.G.); (N.O.); (H.P.-G.); (K.A.); (A.E.); (C.E.)
- German Cancer Consortium (DKTK)—German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Cornelia Eckert
- Department of Hematology/Oncology, Charité–Universitätsmedizin Berlin, 13353 Berlin, Germany; (A.G.); (N.O.); (H.P.-G.); (K.A.); (A.E.); (C.E.)
- German Cancer Consortium (DKTK)—German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Anja I.H. Hagemann
- Department of Hematology/Oncology, Charité–Universitätsmedizin Berlin, 13353 Berlin, Germany; (A.G.); (N.O.); (H.P.-G.); (K.A.); (A.E.); (C.E.)
- Correspondence:
| |
Collapse
|
15
|
Mezzatesta C, Abduli L, Guinot A, Eckert C, Schewe D, Zaliova M, Vinti L, Marovca B, Tsai YC, Jenni S, Aguade-Gorgorio J, von Stackelberg A, Schrappe M, Locatelli F, Stanulla M, Cario G, Bourquin JP, Bornhauser BC. Repurposing anthelmintic agents to eradicate resistant leukemia. Blood Cancer J 2020; 10:72. [PMID: 32591499 PMCID: PMC7320149 DOI: 10.1038/s41408-020-0339-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 12/20/2022] Open
Abstract
Despite rapid progress in genomic profiling in acute lymphoblastic leukemia (ALL), identification of actionable targets and prediction of response to drugs remains challenging. To identify specific vulnerabilities in ALL, we performed a drug screen using primary human ALL samples cultured in a model of the bone marrow microenvironment combined with high content image analysis. Among the 2487 FDA-approved compounds tested, anthelmintic agents of the class of macrocyclic lactones exhibited potent anti-leukemia activity, similar to the already known anti-leukemia agents currently used in induction chemotherapy. Ex vivo validation in 55 primary ALL samples of both precursor B cell and T-ALL including refractory relapse cases confirmed strong anti-leukemia activity with IC50 values in the low micromolar range. Anthelmintic agents increased intracellular chloride levels in primary leukemia cells, inducing mitochondrial outer membrane depolarization and cell death. Supporting the notion that simultaneously targeting cell death machineries at different angles may enhance the cell death response, combination of anthelmintic agents with the BCL-2 antagonist navitoclax or with the chemotherapeutic agent dexamethasone showed synergistic activity in primary ALL. These data reveal anti-leukemia activity of anthelmintic agents and support exploiting drug repurposing strategies to identify so far unrecognized anti-cancer agents with potential to eradicate even refractory leukemia.
Collapse
Affiliation(s)
- Caterina Mezzatesta
- Department of Oncology and Children's Research Center, Children's Hospital Zurich, Lengghalde 5, Balgrist Campus AG, 8008, Zurich, Switzerland
| | - Liridon Abduli
- Department of Oncology and Children's Research Center, Children's Hospital Zurich, Lengghalde 5, Balgrist Campus AG, 8008, Zurich, Switzerland
| | - Anna Guinot
- Department of Oncology and Children's Research Center, Children's Hospital Zurich, Lengghalde 5, Balgrist Campus AG, 8008, Zurich, Switzerland
| | - Cornelia Eckert
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Campus Virchow Klinikum, Berlin, Germany
- German Cancer Consortium (DKTK), Berlin, Germany
| | - Denis Schewe
- Department of Pediatrics, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Marketa Zaliova
- Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Luciana Vinti
- Department of Pediatric Haemato-Oncology, IRCCS Ospedale Pediatrico Bambino Gesù, Sapienza University of Rome, Rome, Italy
| | - Blerim Marovca
- Department of Oncology and Children's Research Center, Children's Hospital Zurich, Lengghalde 5, Balgrist Campus AG, 8008, Zurich, Switzerland
| | - Yi-Chien Tsai
- Department of Oncology and Children's Research Center, Children's Hospital Zurich, Lengghalde 5, Balgrist Campus AG, 8008, Zurich, Switzerland
| | - Silvia Jenni
- Department of Oncology and Children's Research Center, Children's Hospital Zurich, Lengghalde 5, Balgrist Campus AG, 8008, Zurich, Switzerland
| | - Julia Aguade-Gorgorio
- Department of Oncology and Children's Research Center, Children's Hospital Zurich, Lengghalde 5, Balgrist Campus AG, 8008, Zurich, Switzerland
| | - Arend von Stackelberg
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Campus Virchow Klinikum, Berlin, Germany
- German Cancer Consortium (DKTK), Berlin, Germany
| | - Martin Schrappe
- Department of Pediatrics, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Franco Locatelli
- Department of Pediatric Haemato-Oncology, IRCCS Ospedale Pediatrico Bambino Gesù, Sapienza University of Rome, Rome, Italy
| | - Martin Stanulla
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Gunnar Cario
- Department of Pediatrics, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Jean-Pierre Bourquin
- Department of Oncology and Children's Research Center, Children's Hospital Zurich, Lengghalde 5, Balgrist Campus AG, 8008, Zurich, Switzerland
| | - Beat C Bornhauser
- Department of Oncology and Children's Research Center, Children's Hospital Zurich, Lengghalde 5, Balgrist Campus AG, 8008, Zurich, Switzerland.
| |
Collapse
|
16
|
Examining treatment responses of diagnostic marrow in murine xenografts to predict relapse in children with acute lymphoblastic leukaemia. Br J Cancer 2020; 123:742-751. [PMID: 32536690 PMCID: PMC7462974 DOI: 10.1038/s41416-020-0933-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/08/2020] [Accepted: 05/21/2020] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND While current chemotherapy has increased cure rates for children with acute lymphoblastic leukaemia (ALL), the largest number of relapsing patients are still stratified as medium risk (MR) at diagnosis (50-60%). This highlights an opportunity to develop improved relapse-prediction models for MR patients. We hypothesised that bone marrow from MR patients who eventually relapsed would regrow faster in a patient-derived xenograft (PDX) model after induction chemotherapy than samples from patients in long-term remission. METHODS Diagnostic bone marrow aspirates from 30 paediatric MR-ALL patients (19 who relapsed, 11 who experienced remission) were inoculated into immune-deficient (NSG) mice and subsequently treated with either control or an induction-type regimen of vincristine, dexamethasone, and L-asparaginase (VXL). Engraftment was monitored by enumeration of the proportion of human CD45+ cells (%huCD45+) in the murine peripheral blood, and events were defined a priori as the time to reach 1% huCD45+, 25% huCD45+ (TT25%) or clinical manifestations of leukaemia (TTL). RESULTS The TT25% value significantly predicted MR patient relapse. Mutational profiles of PDXs matched their tumours of origin, with a clonal shift towards relapse observed in one set of VXL-treated PDXs. CONCLUSIONS In conclusion, establishing PDXs at diagnosis and subsequently applying chemotherapy has the potential to improve relapse prediction in paediatric MR-ALL.
Collapse
|
17
|
Dobson SM, García-Prat L, Vanner RJ, Wintersinger J, Waanders E, Gu Z, McLeod J, Gan OI, Grandal I, Payne-Turner D, Edmonson MN, Ma X, Fan Y, Voisin V, Chan-Seng-Yue M, Xie SZ, Hosseini M, Abelson S, Gupta P, Rusch M, Shao Y, Olsen SR, Neale G, Chan SM, Bader G, Easton J, Guidos CJ, Danska JS, Zhang J, Minden MD, Morris Q, Mullighan CG, Dick JE. Relapse-Fated Latent Diagnosis Subclones in Acute B Lineage Leukemia Are Drug Tolerant and Possess Distinct Metabolic Programs. Cancer Discov 2020; 10:568-587. [PMID: 32086311 PMCID: PMC7122013 DOI: 10.1158/2159-8290.cd-19-1059] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/21/2019] [Accepted: 02/18/2020] [Indexed: 12/26/2022]
Abstract
Disease recurrence causes significant mortality in B-progenitor acute lymphoblastic leukemia (B-ALL). Genomic analysis of matched diagnosis and relapse samples shows relapse often arising from minor diagnosis subclones. However, why therapy eradicates some subclones while others survive and progress to relapse remains obscure. Elucidation of mechanisms underlying these differing fates requires functional analysis of isolated subclones. Here, large-scale limiting dilution xenografting of diagnosis and relapse samples, combined with targeted sequencing, identified and isolated minor diagnosis subclones that initiate an evolutionary trajectory toward relapse [termed diagnosis Relapse Initiating clones (dRI)]. Compared with other diagnosis subclones, dRIs were drug-tolerant with distinct engraftment and metabolic properties. Transcriptionally, dRIs displayed enrichment for chromatin remodeling, mitochondrial metabolism, proteostasis programs, and an increase in stemness pathways. The isolation and characterization of dRI subclones reveals new avenues for eradicating dRI cells by targeting their distinct metabolic and transcriptional pathways before further evolution renders them fully therapy-resistant. SIGNIFICANCE: Isolation and characterization of subclones from diagnosis samples of patients with B-ALL who relapsed showed that relapse-fated subclones had increased drug tolerance and distinct metabolic and survival transcriptional programs compared with other diagnosis subclones. This study provides strategies to identify and target clinically relevant subclones before further evolution toward relapse.
Collapse
Affiliation(s)
- Stephanie M Dobson
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Laura García-Prat
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Robert J Vanner
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | | | - Esmé Waanders
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Zhaohui Gu
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jessica McLeod
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Olga I Gan
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Ildiko Grandal
- Genetics and Genome Biology, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Debbie Payne-Turner
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Michael N Edmonson
- Department of Computational Biology and Bioinformatics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Xiaotu Ma
- Department of Computational Biology and Bioinformatics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Yiping Fan
- Department of Computational Biology and Bioinformatics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Veronique Voisin
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Donnelly Centre for Cellular and Biomolecular Research, Toronto, Ontario, Canada
| | - Michelle Chan-Seng-Yue
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Stephanie Z Xie
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Mohsen Hosseini
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Sagi Abelson
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Pankaj Gupta
- Department of Computational Biology and Bioinformatics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Michael Rusch
- Department of Computational Biology and Bioinformatics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Ying Shao
- Pediatric Cancer Genome Project Laboratory, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Scott R Olsen
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Geoffrey Neale
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Steven M Chan
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Gary Bader
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Donnelly Centre for Cellular and Biomolecular Research, Toronto, Ontario, Canada
| | - John Easton
- Pediatric Cancer Genome Project Laboratory, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Cynthia J Guidos
- Developmental & Stem Cell Biology Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Jayne S Danska
- Genetics and Genome Biology, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Developmental & Stem Cell Biology Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Jinghui Zhang
- Department of Computational Biology and Bioinformatics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Mark D Minden
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Quaid Morris
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Department of Computer Science, University of Toronto. Toronto, Ontario, Canada
- Donnelly Centre for Cellular and Biomolecular Research, Toronto, Ontario, Canada
- Vector Institute, Toronto, Canada
| | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee.
| | - John E Dick
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
18
|
Huang Y, Mouttet B, Warnatz HJ, Risch T, Rietmann F, Frommelt F, Ngo QA, Dobay MP, Marovca B, Jenni S, Tsai YC, Matzk S, Amstislavskiy V, Schrappe M, Stanulla M, Gstaiger M, Bornhauser B, Yaspo ML, Bourquin JP. The Leukemogenic TCF3-HLF Complex Rewires Enhancers Driving Cellular Identity and Self-Renewal Conferring EP300 Vulnerability. Cancer Cell 2019; 36:630-644.e9. [PMID: 31735627 DOI: 10.1016/j.ccell.2019.10.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 08/18/2019] [Accepted: 10/14/2019] [Indexed: 01/08/2023]
Abstract
The chimeric transcription factor TCF3-HLF defines an incurable acute lymphoblastic leukemia subtype. Here we decipher the regulome of endogenous TCF3-HLF and dissect its essential transcriptional components and targets by functional genomics. We demonstrate that TCF3-HLF recruits HLF binding sites at hematopoietic stem cell/myeloid lineage associated (super-) enhancers to drive lineage identity and self-renewal. Among direct targets, hijacking an HLF binding site in a MYC enhancer cluster by TCF3-HLF activates a conserved MYC-driven transformation program crucial for leukemia propagation in vivo. TCF3-HLF pioneers the cooperation with ERG and recruits histone acetyltransferase p300 (EP300), conferring susceptibility to EP300 inhibition. Our study provides a framework for targeting driving transcriptional dependencies in this fatal leukemia.
Collapse
Affiliation(s)
- Yun Huang
- Division of Oncology and Children's Research Centre, University Children's Hospital Zurich, 8032 Zurich, Switzerland
| | - Brice Mouttet
- Division of Oncology and Children's Research Centre, University Children's Hospital Zurich, 8032 Zurich, Switzerland
| | - Hans-Jörg Warnatz
- Otto Warburg Laboratory Gene Regulation and Systems Biology of Cancer, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Thomas Risch
- Otto Warburg Laboratory Gene Regulation and Systems Biology of Cancer, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Fabian Rietmann
- Division of Oncology and Children's Research Centre, University Children's Hospital Zurich, 8032 Zurich, Switzerland
| | - Fabian Frommelt
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Quy A Ngo
- Division of Oncology and Children's Research Centre, University Children's Hospital Zurich, 8032 Zurich, Switzerland
| | - Maria Pamela Dobay
- Division of Oncology and Children's Research Centre, University Children's Hospital Zurich, 8032 Zurich, Switzerland
| | - Blerim Marovca
- Division of Oncology and Children's Research Centre, University Children's Hospital Zurich, 8032 Zurich, Switzerland
| | - Silvia Jenni
- Division of Oncology and Children's Research Centre, University Children's Hospital Zurich, 8032 Zurich, Switzerland
| | - Yi-Chien Tsai
- Division of Oncology and Children's Research Centre, University Children's Hospital Zurich, 8032 Zurich, Switzerland
| | - Sören Matzk
- Otto Warburg Laboratory Gene Regulation and Systems Biology of Cancer, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Vyacheslav Amstislavskiy
- Otto Warburg Laboratory Gene Regulation and Systems Biology of Cancer, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Martin Schrappe
- Department of Pediatrics, Christian-Albrecht University of Kiel and University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Martin Stanulla
- Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany
| | - Matthias Gstaiger
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Beat Bornhauser
- Division of Oncology and Children's Research Centre, University Children's Hospital Zurich, 8032 Zurich, Switzerland
| | - Marie-Laure Yaspo
- Otto Warburg Laboratory Gene Regulation and Systems Biology of Cancer, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Jean-Pierre Bourquin
- Division of Oncology and Children's Research Centre, University Children's Hospital Zurich, 8032 Zurich, Switzerland.
| |
Collapse
|
19
|
Richter-Pechańska P, Kunz JB, Bornhauser B, von Knebel Doeberitz C, Rausch T, Erarslan-Uysal B, Assenov Y, Frismantas V, Marovca B, Waszak SM, Zimmermann M, Seemann J, Happich M, Stanulla M, Schrappe M, Cario G, Escherich G, Bakharevich K, Kirschner-Schwabe R, Eckert C, Muckenthaler MU, Korbel JO, Bourquin JP, Kulozik AE. PDX models recapitulate the genetic and epigenetic landscape of pediatric T-cell leukemia. EMBO Mol Med 2019; 10:emmm.201809443. [PMID: 30389682 PMCID: PMC6284381 DOI: 10.15252/emmm.201809443] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We compared 24 primary pediatric T‐cell acute lymphoblastic leukemias (T‐ALL) collected at the time of initial diagnosis and relapse from 12 patients and 24 matched patient‐derived xenografts (PDXs). DNA methylation profile was preserved in PDX mice in 97.5% of the promoters (ρ = 0.99). Similarly, the genome‐wide chromatin accessibility (ATAC‐Seq) was preserved remarkably well (ρ = 0.96). Interestingly, both the ATAC regions, which showed a significant decrease in accessibility in PDXs and the regions hypermethylated in PDXs, were associated with immune response, which might reflect the immune deficiency of the mice and potentially the incomplete interaction between murine cytokines and human receptors. The longitudinal approach of this study allowed an observation that samples collected from patients who developed a type 1 relapse (clonal mutations maintained at relapse) preserved their genomic composition; whereas in patients who developed a type 2 relapse (subset of clonal mutations lost at relapse), the preservation of the leukemia's composition was more variable. In sum, this study underlines the remarkable genomic stability, and for the first time documents the preservation of the epigenomic landscape in T‐ALL‐derived PDX models.
Collapse
Affiliation(s)
- Paulina Richter-Pechańska
- Department of Pediatric Oncology, Hematology, and Immunology, University of Heidelberg, and Hopp Children's Cancer Center at NCT Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory (EMBL), University of Heidelberg, Heidelberg, Germany
| | - Joachim B Kunz
- Department of Pediatric Oncology, Hematology, and Immunology, University of Heidelberg, and Hopp Children's Cancer Center at NCT Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory (EMBL), University of Heidelberg, Heidelberg, Germany.,German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Beat Bornhauser
- Division of Pediatric Oncology, University Children's Hospital, Zürich, Switzerland
| | - Caroline von Knebel Doeberitz
- Department of Pediatric Oncology, Hematology, and Immunology, University of Heidelberg, and Hopp Children's Cancer Center at NCT Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory (EMBL), University of Heidelberg, Heidelberg, Germany
| | - Tobias Rausch
- Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory (EMBL), University of Heidelberg, Heidelberg, Germany.,European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Büşra Erarslan-Uysal
- Department of Pediatric Oncology, Hematology, and Immunology, University of Heidelberg, and Hopp Children's Cancer Center at NCT Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory (EMBL), University of Heidelberg, Heidelberg, Germany
| | - Yassen Assenov
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Viktoras Frismantas
- Division of Pediatric Oncology, University Children's Hospital, Zürich, Switzerland
| | - Blerim Marovca
- Division of Pediatric Oncology, University Children's Hospital, Zürich, Switzerland
| | | | - Martin Zimmermann
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Julia Seemann
- Department of Pediatric Oncology, Hematology, and Immunology, University of Heidelberg, and Hopp Children's Cancer Center at NCT Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory (EMBL), University of Heidelberg, Heidelberg, Germany
| | - Margit Happich
- Department of Pediatric Oncology, Hematology, and Immunology, University of Heidelberg, and Hopp Children's Cancer Center at NCT Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory (EMBL), University of Heidelberg, Heidelberg, Germany
| | - Martin Stanulla
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Martin Schrappe
- Department of Pediatrics, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Gunnar Cario
- Department of Pediatrics, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Gabriele Escherich
- Clinic of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kseniya Bakharevich
- Clinic of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Renate Kirschner-Schwabe
- Department of Pediatric Oncology/Hematology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Cornelia Eckert
- Department of Pediatric Oncology/Hematology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Martina U Muckenthaler
- Department of Pediatric Oncology, Hematology, and Immunology, University of Heidelberg, and Hopp Children's Cancer Center at NCT Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory (EMBL), University of Heidelberg, Heidelberg, Germany
| | - Jan O Korbel
- Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory (EMBL), University of Heidelberg, Heidelberg, Germany.,European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Jean-Pierre Bourquin
- Division of Pediatric Oncology, University Children's Hospital, Zürich, Switzerland
| | - Andreas E Kulozik
- Department of Pediatric Oncology, Hematology, and Immunology, University of Heidelberg, and Hopp Children's Cancer Center at NCT Heidelberg, Heidelberg, Germany .,Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory (EMBL), University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
20
|
Luong-Gardiol N, Siddiqui I, Pizzitola I, Jeevan-Raj B, Charmoy M, Huang Y, Irmisch A, Curtet S, Angelov GS, Danilo M, Juilland M, Bornhauser B, Thome M, Hantschel O, Chalandon Y, Cazzaniga G, Bourquin JP, Huelsken J, Held W. γ-Catenin-Dependent Signals Maintain BCR-ABL1 + B Cell Acute Lymphoblastic Leukemia. Cancer Cell 2019; 35:649-663.e10. [PMID: 30991025 DOI: 10.1016/j.ccell.2019.03.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/29/2019] [Accepted: 03/14/2019] [Indexed: 11/23/2022]
Abstract
The BCR-ABL1 fusion protein is the cause of chronic myeloid leukemia (CML) and of a significant fraction of adult-onset B cell acute lymphoblastic leukemia (B-ALL) cases. Using mouse models and patient-derived samples, we identified an essential role for γ-catenin in the initiation and maintenance of BCR-ABL1+ B-ALL but not CML. The selectivity was explained by a partial γ-catenin dependence of MYC expression together with the susceptibility of B-ALL, but not CML, to reduced MYC levels. MYC and γ-catenin enabled B-ALL maintenance by augmenting BIRC5 and enforced BIRC5 expression overcame γ-catenin loss. Since γ-catenin was dispensable for normal hematopoiesis, these lineage- and disease-specific features of canonical Wnt signaling identified a potential therapeutic target for the treatment of BCR-ABL1+ B-ALL.
Collapse
Affiliation(s)
- Noemie Luong-Gardiol
- Department of Oncology UNIL CHUV, University of Lausanne, Epalinges, Switzerland
| | - Imran Siddiqui
- Department of Oncology UNIL CHUV, University of Lausanne, Epalinges, Switzerland
| | - Irene Pizzitola
- Department of Oncology UNIL CHUV, University of Lausanne, Epalinges, Switzerland
| | - Beena Jeevan-Raj
- Department of Oncology UNIL CHUV, University of Lausanne, Epalinges, Switzerland
| | - Mélanie Charmoy
- Department of Oncology UNIL CHUV, University of Lausanne, Epalinges, Switzerland
| | - Yun Huang
- Department of Pediatric Oncology and Children's Research Centre, University Children's Hospital Zürich, Zürich, Switzerland
| | - Anja Irmisch
- Swiss Institute for Experimental Cancer Research (ISREC), Federal University of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Sara Curtet
- Department of Oncology UNIL CHUV, University of Lausanne, Epalinges, Switzerland
| | - Georgi S Angelov
- Department of Oncology UNIL CHUV, University of Lausanne, Epalinges, Switzerland
| | - Maxime Danilo
- Department of Oncology UNIL CHUV, University of Lausanne, Epalinges, Switzerland
| | - Mélanie Juilland
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Beat Bornhauser
- Department of Pediatric Oncology and Children's Research Centre, University Children's Hospital Zürich, Zürich, Switzerland
| | - Margot Thome
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Oliver Hantschel
- Swiss Institute for Experimental Cancer Research (ISREC), Federal University of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Yves Chalandon
- Service d'Hématologie, Hôpitaux Universitaire de Genève, Geneva, Switzerland
| | - Gianni Cazzaniga
- Centro Ricerca Tettamanti, Pediatric Clinic University of Milano-Bicocca, Monza, Italy
| | - Jean-Pierre Bourquin
- Department of Pediatric Oncology and Children's Research Centre, University Children's Hospital Zürich, Zürich, Switzerland
| | - Joerg Huelsken
- Swiss Institute for Experimental Cancer Research (ISREC), Federal University of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Werner Held
- Department of Oncology UNIL CHUV, University of Lausanne, Epalinges, Switzerland.
| |
Collapse
|
21
|
Zhang L, Hu LP, Liu XM, Guo Y, Yang WY, Zhang JY, Liu F, Liu TF, Wang SC, Chen XJ, Ruan M, Qi BQ, Chang LX, Chen YM, Zou Y, Zhu XF. [Heterogeneity and clonal evolution in pediatric ETV6-RUNX1(+) acute lymphoblastic leukemia by quantitative multigene fluorescence in situ hybridization]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2019; 38:586-591. [PMID: 28810325 PMCID: PMC7342287 DOI: 10.3760/cma.j.issn.0253-2727.2017.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
目的 研究儿童ETV6-RUNX1阳性急性淋巴细胞白血病(ALL)中肿瘤细胞的异质性及克隆演化情况,探讨克隆演化与预后的相关性。 方法 应用单细胞定量多基因荧光原位杂交(QM-FISH)技术对2006年2月至2011年6月收治的48例ETV6-RUNX1阳性ALL患儿的骨髓标本进行多个基因拷贝数变异的检测,并进行克隆演化分析。将4例复发患儿初诊与复发时的情况进行比较。 结果 在48例行QM-FISH检测的患儿中,初诊时为1个克隆的有34例(70.8%),2个克隆的有9例(18.8%),≥3个克隆的有5例(10.4%)。患儿的肿瘤细胞存在异质性,各亚克隆之间呈线性或树枝状演化。白血病细胞的亚克隆数与患者预后无相关性(5年总生存率:P=0.469;5年无病生存率:P=0.116)。复发克隆可能与初诊时克隆一致,也可能为新出现克隆。复发克隆为新出现克隆的患儿再次缓解时间短,预后更差。 结论 ETV6-RUNX1阳性ALL患儿肿瘤细胞存在异质性及克隆演化情况。QM-FISH有助于研究白血病细胞的克隆演化,复发克隆为新出现克隆的患儿可能预后更差。
Collapse
Affiliation(s)
- L Zhang
- Department of Pediatrics, Institute of Hematology and Blood Diseases Hospital, CAMS & PUMC, Tianjin 300020, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Harrop R, O’Neill E, Stern PL. Cancer stem cell mobilization and therapeutic targeting of the 5T4 oncofetal antigen. Ther Adv Vaccines Immunother 2019; 7:2515135518821623. [PMID: 30719508 PMCID: PMC6348545 DOI: 10.1177/2515135518821623] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/27/2018] [Indexed: 12/21/2022] Open
Abstract
Cancer stem cells (CSCs) can act as the cellular drivers of tumors harnessing stem cell properties that contribute to tumorigenesis either as founder elements or by the gain of stem cell traits by the malignant cells. Thus, CSCs can self-renew and generate the cellular heterogeneity of tumors including a hierarchical organization similar to the normal tissue. While the principle tumor growth contribution is often from the non-CSC components, it is the ability of small numbers of CSCs to avoid the effects of therapeutic strategies that can contribute to recurrence after treatment. However, identifying and characterizing CSCs for therapeutic targeting is made more challenging by their cellular potency being influenced by a particular tissue niche or by the capacity of more committed cells to regain stem cell functions. This review discusses the properties of CSCs including the limitations of the available cell surface markers, the assays that document tumor initiation and clonogenicity, the roles of epithelial mesenchymal transition and molecular pathways such as Notch, Wnt, Hippo and Hedgehog. The ability to target and eliminate CSCs is thought to be critical in the search for curative cancer treatments. The oncofetal tumor-associated antigen 5T4 (TBGP) has been linked with CSC properties in several different malignancies. 5T4 has functional attributes that are relevant to the spread of tumors including through EMT, CXCR4/CXCL12, Wnt, and Hippo pathways which may all contribute through the mobilization of CSCs. There are several different immunotherapies targeting 5T4 in development including antibody-drug conjugates, antibody-targeted bacterial super-antigens, a Modified Vaccinia Ankara-basedvaccine and 5T4-directed chimeric antigen receptor T-cells. These immune therapies would have the advantage of targeting both the bulk tumor as well as mobilized CSC populations.
Collapse
Affiliation(s)
- Richard Harrop
- Oxford BioMedica plc, Windrush Court, Transport Way, Oxford, OX4 6LT, UK
| | - Eric O’Neill
- Department of Oncology, University of Oxford, Oxford, UK
| | - Peter L. Stern
- Division of Molecular & Clinical Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Cancer Research Centre, University of Manchester, Manchester, UK
| |
Collapse
|
23
|
Single-cell analysis identifies CRLF2 rearrangements as both early and late events in Down syndrome and non-Down syndrome acute lymphoblastic leukaemia. Leukemia 2018; 33:893-904. [PMID: 30487598 PMCID: PMC6398588 DOI: 10.1038/s41375-018-0297-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/19/2018] [Accepted: 09/24/2018] [Indexed: 12/23/2022]
Abstract
Deregulated expression of the type I cytokine receptor, CRLF2, is observed in 5-15% of precursor B-cell acute lymphoblastic leukaemia (B-ALL). We have previously reported the genomic landscape of patients with CRLF2 rearrangements (CRLF2-r) using both whole genome and exome sequencing, which identified a number of potential clonal and sub-clonal genomic alterations. In this study, we aimed to assess when the CRLF2-r; IGH-CRLF2 or P2RY8-CRLF2, arose during the evolution of both Down syndrome-ALL (DS-ALL) and non-DS-ALL. Using fluorescence in situ hybridisation, we were able to track up to four structural variants in single cells from 47 CRLF2-r B-ALL patients, which in association with our multiplex single cell analysis of a further four patients, permitted simultaneous tracking of copy number alterations, structural and single nucleotide variants within individual cells. We observed CRLF2-r arising as both early and late events in DS and non-DS-ALL patients. Parallel evolution of discrete clones was observed in the development of CRLF2-r B-ALL, either involving the CRLF2-r or one of the other tracked abnormalities. In depth single cell analysis identified both linear and branching evolution with early clones harbouring a multitude of abnormalities, including the CRLF2-r in DS-ALL patients.
Collapse
|
24
|
Bassan R, Bourquin JP, DeAngelo DJ, Chiaretti S. New Approaches to the Management of Adult Acute Lymphoblastic Leukemia. J Clin Oncol 2018; 36:JCO2017773648. [PMID: 30240326 DOI: 10.1200/jco.2017.77.3648] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Traditional treatment regimens for adult acute lymphoblastic leukemia, including allogeneic hematopoietic cell transplantation, result in an overall survival of approximately 40%, a figure hardly comparable with the extraordinary 80% to 90% cure rate currently reported in children. When translated to the adult setting, modern pediatric-type regimens improve the survival to approximately 60% in young adults. The addition of tyrosine kinase inhibitors for patients with Philadelphia chromosome-positive disease and the measurement of minimal residual disease to guide risk stratification and postremission approaches has led to additional improvements in outcomes. Relapsed disease and treatment toxicity-sparing no patient but representing a major concern especially in the elderly-are the most critical current issues awaiting further therapeutic advancement. Recently, there has been considerable progress in understanding the disease biology, specifically the Philadelphia-like signature, as well as other high-risk subgroups. In addition, there are several new agents that will undoubtedly contribute to additional improvement in the current outcomes. The most promising agents are monoclonal antibodies, immunomodulators, and chimeric antigen receptor T cells, and, to a lesser extent, several new drugs targeting key molecular pathways involved in leukemic cell growth and proliferation. This review examines the evidence supporting the increasing role of the new therapeutic tools and treatment options in different disease subgroups, including frontline and relapsed or refractory disease. It is now possible to define the best individual approach on the basis of the emerging concepts of precision medicine.
Collapse
Affiliation(s)
- Renato Bassan
- Renato Bassan, Ospedale dell'Angelo, Mestre-Venezia; Sabina Chiaretti, "Sapienza" University, Rome, Italy; Jean-Pierre Bourquin, University Children's Hospital, Zurich, Switzerland; and Daniel J. DeAngelo, Dana-Farber Cancer Institute, Boston, MA
| | - Jean-Pierre Bourquin
- Renato Bassan, Ospedale dell'Angelo, Mestre-Venezia; Sabina Chiaretti, "Sapienza" University, Rome, Italy; Jean-Pierre Bourquin, University Children's Hospital, Zurich, Switzerland; and Daniel J. DeAngelo, Dana-Farber Cancer Institute, Boston, MA
| | - Daniel J DeAngelo
- Renato Bassan, Ospedale dell'Angelo, Mestre-Venezia; Sabina Chiaretti, "Sapienza" University, Rome, Italy; Jean-Pierre Bourquin, University Children's Hospital, Zurich, Switzerland; and Daniel J. DeAngelo, Dana-Farber Cancer Institute, Boston, MA
| | - Sabina Chiaretti
- Renato Bassan, Ospedale dell'Angelo, Mestre-Venezia; Sabina Chiaretti, "Sapienza" University, Rome, Italy; Jean-Pierre Bourquin, University Children's Hospital, Zurich, Switzerland; and Daniel J. DeAngelo, Dana-Farber Cancer Institute, Boston, MA
| |
Collapse
|
25
|
Epidemiology and biology of relapse after stem cell transplantation. Bone Marrow Transplant 2018; 53:1379-1389. [PMID: 29670211 DOI: 10.1038/s41409-018-0171-z] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 02/07/2018] [Accepted: 03/12/2018] [Indexed: 12/25/2022]
|
26
|
Sinclair PB, Blair HH, Ryan SL, Buechler L, Cheng J, Clayton J, Hanna R, Hollern S, Hawking Z, Bashton M, Schwab CJ, Jones L, Russell LJ, Marr H, Carey P, Halsey C, Heidenreich O, Moorman AV, Harrison CJ. Dynamic clonal progression in xenografts of acute lymphoblastic leukemia with intrachromosomal amplification of chromosome 21. Haematologica 2018; 103:634-644. [PMID: 29449437 PMCID: PMC5865429 DOI: 10.3324/haematol.2017.172304] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 02/08/2018] [Indexed: 01/12/2023] Open
Abstract
Intrachromosomal amplification of chromosome 21 is a heterogeneous chromosomal rearrangement occurring in 2% of cases of childhood precursor B-cell acute lymphoblastic leukemia. These abnormalities are too complex to engineer faithfully in animal models and are unrepresented in leukemia cell lines. As a resource for future functional and preclinical studies, we have created xenografts from the leukemic blasts of patients with intrachromosomal amplification of chromosome 21 and characterized them by in-vivo and ex-vivo luminescent imaging, flow immunophenotyping, and histological and ultrastructural analyses of bone marrow and the central nervous system. Investigation of up to three generations of xenografts revealed phenotypic evolution, branching genomic architecture and, compared with other B-cell acute lymphoblastic leukemia genetic subtypes, greater clonal diversity of leukemia-initiating cells. In support of intrachromosomal amplification of chromosome 21 as a primary genetic abnormality, it was always retained through generations of xenografts, although we also observed the first example of structural evolution of this rearrangement. Clonal segregation in xenografts revealed convergent evolution of different secondary genomic abnormalities implicating several known tumor suppressor genes and a region, containing the B-cell adaptor, PIK3AP1, and nuclear receptor co-repressor, LCOR, in the progression of B-cell acute lymphoblastic leukemia. Tracking of mutations in patients and derived xenografts provided evidence for co-operation between abnormalities activating the RAS pathway in B-cell acute lymphoblastic leukemia and for their aggressive clonal expansion in the xeno-environment. Bi-allelic loss of the CDKN2A/B locus was recurrently maintained or emergent in xenografts and also strongly selected as RNA sequencing demonstrated a complete absence of reads for genes associated with the deletions.
Collapse
Affiliation(s)
- Paul B Sinclair
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Helen H Blair
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Sarra L Ryan
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Lars Buechler
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Joanna Cheng
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Jake Clayton
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Rebecca Hanna
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Shaun Hollern
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Zoe Hawking
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Matthew Bashton
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Claire J Schwab
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Lisa Jones
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Lisa J Russell
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Helen Marr
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Peter Carey
- Department of Clinical Haematology, Royal Victoria Infirmary, Newcastle-upon-Tyne, UK
| | - Christina Halsey
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, UK
| | - Olaf Heidenreich
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Anthony V Moorman
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Christine J Harrison
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| |
Collapse
|
27
|
Yadav BD, Samuels AL, Wells JE, Sutton R, Venn NC, Bendak K, Anderson D, Marshall GM, Cole CH, Beesley AH, Kees UR, Lock RB. Heterogeneity in mechanisms of emergent resistance in pediatric T-cell acute lymphoblastic leukemia. Oncotarget 2018; 7:58728-42. [PMID: 27623214 PMCID: PMC5312271 DOI: 10.18632/oncotarget.11233] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 07/28/2016] [Indexed: 11/25/2022] Open
Abstract
Relapse in pediatric T-cell acute lymphoblastic leukemia (T-ALL) remains a significant clinical problem and is thought to be associated with clonal selection during treatment. In this study we used an established pre-clinical model of induction therapy to increase our understanding of the effect of engraftment and chemotherapy on clonal selection and acquisition of drug resistance in vivo. Immune-deficient mice were engrafted with patient diagnostic specimens and exposed to a repeated combination therapy consisting of vincristine, dexamethasone, L-asparaginase and daunorubicin. Any re-emergence of disease following therapy was shown to be associated with resistance to dexamethasone, no resistance was observed to the other three drugs. Immunoglobulin/T-cell receptor gene rearrangements closely matched those in respective diagnosis and relapse patient specimens, highlighting that these clonal markers do not fully reflect the biological changes associated with drug resistance. Gene expression profiling revealed the significant underlying heterogeneity of dexamethasone-resistant xenografts. Alterations were observed in a large number of biological pathways, yet no dominant signature was common to all lines. These findings indicate that the biological changes associated with T-ALL relapse and resistance are stochastic and highly individual, and underline the importance of using sophisticated molecular techniques or single cell analyses in developing personalized approaches to therapy.
Collapse
Affiliation(s)
- Babasaheb D Yadav
- Leukaemia Biology Program, Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Amy L Samuels
- Division of Children's Leukaemia and Cancer Research, Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia
| | - Julia E Wells
- Division of Children's Leukaemia and Cancer Research, Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia
| | - Rosemary Sutton
- Molecular Diagnostics, Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Nicola C Venn
- Molecular Diagnostics, Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Katerina Bendak
- Leukaemia Biology Program, Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Denise Anderson
- Division of Bioinformatics and Biostatistics, Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia
| | - Glenn M Marshall
- Kids Cancer Centre, Sydney Children's Hospital, Sydney, New South Wales, Australia
| | - Catherine H Cole
- School of Paediatrics and Child Health, University of Western Australia, Perth, Western Australia, Australia
| | - Alex H Beesley
- Division of Children's Leukaemia and Cancer Research, Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia
| | - Ursula R Kees
- Division of Children's Leukaemia and Cancer Research, Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia
| | - Richard B Lock
- Leukaemia Biology Program, Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
28
|
McComb S, Aguadé-Gorgorió J, Harder L, Marovca B, Cario G, Eckert C, Schrappe M, Stanulla M, von Stackelberg A, Bourquin JP, Bornhauser BC. Activation of concurrent apoptosis and necroptosis by SMAC mimetics for the treatment of refractory and relapsed ALL. Sci Transl Med 2017; 8:339ra70. [PMID: 27194728 DOI: 10.1126/scitranslmed.aad2986] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 03/10/2016] [Indexed: 12/21/2022]
Abstract
More precise treatment strategies are urgently needed to decrease toxicity and improve outcomes for treatment-refractory leukemia. We used ex vivo drug response profiling of high-risk, relapsed, or refractory acute lymphoblastic leukemia (ALL) cases and identified a subset with exquisite sensitivity to small-molecule mimetics of the second mitochondria-derived activator of caspases (SMAC) protein. Potent ex vivo activity of the SMAC mimetic (SM) birinapant correlated with marked in vivo antileukemic effects, as indicated by delayed engraftment, decreased leukemia burden, and prolonged survival of xenografted mice. Antileukemic activity was dependent on simultaneous execution of apoptosis and necroptosis, as demonstrated by functional genomic dissection with a multicolored lentiCRISPR approach to simultaneously disrupt multiple genes in patient-derived ALL. SM specifically targeted receptor-interacting protein kinase 1 (RIP1)-dependent death, and CRISPR-mediated disruption of RIP1 completely blocked SM-induced death yet had no impact on the response to standard antileukemic agents. Thus, SM compounds such as birinapant circumvent escape from apoptosis in leukemia by activating a potent dual RIP1-dependent apoptotic and necroptotic cell death, which is not exploited by current therapy. Ex vivo drug activity profiling could provide important functional diagnostic information to identify patients who may benefit from targeted treatment with birinapant in early clinical trials.
Collapse
Affiliation(s)
- Scott McComb
- Department of Oncology and Children's Research Centre, University Children's Hospital Zürich, 8032 Zürich, Switzerland
| | - Júlia Aguadé-Gorgorió
- Department of Oncology and Children's Research Centre, University Children's Hospital Zürich, 8032 Zürich, Switzerland
| | - Lena Harder
- Department of Oncology and Children's Research Centre, University Children's Hospital Zürich, 8032 Zürich, Switzerland
| | - Blerim Marovca
- Department of Oncology and Children's Research Centre, University Children's Hospital Zürich, 8032 Zürich, Switzerland
| | - Gunnar Cario
- Department of General Pediatrics, University Hospital Schleswig-Holstein, 24105 Kiel, Germany
| | - Cornelia Eckert
- Department of Pediatric Oncology and Hematology, Charité Medical University Berlin, 13353 Berlin, Germany
| | - Martin Schrappe
- Department of General Pediatrics, University Hospital Schleswig-Holstein, 24105 Kiel, Germany
| | - Martin Stanulla
- Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany
| | - Arend von Stackelberg
- Department of Pediatric Oncology and Hematology, Charité Medical University Berlin, 13353 Berlin, Germany
| | - Jean-Pierre Bourquin
- Department of Oncology and Children's Research Centre, University Children's Hospital Zürich, 8032 Zürich, Switzerland
| | - Beat C Bornhauser
- Department of Oncology and Children's Research Centre, University Children's Hospital Zürich, 8032 Zürich, Switzerland.
| |
Collapse
|
29
|
Elder A, Bomken S, Wilson I, Blair HJ, Cockell S, Ponthan F, Dormon K, Pal D, Heidenreich O, Vormoor J. Abundant and equipotent founder cells establish and maintain acute lymphoblastic leukaemia. Leukemia 2017; 31:2577-2586. [PMID: 28487542 PMCID: PMC5558874 DOI: 10.1038/leu.2017.140] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 03/29/2017] [Accepted: 04/25/2017] [Indexed: 12/19/2022]
Abstract
High frequencies of blasts in primary acute lymphoblastic leukaemia (ALL) samples have the potential to induce leukaemia and to engraft mice. However, it is unclear how individual ALL cells each contribute to drive leukaemic development in a bulk transplant and the extent to which these blasts vary functionally. We used cellular barcoding as a fate mapping tool to track primograft ALL blasts in vivo. Our results show that high numbers of ALL founder cells contribute at similar frequencies to leukaemic propagation over serial transplants, without any clear evidence of clonal succession. These founder cells also exhibit equal capacity to home and engraft to different organs, although stochastic processes may alter the composition in restrictive niches. Our findings enhance the stochastic stem cell model of ALL by demonstrating equal functional abilities of singular ALL blasts and show that successful treatment strategies must eradicate the entire leukaemic cell population.
Collapse
Affiliation(s)
- A Elder
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - S Bomken
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
- Department of Paediatric and Adolescent Haematology and Oncology, Great North Children’s Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - I Wilson
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - H J Blair
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - S Cockell
- Bioinformatics Support Unit, Newcastle University, Newcastle upon Tyne, UK
| | - F Ponthan
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - K Dormon
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - D Pal
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - O Heidenreich
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - J Vormoor
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
- Department of Paediatric and Adolescent Haematology and Oncology, Great North Children’s Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| |
Collapse
|
30
|
JAK2 aberrations in childhood B-cell precursor acute lymphoblastic leukemia. Oncotarget 2017; 8:89923-89938. [PMID: 29163799 PMCID: PMC5685720 DOI: 10.18632/oncotarget.21027] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 07/31/2017] [Indexed: 12/31/2022] Open
Abstract
JAK2 abnormalities may serve as target for precision medicines in pediatric B-cell precursor acute lymphoblastic leukemia (BCP-ALL). In the current study we performed a screening for JAK2 mutations and translocations, analyzed the clinical outcome and studied the efficacy of two JAK inhibitors in primary BCP-ALL cells. Importantly, we identify a number of limitations of JAK inhibitor therapy. JAK2 mutations mainly occurred in the poor prognostic subtypes BCR-ABL1-like and non- BCR-ABL1-like B-other (negative for sentinel cytogenetic lesions). JAK2 translocations were restricted to BCR-ABL1-like cases. Momelotinib and ruxolitinib were cytotoxic in both JAK2 translocated and JAK2 mutated cells, although efficacy in JAK2 mutated cells highly depended on cytokine receptor activation by TSLP. However, our data also suggest that the effect of JAK inhibition may be compromised by mutations in alternative survival pathways and microenvironment-induced resistance. Furthermore, inhibitors induced accumulation of phosphorylated JAK2Y1007, which resulted in a profound re-activation of JAK2 signaling upon release of the inhibitors. This preclinical evidence implies that further optimization and evaluation of JAK inhibitor treatment is necessary prior to its clinical integration in pediatric BCP-ALL.
Collapse
|
31
|
CD70 reverse signaling enhances NK cell function and immunosurveillance in CD27-expressing B-cell malignancies. Blood 2017; 130:297-309. [DOI: 10.1182/blood-2016-12-756585] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 04/26/2017] [Indexed: 01/04/2023] Open
Abstract
Key Points
CD27 expression on malignant B cells triggers CD70 reverse signaling in NK cells and improves lymphoma immunosurveillance. CD70 reverse signaling in NK cells is mediated via the AKT signaling pathway and enhances survival and effector function.
Collapse
|
32
|
Davies NJ, Kwok M, Gould C, Oldreive CE, Mao J, Parry H, Smith E, Agathanggelou A, Pratt G, Taylor AMR, Moss P, Griffiths M, Stankovic T. Dynamic changes in clonal cytogenetic architecture during progression of chronic lymphocytic leukemia in patients and patient-derived murine xenografts. Oncotarget 2017; 8:44749-44760. [PMID: 28496009 PMCID: PMC5546515 DOI: 10.18632/oncotarget.17432] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 03/29/2017] [Indexed: 01/08/2023] Open
Abstract
Subclonal heterogeneity and clonal selection influences disease progression in chronic lymphocytic leukemia (CLL). It is therefore important that therapeutic decisions are made based on an understanding of the CLL clonal architecture and its dynamics in individual patients. Identification of cytogenetic abnormalities by FISH remains the cornerstone of contemporary clinical practice and provides a simple means for prognostic stratification. Here, we demonstrate that multiplexed-FISH can enhance recognition of CLL subclonal repertoire and its dynamics during disease progression, both in patients and CLL patient-derived xenografts (PDX). We applied a combination of patient-specific FISH probes to 24 CLL cases before treatment and at relapse, and determined putative ancestral relationships between subpopulations with different cytogenetic features. We subsequently established 7 CLL PDX models in NOD/Shi-SCID/IL-2Rγctm1sug/Jic (NOG) mice. Application of multiplexed-FISH to these models demonstrated that all of the identified cytogenetic subpopulations had leukemia propagating activity and that changes in their representation during disease progression could be spontaneous, accelerated by treatment or treatment-induced. We conclude that multiplexed-FISH in combination with PDX models have the potential to distinguish between spontaneous and treatment-induced clonal selection, and therefore provide a valuable tool for the pre-clinical evaluation of novel therapies.
Collapse
MESH Headings
- Animals
- Chromosome Aberrations
- Clonal Evolution/genetics
- Combined Modality Therapy
- Disease Models, Animal
- Disease Progression
- Female
- Heterografts
- Humans
- In Situ Hybridization, Fluorescence
- Karyotyping
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/mortality
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Male
- Mice
- Prognosis
- Single-Cell Analysis
- Treatment Outcome
Collapse
Affiliation(s)
- Nicholas J. Davies
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Marwan Kwok
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Clive Gould
- West Midlands Regional Genetics Laboratory, Birmingham Women's NHS Foundation Trust, Birmingham, UK
| | - Ceri E. Oldreive
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Jingwen Mao
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Helen Parry
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Edward Smith
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Angelo Agathanggelou
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Guy Pratt
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | | | - Paul Moss
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Mike Griffiths
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
- West Midlands Regional Genetics Laboratory, Birmingham Women's NHS Foundation Trust, Birmingham, UK
| | - Tatjana Stankovic
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
33
|
Giessler KM, Kleinheinz K, Huebschmann D, Balasubramanian GP, Dubash TD, Dieter SM, Siegl C, Herbst F, Weber S, Hoffmann CM, Fronza R, Buchhalter I, Paramasivam N, Eils R, Schmidt M, von Kalle C, Schneider M, Ulrich A, Scholl C, Fröhling S, Weichert W, Brors B, Schlesner M, Ball CR, Glimm H. Genetic subclone architecture of tumor clone-initiating cells in colorectal cancer. J Exp Med 2017; 214:2073-2088. [PMID: 28572216 PMCID: PMC5502434 DOI: 10.1084/jem.20162017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/01/2017] [Accepted: 04/26/2017] [Indexed: 12/29/2022] Open
Abstract
Combining high-coverage whole-genome sequencing with functional analyses, Giessler et al. demonstrate that tumor initiation and long-term tumor formation in human colorectal cancer are driven by multiple genomic subclones and that the functional heterogeneity of colorectal cancer tumor clone–initiating cells is not based on genomic architecture. A hierarchically organized cell compartment drives colorectal cancer (CRC) progression. Genetic barcoding allows monitoring of the clonal output of tumorigenic cells without prospective isolation. In this study, we asked whether tumor clone-initiating cells (TcICs) were genetically heterogeneous and whether differences in self-renewal and activation reflected differential kinetics among individual subclones or functional hierarchies within subclones. Monitoring genomic subclone kinetics in three patient tumors and corresponding serial xenografts and spheroids by high-coverage whole-genome sequencing, clustering of genetic aberrations, subclone combinatorics, and mutational signature analysis revealed at least two to four genetic subclones per sample. Long-term growth in serial xenografts and spheroids was driven by multiple genomic subclones with profoundly differing growth dynamics and hence different quantitative contributions over time. Strikingly, genetic barcoding demonstrated stable functional heterogeneity of CRC TcICs during serial xenografting despite near-complete changes in genomic subclone contribution. This demonstrates that functional heterogeneity is, at least frequently, present within genomic subclones and independent of mutational subclone differences.
Collapse
Affiliation(s)
- Klara M Giessler
- Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center, Heidelberg, Germany
| | - Kortine Kleinheinz
- Division of Theoretical Bioinformatics, German Cancer Research Center, Heidelberg, Germany
| | - Daniel Huebschmann
- Division of Theoretical Bioinformatics, German Cancer Research Center, Heidelberg, Germany.,Institute of Pharmacy and Molecular Biotechnology and BioQuant, Heidelberg University, Heidelberg, Germany.,Department of Pediatric Immunology, Hematology and Oncology, University Hospital, Heidelberg, Germany
| | - Gnana Prakash Balasubramanian
- Division of Applied Bioinformatics, National Center for Tumor Diseases and German Cancer Research Center, Heidelberg, Germany.,German Cancer Consortium, Heidelberg, Germany
| | - Taronish D Dubash
- Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center, Heidelberg, Germany
| | - Sebastian M Dieter
- Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center, Heidelberg, Germany.,German Cancer Consortium, Heidelberg, Germany
| | - Christine Siegl
- Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center, Heidelberg, Germany
| | - Friederike Herbst
- Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center, Heidelberg, Germany
| | - Sarah Weber
- Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center, Heidelberg, Germany
| | - Christopher M Hoffmann
- Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center, Heidelberg, Germany
| | - Raffaele Fronza
- Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center, Heidelberg, Germany
| | - Ivo Buchhalter
- Division of Theoretical Bioinformatics, German Cancer Research Center, Heidelberg, Germany.,Institute of Pharmacy and Molecular Biotechnology and BioQuant, Heidelberg University, Heidelberg, Germany
| | - Nagarajan Paramasivam
- Division of Theoretical Bioinformatics, German Cancer Research Center, Heidelberg, Germany.,Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Roland Eils
- Division of Theoretical Bioinformatics, German Cancer Research Center, Heidelberg, Germany.,Heidelberg Center for Personalized Oncology, German Cancer Research Center, Heidelberg, Germany.,Institute of Pharmacy and Molecular Biotechnology and BioQuant, Heidelberg University, Heidelberg, Germany
| | - Manfred Schmidt
- Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center, Heidelberg, Germany
| | - Christof von Kalle
- Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center, Heidelberg, Germany.,Heidelberg Center for Personalized Oncology, German Cancer Research Center, Heidelberg, Germany.,German Cancer Consortium, Heidelberg, Germany
| | | | - Alexis Ulrich
- Department of Surgery, University Hospital, Heidelberg, Germany
| | - Claudia Scholl
- Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center, Heidelberg, Germany
| | - Stefan Fröhling
- Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center, Heidelberg, Germany.,German Cancer Consortium, Heidelberg, Germany
| | - Wilko Weichert
- German Cancer Consortium, Heidelberg, Germany.,Institute of Pathology, Technical University Munich, Munich, Germany
| | - Benedikt Brors
- Division of Applied Bioinformatics, National Center for Tumor Diseases and German Cancer Research Center, Heidelberg, Germany.,German Cancer Consortium, Heidelberg, Germany
| | - Matthias Schlesner
- Division of Theoretical Bioinformatics, German Cancer Research Center, Heidelberg, Germany
| | - Claudia R Ball
- Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center, Heidelberg, Germany
| | - Hanno Glimm
- Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center, Heidelberg, Germany .,German Cancer Consortium, Heidelberg, Germany
| |
Collapse
|
34
|
Delgado-Martin C, Meyer LK, Huang BJ, Shimano KA, Zinter MS, Nguyen JV, Smith GA, Taunton J, Winter SS, Roderick JR, Kelliher MA, Horton TM, Wood BL, Teachey DT, Hermiston ML. JAK/STAT pathway inhibition overcomes IL7-induced glucocorticoid resistance in a subset of human T-cell acute lymphoblastic leukemias. Leukemia 2017; 31:2568-2576. [PMID: 28484265 PMCID: PMC5729333 DOI: 10.1038/leu.2017.136] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 03/09/2017] [Accepted: 04/24/2017] [Indexed: 12/27/2022]
Abstract
While outcomes for children with T-cell acute lymphoblastic leukemia (T-ALL) have improved dramatically, survival rates for patients with relapsed/refractory disease remain dismal. Prior studies indicate that glucocorticoid (GC) resistance is more common than resistance to other chemotherapies at relapse. In addition, failure to clear peripheral blasts during a prednisone prophase correlates with an elevated risk of relapse in newly diagnosed patients. Here we show that intrinsic GC resistance is present at diagnosis in early thymic precursor (ETP) T-ALLs as well as in a subset of non-ETP T-ALLs. GC-resistant non-ETP T-ALLs are characterized by strong induction of JAK/STAT signaling in response to interleukin-7 (IL7) stimulation. Removing IL7 or inhibiting JAK/STAT signaling sensitizes these T-ALLs, and a subset of ETP T-ALLs, to GCs. The combination of the GC dexamethasone and the JAK1/2 inhibitor ruxolitinib altered the balance between pro- and anti-apoptotic factors in samples with IL7-dependent GC resistance, but not in samples with IL7-independent GC resistance. Together, these data suggest that the addition of ruxolitinib or other inhibitors of IL7 receptor/JAK/STAT signaling may enhance the efficacy of GCs in a biologically defined subset of T-ALL.
Collapse
Affiliation(s)
- C Delgado-Martin
- Department of Pediatrics, University of California, San Francisco, Benioff Children's Hospital, San Francisco, CA, USA
| | - L K Meyer
- Department of Pediatrics, University of California, San Francisco, Benioff Children's Hospital, San Francisco, CA, USA
| | - B J Huang
- Department of Pediatrics, University of California, San Francisco, Benioff Children's Hospital, San Francisco, CA, USA
| | - K A Shimano
- Department of Pediatrics, University of California, San Francisco, Benioff Children's Hospital, San Francisco, CA, USA
| | - M S Zinter
- Department of Pediatrics, University of California, San Francisco, Benioff Children's Hospital, San Francisco, CA, USA
| | - J V Nguyen
- Department of Pediatrics, University of California, San Francisco, Benioff Children's Hospital, San Francisco, CA, USA
| | - G A Smith
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - J Taunton
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - S S Winter
- Department of Pediatric Hematology/Oncology, University of New Mexico, Albuquerque, NM, USA
| | - J R Roderick
- Department of Cancer Biology, University of Massachusetts, Worcester, MA, USA
| | - M A Kelliher
- Department of Cancer Biology, University of Massachusetts, Worcester, MA, USA
| | - T M Horton
- Department of Pediatrics, Texas Children's Hospital, Houston, TX, USA
| | - B L Wood
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
| | - D T Teachey
- Department of Pediatrics, Children's Hospital of Pennsylvania, Philadelphia, PA, USA
| | - M L Hermiston
- Department of Pediatrics, University of California, San Francisco, Benioff Children's Hospital, San Francisco, CA, USA
| |
Collapse
|
35
|
Behrmann L, McComb S, Aguadé-Gorgorió J, Huang Y, Hermann M, Pelczar P, Aguzzi A, Bourquin JP, Bornhauser BC. Efficient Generation of Multi-gene Knockout Cell Lines and Patient-derived Xenografts Using Multi-colored Lenti-CRISPR-Cas9. Bio Protoc 2017; 7:e2222. [PMID: 34541223 DOI: 10.21769/bioprotoc.2222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/13/2017] [Accepted: 03/10/2017] [Indexed: 11/02/2022] Open
Abstract
CRISPR-Cas9 based knockout strategies are increasingly used to analyze gene function. However, redundancies and overlapping functions in biological signaling pathways can call for generating multi-gene knockout cells, which remains a relatively laborious process. Here we detail the application of multi-color LentiCRISPR vectors to simultaneously generate single and multiple knockouts in human cells. We provide a complete protocol, including guide RNA design, LentiCRISPR cloning, viral production and transduction, as well as strategies for sorting and screening knockout cells. The validity of the process is demonstrated by the simultaneous deletion of up to four programmed cell death mediators in leukemic cell lines and patient-derived acute lymphoblastic leukemia xenografts, in which single cell cloning is not feasible. This protocol enables any lab with access to basic cellular biology equipment, a biosafety level 2 facility and fluorescence-activated cell sorting capabilities to generate single and multi-gene knockout cell lines or primary cells efficiently within one month.
Collapse
Affiliation(s)
- Lena Behrmann
- Department of Oncology and Children's Research Center, University Children's Hospital Zürich, Zürich, Switzerland
| | - Scott McComb
- Department of Oncology and Children's Research Center, University Children's Hospital Zürich, Zürich, Switzerland.,Present address: Human Health and Therapeutics, National Research Council, Ottawa, Canada
| | - Júlia Aguadé-Gorgorió
- Department of Oncology and Children's Research Center, University Children's Hospital Zürich, Zürich, Switzerland
| | - Yun Huang
- Department of Oncology and Children's Research Center, University Children's Hospital Zürich, Zürich, Switzerland
| | - Mario Hermann
- Institute of Laboratory Animal Science, University of Zurich, Zürich, Switzerland
| | - Pawel Pelczar
- Institute of Laboratory Animal Science, University of Zurich, Zürich, Switzerland.,Present address: Center for Transgenic Models, University of Basel, Basel, Switzerland
| | - Adriano Aguzzi
- Institute of Neuropathology, University Hospital of Zurich, Zurich, Switzerland
| | - Jean-Pierre Bourquin
- Department of Oncology and Children's Research Center, University Children's Hospital Zürich, Zürich, Switzerland
| | - Beat C Bornhauser
- Department of Oncology and Children's Research Center, University Children's Hospital Zürich, Zürich, Switzerland
| |
Collapse
|
36
|
McGinn OJ, Krishnan S, Bourquin JP, Sapra P, Dempsey C, Saha V, Stern PL. Targeting the 5T4 oncofetal glycoprotein with an antibody drug conjugate (A1mcMMAF) improves survival in patient-derived xenograft models of acute lymphoblastic leukemia. Haematologica 2017; 102:1075-1084. [PMID: 28341731 PMCID: PMC5451339 DOI: 10.3324/haematol.2016.158485] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 03/15/2017] [Indexed: 12/29/2022] Open
Abstract
Outcome in childhood acute lymphoblastic leukemia is prognosticated from levels of minimal residual disease after remission induction therapy. Higher levels of minimal residual disease are associated with inferior results even with intensification of therapy, thus suggesting that identification and targeting of minimal residual disease cells could be a therapeutic strategy. Here we identify high expression of 5T4 in subclonal populations of patient-derived xenografts from patients with high, post-induction levels of minimal residual disease. 5T4-positive cells showed preferential ability to overcome the NOD-scidIL2Rγnull mouse xenograft barrier, migrated in vitro on a CXCL12 gradient, preferentially localized to bone marrow in vivo and displayed the ability to reconstitute the original clonal composition on limited dilution engraftment. Treatment with A1mcMMAF (a 5T4-antibody drug conjugate) significantly improved survival without overt toxicity in mice engrafted with a 5T4-positive acute lymphoblastic leukemia cell line. Mice engrafted with 5T4-positive patient-derived xenograft cells were treated with combination chemotherapy or dexamethasone alone and then given A1mcMMAF in the minimal residual disease setting. Combination chemotherapy was toxic to NOD-scidIL2Rγnull mice. While dexamethasone or A1mcMMAF alone improved outcomes, the sequential administration of dexamethasone and A1mcMMAF significantly improved survival (P=0.0006) over either monotherapy. These data show that specifically targeting minimal residual disease cells improved outcomes and support further investigation of A1mcMMAF in patients with high-risk B-cell precursor acute lymphoblastic leukemia identified by 5T4 expression at diagnosis.
Collapse
Affiliation(s)
- Owen J McGinn
- Immunology, Division of Molecular & Clinical Cancer Sciences, University of Manchester, UK
| | - Shekhar Krishnan
- Paediatric Oncology, Division of Molecular & Clinical Cancer Sciences, University of Manchester, UK.,Tata Translational Cancer Research Center, Tata Medical Center, Kolkata, India
| | - Jean-Pierre Bourquin
- Division of Oncology & Children's Research Center, University Children's Hospital, University of Zurich, Switzerland
| | - Puja Sapra
- Pfizer Inc. Pearl River, NY10965-1299, USA
| | - Clare Dempsey
- Paediatric Oncology, Division of Molecular & Clinical Cancer Sciences, University of Manchester, UK
| | - Vaskar Saha
- Paediatric Oncology, Division of Molecular & Clinical Cancer Sciences, University of Manchester, UK .,Tata Translational Cancer Research Center, Tata Medical Center, Kolkata, India
| | - Peter L Stern
- Immunology, Division of Molecular & Clinical Cancer Sciences, University of Manchester, UK
| |
Collapse
|
37
|
Ex vivo drug response profiling detects recurrent sensitivity patterns in drug-resistant acute lymphoblastic leukemia. Blood 2017; 129:e26-e37. [PMID: 28122742 DOI: 10.1182/blood-2016-09-738070] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 01/10/2017] [Indexed: 12/14/2022] Open
Abstract
Drug sensitivity and resistance testing on diagnostic leukemia samples should provide important functional information to guide actionable target and biomarker discovery. We provide proof of concept data by profiling 60 drugs on 68 acute lymphoblastic leukemia (ALL) samples mostly from resistant disease in cocultures of bone marrow stromal cells. Patient-derived xenografts retained the original pattern of mutations found in the matched patient material. Stromal coculture did not prevent leukemia cell cycle activity, but a specific sensitivity profile to cell cycle-related drugs identified samples with higher cell proliferation both in vitro and in vivo as leukemia xenografts. In patients with refractory relapses, individual patterns of marked drug resistance and exceptional responses to new agents of immediate clinical relevance were detected. The BCL2-inhibitor venetoclax was highly active below 10 nM in B-cell precursor ALL (BCP-ALL) subsets, including MLL-AF4 and TCF3-HLF ALL, and in some T-cell ALLs (T-ALLs), predicting in vivo activity as a single agent and in combination with dexamethasone and vincristine. Unexpected sensitivity to dasatinib with half maximal inhibitory concentration values below 20 nM was detected in 2 independent T-ALL cohorts, which correlated with similar cytotoxic activity of the SRC inhibitor KX2-391 and inhibition of SRC phosphorylation. A patient with refractory T-ALL was treated with dasatinib on the basis of drug profiling information and achieved a 5-month remission. Thus, drug profiling captures disease-relevant features and unexpected sensitivity to relevant drugs, which warrants further exploration of this functional assay in the context of clinical trials to develop drug repurposing strategies for patients with urgent medical needs.
Collapse
|
38
|
Ebinger S, Özdemir EZ, Ziegenhain C, Tiedt S, Castro Alves C, Grunert M, Dworzak M, Lutz C, Turati VA, Enver T, Horny HP, Sotlar K, Parekh S, Spiekermann K, Hiddemann W, Schepers A, Polzer B, Kirsch S, Hoffmann M, Knapp B, Hasenauer J, Pfeifer H, Panzer-Grümayer R, Enard W, Gires O, Jeremias I. Characterization of Rare, Dormant, and Therapy-Resistant Cells in Acute Lymphoblastic Leukemia. Cancer Cell 2016; 30:849-862. [PMID: 27916615 PMCID: PMC5156313 DOI: 10.1016/j.ccell.2016.11.002] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 06/11/2016] [Accepted: 10/31/2016] [Indexed: 01/06/2023]
Abstract
Tumor relapse is associated with dismal prognosis, but responsible biological principles remain incompletely understood. To isolate and characterize relapse-inducing cells, we used genetic engineering and proliferation-sensitive dyes in patient-derived xenografts of acute lymphoblastic leukemia (ALL). We identified a rare subpopulation that resembled relapse-inducing cells with combined properties of long-term dormancy, treatment resistance, and stemness. Single-cell and bulk expression profiling revealed their similarity to primary ALL cells isolated from pediatric and adult patients at minimal residual disease (MRD). Therapeutically adverse characteristics were reversible, as resistant, dormant cells became sensitive to treatment and started proliferating when dissociated from the in vivo environment. Our data suggest that ALL patients might profit from therapeutic strategies that release MRD cells from the niche.
Collapse
Affiliation(s)
- Sarah Ebinger
- Department of Gene Vectors, Helmholtz Zentrum München, German Center for Environmental Health (HMGU), 81377 Munich, Germany
| | - Erbey Ziya Özdemir
- Department of Gene Vectors, Helmholtz Zentrum München, German Center for Environmental Health (HMGU), 81377 Munich, Germany
| | - Christoph Ziegenhain
- Anthropology and Human Genomics, Department Biology II, Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany
| | - Sebastian Tiedt
- Department of Gene Vectors, Helmholtz Zentrum München, German Center for Environmental Health (HMGU), 81377 Munich, Germany
| | - Catarina Castro Alves
- Department of Gene Vectors, Helmholtz Zentrum München, German Center for Environmental Health (HMGU), 81377 Munich, Germany
| | - Michaela Grunert
- Department of Gene Vectors, Helmholtz Zentrum München, German Center for Environmental Health (HMGU), 81377 Munich, Germany
| | - Michael Dworzak
- Children's Cancer Research Institute and St. Anna Kinderspital, Department of Pediatrics, Medical University of Vienna, 1090 Vienna, Austria
| | - Christoph Lutz
- Department of Medicine V, University of Heidelberg, 69120 Heidelberg, Germany
| | | | - Tariq Enver
- University College London Cancer Institute, London WC1E, UK
| | - Hans-Peter Horny
- Institute of Pathology, Ludwig-Maximilians-Universität München, 80337 Munich, Germany
| | - Karl Sotlar
- Institute of Pathology, Ludwig-Maximilians-Universität München, 80337 Munich, Germany
| | - Swati Parekh
- Anthropology and Human Genomics, Department Biology II, Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany
| | - Karsten Spiekermann
- Department of Internal Medicine III, University Hospital Grosshadern, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; German Consortium for Translational Cancer Research (DKTK), Partnering Site, Munich, 81377 Munich, Germany
| | - Wolfgang Hiddemann
- Department of Internal Medicine III, University Hospital Grosshadern, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; German Consortium for Translational Cancer Research (DKTK), Partnering Site, Munich, 81377 Munich, Germany
| | - Aloys Schepers
- Department of Gene Vectors, Helmholtz Zentrum München, German Center for Environmental Health (HMGU), 81377 Munich, Germany
| | - Bernhard Polzer
- Project Group Personalized Tumor Therapy, Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, 93053 Regensburg, Germany
| | - Stefan Kirsch
- Project Group Personalized Tumor Therapy, Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, 93053 Regensburg, Germany
| | - Martin Hoffmann
- Project Group Personalized Tumor Therapy, Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, 93053 Regensburg, Germany
| | - Bettina Knapp
- Institute of Computational Biology, Helmholtz Zentrum München, German Center for Environmental Health (HMGU), 85764 Neuherberg, Germany
| | - Jan Hasenauer
- Institute of Computational Biology, Helmholtz Zentrum München, German Center for Environmental Health (HMGU), 85764 Neuherberg, Germany; Department of Mathematics, Technische Universität München (TUM), 85748 Munich, Germany
| | - Heike Pfeifer
- Department of Medicine, Hematology and Oncology, Goethe University, 60590 Frankfurt, Germany
| | - Renate Panzer-Grümayer
- Children's Cancer Research Institute and St. Anna Kinderspital, Department of Pediatrics, Medical University of Vienna, 1090 Vienna, Austria
| | - Wolfgang Enard
- Anthropology and Human Genomics, Department Biology II, Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany
| | - Olivier Gires
- Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Irmela Jeremias
- Department of Gene Vectors, Helmholtz Zentrum München, German Center for Environmental Health (HMGU), 81377 Munich, Germany; German Consortium for Translational Cancer Research (DKTK), Partnering Site, Munich, 81377 Munich, Germany; Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig Maximilians University München, 80337 Munich, Germany.
| |
Collapse
|
39
|
Pal D, Blair HJ, Elder A, Dormon K, Rennie KJ, Coleman DJL, Weiland J, Rankin KS, Filby A, Heidenreich O, Vormoor J. Long-term in vitro maintenance of clonal abundance and leukaemia-initiating potential in acute lymphoblastic leukaemia. Leukemia 2016; 30:1691-700. [PMID: 27109511 PMCID: PMC4980562 DOI: 10.1038/leu.2016.79] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 03/18/2016] [Accepted: 03/30/2016] [Indexed: 12/31/2022]
Abstract
Lack of suitable in vitro culture conditions for primary acute lymphoblastic leukaemia (ALL) cells severely impairs their experimental accessibility and the testing of new drugs on cell material reflecting clonal heterogeneity in patients. We show that Nestin-positive human mesenchymal stem cells (MSCs) support expansion of a range of biologically and clinically distinct patient-derived ALL samples. Adherent ALL cells showed an increased accumulation in the S phase of the cell cycle and diminished apoptosis when compared with cells in the suspension fraction. Moreover, surface expression of adhesion molecules CD34, CDH2 and CD10 increased several fold. Approximately 20% of the ALL cells were in G0 phase of the cell cycle, suggesting that MSCs may support quiescent ALL cells. Cellular barcoding demonstrated long-term preservation of clonal abundance. Expansion of ALL cells for >3 months compromised neither feeder dependence nor cancer initiating ability as judged by their engraftment potential in immunocompromised mice. Finally, we demonstrate the suitability of this co-culture approach for the investigation of drug combinations with luciferase-expressing primograft ALL cells. Taken together, we have developed a preclinical platform with patient-derived material that will facilitate the development of clinically effective combination therapies for ALL.
Collapse
Affiliation(s)
- D Pal
- Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University, Newcastle Upon Tyne, UK
| | - H J Blair
- Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University, Newcastle Upon Tyne, UK
| | - A Elder
- Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University, Newcastle Upon Tyne, UK
| | - K Dormon
- Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University, Newcastle Upon Tyne, UK
| | - K J Rennie
- Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, UK
| | - D J L Coleman
- Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University, Newcastle Upon Tyne, UK
| | - J Weiland
- Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University, Newcastle Upon Tyne, UK.,Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - K S Rankin
- Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University, Newcastle Upon Tyne, UK
| | - A Filby
- Flow Cytometry Core Facility, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - O Heidenreich
- Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University, Newcastle Upon Tyne, UK
| | - J Vormoor
- Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University, Newcastle Upon Tyne, UK.,Great North Children's Hospital, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| |
Collapse
|
40
|
Xenograft-directed personalized therapy for a patient with post-transplant relapse of ALL. Bone Marrow Transplant 2016; 51:1279-82. [DOI: 10.1038/bmt.2016.122] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
41
|
Boutter J, Huang Y, Marovca B, Vonderheit A, Grotzer MA, Eckert C, Cario G, Wollscheid B, Horvath P, Bornhauser BC, Bourquin JP. Image-based RNA interference screening reveals an individual dependence of acute lymphoblastic leukemia on stromal cysteine support. Oncotarget 2015; 5:11501-12. [PMID: 25415224 PMCID: PMC4294362 DOI: 10.18632/oncotarget.2572] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 10/03/2014] [Indexed: 01/22/2023] Open
Abstract
Interactions with the bone marrow microenvironment are essential for leukemia survival and disease progression. We developed an imaging-based RNAi platform to identify protective cues from bone marrow derived mesenchymal stromal cells (MSC) that promote survival of primary acute lymphoblastic leukemia (ALL) cells. Using a candidate gene approach, we detected distinct responses of individual ALL cases to RNA interference with stromal targets. The strongest effects were observed when interfering with solute carrier family 3 member 2 (SLC3A2) expression, which forms the cystine transporter xc− when associated with SLC7A11. Import of cystine and metabolism to cysteine by stromal cells provides the limiting substrate to generate and maintain glutathione in ALL. This metabolic interaction reduces oxidative stress in ALL cells that depend on stromal xc−. Indeed, cysteine depletion using cysteine dioxygenase resulted in leukemia cell death. Thus, functional evaluation of intercellular interactions between leukemia cells and their microenvironment identifies a selective dependency of ALL cells on stromal metabolism for a relevant subgroup of cases, providing new opportunities to develop more personalized approaches to leukemia treatment.
Collapse
Affiliation(s)
- Jeannette Boutter
- Department of Pediatric Oncology, University Children's Hospital Zurich, Zurich, Switzerland. Children's Research Center (CRC), University Children's Hospital Zurich, Zurich, Switzerland
| | - Yun Huang
- Department of Pediatric Oncology, University Children's Hospital Zurich, Zurich, Switzerland. Children's Research Center (CRC), University Children's Hospital Zurich, Zurich, Switzerland
| | - Blerim Marovca
- Department of Pediatric Oncology, University Children's Hospital Zurich, Zurich, Switzerland. Children's Research Center (CRC), University Children's Hospital Zurich, Zurich, Switzerland
| | | | - Michael A Grotzer
- Department of Pediatric Oncology, University Children's Hospital Zurich, Zurich, Switzerland. Children's Research Center (CRC), University Children's Hospital Zurich, Zurich, Switzerland
| | - Cornelia Eckert
- Department of Pediatric Oncology/Hematology, Charité Universitätsmedizin Berlin, Germany
| | - Gunnar Cario
- Department of Pediatrics, University Medical Centre Schleswig-Holstein, Kiel, Germany
| | - Bernd Wollscheid
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Peter Horvath
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, Hungary. Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Beat C Bornhauser
- Department of Pediatric Oncology, University Children's Hospital Zurich, Zurich, Switzerland. Children's Research Center (CRC), University Children's Hospital Zurich, Zurich, Switzerland
| | - Jean-Pierre Bourquin
- Department of Pediatric Oncology, University Children's Hospital Zurich, Zurich, Switzerland. Children's Research Center (CRC), University Children's Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
42
|
Fischer U, Forster M, Rinaldi A, Risch T, Sungalee S, Warnatz HJ, Bornhauser B, Gombert M, Kratsch C, Stütz AM, Sultan M, Tchinda J, Worth CL, Amstislavskiy V, Badarinarayan N, Baruchel A, Bartram T, Basso G, Canpolat C, Cario G, Cavé H, Dakaj D, Delorenzi M, Dobay MP, Eckert C, Ellinghaus E, Eugster S, Frismantas V, Ginzel S, Haas OA, Heidenreich O, Hemmrich-Stanisak G, Hezaveh K, Höll JI, Hornhardt S, Husemann P, Kachroo P, Kratz CP, Te Kronnie G, Marovca B, Niggli F, McHardy AC, Moorman AV, Panzer-Grümayer R, Petersen BS, Raeder B, Ralser M, Rosenstiel P, Schäfer D, Schrappe M, Schreiber S, Schütte M, Stade B, Thiele R, von der Weid N, Vora A, Zaliova M, Zhang L, Zichner T, Zimmermann M, Lehrach H, Borkhardt A, Bourquin JP, Franke A, Korbel JO, Stanulla M, Yaspo ML. Genomics and drug profiling of fatal TCF3-HLF-positive acute lymphoblastic leukemia identifies recurrent mutation patterns and therapeutic options. Nat Genet 2015. [PMID: 26214592 PMCID: PMC4603357 DOI: 10.1038/ng.3362] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
TCF3-HLF-fusion positive acute lymphoblastic leukemia (ALL) is currently incurable. Employing an integrated approach, we uncovered distinct mutation, gene expression, and drug response profiles in TCF3-HLF-positive and treatment-responsive TCF3-PBX1-positive ALL. Recurrent intragenic deletions of PAX5 or VPREB1 were identified in constellation with TCF3-HLF. Moreover somatic mutations in the non-translocated allele of TCF3 and a reduction of PAX5 gene dosage in TCF3-HLF ALL suggest cooperation within a restricted genetic context. The enrichment for stem cell and myeloid features in the TCF3-HLF signature may reflect reprogramming by TCF3-HLF of a lymphoid-committed cell of origin towards a hybrid, drug-resistant hematopoietic state. Drug response profiling of matched patient-derived xenografts revealed a distinct profile for TCF3-HLF ALL with resistance to conventional chemotherapeutics, but sensitivity towards glucocorticoids, anthracyclines and agents in clinical development. Striking on-target sensitivity was achieved with the BCL2-specific inhibitor venetoclax (ABT-199). This integrated approach thus provides alternative treatment options for this deadly disease.
Collapse
Affiliation(s)
- Ute Fischer
- Clinic for Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Michael Forster
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Anna Rinaldi
- Pediatric Oncology, Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| | - Thomas Risch
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Stéphanie Sungalee
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Hans-Jörg Warnatz
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Beat Bornhauser
- Pediatric Oncology, Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| | - Michael Gombert
- Clinic for Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Christina Kratsch
- Department of Algorithmic Bioinformatics, Heinrich-Heine-University, Düsseldorf, Germany
| | - Adrian M Stütz
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Marc Sultan
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Joelle Tchinda
- Pediatric Oncology, Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| | - Catherine L Worth
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | - Nandini Badarinarayan
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - André Baruchel
- Department of Pediatric Hemato-Immunology, Hôpital Robert Debré and Paris Diderot University, Paris, France
| | - Thies Bartram
- Department of Pediatrics, Christian-Albrechts-University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Giuseppe Basso
- Department of Pediatrics, Laboratory of Pediatric Hematology/Oncology, University of Padova, Padova, Italy
| | - Cengiz Canpolat
- Department of Pediatrics, Acıbadem University Medical School, Ataşehir, Istanbul, Turkey
| | - Gunnar Cario
- Department of Pediatrics, Christian-Albrechts-University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Hélène Cavé
- Department of Genetics, Hôpital Robert Debré and Paris Diderot University, Paris, France
| | - Dardane Dakaj
- Pediatric Oncology, Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| | - Mauro Delorenzi
- Ludwig Center for Cancer Research, University of Lausanne, Lausanne, Switzerland.,Swiss Institute for Bioinformatics (SIB), Lausanne, Switzerland
| | | | - Cornelia Eckert
- Pediatric Hematology and Oncology, Charité University Hospital, Berlin, Germany
| | - Eva Ellinghaus
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Sabrina Eugster
- Pediatric Oncology, Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| | - Viktoras Frismantas
- Pediatric Oncology, Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| | - Sebastian Ginzel
- Clinic for Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany.,Department of Computer Science, Bonn-Rhine-Sieg University of Applied Sciences, Sankt Augustin, Germany
| | - Oskar A Haas
- Children's Cancer Research Institute, Vienna, Austria
| | - Olaf Heidenreich
- Northern Institute of Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Georg Hemmrich-Stanisak
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Kebria Hezaveh
- Clinic for Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jessica I Höll
- Clinic for Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Sabine Hornhardt
- Federal Office for Radiation Protection, Oberschleissheim, Germany
| | - Peter Husemann
- Clinic for Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Priyadarshini Kachroo
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Christian P Kratz
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Geertruy Te Kronnie
- Department of Pediatrics, Laboratory of Pediatric Hematology/Oncology, University of Padova, Padova, Italy
| | - Blerim Marovca
- Pediatric Oncology, Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| | - Felix Niggli
- Pediatric Oncology, Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| | - Alice C McHardy
- Department of Algorithmic Bioinformatics, Heinrich-Heine-University, Düsseldorf, Germany
| | - Anthony V Moorman
- Northern Institute of Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Britt S Petersen
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Benjamin Raeder
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Meryem Ralser
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Daniel Schäfer
- Clinic for Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Martin Schrappe
- Department of Pediatrics, Christian-Albrechts-University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Stefan Schreiber
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | | | - Björn Stade
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Ralf Thiele
- Department of Computer Science, Bonn-Rhine-Sieg University of Applied Sciences, Sankt Augustin, Germany
| | | | - Ajay Vora
- Sheffield Children's Hospital, Sheffield, United Kingdom
| | - Marketa Zaliova
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany.,Childhood Leukaemia Investigation Prague (CLIP), Department of Pediatric Hematology/Oncology, Second Faculty of Medicine, Charles University Prague, Prague, Czech Republic
| | - Langhui Zhang
- Clinic for Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany.,Department of Hematology, Union Hospital, Fujian Medical University, Fuzhou, China
| | - Thomas Zichner
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Martin Zimmermann
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Hans Lehrach
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany.,Alacris Theranostics GmbH, Berlin, Germany.,Dahlem Centre for Genome Reseach and Medical Systems Biology, Berlin, Germany
| | - Arndt Borkhardt
- Clinic for Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jean-Pierre Bourquin
- Pediatric Oncology, Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Jan O Korbel
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Martin Stanulla
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Marie-Laure Yaspo
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| |
Collapse
|
43
|
Lang F, Wojcik B, Rieger MA. Stem Cell Hierarchy and Clonal Evolution in Acute Lymphoblastic Leukemia. Stem Cells Int 2015; 2015:137164. [PMID: 26236346 PMCID: PMC4506911 DOI: 10.1155/2015/137164] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 06/16/2015] [Accepted: 06/17/2015] [Indexed: 01/15/2023] Open
Abstract
Cancer is characterized by a remarkable intertumoral, intratumoral, and cellular heterogeneity that might be explained by the cancer stem cell (CSC) and/or the clonal evolution models. CSCs have the ability to generate all different cells of a tumor and to reinitiate the disease after remission. In the clonal evolution model, a consecutive accumulation of mutations starting in a single cell results in competitive growth of subclones with divergent fitness in either a linear or a branching succession. Acute lymphoblastic leukemia (ALL) is a highly malignant cancer of the lymphoid system in the bone marrow with a dismal prognosis after relapse. However, stabile phenotypes and functional data of CSCs in ALL, the so-called leukemia-initiating cells (LICs), are highly controversial and the question remains whether there is evidence for their existence. This review discusses the concepts of CSCs and clonal evolution in respect to LICs mainly in B-ALL and sheds light onto the technical controversies in LIC isolation and evaluation. These aspects are important for the development of strategies to eradicate cells with LIC capacity. Common properties of LICs within different subclones need to be defined for future ALL diagnostics, treatment, and disease monitoring to improve the patients' outcome in ALL.
Collapse
Affiliation(s)
- Fabian Lang
- Department of Hematology/Oncology, Goethe University Hospital, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Bartosch Wojcik
- Department of Hematology/Oncology, Goethe University Hospital, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
- LOEWE Center for Cell and Gene Therapy Frankfurt, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Michael A. Rieger
- Department of Hematology/Oncology, Goethe University Hospital, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
- LOEWE Center for Cell and Gene Therapy Frankfurt, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| |
Collapse
|
44
|
Mer tyrosine kinase promotes the survival of t(1;19)-positive acute lymphoblastic leukemia (ALL) in the central nervous system (CNS). Blood 2015; 125:820-30. [DOI: 10.1182/blood-2014-06-583062] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Key Points
Mer mediates quiescence and chemotherapy resistance in a CNS coculture model and causes CNS infiltration in immunodeficient mice. Mer expression correlates with CNS positivity upon initial diagnosis in t(1;19)-positive pediatric ALL patients.
Collapse
|
45
|
Suryani S, Carol H, Chonghaile TN, Frismantas V, Sarmah C, High L, Bornhauser B, Cowley MJ, Szymanska B, Evans K, Boehm I, Tonna E, Jones L, Manesh DM, Kurmasheva RT, Billups C, Kaplan W, Letai A, Bourquin JP, Houghton PJ, Smith MA, Lock RB. Cell and molecular determinants of in vivo efficacy of the BH3 mimetic ABT-263 against pediatric acute lymphoblastic leukemia xenografts. Clin Cancer Res 2014; 20:4520-31. [PMID: 25013123 DOI: 10.1158/1078-0432.ccr-14-0259] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE Predictive biomarkers are required to identify patients who may benefit from the use of BH3 mimetics such as ABT-263. This study investigated the efficacy of ABT-263 against a panel of patient-derived pediatric acute lymphoblastic leukemia (ALL) xenografts and utilized cell and molecular approaches to identify biomarkers that predict in vivo ABT-263 sensitivity. EXPERIMENTAL DESIGN The in vivo efficacy of ABT-263 was tested against a panel of 31 patient-derived ALL xenografts composed of MLL-, BCP-, and T-ALL subtypes. Basal gene expression profiles of ALL xenografts were analyzed and confirmed by quantitative RT-PCR, protein expression and BH3 profiling. An in vitro coculture assay with immortalized human mesenchymal cells was utilized to build a predictive model of in vivo ABT-263 sensitivity. RESULTS ABT-263 demonstrated impressive activity against pediatric ALL xenografts, with 19 of 31 achieving objective responses. Among BCL2 family members, in vivo ABT-263 sensitivity correlated best with low MCL1 mRNA expression levels. BH3 profiling revealed that resistance to ABT-263 correlated with mitochondrial priming by NOXA peptide, suggesting a functional role for MCL1 protein. Using an in vitro coculture assay, a predictive model of in vivo ABT-263 sensitivity was built. Testing this model against 11 xenografts predicted in vivo ABT-263 responses with high sensitivity (50%) and specificity (100%). CONCLUSION These results highlight the in vivo efficacy of ABT-263 against a broad range of pediatric ALL subtypes and shows that a combination of in vitro functional assays can be used to predict its in vivo efficacy.
Collapse
Affiliation(s)
- Santi Suryani
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW, Sydney, Australia
| | - Hernan Carol
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW, Sydney, Australia
| | - Triona Ni Chonghaile
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Viktoras Frismantas
- Division of Pediatric Oncology, University Children's Hospital, Zurich, Switzerland
| | - Chintanu Sarmah
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW, Sydney, Australia
| | - Laura High
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW, Sydney, Australia
| | - Beat Bornhauser
- Division of Pediatric Oncology, University Children's Hospital, Zurich, Switzerland
| | - Mark J Cowley
- Peter Wills Bioinformatics Centre, Garvan Institute of Medical Research, Darlinghurst, Australia
| | - Barbara Szymanska
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW, Sydney, Australia
| | - Kathryn Evans
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW, Sydney, Australia
| | - Ingrid Boehm
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW, Sydney, Australia
| | - Elise Tonna
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW, Sydney, Australia
| | - Luke Jones
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW, Sydney, Australia
| | - Donya Moradi Manesh
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW, Sydney, Australia
| | | | - Catherine Billups
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Warren Kaplan
- Peter Wills Bioinformatics Centre, Garvan Institute of Medical Research, Darlinghurst, Australia
| | - Anthony Letai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jean-Pierre Bourquin
- Division of Pediatric Oncology, University Children's Hospital, Zurich, Switzerland
| | - Peter J Houghton
- Center for Childhood Cancer, Nationwide Children's Hospital, Columbus, Ohio
| | | | - Richard B Lock
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW, Sydney, Australia.
| |
Collapse
|
46
|
Mouse xenograft modeling of human adult acute lymphoblastic leukemia provides mechanistic insights into adult LIC biology. Blood 2014; 124:96-105. [PMID: 24825861 DOI: 10.1182/blood-2014-01-549352] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The distinct nature of acute lymphoblastic leukemia (ALL) in adults, evidenced by inferior treatment outcome and different genetic landscape, mandates specific studies of disease-initiating mechanisms. In this study, we used NOD/LtSz-scid IL2Rγ null(c) (NSG) mouse xenotransplantation approaches to elucidate leukemia-initiating cell (LIC) biology in primary adult precursor B (pre-B) ALL to optimize disease modeling. In contrast with xenografting studies of pediatric ALL, we found that modification of the NSG host environment using preconditioning total body irradiation (TBI) was indispensable for efficient engraftment of adult non-t(4;11) pre-B ALL, whereas t(4;11) pre-B ALL was successfully reconstituted without this adaptation. Furthermore, TBI-based xenotransplantation of non-t(4;11) pre-B ALL enabled detection of a high frequency of LICs (<1:6900) and permitted frank leukemic engraftment from a remission sample containing drug-resistant minimal residual disease. Investigation of TBI-sensitive stromal-derived factor-1/chemokine receptor type 4 signaling revealed greater functional dependence of non-t(4;11) pre-B ALL on this niche-based interaction, providing a possible basis for the differential engraftment behavior. Thus, our studies establish the optimal conditions for experimental modeling of human adult pre-B ALL and demonstrate the critical protumorogenic role of microenvironment-derived SDF-1 in regulating adult pre-B LIC activity that may present a therapeutic opportunity.
Collapse
|
47
|
Clonal variegation and dynamic competition of leukemia-initiating cells in infant acute lymphoblastic leukemia with MLL rearrangement. Leukemia 2014; 29:38-50. [PMID: 24798483 DOI: 10.1038/leu.2014.154] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 04/04/2014] [Accepted: 04/11/2014] [Indexed: 12/14/2022]
Abstract
Distinct from other forms of acute lymphoblastic leukemia (ALL), infant ALL with mixed lineage leukemia (MLL) gene rearrangement, the most common leukemia occurring within the first year of life, might arise without the need for cooperating genetic lesions. Through Ig/TCR rearrangement analysis of MLL-AF4+ infant ALL at diagnosis and xenograft leukemias from mice transplanted with the same diagnostic samples, we established that MLL-AF4+ infant ALL is composed of a branching subclonal architecture already at diagnosis, frequently driven by an Ig/TCR-rearranged founder clone. Some MLL-AF4+ clones appear to be largely quiescent at diagnosis but can reactivate and dominate when serially transplanted into immunodeficient mice, whereas other dominant clones at diagnosis can become more quiescent, suggesting a dynamic competition between actively proliferating and quiescent subclones. Investigation of paired diagnostic and relapse samples suggested that relapses often occur from subclones already present but more quiescent at diagnosis. Copy-number alterations identified at relapse might contribute to the activation and expansion of previously quiescent subclones. Finally, each of the identified subclones is able to contribute to the diverse phenotypic pool of MLL-AF4+ leukemia-propagating cells. Unraveling of the subclonal architecture and dynamics in MLL+ infant ALL may provide possible explanations for the therapy resistance and frequent relapses observed in this group of poor prognosis ALL.
Collapse
|
48
|
Klco JM, Spencer DH, Miller CA, Griffith M, Lamprecht TL, O'Laughlin M, Fronick C, Magrini V, Demeter RT, Fulton RS, Eades WC, Link DC, Graubert TA, Walter MJ, Mardis ER, Dipersio JF, Wilson RK, Ley TJ. Functional heterogeneity of genetically defined subclones in acute myeloid leukemia. Cancer Cell 2014; 25:379-92. [PMID: 24613412 PMCID: PMC3983786 DOI: 10.1016/j.ccr.2014.01.031] [Citation(s) in RCA: 301] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 12/23/2013] [Accepted: 01/31/2014] [Indexed: 12/20/2022]
Abstract
The relationships between clonal architecture and functional heterogeneity in acute myeloid leukemia (AML) samples are not yet clear. We used targeted sequencing to track AML subclones identified by whole-genome sequencing using a variety of experimental approaches. We found that virtually all AML subclones trafficked from the marrow to the peripheral blood, but some were enriched in specific cell populations. Subclones showed variable engraftment potential in immunodeficient mice. Xenografts were predominantly comprised of a single genetically defined subclone, but there was no predictable relationship between the engrafting subclone and the evolutionary hierarchy of the leukemia. These data demonstrate the importance of integrating genetic and functional data in studies of primary cancer samples, both in xenograft models and in patients.
Collapse
Affiliation(s)
- Jeffery M Klco
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David H Spencer
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Malachi Griffith
- The Genome Institute, Washington University, St. Louis, MO 63110, USA
| | - Tamara L Lamprecht
- Division of Oncology, Section of Stem Cell Biology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Catrina Fronick
- The Genome Institute, Washington University, St. Louis, MO 63110, USA
| | - Vincent Magrini
- The Genome Institute, Washington University, St. Louis, MO 63110, USA
| | - Ryan T Demeter
- The Genome Institute, Washington University, St. Louis, MO 63110, USA
| | - Robert S Fulton
- The Genome Institute, Washington University, St. Louis, MO 63110, USA
| | - William C Eades
- Division of Oncology, Section of Stem Cell Biology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Daniel C Link
- Division of Oncology, Section of Stem Cell Biology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Timothy A Graubert
- Division of Oncology, Section of Stem Cell Biology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Matthew J Walter
- Division of Oncology, Section of Stem Cell Biology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Elaine R Mardis
- The Genome Institute, Washington University, St. Louis, MO 63110, USA
| | - John F Dipersio
- Division of Oncology, Section of Stem Cell Biology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Richard K Wilson
- The Genome Institute, Washington University, St. Louis, MO 63110, USA
| | - Timothy J Ley
- The Genome Institute, Washington University, St. Louis, MO 63110, USA; Division of Oncology, Section of Stem Cell Biology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
49
|
CD2-positive B-cell precursor acute lymphoblastic leukemia with an early switch to the monocytic lineage. Leukemia 2013; 28:609-20. [PMID: 24270736 DOI: 10.1038/leu.2013.354] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 11/10/2013] [Accepted: 11/14/2013] [Indexed: 12/20/2022]
Abstract
Switches from the lymphoid to myeloid lineage during B-cell precursor acute lymphoblastic leukemia (BCP-ALL) treatment are considered rare and thus far have been detected in MLL-rearranged leukemia. Here, we describe a novel BCP-ALL subset, switching BCP-ALL or swALL, which demonstrated monocytosis early during treatment. Despite their monocytic phenotype, 'monocytoids' share immunoreceptor gene rearrangements with leukemic B lymphoblasts. All swALLs demonstrated BCP-ALL with CD2 positivity and no MLL alterations, and the proportion of swALLs cases among BCP-ALLs was unexpectedly high (4%). The upregulation of CEBPα and demethylation of the CEBPA gene were significant in blasts at diagnosis, prior to the time when most of the switching occurs. Intermediate stages between CD14(neg)CD19(pos)CD34(pos) B lymphoblasts and CD14(pos)CD19(neg)CD34(neg) 'monocytoids' were detected, and changes in the expression of PAX5, PU1, M-CSFR, GM-CSFR and other genes accompanied the switch. Alterations in the Ikaros and ERG genes were more frequent in swALL patients; however, both were altered in only a minority of swALLs. Moreover, switching could be recapitulated in vitro and in mouse xenografts. Although children with swALL respond slowly to initial therapy, risk-based ALL therapy appears the treatment of choice for swALL. SwALL shows that transdifferentiating into monocytic lineage is specifically associated with CEBPα changes and CD2 expression.
Collapse
|
50
|
Guihard S, Peyrouze P, Cheok MH. Pharmacogenomic considerations of xenograft mouse models of acute leukemia. Pharmacogenomics 2013; 13:1759-72. [PMID: 23171339 DOI: 10.2217/pgs.12.158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The use of combination chemotherapy to cure acute lymphoblastic leukemia in children and acute myeloid leukemia in adults emerged for acute myeloid leukemia in the 1960s and for acute lymphoblastic leukemia in the 1980s as a paradigm for curing any disseminated cancer. This article summarizes recent developments and considerations in the use of acute leukemia xenografts established in immunodeficient mice to elucidate the genetic and genomic basis of acute leukemia pathogenesis and treatment response.
Collapse
Affiliation(s)
- Soizic Guihard
- Jean-Pierre Aubert Research Center, INSERM U837, Institute for Cancer Research, 1 Place de Verdun, F-59045 Lille Cedex, France
| | | | | |
Collapse
|