1
|
El Hajj H, Hermine O, Bazarbachi A. Therapeutic advances for the management of adult T cell leukemia: Where do we stand? Leuk Res 2024; 147:107598. [PMID: 39366194 DOI: 10.1016/j.leukres.2024.107598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/06/2024]
Abstract
Adult T cell leukemia (ATL) is an aggressive blood malignancy secondary to chronic infection with the human T cell leukemia virus type I (HTLV-1) retrovirus. ATL encompasses four subtypes (acute, lymphoma, chronic, and smoldering), which exhibit different clinical characteristics and respond differently to various treatment strategies. Yet, all four subtypes are characterized by a dismal long-term prognosis and a low survival rate. While antiretroviral therapy improves overall survival outcomes in smoldering and chronic subtypes, survival remains poor in lymphoma subtypes despite their good response to intensive chemotherapy. Nonetheless, acute ATL remains the most aggressive form associated with profound immunosuppression, chemo-resistance and dismal prognosis. Targeted therapies such as monoclonal antibodies, epigenetic therapies, and arsenic/IFN, emerged as promising therapeutic approaches in ATL. Allogeneic hematopoietic cell transplantation is the only potentially curative modality, alas applicable to only a small percentage of patients. The recent findings demonstrating the expression of the viral oncoprotein Tax in primary ATL cells from patients with acute or chronic ATL, albeit at low levels, and their dependence on continuous Tax expression for their survival, position ATL as a virus-addicted leukemia and validates the rationale of anti-viral treatment strategies. This review provides a comprehensive overview on conventional, anti-viral and targeted therapies of ATL, with emphasis on Tax-targeted therapied in the pre-clinical and clinical settings.
Collapse
Affiliation(s)
- Hiba El Hajj
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Olivier Hermine
- Institut Imagine-INSERM, U1163, Necker Hospital, University of Paris, Paris, France; Department of Hematology, Necker Hospital, University of Paris, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Ali Bazarbachi
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
2
|
Tram J, Marty L, Mourouvin C, Abrantes M, Jaafari I, Césaire R, Hélias P, Barbeau B, Mesnard JM, Baccini V, Chaloin L, Peloponese JMJ. The Oncoprotein Fra-2 Drives the Activation of Human Endogenous Retrovirus Env Expression in Adult T-Cell Leukemia/Lymphoma (ATLL) Patients. Cells 2024; 13:1517. [PMID: 39329701 PMCID: PMC11430398 DOI: 10.3390/cells13181517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/23/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024] Open
Abstract
Human endogenous retroviruses (HERVs) are retroviral sequences integrated into 8% of the human genome resulting from ancient exogenous retroviral infections. Unlike endogenous retroviruses of other mammalian species, HERVs are mostly replication and retro-transposition defective, and their transcription is strictly regulated by epigenetic mechanisms in normal cells. A significant addition to the growing body of research reveals that HERVs' aberrant activation is often associated with offsetting diseases like autoimmunity, neurodegenerative diseases, cancers, and chemoresistance. Adult T-cell leukemia/lymphoma (ATLL) is a very aggressive and chemoresistant leukemia caused by the human T-cell leukemia virus type 1 (HTLV-1). The prognosis of ATLL remains poor despite several new agents being approved in the last few years. In the present study, we compare the expression of HERV genes in CD8+-depleted PBMCs from HTLV-1 asymptomatic carriers and patients with acute ATLL. Herein, we show that HERVs are highly upregulated in acute ATLL. Our results further demonstrate that the oncoprotein Fra-2 binds the LTR region and activates the transcription of several HERV families, including HERV-H and HERV-K families. This raises the exciting possibility that upregulated HERV expression could be a key factor in ATLL development and the observed chemoresistance, potentially leading to new therapeutic strategies and significantly impacting the field of oncology and virology.
Collapse
Affiliation(s)
- Julie Tram
- Université Montpellier (UM), 34000 Montpellier, France; (J.T.); (L.M.); (C.M.); (M.A.); (L.C.)
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, 34293 Montpellier, France
| | - Laetitia Marty
- Université Montpellier (UM), 34000 Montpellier, France; (J.T.); (L.M.); (C.M.); (M.A.); (L.C.)
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, 34293 Montpellier, France
| | - Célima Mourouvin
- Université Montpellier (UM), 34000 Montpellier, France; (J.T.); (L.M.); (C.M.); (M.A.); (L.C.)
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, 34293 Montpellier, France
| | - Magali Abrantes
- Université Montpellier (UM), 34000 Montpellier, France; (J.T.); (L.M.); (C.M.); (M.A.); (L.C.)
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, 34293 Montpellier, France
| | - Ilham Jaafari
- Université Montpellier (UM), 34000 Montpellier, France; (J.T.); (L.M.); (C.M.); (M.A.); (L.C.)
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, 34293 Montpellier, France
| | - Raymond Césaire
- Centre Hospitalier Universitaire de Martinique, 97261 Fort de France, France
| | - Philippe Hélias
- Département de Radiothérapie-Oncologie-Hématologie, Centre Hospitalier Universitaire de la Guadeloupe, 97110 Pointe à Pitre, France;
| | - Benoit Barbeau
- Département des Sciences Biologiques, Université du Québec à Montréal, SB-R860, Montréal, QC H2X 1Y4, Canada;
| | - Jean-Michel Mesnard
- Université Montpellier (UM), 34000 Montpellier, France; (J.T.); (L.M.); (C.M.); (M.A.); (L.C.)
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, 34293 Montpellier, France
| | - Véronique Baccini
- Laboratoire d’Hématologie CHU de la Guadeloupe, 97110 Pointe à Pitre Guadeloupe, France;
| | - Laurent Chaloin
- Université Montpellier (UM), 34000 Montpellier, France; (J.T.); (L.M.); (C.M.); (M.A.); (L.C.)
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, 34293 Montpellier, France
| | - Jean-Marie Jr. Peloponese
- Université Montpellier (UM), 34000 Montpellier, France; (J.T.); (L.M.); (C.M.); (M.A.); (L.C.)
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, 34293 Montpellier, France
| |
Collapse
|
3
|
Domingues W, Folgosi VÂ, Sanabani SS, Leite Junior PD, Assone T, Casseb J. Novel approaches for HTLV-1 therapy: innovative applications of CRISPR-Cas9. Rev Inst Med Trop Sao Paulo 2024; 66:e48. [PMID: 39194140 DOI: 10.1590/s1678-9946202466048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/07/2024] [Indexed: 08/29/2024] Open
Abstract
The human T-cell lymphotropic virus type 1 (HTLV-1) is a single-stranded positive-sense RNA virus that belongs to the Retroviridae family, genus Deltaretro, and infects approximately five to 10 million people worldwide. Although a significant number of individuals living with HTLV-1 remain asymptomatic throughout their lives, some develop one or more severe clinical conditions, such as HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), a progressive and debilitating disease, and/or a subtype of non-Hodgkin's lymphoma with a more threatening course known as adult T-cell leukemia/lymphoma (ATLL). Moreover, current therapeutic options are limited and focus primarily on treating symptoms and controlling viral latency. CRISPR-Cas9 gene editing is proposed as a promising tool to address the intricate links associated with HTLV-1. By targeting or silencing key genes during initial infection and dysregulating immune signaling pathways, CRISPR-Cas9 offers potential intervention opportunities. In this review, we address the therapeutic potential of CRISPR-Cas9 gene editing, as well as examine the primary mechanisms involved in editing potential target genes and discuss the existing evidence in the current scientific literature.
Collapse
Affiliation(s)
- Wilson Domingues
- Universidade de São Paulo, Faculdade de Medicina, Divisão de Dermatologia, Laboratório de Investigação Médica LIM-56, São Paulo, São Paulo, Brazil
| | - Victor Ângelo Folgosi
- Universidade de São Paulo, Faculdade de Medicina, Divisão de Dermatologia, Laboratório de Investigação Médica LIM-56, São Paulo, São Paulo, Brazil
| | - Sabri Saeed Sanabani
- Universidade de São Paulo, Faculdade de Medicina, Divisão de Dermatologia, Laboratório de Investigação Médica LIM-56, São Paulo, São Paulo, Brazil
| | - Pedro Domingos Leite Junior
- Universidade de São Paulo, Faculdade de Medicina, Divisão de Dermatologia, Laboratório de Investigação Médica LIM-56, São Paulo, São Paulo, Brazil
| | - Tatiane Assone
- Universidade de São Paulo, Faculdade de Medicina, Divisão de Dermatologia, Laboratório de Investigação Médica LIM-56, São Paulo, São Paulo, Brazil
| | - Jorge Casseb
- Universidade de São Paulo, Faculdade de Medicina, Divisão de Dermatologia, Laboratório de Investigação Médica LIM-56, São Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
Youssefian L, Saeidian AH, Saffarian Z, Ariamanesh M, Abdollahimajd F, Molkara S, Shahidi-Dadras M, Diab R, Vahidnezhad F, Zeinali S, Béziat V, Jouanguy E, Casanova JL, Uitto J, Vahidnezhad H. Whole-Transcriptome Sequencing-Based Profiling of the Cutaneous Virome in Patients with Secondary Immunodeficiency. JID INNOVATIONS 2024; 4:100278. [PMID: 38994235 PMCID: PMC11238184 DOI: 10.1016/j.xjidi.2024.100278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 02/17/2024] [Accepted: 02/22/2024] [Indexed: 07/13/2024] Open
Abstract
Most viral infections can be self-limited, with no requirement for medical intervention. However, the same viruses can cause severe diseases in patients with compromised immunity due to single-gene diseases, acquired immune deficiency syndrome, or hematologic malignancies or those receiving immunosuppressive drugs. Occasionally, these immunocompromised patients harbor >1 infectious agent, requiring several concomitant diagnostic tests. We have developed, to our knowledge, a previously unreported whole-transcriptome sequencing-based pipeline that allows virome profiling, quantitation, and expression pattern analysis of 926 distinct viruses by sequencing of RNA isolated from a single lesional skin biopsy. This pipeline can also explore host genetics if there is a Mendelian predisposition to infection. We applied this pipeline to 6 Iranian patients with viral-induced skin lesions associated with immune deficiency secondary to HIV, human T-lymphotropic virus 1, chronic lymphocytic leukemia, and post transplant immunosuppression. In 5 cases, definitive human papillomavirus infections were identified, some caused by multiple viral types. In addition to human papillomavirus, coinfection with other viruses (Merkle cell polyomavirus, cytomegalovirus, and human herpesvirus 4) was detected in some lesions. In 1 case, whole-transcriptome sequencing validated the clinical diagnosis of adult T-cell leukemia/lymphoma in a patient with an initial diagnosis of mycosis fungoides/Sézary syndrome. These findings attest to the power of whole-transcriptome sequencing in profiling the cutaneous virome in the context of compromised immunity.
Collapse
Affiliation(s)
- Leila Youssefian
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, USA
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Amir Hossein Saeidian
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Zahra Saffarian
- Imam Khomeini Hospital, Tehran University of Medical Science, Tehran, Iran
- Department of Dermatology, Razi Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mona Ariamanesh
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Sara Molkara
- Department of Dermatology, Gonabad University of Medical Sciences, Gonabad, Iran
| | | | - Reem Diab
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Vahidnezhad
- UCSC Silicon Valley Extension, University of California, Santa Cruz, California, USA
| | | | - Vivien Béziat
- St Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, New York, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris University, Paris, France
| | - Emmanuelle Jouanguy
- St Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, New York, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris University, Paris, France
| | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, New York, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris University, Paris, France
- Howard Hughes Medical Institute, New York, New York, USA
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
| | - Jouni Uitto
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Hassan Vahidnezhad
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Dermatology, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
5
|
Letafati A, Soheili R, Norouzi M, Soleimani P, Mozhgani SH. Therapeutic approaches for HTLV-1-associated adult T-cell leukemia/lymphoma: a comprehensive review. Med Oncol 2023; 40:295. [PMID: 37689806 DOI: 10.1007/s12032-023-02166-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/18/2023] [Indexed: 09/11/2023]
Abstract
Adult T-cell leukemia/lymphoma (ATLL), an infrequent malignancy resultant from human T-cell lymphotropic virus type I (HTLV-1), exhibits a spectrum of phenotypes, encompassing acute, smoldering, lymphomatous, and chronic variants, each bearing distinct clinical presentations. The preponderant acute manifestation is characterized by hypercalcemia, systemic manifestations, organomegaly, and dermatological eruptions. Conversely, the chronic phenotype is typified by lymphocytosis and/or cutaneous eruptions, while smoldering ATLL assumes an asymptomatic course. Immunocompromise afflicts ATLL patients, heightening their vulnerability to opportunistic infections that frequently intricately intertwine with disease progression. Therefore, an early diagnosis is crucial to manage the disease appropriately. While conventional chemotherapeutic regimens have shown limited success, especially in acute and lymphoma types, recent studies suggest that allogeneic stem cell transplantation might enhance treatment results because it has shown promising outcomes in some patients. Novel therapeutics, such as interferon and monoclonal antibodies, have also shown promise, but more research is needed to confirm their efficacy. Moreover, the identification of biomarkers for ATLL and genetic changes in HTLV-1 infected cells has led to the development of targeted therapies that have shown remarkable success in clinical trials. These targeted therapies have the potential to offer a more personalized approach to the treatment of ATLL. The aim of our review is to elaborate on conventional and novel therapies and the efficiency of mentioned treatments.
Collapse
Affiliation(s)
- Arash Letafati
- Department of Virology, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Roben Soheili
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Mehdi Norouzi
- Department of Virology, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Parastoo Soleimani
- Advanced Science Faculty, Tehran Medical Branch, Islamic Azad University, Tehran, Iran
| | - Sayed-Hamidreza Mozhgani
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran.
- Department of Microbiology and Virology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
6
|
Rérolle D, de Thé H. The PML hub: An emerging actor of leukemia therapies. J Exp Med 2023; 220:e20221213. [PMID: 37382966 PMCID: PMC10309189 DOI: 10.1084/jem.20221213] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/29/2023] [Accepted: 06/09/2023] [Indexed: 06/30/2023] Open
Abstract
PML assembles into nuclear domains that have attracted considerable attention from cell and cancer biologists. Upon stress, PML nuclear bodies modulate sumoylation and other post-translational modifications, providing an integrated molecular framework for the multiple roles of PML in apoptosis, senescence, or metabolism. PML is both a sensor and an effector of oxidative stress. Emerging data has demonstrated its key role in promoting therapy response in several hematological malignancies. While these membrane-less nuclear hubs can enforce efficient cancer cell clearance, their downstream pathways deserve better characterization. PML NBs are druggable and their known modulators may have broader clinical utilities than initially thought.
Collapse
Affiliation(s)
- Domitille Rérolle
- Center for Interdisciplinary Research in Biology, Collège de France, Inserm, PSL Research University, Paris, France
- Université Paris Cité, Inserm U944, CNRS, GenCellDis, Institut de Recherche Saint-Louis, Paris, France
| | - Hugues de Thé
- Center for Interdisciplinary Research in Biology, Collège de France, Inserm, PSL Research University, Paris, France
- Université Paris Cité, Inserm U944, CNRS, GenCellDis, Institut de Recherche Saint-Louis, Paris, France
- Chaire d'Oncologie Cellulaire et Moléculaire, Collège de France, Paris, France
- Service d'Hématologie Biologique, Assistance Publique-Hôpitaux de Paris, Hôpital St. Louis, Paris, France
| |
Collapse
|
7
|
Pessôa R, de Souza DRV, Nukui Y, Pereira J, Fernandes LA, Marcusso RN, de Oliveira ACP, Casseb J, da Silva Duarte AJ, Sanabani SS. Small RNA Profiling in an HTLV-1-Infected Patient with Acute Adult T-Cell Leukemia-Lymphoma at Diagnosis and after Maintenance Therapy: A Case Study. Int J Mol Sci 2023; 24:10643. [PMID: 37445821 DOI: 10.3390/ijms241310643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Small RNAs (sRNAs) are epigenetic regulators of essential biological processes associated with the development and progression of leukemias, including adult T-cell leukemia/lymphoma (ATLL) caused by human T-cell lymphotropic virus type 1 (HTLV-1), an oncogenic human retrovirus originally discovered in a patient with adult T-cell leukemia/lymphoma. Here, we describe the sRNA profile of a 30-year-old woman with ATLL at the time of diagnosis and after maintenance therapy with the aim of correlating expression levels with response to therapy.
Collapse
Affiliation(s)
- Rodrigo Pessôa
- Postgraduate Program in Translational Medicine, Department of Medicine, Federal University of São Paulo (UNIFESP), São Paulo 04039-002, Brazil
| | - Daniela Raguer Valadão de Souza
- Postgraduate Program in Translational Medicine, Department of Medicine, Federal University of São Paulo (UNIFESP), São Paulo 04039-002, Brazil
| | - Youko Nukui
- Department of Hematology, Faculty of Medicine, University of São Paulo, São Paulo 05403-000, Brazil
| | - Juliana Pereira
- Department of Hematology, Faculty of Medicine, University of São Paulo, São Paulo 05403-000, Brazil
| | - Lorena Abreu Fernandes
- Postgraduate Program in Translational Medicine, Department of Medicine, Federal University of São Paulo (UNIFESP), São Paulo 04039-002, Brazil
| | - Rosa Nascimento Marcusso
- Department of Neurology, Emilio Ribas Institute of Infectious Diseases, São Paulo 01246-900, Brazil
| | | | - Jorge Casseb
- Laboratory of Medical Investigation LIM-56, Division of Dermatology, Medical School, University of São Paulo, São Paulo 05403-000, Brazil
| | - Alberto José da Silva Duarte
- Laboratory of Medical Investigation LIM-56, Division of Dermatology, Medical School, University of São Paulo, São Paulo 05403-000, Brazil
| | - Sabri Saeed Sanabani
- Laboratory of Medical Investigation LIM-56, Division of Dermatology, Medical School, University of São Paulo, São Paulo 05403-000, Brazil
- Laboratory of Medical Investigation Unit 03, Clinics Hospital, Faculty of Medicine, University of São Paulo, São Paulo 05403-000, Brazil
- Laboratory of Dermatology and Immunodeficiency, LIM56/03, Instituto de Medicina Tropical de São Paulo Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Eneas de Carvalho Aguiar, 470 3° andar, São Paulo 05403-000, Brazil
| |
Collapse
|
8
|
Shafiee A, Seighali N, Taherzadeh-Ghahfarokhi N, Mardi S, Shojaeian S, Shadabi S, Hasani M, Haghi S, Mozhgani SH. Zidovudine and Interferon Alfa based regimens for the treatment of adult T-cell leukemia/lymphoma (ATLL): a systematic review and meta-analysis. Virol J 2023; 20:118. [PMID: 37287047 DOI: 10.1186/s12985-023-02077-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 05/22/2023] [Indexed: 06/09/2023] Open
Abstract
BACKGROUND ATLL (Adult T-Cell Leukemia/Lymphoma) is an aggressive hematological malignancy. This T-cell non-Hodgkin lymphoma, caused by the human T-cell leukemia virus type 1 (HTLV-1), is challenging to treat. There is no known treatment for ATLL as of yet. However, it is recommended to use Zidovudine and Interferon Alfa-based regimens (AZT/IFN), chemotherapy, and stem cell transplant. This study aims to review the outcome of patients with different subtypes of ATLL treated with Zidovudine and Interferon Alfa-based regimens. METHODS A systematic search was carried out for articles evaluating outcomes of ATLL treatment by AZT/IFN agents on human subjects from January 1, 2004, until July 1, 2022. Researchers assessed all studies regarding the topic, followed by extracting the data. A random-effects model was used in the meta-analyses. RESULTS We obtained fifteen articles on the AZT/IFN treatment of 1101 ATLL patients. The response rate of the AZT/IFN regimen yielded an OR of 67% [95% CI: 0.50; 0.80], a CR of 33% [95% CI: 0.24; 0.44], and a PR of 31% [95% CI: 0.24; 0.39] among individuals who received this regimen at any point during their treatment. Our subgroup analyses' findings demonstrated that patients who received front-line and combined AZT/IFN therapy responded better than those who received AZT/IFN alone. It is significant to note that patients with indolent subtypes of disease had considerably higher response rates than individuals with aggressive disease. CONCLUSION IFN/AZT combined with chemotherapy regimens is an effective treatment for ATLL patients, and its use in the early stages of the disease may result in a greater response rate.
Collapse
Affiliation(s)
- Arman Shafiee
- Department of Psychiatry and Mental Health, Alborz University of Medical Sciences, Karaj, Iran
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Niloofar Seighali
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | | | - Shayan Mardi
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Sorour Shojaeian
- Department of Biochemistry, Medical Genetics, Nutrition, Alborz University of Medical Sciences, Karaj, Iran
| | - Shahrzad Shadabi
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Mahsa Hasani
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Sabahat Haghi
- Department of Pediatrics, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Sayed-Hamidreza Mozhgani
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
- Non-communicable Diseases Research Center, Alborz University of Medical, Karaj, Iran.
| |
Collapse
|
9
|
Jo T, Kubota-Koketsu R, Kaneko Y, Sakai T, Noguchi K, Irie S, Matsuo M, Taguchi J, Abe K, Shigematsu K. Live attenuated VZV vaccination induces antitumor immunity in ATLL patients. Cancer Immunol Immunother 2023; 72:929-944. [PMID: 36181532 PMCID: PMC10025209 DOI: 10.1007/s00262-022-03301-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 09/20/2022] [Indexed: 11/05/2022]
Abstract
Adult T cell leukemia/lymphoma (ATLL) is a CD4-positive peripheral T cell lymphoma caused by human T cell lymphotropic virus type 1 (HTLV-1). Although ATLL is quite difficult to be cured, up-regulation of cellular immunity such as HTLV-1 Tax-specific cytotoxic T lymphocytes (CTLs) has been proved to be important to obtain long-term survival. At present, no efficacious method to activate ATLL-specific cellular immunity is available. This study aimed to investigate whether live attenuated varicella-zoster virus (VZV) vaccination to ATLL can activate HTLV-1 Tax-specific cellular immune response. A total of 3 indolent- and 3 aggressive-type ATLL patients were enrolled. All aggressive-type patients had the VZV vaccination after completing anti-ATLL treatment including mogamulizumab, which is a monoclonal antibody for C-C chemokine receptor 4 antigen, plus combination chemotherapy, whereas all indolent-type patients had the VZV vaccination without any antitumor treatment. Cellular immune responses including Tax-specific CTLs were analyzed at several time points of pre- and post-VZV vaccination. After the VZV vaccination, a moderate increase in 1 of 3 indolent-type patients and obvious increase in all 3 aggressive-type patients in Tax-specific CTLs percentage were observed. The increase in the cell-mediated immunity against VZV was observed in all indolent- and aggressive-type patients after VZV vaccination. To conclude, VZV vaccination to aggressive-type ATLL patients after mogamulizumab plus chemotherapy led to the up-regulation of HTLV-1 Tax-specific CTLs without any adverse event. Suppression of regulatory T lymphocytes by mogamulizumab may have contributed to increase tumor immunity in aggressive-type ATLL patients. Japan Registry of Clinical Trials number, jRCTs051180107.
Collapse
Affiliation(s)
- Tatsuro Jo
- Department of Hematology, Japanese Red Cross Nagasaki Genbaku Hospital, Nagasaki, Japan.
| | - Ritsuko Kubota-Koketsu
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Yohei Kaneko
- Department of Laboratory, Japanese Red Cross Nagasaki Genbaku Hospital, Nagasaki, Japan
| | - Takahiro Sakai
- Department of Laboratory, Japanese Red Cross Nagasaki Genbaku Hospital, Nagasaki, Japan
| | - Kazuhiro Noguchi
- Department of Laboratory, Japanese Red Cross Nagasaki Genbaku Hospital, Nagasaki, Japan
| | - Sadaharu Irie
- Department of Pharmacy, Japanese Red Cross Nagasaki Genbaku Hospital, Nagasaki, Japan
| | - Masatoshi Matsuo
- Department of Hematology, Japanese Red Cross Nagasaki Genbaku Hospital, Nagasaki, Japan
| | - Jun Taguchi
- Department of Hematology, Japanese Red Cross Nagasaki Genbaku Hospital, Nagasaki, Japan
| | - Kuniko Abe
- Department of Pathology, Japanese Red Cross Nagasaki Genbaku Hospital, Nagasaki, Japan
| | - Kazuto Shigematsu
- Department of Pathology, Japanese Red Cross Nagasaki Genbaku Hospital, Nagasaki, Japan
| |
Collapse
|
10
|
Raza Y, Atallah J, Luberto C. Advancements on the Multifaceted Roles of Sphingolipids in Hematological Malignancies. Int J Mol Sci 2022; 23:12745. [PMID: 36361536 PMCID: PMC9654982 DOI: 10.3390/ijms232112745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/07/2022] [Accepted: 10/17/2022] [Indexed: 09/19/2023] Open
Abstract
Dysregulation of sphingolipid metabolism plays a complex role in hematological malignancies, beginning with the first historical link between sphingolipids and apoptosis discovered in HL-60 leukemic cells. Numerous manuscripts have reviewed the field including the early discoveries that jumpstarted the studies. Many studies discussed here support a role for sphingolipids, such as ceramide, in combinatorial therapeutic regimens to enhance anti-leukemic effects and reduce resistance to standard therapies. Additionally, inhibitors of specific nodes of the sphingolipid pathway, such as sphingosine kinase inhibitors, significantly reduce leukemic cell survival in various types of leukemias. Acid ceramidase inhibitors have also shown promising results in acute myeloid leukemia. As the field moves rapidly, here we aim to expand the body of literature discussed in previously published reviews by focusing on advances reported in the latter part of the last decade.
Collapse
Affiliation(s)
- Yasharah Raza
- Department of Pharmacological Sciences, Molecular and Cellular Pharmacology, Stony Brook University, Stony Brook, NY 11794, USA
- Stony Brook Cancer Center, Stony Brook University Hospital, Stony Brook, NY 11794, USA
| | - Jane Atallah
- Stony Brook Cancer Center, Stony Brook University Hospital, Stony Brook, NY 11794, USA
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Chiara Luberto
- Stony Brook Cancer Center, Stony Brook University Hospital, Stony Brook, NY 11794, USA
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
11
|
Poondru S, Joseph A, Harding JC, Sundaramoorthi H, Mehta-Shah N, Green P, Hassan A, Rauch DA, Ratner L. Adult T-Cell Leukemia-Lymphoma Presenting Concurrently with Myelopathy. Case Rep Oncol 2022; 15:918-926. [PMID: 36636671 PMCID: PMC9830276 DOI: 10.1159/000525174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 05/12/2022] [Indexed: 11/11/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is an oncogenic retrovirus. Of the approximate ten to twenty million people currently infected worldwide, 4-9% of infected individuals develop adult T-cell leukemia/lymphoma (ATLL) or HTLV-associated myelopathy/tropical spastic paresis (HAM/TSP) in their lifetime. The current report is based on a patient who presented concurrently with CD30+ lymphoma subtype ATLL and HAM/TSP. The patient's ATLL responded to brentuximab-vedotin-based chemotherapy; however, HAM/TSP did not improve. The patient's peripheral blood mononuclear cells were cultured and injected into immunodeficient mice, and the mice developed massive organ involvement and chronic lymphocytic leukemia-subtype ATLL. This case study is novel in the findings of concurrent development of ATLL and HAM/TSP, the response to brentuximab-vedotin chemotherapy, and the use HTLV-1 helix basic zipper protein-targeted probe for RNAscope for diagnosis.
Collapse
Affiliation(s)
- Sneha Poondru
- School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Ancy Joseph
- Division of Oncology, Washington University School of Medicine, St Louis, Missouri, USA
| | - John C. Harding
- Division of Oncology, Washington University School of Medicine, St Louis, Missouri, USA
| | | | - Neha Mehta-Shah
- Division of Oncology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Patrick Green
- Center for Retrovirus Research and Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Anjum Hassan
- Department of Pathology & Immunology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Daniel A. Rauch
- Division of Oncology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Lee Ratner
- Division of Oncology, Washington University School of Medicine, St Louis, Missouri, USA
- *Lee Ratner,
| |
Collapse
|
12
|
El Hajj H, Bazarbachi A. Interplay between innate immunity and the viral oncoproteins Tax and HBZ in the pathogenesis and therapeutic response of HTLV-1 associated adult T cell leukemia. Front Immunol 2022; 13:957535. [PMID: 35935975 PMCID: PMC9352851 DOI: 10.3389/fimmu.2022.957535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/27/2022] [Indexed: 11/24/2022] Open
Abstract
The Human T-cell Leukemia virus type 1 (HTLV-1) causes an array of pathologies, the most aggressive of which is adult T-cell leukemia (ATL), a fatal blood malignancy with dismal prognosis. The progression of these diseases is partly ascribed to the failure of the immune system in controlling the spread of virally infected cells. HTLV-1 infected subjects, whether asymptomatic carriers or symptomatic patients are prone to opportunistic infections. An increasing body of literature emphasizes the interplay between HTLV-1, its associated pathologies, and the pivotal role of the host innate and adoptive immune system, in shaping the progression of HTLV-1 associated diseases and their response to therapy. In this review, we will describe the modalities adopted by the malignant ATL cells to subvert the host innate immune response with emphasis on the role of the two viral oncoproteins Tax and HBZ in this process. We will also provide a comprehensive overview on the function of innate immunity in the therapeutic response to chemotherapy, anti-viral or targeted therapies in the pre-clinical and clinical settings.
Collapse
Affiliation(s)
- Hiba El Hajj
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ali Bazarbachi
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- *Correspondence: Ali Bazarbachi,
| |
Collapse
|
13
|
Accolla RS. The Road to HTLV-1-Induced Leukemia by Following the Subcellular Localization of HTLV-1-Encoded HBZ Protein. Front Immunol 2022; 13:940131. [PMID: 35812456 PMCID: PMC9259882 DOI: 10.3389/fimmu.2022.940131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
Human T cell leukemia virus-1 (HTLV-1) is the causative agent of a severe cancer of the lymphoid lineage that develops in 3-5% of infected individuals after many years. HTLV-1 infection may also induce a serious inflammatory pathology of the nervous system designated HTLV-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Two virus-encoded proteins, the viral transactivator Tax-1 and the HTLV-1 basic leucine-zipper factor HBZ, are strongly involved in the oncogenic process. Tax-1 is involved in initial phases of the oncogenic process. Conversely, HBZ seems to be involved in maintenance of the neoplastic state as witnessed by the generation of leukemic/lymphomatous phenotype in HBZ transgenic mice and the persistent expression of HBZ in all phases of the oncogenic process. Nevertheless, the intimate molecular and cellular mechanism mediated by the two viral proteins, particularly HBZ, in oncogenesis still remain elusive. An important step toward the complete comprehension of HBZ-associated oncogenicity is the clarification of the anatomical correlates of HBZ during the various phases of HTLV-1 infection to development of HTLV-1-associated inflammatory pathology and ultimately to the establishment of leukemia. In this review, I will summarize recent studies that have established for the first time a temporal and unidirectional expression of HBZ, beginning with an exclusive cytoplasmic localization in infected asymptomatic individuals and in HAM/TSP patients and ending to a progressive cytoplasmic-to-nuclear transition in leukemic cells. These results are framed within the present knowledge of HTLV-1 infection and the future lines of research that may shed new light on the complex mechanism of HTLV-1- mediated oncogenesis.
Collapse
|
14
|
Thurlapati A, Graham C, Boudreaux K, Wangjam T. Successfully treated acute adult T-cell leukemia with haploidentical stem cell transplantation. Proc AMIA Symp 2022; 35:557-559. [DOI: 10.1080/08998280.2022.2058901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Aswani Thurlapati
- Department of Internal Medicine, LSU Health Shreveport, Shreveport, Louisiana
| | - Christopher Graham
- Department of Hematology and Oncology, LSU Health Shreveport, Shreveport, Louisiana
| | - Kyle Boudreaux
- School of Medicine, LSU Health Shreveport School of Medicine, Shreveport, Louisiana
| | - Tamna Wangjam
- Department of Hematology and Oncology, LSU Health Shreveport, Shreveport, Louisiana
| |
Collapse
|
15
|
Jo T, Noguchi K, Sakai T, Kubota-Koketsu R, Irie S, Matsuo M, Taguchi J, Abe K, Shigematsu K. HTLV-1 Tax-specific memory cytotoxic T lymphocytes in long-term survivors of aggressive-type adult T-cell leukemia/lymphoma. Cancer Med 2022; 11:3238-3250. [PMID: 35315593 PMCID: PMC9468428 DOI: 10.1002/cam4.4689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 01/24/2022] [Accepted: 02/24/2022] [Indexed: 01/08/2023] Open
Abstract
Purpose Adult T‐cell leukemia/lymphoma (ATLL) is a relatively refractory peripheral T‐cell lymphoma caused by human T‐cell lymphotropic virus type 1 (HTLV‐1). The objective of this study was to investigate the characteristics of long‐term survivors with ATLL. Methods We conducted an observational study of 75 aggressive‐type ATLL patients. Flow cytometry was conducted to analyze HTLV‐1 Tax‐specific cytotoxic T‐lymphocytes (CTLs) and T‐cell receptor Vβ gene repertoire. Results We first evaluated six long‐term survivors among 37 patients who were newly diagnosed with ATLL and then treated with intensive chemotherapy without mogamulizumab, a monoclonal antibody for C‐C chemokine receptor four antigen. Reversal of the CD4‐to‐CD8 ratio (CD4/CD8) in peripheral mononuclear cells was observed in all six patients. Three of these six patients showed reversed CD4/CD8 immediately after herpes virus infection. Four of these six patients who could be examined demonstrated long‐term maintenance of HTLV‐1 Tax‐specific CTLs. We subsequently identified four long‐term survivors among 38 patients who were newly diagnosed with ATLL and then treated with intensive chemotherapy plus mogamulizumab. All four patients showed reversed CD4/CD8, and three of the four patients contracted herpes virus infection during immunochemotherapy. Six of the total 10 patients were subjected to CTL analyses. Tax‐specific CTLs were observed, and the CTLs that were almost entirely composed of memory CTLs in all patients were recorded. HTLV‐1 provirus was also detected in all six patients. Conclusions These data suggest that Tax‐specific memory CTLs probably, together with anticancer agents, eradicate ATLL cells and exhibit long‐term preventive effects from relapse ATLL. Thus, the strong activation of cellular immunity, such as herpes virus infection, seems to be necessary to induce such a potent number of Tax‐specific CTLs.
Collapse
Affiliation(s)
- Tatsuro Jo
- Department of Hematology, Japanese Red Cross Nagasaki Genbaku Hospital, Nagasaki, Japan
| | - Kazuhiro Noguchi
- Department of Laboratory, Japanese Red Cross Nagasaki Genbaku Hospital, Nagasaki, Japan
| | - Takahiro Sakai
- Department of Laboratory, Japanese Red Cross Nagasaki Genbaku Hospital, Nagasaki, Japan
| | - Ritsuko Kubota-Koketsu
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Sadaharu Irie
- Department of Pharmacy, Japanese Red Cross Nagasaki Genbaku Hospital, Nagasaki, Japan
| | - Masatoshi Matsuo
- Department of Hematology, Japanese Red Cross Nagasaki Genbaku Hospital, Nagasaki, Japan
| | - Jun Taguchi
- Department of Hematology, Japanese Red Cross Nagasaki Genbaku Hospital, Nagasaki, Japan
| | - Kuniko Abe
- Department of Pathology, Japanese Red Cross Nagasaki Genbaku Hospital, Nagasaki, Japan
| | - Kazuto Shigematsu
- Department of Pathology, Japanese Red Cross Nagasaki Genbaku Hospital, Nagasaki, Japan
| |
Collapse
|
16
|
Nečasová I, Stojaspal M, Motyčáková E, Brom T, Janovič T, Hofr C. Transcriptional regulators of human oncoviruses: structural and functional implications for anticancer therapy. NAR Cancer 2022; 4:zcac005. [PMID: 35252867 PMCID: PMC8892037 DOI: 10.1093/narcan/zcac005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/04/2022] [Accepted: 02/15/2022] [Indexed: 11/26/2022] Open
Abstract
Transcription is often the first biosynthetic event of viral infection. Viruses produce preferentially viral transcriptional regulators (vTRs) essential for expressing viral genes and regulating essential host cell proteins to enable viral genome replication. As vTRs are unique viral proteins that promote the transcription of viral nucleic acid, vTRs interact with host proteins to suppress detection and immune reactions to viral infection. Thus, vTRs are promising therapeutic targets that are sequentially and structurally distinct from host cell proteins. Here, we review vTRs of three human oncoviruses: HBx of hepatitis B virus, HBZ of human T-lymphotropic virus type 1, and Rta of Epstein-Barr virus. We present three cunningly exciting and dangerous transcription strategies that make viral infections so efficient. We use available structural and functional knowledge to critically examine the potential of vTRs as new antiviral-anticancer therapy targets. For each oncovirus, we describe (i) the strategy of viral genome transcription; (ii) vTRs' structure and binding partners essential for transcription regulation; and (iii) advantages and challenges of vTR targeting in antiviral therapies. We discuss the implications of vTR regulation for oncogenesis and perspectives on developing novel antiviral and anticancer strategies.
Collapse
Affiliation(s)
- Ivona Nečasová
- Institute of Biophysics of the Czech Academy of Sciences, Scientific Incubator, Královopolská 135, Brno 612 65, Czech Republic
| | - Martin Stojaspal
- Institute of Biophysics of the Czech Academy of Sciences, Scientific Incubator, Královopolská 135, Brno 612 65, Czech Republic
| | - Edita Motyčáková
- Institute of Biophysics of the Czech Academy of Sciences, Scientific Incubator, Královopolská 135, Brno 612 65, Czech Republic
| | - Tomáš Brom
- LifeB, Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 753/5, Brno 625 00, Czech Republic
| | - Tomáš Janovič
- LifeB, Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 753/5, Brno 625 00, Czech Republic
| | - Ctirad Hofr
- Institute of Biophysics of the Czech Academy of Sciences, Scientific Incubator, Královopolská 135, Brno 612 65, Czech Republic
| |
Collapse
|
17
|
Sumoylation in Physiology, Pathology and Therapy. Cells 2022; 11:cells11050814. [PMID: 35269436 PMCID: PMC8909597 DOI: 10.3390/cells11050814] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 02/04/2023] Open
Abstract
Sumoylation is an essential post-translational modification that has evolved to regulate intricate networks within emerging complexities of eukaryotic cells. Thousands of target substrates are modified by SUMO peptides, leading to changes in protein function, stability or localization, often by modulating interactions. At the cellular level, sumoylation functions as a key regulator of transcription, nuclear integrity, proliferation, senescence, lineage commitment and stemness. A growing number of prokaryotic and viral proteins are also emerging as prime sumoylation targets, highlighting the role of this modification during infection and in immune processes. Sumoylation also oversees epigenetic processes. Accordingly, at the physiological level, it acts as a crucial regulator of development. Yet, perhaps the most prominent function of sumoylation, from mammals to plants, is its role in orchestrating organismal responses to environmental stresses ranging from hypoxia to nutrient stress. Consequently, a growing list of pathological conditions, including cancer and neurodegeneration, have now been unambiguously associated with either aberrant sumoylation of specific proteins and/or dysregulated global cellular sumoylation. Therapeutic enforcement of sumoylation can also accomplish remarkable clinical responses in various diseases, notably acute promyelocytic leukemia (APL). In this review, we will discuss how this modification is emerging as a novel drug target, highlighting from the perspective of translational medicine, its potential and limitations.
Collapse
|
18
|
Delbari Z, Khodadadi F, Kazemi M, Koohpaykar H, Iranshahi M, Rafatpanah H, B. Rassouli F. Combination of Umbelliprenin and Arsenic Trioxide Acts as an Effective Modality Against T-Cell Leukemia/Lymphoma Cells. Nat Prod Commun 2022. [DOI: 10.1177/1934578x211072334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Adult T-cell leukemia/lymphoma (ATLL) is a serious blood malignancy with distinct geographical distribution. ATLL patients have a short survival time because of intrinsic chemoresistance and severe immunosuppression. To introduce a novel treatment, we investigated whether umbelliprenin (UMB), a natural coumarin derivative, could improve the toxicity of arsenic trioxide (ATO) on ATLL cells. To determine the viability of MT-2 cells upon treatment with different concentrations of UMB and ATO, alamarBlue assay was applied. Cell cycle analysis was carried out by propidium iodide staining and the expression of candidate genes was assessed by quantitative reverse transcription-polymerase chain reaction. Our findings revealed that combination of UMB and ATO induced considerable cytotoxic effects on ATLL cells. Flow cytometry analysis indicated accumulation of MT-2 cells in the sub G1 phase of the cell cycle after combinatorial treatment. In addition, significant downregulation in BMI-1, CD44, c-MYC, and nuclear factor-κB (REL-A) expression was observed after UMB + ATO administration. Agents with low side effects are potential candidates for novel cancer treatments. We demonstrated, for the first time, that combination of UMB and ATO might be regarded as an effective regimen for ATLL treatment.
Collapse
Affiliation(s)
- Zahra Delbari
- Immunology Research Center, Inflammation and inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Faeze Khodadadi
- Cancer Molecular Pathology Research Center, Department of Hematology and Blood Bank, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohaddeseh Kazemi
- Immunology Research Center, Inflammation and inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamideh Koohpaykar
- Department of Hematology and Blood Bank, Tabas School of Nursing, Birjand University of Medical Sciences, Birjand, Iran
| | - Mehrdad Iranshahi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Houshang Rafatpanah
- Immunology Research Center, Inflammation and inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh B. Rassouli
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
19
|
Bigas A, Rodriguez-Sevilla JJ, Espinosa L, Gallardo F. Recent advances in T-cell lymphoid neoplasms. Exp Hematol 2021; 106:3-18. [PMID: 34879258 DOI: 10.1016/j.exphem.2021.12.191] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 12/14/2022]
Abstract
T Cells comprise many subtypes of specified lymphocytes, and their differentiation and function take place in different tissues. This cellular diversity is also observed in the multiple ways T-cell transformation gives rise to a variety of T-cell neoplasms. This review covers the main types of T-cell malignancies and their specific characteristics, emphasizing recent advances at the cellular and molecular levels as well as differences and commonalities among them.
Collapse
Affiliation(s)
- Anna Bigas
- Program in Cancer Research, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), CIBERONC, Barcelona, Spain; Institut Josep Carreras contra la Leucemia, Barcelona, Spain.
| | | | - Lluis Espinosa
- Program in Cancer Research, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), CIBERONC, Barcelona, Spain
| | - Fernando Gallardo
- Dermatology Department, Parc de Salut Mar-Hospital del Mar, Barcelona, Spain.
| |
Collapse
|
20
|
Kazemi M, Kouhpeikar H, Delbari Z, Khodadadi F, Gerayli S, Iranshahi M, Mosavat A, Behnam Rassouli F, Rafatpanah H. Combination of auraptene and arsenic trioxide induces apoptosis and cellular accumulation in the subG1 phase in adult T-cell leukemia cells. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:1643-1649. [PMID: 35432798 PMCID: PMC8976908 DOI: 10.22038/ijbms.2021.58633.13025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/07/2021] [Indexed: 11/21/2022]
Abstract
Objectives Despite advances in the treatment of adult T-cell leukemia/lymphoma (ATLL), the survival rate of this malignancy remains significantly low. Auraptene (AUR) is a natural coumarin with broad-spectrum anticancer activities. To introduce a more effective therapeutic strategy for ATLL, we investigated the combinatorial effects of AUR and arsenic trioxide (ATO) on MT-2 cells. Materials and Methods The cells were treated with different concentrations of AUR for 24, 48, and 72 hr, and viability was measured by alamarBlue assay. Then, the combination of AUR (20 μg/ml) and ATO (3 μg/ml) was administrated and the cell cycle was analyzed by PI staining followed by flow cytometry analysis. In addition, the expression of NF-κB (REL-A), CD44, c-MYC, and BMI-1 was evaluated via qPCR. Results Assessment of cell viability revealed increased toxicity of AUR and ATO when used in combination. Our findings were confirmed by accumulation of cells in the sub G1 phase of the cell cycle and significant down-regulation of NF-κB (REL-A), CD44, c-MYC, and BMI-1. Conclusion Obtained findings suggest that combinatorial use of AUR and ATO could be considered for designing novel chemotherapy regimens for ATLL.
Collapse
Affiliation(s)
- Mohaddeseh Kazemi
- Immunology Research Center, Inflammation and inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamideh Kouhpeikar
- Department of Hematology and Blood Bank, Tabas School of Nursing, Birjand University of Medical Sciences, Birjand, Iran
| | - Zahra Delbari
- Immunology Research Center, Inflammation and inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Faeze Khodadadi
- Department of Pharmacognosy and Biotechnology, Biotechnology Research Center, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sina Gerayli
- Immunology Research Center, Inflammation and inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Iranshahi
- Department of Pharmacognosy and Biotechnology, Biotechnology Research Center, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arman Mosavat
- Blood Borne Infections Research Center, Academic Center for Education, Culture, and Research (ACECR), Razavi Khorasan, Mashhad, Iran
| | - Fatemeh Behnam Rassouli
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Houshang Rafatpanah
- Immunology Research Center, Inflammation and inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
21
|
Adult T-Cell Leukemia: a Comprehensive Overview on Current and Promising Treatment Modalities. Curr Oncol Rep 2021; 23:141. [PMID: 34735653 DOI: 10.1007/s11912-021-01138-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE OF THE REVIEW Adult T-cell leukemia (ATL) is an aggressive chemo-resistant malignancy secondary to HTLV-1 retrovirus. Prognosis of ATL remains dismal. Herein, we emphasized on the current ATL treatment modalities and their drawbacks, and opened up on promising targeted therapies with special focus on the HTLV-1 regulatory proteins Tax and HBZ. RECENT FINDINGS Indolent ATL and a fraction of acute ATL exhibit long-term survival following antiviral treatment with zidovudine and interferon-alpha. Monoclonal antibodies such as mogamulizumab improved response rates, but with little effect on survival. Allogeneic hematopoietic cell transplantation results in long-term survival in one third of transplanted patients, alas only few patients are transplanted. Salvage therapy with lenalidomide in relapsed/refractory patients leads to prolonged survival in some of them. ATL remains an unmet medical need. Targeted therapies focusing on the HTLV-1 viral replication and/or viral regulatory proteins, as well as on the host antiviral immunity, represent a promising approach for the treatment of ATL.
Collapse
|
22
|
Elshafae SM, Kohart NA, Breitbach JT, Hildreth BE, Rosol TJ. The Effect of a Histone Deacetylase Inhibitor (AR-42) and Zoledronic Acid on Adult T-Cell Leukemia/Lymphoma Osteolytic Bone Tumors. Cancers (Basel) 2021; 13:cancers13205066. [PMID: 34680215 PMCID: PMC8533796 DOI: 10.3390/cancers13205066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/21/2021] [Accepted: 09/21/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Adult T-cell leukemia (ATL) Leukemia is an aggressive, peripheral blood (T-cell) neoplasm associated with human T-cell leukemia virus type 1 (HTLV-1) infection. Recent studies have implicated dysregulated histone deacetylases in ATL pathogenesis. ATL modulates the bone microenvironment of patients and activates osteoclasts (bone resorbing cells) that cause severe bone loss. The objective of this study was to assess the individual and dual effects of AR-42 (HDACi) and zoledronic acid (Zol) on the growth of ATL cells in vitro and in vivo. AR-42 and Zol reduced the viability of ATL cells in vitro. Additionally, Zol and Zol/AR-42 decreased ATL tumor growth and halted osteolysis in bone tumor xenografts in immunodeficient mice in vivo. Our study suggests that dual targeting of ATL cells (using HDACi) and bone osteoclasts (using bisphosphonates) may be exploited as a valuable approach to reduce bone tumor burden and improve the life quality of ATL patients. Abstract Adult T-cell leukemia/lymphoma (ATL) is an intractable disease affecting nearly 4% of Human T-cell Leukemia Virus Type 1 (HTLV-1) carriers. Acute ATL has a unique interaction with bone characterized by aggressive bone invasion, osteolytic metastasis, and hypercalcemia. We hypothesized that dual tumor and bone-targeted therapies would decrease tumor burden in bone, the incidence of metastasis, and ATL-associated osteolysis. Our goal was to evaluate dual targeting of both ATL bone tumors and the bone microenvironment using an anti-tumor HDACi (AR-42) and an osteoclast inhibitor (zoledronic acid, Zol), alone and in combination. Our results showed that AR-42, Zol, and AR-42/Zol significantly decreased the viability of multiple ATL cancer cell lines in vitro. Zol and AR-42/Zol decreased tumor growth in vivo. Zol ± AR-42 significantly decreased ATL-associated bone resorption and promoted new bone formation. AR-42-treated ATL cells had increased mRNA levels of PTHrP, ENPP2 (autotaxin) and MIP-1α, and TAX viral gene expression. AR-42 alone had no significant effect on tumor growth or osteolysis in mice. These findings indicate that Zol adjuvant therapy has the potential to reduce growth of ATL in bone and its associated osteolysis.
Collapse
Affiliation(s)
- Said M. Elshafae
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA; (S.M.E.); (N.A.K.); (J.T.B.)
- Department of Pathology, Faculty of Veterinary Medicine, Benha University, Kalyubia 13736, Egypt
| | - Nicole A. Kohart
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA; (S.M.E.); (N.A.K.); (J.T.B.)
| | - Justin T. Breitbach
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA; (S.M.E.); (N.A.K.); (J.T.B.)
| | - Blake E. Hildreth
- Department of Pathology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Thomas J. Rosol
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
- Correspondence: ; Tel.: +1-740-593-2405
| |
Collapse
|
23
|
Forlani G, Shallak M, Tedeschi A, Cavallari I, Marçais A, Hermine O, Accolla RS. Dual cytoplasmic and nuclear localization of HTLV-1-encoded HBZ protein is a unique feature of adult T-cell leukemia. Haematologica 2021; 106:2076-2085. [PMID: 33626865 PMCID: PMC8327710 DOI: 10.3324/haematol.2020.272468] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Indexed: 01/28/2023] Open
Abstract
Adult T-cell leukemia-lymphoma (ATL), is a highly malignant T-cell neoplasm caused by human T-cell leukemia virus type 1 (HTLV-1), characterized by poor prognosis. Two viral proteins, Tax-1 and HTLV-1 basic-zipper factor (HBZ) play important roles in the pathogenesis of ATL. While Tax-1 can be found in both the cytoplasm and nucleus of HTLV-1 infected patients, HBZ is exclusively localized in the cytoplasm of HTLV-1 asymptomatic carriers and in patients with the chronic neurologic disease HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP). HBZ is only localized in the nucleus of ATL cell lines, suggesting that the nuclear localization of HBZ can be a hallmark of neoplastic transformation. In order to clarify this crucial point, we investigated in detail the pattern of HBZ expression in ATL patients. We made use of our monoclonal antibody 4D4-F3, that at present is the only reported reagent, among the few described, able to detect endogenous HBZ by immunofluorescence and confocal microscopy in cells from asymptomatic carriers, HAM/TSP and ATL patients. We found that HBZ is localized both in the cytoplasm and nucleus of cells of ATL patients irrespective of their clinical status, with a strong preference for the cytoplasmic localization. Also Tax-1 is localized in both compartments. As HBZ is exclusively localized in the cytoplasm in asymptomatic carriers and in non-neoplastic pathologies, this finding shows that neoplastic transformation consequent to HTLV-1 infection is accompanied and associated with the capacity of HBZ to translocate to the nucleus, which suggests a role of cytoplasmic-to-nuclear translocation in HTLV-1- mediated oncogenesis.
Collapse
Affiliation(s)
- Greta Forlani
- Laboratories of General Pathology and Immunology "Giovanna Tosi", Department of Medicine and Surgery, University of Insubria, Varese
| | - Mariam Shallak
- Laboratories of General Pathology and Immunology "Giovanna Tosi", Department of Medicine and Surgery, University of Insubria, Varese
| | - Alessandra Tedeschi
- Laboratories of General Pathology and Immunology "Giovanna Tosi", Department of Medicine and Surgery, University of Insubria, Varese
| | | | - Ambroise Marçais
- Department of Hematology, Necker-Enfants Malades, University Hospital, Assistance Publique Hopitaux de Paris, Paris Descartes University, Paris
| | - Olivier Hermine
- Department of Hematology, Necker-Enfants Malades, University Hospital, Assistance Publique Hopitaux de Paris, Paris Descartes University, Paris
| | - Roberto S Accolla
- Laboratories of General Pathology and Immunology "Giovanna Tosi", Department of Medicine and Surgery, University of Insubria, Varese.
| |
Collapse
|
24
|
Ghaffari-Rafi A, Rho YS, Hall A, Villanueva N, Nogi M. HTLV-1 associated acute adult T-cell lymphoma/leukemia presenting as acute liver failure in Micronesian: A case report. Medicine (Baltimore) 2021; 100:e26236. [PMID: 34260522 PMCID: PMC8284719 DOI: 10.1097/md.0000000000026236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/19/2021] [Indexed: 01/04/2023] Open
Abstract
RATIONALE Malignant infiltration accounts for 0.5% of acute liver failure cases, with non-Hodgkin's lymphoma the predominant cause. Adult T-cell lymphoma/leukemia (ATLL) is a rarer source of acute hepatitis, with only 3 cases reported and all resulting in immediate deterioration with death. ATLL rises from human T-lymphocytic virus-1 (HTLV-1), commonly found in Japan (southern and northern islands), the Caribbean, Central and South America, intertropical Africa, Romania, and northern Iran. In Micronesia, HTLV-1 infection amongst native-born is absent or exceedingly rare. PATIENT CONCERNS A 77-year-old Marshallese man presented to the emergency department with a 1-week history of generalized weakness, fatigue, and nausea. The physical exam revealed a cervical papulonodular exanthem and scleral icterus. DIAGNOSIS Laboratory studies were remarkable for aspartate-aminotransferase of 230 IU/L (reference range [RR]: 0-40), alanine-aminotransferase of 227 IU/L (RR: 0-41), alkaline phosphatase of 133 IU/L (RR: 35-129), and total bilirubin of 4.7 mg/dL (RR: 0-1.2), supporting acute liver injury. Platelet count was 11.6x104/μL (RR: 15.1-42.4 × 104), hemoglobin was 13.8 g/dL (RR: 13.7-17.5), and white blood cell count was 7570/μL (RR: 3800-10,800) with 81.8% neutrophils (RR: 34.0-72.0) and 10.4% lymphocytes (RR: 12.0-44.0). The peripheral blood smear demonstrated abnormal lymphocytes with occasional flower cell morphology. HTLV-1/2 antibody tested positive. The skin and liver biopsies confirmed atypical T-cell infiltrate. The diagnosis of ATLL was established. INTERVENTIONS The patient elected for palliative chemotherapy with cyclophosphamide, vincristine, and prednisone (CVP). He began antiviral treatment with zidovudine 250 mg bis in die (BID) indefinitely. Ursodiol and cholestyramine were added for his hyperbilirubinemia. OUTCOMES Four weeks from admission, the patient returned to near baseline functional status and was discharged home. LESSONS This case highlights that ATLL can initially present as isolated acute hepatitis, and how careful examination of peripheral blood-smear may elucidate hepatitis etiology. We also present support for utilizing ursodiol with cholestyramine for treating a hyperbilirubinemia. Moreover, unlike prior reports of ATLL presenting as liver dysfunction, combined antiviral and CVP chemotherapy was effective in this case. Lastly, there are seldom demographic reports of HTLV-1 infection from the Micronesian area, and our case represents the first indexed case of HTLV-1-associated-ATLL presenting as acute liver failure in a Marshallese patient.
Collapse
Affiliation(s)
- Arash Ghaffari-Rafi
- University of California, Davis, School of Medicine, Department of Neurological Surgery Sacramento, CA
- University of Hawai’i at Mānoa, John A. Burns School of Medicine Honolulu, Hawaii
| | - Young Soo Rho
- University of Hawai’i at Mānoa, John A. Burns School of Medicine, Department of Medicine Honolulu, Hawaii
- The Queen's Medical Center Honolulu, Hawaii
| | - Andrew Hall
- The Queen's Medical Center Honolulu, Hawaii
- University of Hawai’i at Mānoa, John A. Burns School of Medicine, Department of Pathology Honolulu, Hawaii
| | - Nicolas Villanueva
- University of Hawai’i at Mānoa, John A. Burns School of Medicine, Department of Medicine Honolulu, Hawaii
- The Queen's Medical Center Honolulu, Hawaii
| | - Masayuki Nogi
- University of Hawai’i at Mānoa, John A. Burns School of Medicine, Department of Medicine Honolulu, Hawaii
- The Queen's Medical Center Honolulu, Hawaii
| |
Collapse
|
25
|
Jalili-Nik M, Soltani A, Mashkani B, Rafatpanah H, Hashemy SI. PD-1 and PD-L1 inhibitors foster the progression of adult T-cell Leukemia/Lymphoma. Int Immunopharmacol 2021; 98:107870. [PMID: 34153661 DOI: 10.1016/j.intimp.2021.107870] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/01/2021] [Accepted: 06/08/2021] [Indexed: 12/17/2022]
Abstract
Immunotherapy through immune checkpoints blockade and its subsequent clinical application has revolutionized the treatment of a spectrum of solid tumors. Blockade of Programmed cell death protein-1 and its ligand has shown promising results in clinical studies. The clinical trials that enrolled patients with different hematopoietic malignancies including non-Hodgkin lymphoma, Hodgkin lymphoma, and acute myeloid leukemia (AML) showed that anti-PD-1 agents could have potential therapeutic effects in the patients. Adult T-cell leukemia/lymphoma (ATLL) is a non-Hodgkin T-cell Lymphoma that is developed in a minority of HTLV-1-infected individuals after a long latency period. The inhibition of PD-1 as a treatment option is currently being investigated in ATLL patients. In this review, we present a summary of the biology of the PD-1/PD-L1 pathway, the evidence in the literature to support anti-PD-1/PDL-1 application in the treatment of different lymphoid, myeloid, and virus-related hematological malignancies, and controversies related to PD-1/PD-L1 blocking in the management of ATLL patients.
Collapse
Affiliation(s)
- Mohammad Jalili-Nik
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arash Soltani
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Baratali Mashkani
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Houshang Rafatpanah
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyed Isaac Hashemy
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
26
|
Cortés JR, Palomero T. Biology and Molecular Pathogenesis of Mature T-Cell Lymphomas. Cold Spring Harb Perspect Med 2021; 11:cshperspect.a035402. [PMID: 32513675 DOI: 10.1101/cshperspect.a035402] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Peripheral T-cell lymphomas (PTCLs) constitute a highly heterogeneous group of hematological diseases with complex clinical and molecular features consistent with the diversity of the T-cell type from which they originate. In the past several years, the systematic implementation of high-throughput genomic technologies for the analysis of T-cell malignancies has supported an exponential progress in our understanding of the genetic drivers of oncogenesis and unraveled the molecular complexity of these diseases. Recent findings have helped redefine the classification of T-cell malignancies and provided novel biomarkers to improve diagnosis accuracy and analyze the response to therapy. In addition, multiple novel targeted therapies including small-molecule inhibitors, antibody-based approaches, and immunotherapy have shown promising results in early clinical analysis and have the potential to completely change the way T-cell malignancies have been treated traditionally.
Collapse
Affiliation(s)
| | - Teresa Palomero
- Institute for Cancer Genetics.,Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York 10032, USA
| |
Collapse
|
27
|
El Hajj H, Hleihel R, El Sabban M, Bruneau J, Zaatari G, Cheminant M, Marçais A, Akkouche A, Hasegawa H, Hall W, De Thé H, Hermine O, Bazarbachi A. Loss of interleukin-10 activates innate immunity to eradicate adult T-cell leukemia-initiating cells. Haematologica 2021; 106:1443-1456. [PMID: 33567810 PMCID: PMC8094094 DOI: 10.3324/haematol.2020.264523] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Indexed: 12/12/2022] Open
Abstract
Adult T-cell leukemia/lymphoma (ATL) is associated with chronic human T-cell leukemia virus type 1 infection and carries a poor pr o gnosi s. Arsenic tr ioxide (AS) and inter feron-alpha (IFN) together selectively trigger Tax viral oncoprotein degradation and cure Tax-driven murine ATL. AS/IFN/zidovudine treatment achieves a high response rate in patients with chronic ATL. Interleukin 10 (IL-10) is an immuno-suppressive cytokine whose expression is activated by Tax. Here we show that, in ATL, AS/IFN-induced abrogation of leukemiainitiating cell activity requires IL-10 expression shutoff. Loss of IL-10 secretion drives production of inflammatory cytokines by the microenvironment, followed by innate immunity-mediated clearance of Tax-driven leukemic cells. Accordingly, anti-IL-10 monoclonal antibodies significantly increased the efficiency of AS/IFNtherapy. These results emphasize the sequential targeting of malignant ATL cells and their immune microenvironment in leukemia-initiating cell eradication and provide a strong rationale to test the AS/IFN/anti-IL10 combination in ATL.
Collapse
Affiliation(s)
- Hiba El Hajj
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, 1107 2020 Beirut, Lebanon; Department of Experimental Pathology, Microbiology and Immunology, Faculty of Medicine, American University of Beirut, 1107 2020 Beirut.
| | - Rita Hleihel
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, 1107 2020 Beirut
| | - Marwan El Sabban
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, 1107 2020 Beirut
| | - Julie Bruneau
- Institut Imagine - INSERM U1163, Necker Hospital, University of Paris, 75015 Paris France; Department of Pathology, Necker Hospital, University of Paris, Assistance Publique Hôpitaux de Paris, 75015 Paris
| | - Ghazi Zaatari
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, American University of Beirut, 1107 2020 Beirut
| | - Morgane Cheminant
- Institut Imagine - INSERM U1163, Necker Hospital, University of Paris, 75015 Paris France; Department of Hematology, Necker Hospital, University of Paris, Assistance Publique Hôpitaux de Paris, 75015 Paris
| | - Ambroise Marçais
- Department of Hematology, Necker Hospital, University of Paris, Assistance Publique Hôpitaux de Paris, 75015 Paris, France; INSERM UMR 1151, University of Paris, Paris
| | - Abdou Akkouche
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, 1107 2020 Beirut
| | | | - William Hall
- University College Dublin, 47335 Dublin, Ireland; GI CoRE, Center for Zoonosis Control, Hokkaido University, Sapporo
| | - Hugues De Thé
- INSERM UMR 944, Equipe labellisée par la Ligue Nationale contre le Cancer, Institut Universitaire d'Hématologie, Hôpital St. Louis 1, Avenue Claude Vellefaux 75475 PARIS cedex 10 France; CNRS UMR 7212, Hôpital St. Louis 1, Avenue Claude Vellefaux 75475 PARIS cedex 10 France; College de France, Place Marcelin Berthelot 75005 PARIS France
| | - Olivier Hermine
- Institut Imagine - INSERM U1163, Necker Hospital, University of Paris, 75015 Paris France; Department of Hematology, Necker Hospital, University of Paris, Assistance Publique Hôpitaux de Paris, 75015 Paris.
| | - Ali Bazarbachi
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, 1107 2020 Beirut, Lebanon; Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, 1107 2020 Beirut.
| |
Collapse
|
28
|
Clinical Applications of Genomic Alterations in ATLL: Predictive Markers and Therapeutic Targets. Cancers (Basel) 2021; 13:cancers13081801. [PMID: 33918793 PMCID: PMC8068906 DOI: 10.3390/cancers13081801] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/01/2021] [Accepted: 04/07/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary In this review paper, we aim to summarize recent findings of genomic alterations found in adult T-cell leukemia/lymphoma (ATLL), which is an incurable disease induced by a virus; human T-cell leukemia virus type 1 (HTLV-1). Genomic alterations of ATLL have been comprehensively analyzed and the identified alterations and HTLV-1 infection synergistically act for ATLL development. As HTLV-1 is an endemic disease, ATLL frequently occurs in the endemic areas. Current clinicogenomic analyses suggest the existence of regional difference in ATLL pathophysiology. From a clinical perspective, several studies identified alterations that act as predictive markers and that a part of the alterations can be targetable in ATLL. The alterations can be leveraged to improve ATLL prognosis. Abstract Adult T-cell leukemia/lymphoma (ATLL) is a peripheral T-cell lymphoma (PTCL) caused by human T-cell leukemia virus type 1 (HTLV-1). Recent comprehensive genomic analyses have revealed the genomic landscape. One of the important findings of genomic alterations in ATLL is that almost all alterations are subclonal, suggesting that therapeutic strategies targeting a genomic alteration will result in partial effects. Among the identified alterations, genes involved in T-cell receptor signaling and immune escape mechanisms, such as PLCG1, CARD11, and PD-L1 (also known as CD274), are characteristic of ATLL alterations. From a geographic perspective, ATLL patients in Caribbean islands tend to be younger than those in Japan and the landscape differs between the two areas. Additionally, young Japanese ATLL patients frequently have CD28 fusions, compared with unselected Japanese cases. From a clinical perspective, PD-L1 amplification is an independent prognostic factor among every subtype of ATLL case. Recently, genomic analysis using deep sequencing identified a pre-ATLL clone with ATLL-common mutations in HTLV-1 carriers before development, indicating that genomic analysis can stratify cases based on the risks of development and mortality. In addition to genomic alterations, targetable super-enhancers have been identified in ATLL. These data can be leveraged to improve the prognosis of ATLL.
Collapse
|
29
|
Pang Y, Chihara D. Primary and secondary central nervous system mature T- and NK-cell lymphomas. Semin Hematol 2021; 58:123-129. [PMID: 33906722 DOI: 10.1053/j.seminhematol.2021.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/03/2021] [Accepted: 02/22/2021] [Indexed: 12/29/2022]
Abstract
Primary central nervous system (CNS) mature T- and NK-cell lymphomas are rare, only comprising 2% to 3% of all primary CNS lymphomas. Among them, peripheral T-cell lymphoma, not otherwise specified, anaplastic large cell lymphoma (ALCL), and extranodal NK/T-cell lymphoma (ENKTL) are the commonly reported histological subtypes. Secondary CNS T-cell lymphoma generally affects about 5% of patients with T- or NK-cell lymphoma, with some exceptions. Acute and lymphomatous subtypes of adult T-cell leukemia/lymphoma (ATLL) have high risk of CNS progression, may affect up to 20% of patients; ALK-positive ALCL with extranodal involvement >1 also has high risk of CNS progression. However, the impact and the optimal methodology of CNS prophylaxis remain unclear in systemic T-cell lymphomas. There are little data on the treatment strategy of primary and secondary CNS T-cell lymphoma. Treatment strategy derived from B-cell CNS primary lymphoma is generally used; this includes induction therapy with high-dose methotrexate-based regimens, followed by high-dose chemotherapy with autologous stem cell transplant in fit patients. There are unmet needs for patients who are not fit for intensive chemotherapy. The prognosis after CNS progression in T-cell lymphoma is dismal with the median overall survival of less than 1 year. New agents targeting T-cell lymphomas are emerging and should be tested in patients with mature T- and NK-cell lymphoma who suffer from CNS involvement.
Collapse
Affiliation(s)
- Yifan Pang
- Medical Oncology Service, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Dai Chihara
- Department of Lymphoma and Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX.
| |
Collapse
|
30
|
Chen PT, Onukogu D, Gotlieb G, Chaudhry R, Jaswani V, Josan K, Akhtar C, Wang JC. HTLV-1-Associated Lymphoma Presented as Massive Lymphadenopathy. J Investig Med High Impact Case Rep 2021; 9:23247096211013235. [PMID: 33969717 PMCID: PMC8114285 DOI: 10.1177/23247096211013235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/24/2021] [Accepted: 04/03/2021] [Indexed: 11/15/2022] Open
Abstract
Adult T-cell leukemia/lymphoma is an aggressive T-cell malignancy caused by the long-term infection of human T-cell lymphotropic virus type 1 (HTLV-1). Our understanding of clinical features still largely relies on the Shimoyama classification developed 30 years ago, which described the 4 clinical subtypes (the smoldering, chronic, lymphoma, and acute types) based on the manifestations of lymphocytosis, elevated lactate dehydrogenase, hypercalcemia, lymphadenopathy, and involvement of the skin, lung, liver, spleen, central nervous system, bone, ascites, pleural effusion, and gastrointestinal tract. HTLV-1-associated lymphoma has a variety of presentations but the presentation of massive lymphadenopathy and compression symptoms is rare and has not been emphasized in the literature. In this article, we describe 2 cases of adult T-cell leukemia/lymphomas that presented with massive cervical nodes or mediastinal nodes with compressing symptoms as the major presenting clinical features. Clinicians should remain aware of this type of presentation by HTLV-1-associated lymphoma, especially in patients who came from endemic areas, even if not all clinical features are present and particularly with hypercalcemia and lytic bone lesions.
Collapse
Affiliation(s)
- Pei Ting Chen
- Brookdale University Hospital Medical Center, Brooklyn, NY, USA
| | - David Onukogu
- Brookdale University Hospital Medical Center, Brooklyn, NY, USA
| | - Gregory Gotlieb
- Brookdale University Hospital Medical Center, Brooklyn, NY, USA
| | - Rashid Chaudhry
- Brookdale University Hospital Medical Center, Brooklyn, NY, USA
| | - Vijay Jaswani
- Brookdale University Hospital Medical Center, Brooklyn, NY, USA
| | - Karan Josan
- Brookdale University Hospital Medical Center, Brooklyn, NY, USA
| | - Cheema Akhtar
- Brookdale University Hospital Medical Center, Brooklyn, NY, USA
| | - Jen Chin Wang
- Brookdale University Hospital Medical Center, Brooklyn, NY, USA
| |
Collapse
|
31
|
Zhao B, Zhang Z, Chen X, Shen Y, Qin Y, Yang X, Xing Z, Zhang S, Long X, Zhang Y, An S, Wu H, Qi Y. The important roles of protein SUMOylation in the occurrence and development of leukemia and clinical implications. J Cell Physiol 2020; 236:3466-3480. [PMID: 33151565 DOI: 10.1002/jcp.30143] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/14/2020] [Accepted: 10/24/2020] [Indexed: 01/01/2023]
Abstract
Leukemia is a severe malignancy of the hematopoietic system, which is characterized by uncontrolled proliferation and dedifferentiation of immature hematopoietic precursor cells in the lymphatic system and bone marrow. Leukemia is caused by alterations of the genetic and epigenetic regulation of processes underlying hematologic malignancies, including SUMO modification (SUMOylation). Small ubiquitin-like modifier (SUMO) proteins covalently or noncovalently conjugate and modify a large number of target proteins via lysine residues. SUMOylation is a small ubiquitin-like modification that is catalyzed by the SUMO-specific activating enzyme E1, the binding enzyme E2, and the ligating enzyme E3. SUMO is covalently linked to substrate proteins to regulate the cellular localization of target proteins and the interaction of target proteins with other biological macromolecules. SUMOylation has emerged as a critical regulatory mechanism for subcellular localization, protein stability, protein-protein interactions, and biological function and thus regulates normal life activities. If the SUMOylation process of proteins is affected, it will cause a cellular reaction and ultimately lead to various diseases, including leukemia. There is growing evidence showing that a large number of proteins are SUMOylated and that SUMOylated proteins play an important role in the occurrence and development of various types of leukemia. Targeting the SUMOylation of proteins alone or in combination with current treatments might provide powerful targeted therapeutic strategies for the clinical treatment of leukemia.
Collapse
Affiliation(s)
- Biying Zhao
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Zhenzhen Zhang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Xu Chen
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Yajie Shen
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Yuanyuan Qin
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Xinyi Yang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Zhengcao Xing
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Shanshan Zhang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Xiaojun Long
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Yuhong Zhang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Siming An
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Hongmei Wu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Yitao Qi
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| |
Collapse
|
32
|
Wang S, Jayarangaiah A, Malone M, Elrafei T, Steinberg L, Kumar A. Risk of hepatitis B reactivation and cytomegalovirus related infections with Mogamulizumab: A retrospective study of international pharmacovigilance database. EClinicalMedicine 2020; 28:100601. [PMID: 33294815 PMCID: PMC7700953 DOI: 10.1016/j.eclinm.2020.100601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/21/2020] [Accepted: 10/01/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Mogamulizumab (Moga) is a C-C chemokine receptor-4 antibody approved in the United States for relapsed /refractory mycosis fungoides and Sézary syndrome. Few cases reported an increased risk of hepatitis B reactivation and cytomegalovirus (CMV) related infection post-Moga. However, literature is limited to mainly case reports and series, while no study has used the Food and Drug Administration adverse events reporting system (FARES) database to investigate the relationship. METHODS Using United States Food and Drug Administration adverse events reporting system database, we collected all cases of hepatitis B reactivation and CMV related infection between January 1, 2011, and December 31, 2019, for Moga and other drugs. The reporting odds ratio (ROR) was calculated, which was considered significant when the lower limit of 95% confidence interval (CI) >1. FINDINGS Three hundred and thirty-eight total adverse cases were reported for Moga during the study period, with 261 cases reported indication for use, including cutaneous T cell lymphoma (47.04%), and adult T cell leukemia/lymphoma (30.18%). Eight cases were reported for hepatitis B reactivation with Moga use, compared to 2290 cases with other medications. The ROR is 143.67 (p<0.001, 95% CI, 71.17-290.04). CMV related infection was noted in 17 cases using Moga, while 12,849 cases with others. The ROR is 55.89 (p<0.001, 95% CI, 34.31-91.06). In the Moga group, five deaths occurred in hepatitis B reactivation patients and nine deaths with CMV cases. INTERPRETATION A signal has been identified between Moga exposure and hepatitis B reactivation as well as CMV related infection. A consideration in future studies should be placed on determining the relationship and investigating the need for pre-treatment screening, close monitoring, and utilization of prophylaxis in this population-based on pre-treatment risks. FUNDING None.
Collapse
Affiliation(s)
- Shuai Wang
- Department of Internal Medicine, Albert Einstein College of Medicine, Jacobi Medical Center, Bronx, United States
| | - Apoorva Jayarangaiah
- Department of Hematology-Oncology, Albert Einstein College of Medicine, Jacobi Medical Center, Bronx, United States
| | - Mariuxi Malone
- Department of Hematology-Oncology, Albert Einstein College of Medicine, Jacobi Medical Center, Bronx, United States
| | - Tarek Elrafei
- Department of Hematology-Oncology, Albert Einstein College of Medicine, Jacobi Medical Center, Bronx, United States
| | - Lewis Steinberg
- Department of Hematology-Oncology, Albert Einstein College of Medicine, Jacobi Medical Center, Bronx, United States
| | - Abhishek Kumar
- Department of Hematology-Oncology, Albert Einstein College of Medicine, Jacobi Medical Center, Bronx, United States
| |
Collapse
|
33
|
Hodge RG, Schaefer A, Howard SV, Der CJ. RAS and RHO family GTPase mutations in cancer: twin sons of different mothers? Crit Rev Biochem Mol Biol 2020; 55:386-407. [PMID: 32838579 DOI: 10.1080/10409238.2020.1810622] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The RAS and RHO family comprise two major branches of the RAS superfamily of small GTPases. These proteins function as regulated molecular switches and control cytoplasmic signaling networks that regulate a diversity of cellular processes, including cell proliferation and cell migration. In the early 1980s, mutationally activated RAS genes encoding KRAS, HRAS and NRAS were discovered in human cancer and now comprise the most frequently mutated oncogene family in cancer. Only recently, exome sequencing studies identified cancer-associated alterations in two RHO family GTPases, RAC1 and RHOA. RAS and RHO proteins share significant identity in their amino acid sequences, protein structure and biochemistry. Cancer-associated RAS mutant proteins harbor missense mutations that are found primarily at one of three mutational hotspots (G12, G13 and Q61) and have been identified as gain-of-function oncogenic alterations. Although these residues are conserved in RHO family proteins, the gain-of-function mutations found in RAC1 are found primarily at a distinct hotspot. Unexpectedly, the cancer-associated mutations found with RHOA are located at different hotspots than those found with RAS. Furthermore, since the RHOA mutations suggested a loss-of-function phenotype, it has been unclear whether RHOA functions as an oncogene or tumor suppressor in cancer development. Finally, whereas RAS mutations are found in a broad spectrum of cancer types, RHOA and RAC1 mutations occur in a highly restricted range of cancer types. In this review, we focus on RHOA missense mutations found in cancer and their role in driving tumorigenesis, with comparisons to cancer-associated mutations in RAC1 and RAS GTPases.
Collapse
Affiliation(s)
- Richard G Hodge
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Antje Schaefer
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sarah V Howard
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Channing J Der
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
34
|
Iioka F, Tanabe H, Honjo G, Misaki T, Ohno H. Resolution of bone, cutaneous, and muscular involvement after haploidentical hematopoietic stem cell transplantation followed by post-transplant cyclophosphamide in adult T-cell leukemia/lymphoma. Clin Case Rep 2020; 8:1553-1559. [PMID: 32884794 PMCID: PMC7455453 DOI: 10.1002/ccr3.2925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/28/2020] [Accepted: 04/15/2020] [Indexed: 11/20/2022] Open
Abstract
Haploidentical hematopoietic stem cell transplantation followed by post-transplant cyclophosphamide provides a well-tolerated and potentially curable treatment for chemorefractory acute-type adult T-cell leukemia/lymphoma.
Collapse
Affiliation(s)
| | | | - Gen Honjo
- Departments of Diagnostic Surgical PathologyTenri HospitalTenriJapan
| | - Takashi Misaki
- Departments of Radioisotope CenterTenri HospitalTenriJapan
| | - Hitoshi Ohno
- Departments of HematologyTenri HospitalTenriJapan
| |
Collapse
|
35
|
Allogeneic Stem Cell Transplantation for Adult T-Cell Leukemia/Lymphoma-Romanian Experience. J Clin Med 2020; 9:jcm9082417. [PMID: 32731502 PMCID: PMC7464239 DOI: 10.3390/jcm9082417] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/16/2020] [Accepted: 07/23/2020] [Indexed: 11/24/2022] Open
Abstract
Adult T-cell leukemia/lymphoma (ATLL) is a rare and aggressive mature T-cell malignancy caused by the human T lymphoma virus I (HTLV-I) affecting 3–5% of HTLV-1 carriers and is usually diagnosed in endemic regions. Romania is a region with high prevalence of HTLV-1 infection and ATLL and with low median age at diagnosis for aggressive types. We performed a retrospective analysis of post-transplant outcome in the first Romanian patients with ATLL receiving hematopoietic stem cell allotransplant. The study population included eight patients (three males, five females), with median age of 39.5 (range 26–57), with acute (one case) and lymphoma type (seven cases) that received peripheral stem cells (PBSC) from matched related (MRD) and unrelated donors (MUD) after reduced intensity conditioning. Graft versus host disease (GVHD) developed in six patients. Relapse occurred in four cases (50%) at a median time of 5-months post-transplant. Six patients died: four cases with disease-related deaths and two patients with GVHD-related deaths. The median survival post-transplant was 19.5 months (range 2.3–44.2 months). The post-transplant survival at 1-year was 62.5%, at 2-years 50%, and at 3-years 37.5%. In our opinion allogeneic transplant improves outcome in aggressive type ATLL.
Collapse
|
36
|
Galtier J, Parrens M, Milpied N. [Peripheral T cell lymphomas: diagnosis and treatment]. Rev Med Interne 2020; 41:829-837. [PMID: 32674892 DOI: 10.1016/j.revmed.2020.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/23/2020] [Accepted: 05/26/2020] [Indexed: 10/23/2022]
Abstract
Peripheral T cell lymphomas are rare malignancies with aggressive course, with several different subtype described in the 2016 WHO classification. Their distribution across the world is heterogenous, with marked difference between Western and Asian country. Their clinical presentation often comprise extra-nodal involvement, B symptoms and immune system disorder which can lead to wrong diagnosis orientation. Make a right diagnosis need a experienced pathologist in close collaboration with clinical datas. Peripheral T cell lymphomas are in general associated with poor prognosis when treated with anthracyclines-based regimen, and several studies and trials focused on the use of intensified regimen or novel targeted agents, whose proper indication still remain to be clarified.
Collapse
Affiliation(s)
- J Galtier
- CHU Bordeaux, Service d'Hématologie Clinique et Thérapie Cellulaire, Hôpital Haut-Leveque, F-33000 Bordeaux, France.
| | - M Parrens
- CHU Bordeaux, Unité de pathologie, Hôpital Haut-Leveque, F-33000 Bordeaux, France
| | - N Milpied
- CHU Bordeaux, Service d'Hématologie Clinique et Thérapie Cellulaire, Hôpital Haut-Leveque, F-33000 Bordeaux, France
| |
Collapse
|
37
|
Zago LBR, Silva VAD, Vito FBD, Oliveira LRD. Central nervous system infiltration by HTLV-1-associated T-cell leukemia/lymphoma in an AIDS patient. Rev Soc Bras Med Trop 2020; 53:e20200060. [PMID: 32556040 PMCID: PMC7294959 DOI: 10.1590/0037-8682-0060-2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 04/22/2020] [Indexed: 11/21/2022] Open
Affiliation(s)
- Luzia Beatriz Ribeiro Zago
- Universidade Federal do Triângulo Mineiro, Hospital de Clínicas, Serviço de Hematologia e Hemoterapia, Uberaba, MG, Brasil
| | - Vanessa Afonso da Silva
- Universidade Federal do Triângulo Mineiro, Hospital de Clínicas, Serviço de Hematologia e Hemoterapia, Uberaba, MG, Brasil.,Universidade Federal do Triângulo Mineiro, Hospital de Clínicas, Laboratório de Citometria de Fluxo, Uberaba, MG, Brasil
| | - Fernanda Bernadelli De Vito
- Universidade Federal do Triângulo Mineiro, Hospital de Clínicas, Laboratório de Citometria de Fluxo, Uberaba, MG, Brasil
| | - Leonardo Rodrigues de Oliveira
- Universidade Federal do Triângulo Mineiro, Hospital de Clínicas, Serviço de Hematologia e Hemoterapia, Uberaba, MG, Brasil
| |
Collapse
|
38
|
El Hajj H, Tsukasaki K, Cheminant M, Bazarbachi A, Watanabe T, Hermine O. Novel Treatments of Adult T Cell Leukemia Lymphoma. Front Microbiol 2020; 11:1062. [PMID: 32547515 PMCID: PMC7270167 DOI: 10.3389/fmicb.2020.01062] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 04/29/2020] [Indexed: 12/14/2022] Open
Abstract
Adult T cell leukemia-lymphoma (ATL) is an aggressive malignancy secondary to chronic infection with the human T cell leukemia virus type I (HTLV-I) retrovirus. ATL carries a dismal prognosis. ATL classifies into four subtypes (acute, lymphoma, chronic, and smoldering) which display different clinical features, prognosis and response to therapy, hence requiring different clinical management. Smoldering and chronic subtypes respond well to antiretroviral therapy using the combination of zidovudine (AZT) and interferon-alpha (IFN) with a significant prolongation of survival. Conversely, the watch and wait strategy or chemotherapy for these indolent subtypes allies with a poor long-term outcome. Acute ATL is associated with chemo-resistance and dismal prognosis. Lymphoma subtypes respond better to intensive chemotherapy but survival remains poor. Allogeneic hematopoietic stem cell transplantation (HSCT) results in long-term survival in roughly one third of transplanted patients but only a small percentage of patients can make it to transplant. Overall, current treatments of aggressive ATL are not satisfactory. Prognosis of refractory or relapsed patients is dismal with some encouraging results when using lenalidomide or mogamulizumab. To overcome resistance and prevent relapse, preclinical or pilot clinical studies using targeted therapies such as arsenic/IFN, monoclonal antibodies, epigenetic therapies are promising but warrant further clinical investigation. Anti-ATL vaccines including Tax peptide-pulsed dendritic cells, induced Tax-specific CTL responses in ATL patients. Finally, based on the progress in understanding the pathophysiology of ATL, and the risk-adapted treatment approaches to different ATL subtypes, treatment strategies of ATL should take into account the host immune responses and the host microenvironment including HTLV-1 infected non-malignant cells. Herein, we will provide a summary of novel treatments of ATL in vitro, in vivo, and in early clinical trials.
Collapse
Affiliation(s)
- Hiba El Hajj
- Department of Experimental Pathology, Microbiology, and Immunology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Kunihiro Tsukasaki
- Department of Hematology, International Medical Center, Saitama Medical University, Saitama, Japan
| | - Morgane Cheminant
- INSERM UMR 1163 and CNRS URL 8254, Imagine Institute, Paris, France.,Department of Hematology, Necker-Enfants Malades University Hospital, Assistance Publique Hôpitaux de Paris, Paris-Descartes University, Paris, France
| | - Ali Bazarbachi
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Toshiki Watanabe
- Department of Medical Genome Sciences, The University of Tokyo, Tokyo, Japan
| | - Olivier Hermine
- INSERM UMR 1163 and CNRS URL 8254, Imagine Institute, Paris, France.,Department of Hematology, Necker-Enfants Malades University Hospital, Assistance Publique Hôpitaux de Paris, Paris-Descartes University, Paris, France
| |
Collapse
|
39
|
Kouhpaikar H, Sadeghian MH, Rafatpanah H, Kazemi M, Iranshahi M, Delbari Z, Khodadadi F, Ayatollahi H, Rassouli FB. Synergy between parthenolide and arsenic trioxide in adult T-cell leukemia/lymphoma cells in vitro. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:616-622. [PMID: 32742599 PMCID: PMC7374994 DOI: 10.22038/ijbms.2020.40650.9610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 11/13/2019] [Indexed: 12/26/2022]
Abstract
OBJECTIVES Adult T-cell leukemia/lymphoma (ATLL) is an aggressive lymphoid malignancy with low survival rate and distinct geographical distribution. In search for novel chemotherapeutics against ATLL, we investigated the combinatorial effects of parthenolide, a sesquiterpene lactone with valuable pharmaceutical activities, and arsenic trioxide (ATO) in vitro. MATERIALS AND METHODS MT2 cells, an ATLL cell line, were treated with increasing concentrations of parthenolide (1.25, 2.5, and 5 μg/ml) and ATO (2, 4, 8, and 16 µM) to determine their IC50. Then, cells were treated with a combination of sub-IC50 concentrations of parthenolide (1 μg/ml) and ATO (2 µM) for 72 hr. Cell viability and cell cycle changes were assessed by Alamar blue and PI staining, respectively. To understand the mechanisms responsible for observed effects, expression of CD44, NF-κB (REL-A), BMI-1, and C-MYC were investigated by real-time PCR. RESULTS Assessment of cell viability indicated that parthenolide significantly increased the toxicity of ATO, as confirmed by accumulation of MT2 cells in the sub G1 phase of the cell cycle. Moreover, molecular analysis revealed significant down-regulation of CD44, NF-κB (REL-A), BMI-1, and C-MYC upon combinatorial administration of parthenolide and ATO in comparison with relevant controls. CONCLUSION Taken together, present results showed that parthenolide significantly enhanced the toxicity of ATO in MT2 cells. Therefore, the future possible clinical impact of our study could be combinatorial use of parthenolide and ATO as a novel and more effective approach for ATLL.
Collapse
Affiliation(s)
- Hamideh Kouhpaikar
- Cancer Molecular Pathology Research Center, Department of Hematology and Blood Bank, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hadi Sadeghian
- Cancer Molecular Pathology Research Center, Department of Hematology and Blood Bank, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Houshang Rafatpanah
- Inflammation and Inflammatory Diseases Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohaddeseh Kazemi
- Inflammation and Inflammatory Diseases Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Iranshahi
- Department of Pharmacognosy and Biotechnology, Biotechnology Research Center, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Delbari
- Inflammation and Inflammatory Diseases Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Faezeh Khodadadi
- Cancer Molecular Pathology Research Center, Department of Hematology and Blood Bank, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Ayatollahi
- Cancer Molecular Pathology Research Center, Department of Hematology and Blood Bank, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh B. Rassouli
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
40
|
Houssein M, Fatfat M, Habli Z, Ghazal N, Moodad S, Khalife H, Khalil M, Gali-Muhtasib H. Thymoquinone synergizes with arsenic and interferon alpha to target human T-cell leukemia/lymphoma. Life Sci 2020; 251:117639. [PMID: 32272181 DOI: 10.1016/j.lfs.2020.117639] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 12/11/2022]
Abstract
AIMS To reduce the dose of arsenic used against human T-cell leukemia/lymphoma and to sensitize cells to drug treatment, we combined arsenic/interferon-alpha (As/IFN-α) with thymoquinone (TQ) in HTLV-I positive (HuT-102 and C91) and HTLV-1 negative (CEM and Jurkat) cell lines. MAIN METHODS Cells were treated with TQ, As/IFN-α and combinations. Trypan blue and flow cytometry were used to investigate viability and cell cycle effects. Annexin-V staining, rhodamine assay and western blotting were used to determine apoptosis induction and changes in protein expression. Efficacy of single drugs and combinations were tested in adult T-cell leukemia (HuT-102) mouse xenograft model. KEY FINDINGS TQ/As/IFN-α led to a more pronounced and synergistic time-dependent inhibitory effect on HTLV-I positive cells in comparison to As/IFN-α. While As/IFN-α combination was not effective against CEM or Jurkat cells, the triple combination TQ/As/IFN-α sensitized these two cell lines and led to a pronounced time-dependent inhibition of cell viability. TQ/As/IFN-α significantly induced apoptosis in all four cell lines and disrupted the mitochondrial membrane potential. Apoptosis was confirmed by the cleavage of caspase 3 and poly (ADP-ribose) polymerase (PARP), downregulation of Bcl-2 and XIAP and upregulation of Bax. TQ alone or in combination activated p53 in HTLV-1 positive cell lines. Strikingly, TQ/As/IFN-α resulted in a pronounced significant decrease in tumor volume in HuT-102 xenograft mouse model, as compared to separate treatments or double combination therapy. SIGNIFICANCE Our results suggest a strong potential for TQ to enhance the drug targeting effects of the standard clinical drugs As and IFN-α against CD4+ malignant T-cells.
Collapse
Affiliation(s)
- Marwa Houssein
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Lebanon
| | - Maamoun Fatfat
- Center for Drug Discovery, American University of Beirut, Lebanon
| | - Zeina Habli
- Center for Drug Discovery, American University of Beirut, Lebanon
| | - Nasab Ghazal
- Department of Biology and Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Lebanon
| | - Sara Moodad
- Department of Biology and Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Lebanon; Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Lebanon
| | - Hala Khalife
- Rammal Laboratory (ATAC), Faculty of Sciences I, Lebanese University Hadath, Beirut, Lebanon
| | - Mahmoud Khalil
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Lebanon
| | - Hala Gali-Muhtasib
- Department of Biology and Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Lebanon; Center for Drug Discovery, American University of Beirut, Lebanon.
| |
Collapse
|
41
|
Mendonca Bryne S, Hanaganahalli Basavaiah S, Christina Pinto A, Bhat G, Upadyaya K, Thahir M. An Unusual Presentation of HTLV-Associated Adult T-Cell Lymphoma/Leukemia - An Eye That Said It "A (T) LL". Cancer Invest 2020; 38:209-213. [PMID: 32037902 DOI: 10.1080/07357907.2020.1728298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Sharel Mendonca Bryne
- Department of Pathology, Kasturba Medical College, Manipal Academy of Higher Education, Mangalore, India
| | | | - Amanda Christina Pinto
- Department of Pathology, Kasturba Medical College, Manipal Academy of Higher Education, Mangalore, India
| | - Guruprasad Bhat
- Department of Medical Oncology, Yenepoya Medical College, Yenepoya (Deemed to be University), Mangalore, India
| | - Krishnaraj Upadyaya
- Department of Pathology, Yenepoya Medical College, Yenepoya (Deemed to be University), Mangalore, India
| | - Muhammed Thahir
- Consultant Otorhinolaryngologist, Yenepoya Specialty Hospital, Mangalore, India
| |
Collapse
|
42
|
Adkins BD, Ramos JC, Bliss-Moreau M, Gru AA. Updates in lymph node and skin pathology of adult T-cell leukemia/lymphoma, biomarkers, and beyond. Semin Diagn Pathol 2020; 37:1-10. [PMID: 31889601 PMCID: PMC7668393 DOI: 10.1053/j.semdp.2019.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Adult T-cell leukemia/lymphoma (ATLL) is a mature T-cell lymphoproliferative disorder associated with the human T lymphotropic virus (HTLV-1) infection. ATLL predominantly affects individuals within HTLV-1 endemic areas such as Japan, areas of Africa, South America, and the Caribbean. HTLV-1 preferentially infects CD4+ T-cells, and several genetic hits must occur before ATLL develops. ATLL is classically divided into four clinical variants based on manifestations of disease: acute, chronic, lymphomatous, and smouldering. As of 2019, a new subtype has been described: lymphoma type of ATL, extranodal primary cutaneous. In this review, emphasis will be taken to describe the common clinicopathologic manifestations of the disease, advances in biomarker discovery, mutational landscape and targeted therapeutic approaches to treat this highly aggressive and frequently lethal type of T-cell lymphoma.
Collapse
Affiliation(s)
- Brian D Adkins
- Department of Pathology, University of Virginia, Charlottesville, VA, United States
| | - Juan C Ramos
- Division of Hematology, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, FL, United States
| | - Meghan Bliss-Moreau
- Department of Pathology, University of Virginia, Charlottesville, VA, United States
| | - Alejandro A Gru
- Pathology & Dermatology, Hematopathology and Dermatopathology Sections, University of Virginia, Charlottesville, VA, United States.
| |
Collapse
|
43
|
Iqbal M, Reljic T, Klocksieben F, Sher T, Ayala E, Murthy H, Bazarbachi A, Kumar A, Kharfan-Dabaja MA. Corrigendum to 'Efficacy of allogeneic HCT in HTLV-1 associated adult T-cell leukemia/lymphoma: results of a systematic review/meta-analysis' [Biology of Blood and Marrow Transplantation 25/8 (2019) 1695-1700]. Biol Blood Marrow Transplant 2019; 26:209-212. [PMID: 31610149 DOI: 10.1016/j.bbmt.2019.09.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Madiha Iqbal
- Division of Hematology-Oncology and Blood and Marrow Transplantation Program, Mayo Clinic, Jacksonville, Florida
| | - Tea Reljic
- Program for Comparative Effectiveness Research, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Farina Klocksieben
- Program for Comparative Effectiveness Research, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Taimur Sher
- Division of Hematology-Oncology and Blood and Marrow Transplantation Program, Mayo Clinic, Jacksonville, Florida
| | - Ernesto Ayala
- Division of Hematology-Oncology and Blood and Marrow Transplantation Program, Mayo Clinic, Jacksonville, Florida
| | - Hemant Murthy
- Blood and Marrow Transplantation and Malignant Hematology Program, University of Florida Health Cancer Center, Gainesville, Florida
| | - Ali Bazarbachi
- Department of Internal Medicine, Division of Hematology-Oncology, American University of Beirut, Beirut, Lebanon
| | - Ambuj Kumar
- Program for Comparative Effectiveness Research, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Mohamed A Kharfan-Dabaja
- Division of Hematology-Oncology and Blood and Marrow Transplantation Program, Mayo Clinic, Jacksonville, Florida.
| |
Collapse
|
44
|
A 61-Year-Old Caribbean Man With Thrush and Acute Respiratory Failure. Chest 2019; 154:e23-e26. [PMID: 30044750 DOI: 10.1016/j.chest.2017.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 10/16/2017] [Accepted: 11/04/2017] [Indexed: 11/20/2022] Open
Abstract
CASE PRESENTATION A 61-year-old Caribbean man presented to the ED with dyspnea that had progressed over the previous week with associated cough and high fevers. Four days prior to admission, his primary care physician noted oral thrush and obtained a chest radiograph that revealed a right middle lobe infiltrate. He was prescribed levofloxacin and clotrimazole. Despite therapy, his symptoms progressed. He had an 11 pack-year smoking history and hypertension but had been in good health. He denied recent travel, alcohol or illicit drug use, or high-risk sexual behaviors, and his only previous medicine was amlodipine. Institutional review board approval was not obtained for this case report, as all patient data are anonymous and obtained during routine patient care activities.
Collapse
|
45
|
Efficacy of Allogeneic Hematopoietic Cell Transplantation in Human T Cell Lymphotropic Virus Type 1-Associated Adult T Cell Leukemia/Lymphoma: Results of a Systematic Review/Meta-Analysis. Biol Blood Marrow Transplant 2019; 25:1695-1700. [PMID: 31132453 DOI: 10.1016/j.bbmt.2019.05.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/01/2019] [Accepted: 05/23/2019] [Indexed: 10/26/2022]
Abstract
Human T cell lymphotropic virus type 1 (HTLV1)-associated adult T cell leukemia/lymphoma (ATLL) is an aggressive malignant disorder. Intensive conventional chemotherapy regimens and autologous hematopoietic cell transplantation (HCT) have failed to improve outcomes in ATLL. Allogeneic HCT (allo-HCT) is commonly offered as front-line consolidation despite lack of randomized controlled trials. We performed a comprehensive search of the medical literature using PubMed/Medline, EMBASE, and Cochrane reviews on September 10, 2018. We extracted data on clinical outcomes related to benefits (complete response [CR], overall survival [OS], and progression-free survival [PFS]) and harms (relapse and nonrelapse mortality [NRM]), independently by 2 authors. Our search strategy identified a total of 801 references. Nineteen studies (n = 2446 patients) were included in the systematic review; however, only 18 studies (n = 1767 patients) were included in the meta-analysis. Reduced intensity conditioning regimens were more commonly prescribed (52%). Bone marrow (50%) and peripheral blood (40%) were more frequently used as stem cell source. The pooled post-allografting CR, OS, and PFS rates were 73% (95% confidence interval [CI], 57% to 87%), 40% (95% CI, 33% to 46%), and 37% (95% CI, 27% to 48%), respectively. Pooled relapse and NRM rates were 36% (95% CI, 28% to 43%) and 29% (95% CI, 21% to 37%), respectively. The heterogeneity among the included studies was generally high. These results support the use of allo-HCT as an effective treatment for patients with ATLL, yielding pooled OS rates of 40%, but relapse still occurs in over one-third of cases. Future studies should evaluate strategies to help reduce relapse in patients with ATLL undergoing allo-HCT.
Collapse
|
46
|
Phillips AA, Fields PA, Hermine O, Ramos JC, Beltran BE, Pereira J, Wandroo F, Feldman T, Taylor GP, Sawas A, Humphrey J, Kurman M, Moriya J, Dwyer K, Leoni M, Conlon K, Cook L, Gonsky J, Horwitz SM. Mogamulizumab versus investigator's choice of chemotherapy regimen in relapsed/refractory adult T-cell leukemia/lymphoma. Haematologica 2019; 104:993-1003. [PMID: 30573506 PMCID: PMC6518882 DOI: 10.3324/haematol.2018.205096] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 12/18/2018] [Indexed: 12/30/2022] Open
Abstract
Mogamulizumab, a humanized defucosylated anti-C-C chemokine receptor 4 monoclonal antibody, has been approved in Japan for the treatment of C-C chemokine receptor 4-positive adult T-cell leukemia/lymphoma (ATL). This phase II study evaluated efficacy and safety of mogamulizumab in ATL patients with acute, lymphoma, and chronic subtypes with relapsed/refractory, aggressive disease in the US, Europe, and Latin America. With stratification by subtype, patients were randomized 2:1 to intravenous mogamulizumab 1.0 mg/kg once weekly for 4 weeks and biweekly thereafter (n=47) or investigator's choice of chemotherapy (n=24). The primary end point was confirmed overall response rate (cORR) confirmed on a subsequent assessment at 8 weeks by blinded independent review. ORR was 11% (95%CI: 4-23%) and 0% (95%CI: 0-14%) in the mogamulizumab and chemotherapy arms, respectively. Best response was 28% and 8% in the respective arms. The observed hazard ratio for progression-free survival was 0.71 (95%CI: 0.41-1.21) and, after post hoc adjustment for performance status imbalance, 0.57 (95%CI: 0.337-0.983). The most frequent treatment-related adverse (grade ≥3) events with mogamulizumab were infusion-related reaction and thrombocytopenia (each 9%). Relapsed/refractory ATL is an aggressive, poor prognosis disease with a high unmet need. Investigator's choice chemotherapy did not result in tumor response in this trial; however, mogamulizumab treatment resulted in 11% cORR, with a tolerable safety profile.
Collapse
Affiliation(s)
- Adrienne A Phillips
- Division of Hematology and Medical Oncology, Weill Cornell Medical College, New York Presbyterian Hospital, New York, NY, USA
| | - Paul A Fields
- Department of Haematology Guy's and St Thomas' Hospitals NHS Trust Hospital, London, UK
| | - Olivier Hermine
- Department of Hematology, Necker University Hospital, Paris, France
| | - Juan C Ramos
- Division of Hematology/Oncology, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, FL, USA
| | - Brady E Beltran
- Hospital Nacional Edgardo Rebagliati Martins and Centro de Investigación de Medicina de Precision, Universidad de San Martin de Porres, Lima, Peru
| | | | - Farooq Wandroo
- Sandwell and West Birmingham Hospitals NHS Trust, West Bromwich, and University of Birmingham, UK
| | | | - Graham P Taylor
- National Centre for Human Retrovirology, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Ahmed Sawas
- Center for Lymphoid Malignancies, Columbia University Irving Medical Center, New York, NY, USA
| | | | | | | | | | | | - Kevin Conlon
- Warren Grant Magnuson Clinical Center, National Cancer Institute, Bethesda, MD, USA
| | - Lucy Cook
- Department of Haematology and National Centre for Human Retrovirology, Imperial College Healthcare NHS Trust, London, UK
| | - Jason Gonsky
- Division of Hematology/Oncology, Department of Medicine, New York City Health + Hospitals/Kings County and SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Steven M Horwitz
- Hematology/Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
47
|
Abstract
It has been nearly 40 years since human T-cell leukemia virus-1 (HTLV-1), the first oncogenic retrovirus in humans and the first demonstrable cause of cancer by an infectious agent, was discovered. Studies indicate that HTLV-1 is arguably one of the most carcinogenic agents to humans. In addition, HTLV-1 causes a diverse array of diseases, including myelopathy and immunodeficiency, which cause morbidity and mortality to many people in the world, including the indigenous population in Australia, a fact that was emphasized only recently. HTLV-1 can be transmitted by infected lymphocytes, from mother to child via breast feeding, by sex, by blood transfusion, and by organ transplant. Therefore, the prevention of HTLV-1 infection is possible but such action has been taken in only a limited part of the world. However, until now it has not been listed by the World Health Organization as a sexually transmitted organism nor, oddly, recognized as an oncogenic virus by the recent list of the National Cancer Institute/National Institutes of Health. Such underestimation of HTLV-1 by health agencies has led to a remarkable lack of funding supporting research and development of treatments and vaccines, causing HTLV-1 to remain a global threat. Nonetheless, there are emerging novel therapeutic and prevention strategies which will help people who have diseases caused by HTLV-1. In this review, we present a brief historic overview of the key events in HTLV-1 research, including its pivotal role in generating ideas of a retrovirus cause of AIDS and in several essential technologies applicable to the discovery of HIV and the unraveling of its genes and their function. This is followed by the status of HTLV-1 research and the preventive and therapeutic developments of today. We also discuss pending issues and remaining challenges to enable the eradication of HTLV-1 in the future.
Collapse
Affiliation(s)
- Yutaka Tagaya
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Masao Matsuoka
- Department of Hematology, Rheumatology and Infectious Diseases, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-0811, Japan
| | - Robert Gallo
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| |
Collapse
|
48
|
Xu L, Zhang X, Cheng W, Wang Y, Yi K, Wang Z, Zhang Y, Shao L, Zhao T. Hypericin-photodynamic therapy inhibits the growth of adult T-cell leukemia cells through induction of apoptosis and suppression of viral transcription. Retrovirology 2019; 16:5. [PMID: 30782173 PMCID: PMC6381730 DOI: 10.1186/s12977-019-0467-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 02/10/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Adult T-cell leukemia (ATL) is an aggressive neoplasm caused by human T-cell leukemia virus type 1 (HTLV-1). ATL carries a poor prognosis due to chemotherapy resistance. Thus, it is urgent to develop new treatment strategies. Hypericin (HY) is a new-type of photosensitizer in the context of photodynamic therapy (PDT) due to its excellent photosensitizing properties and anti-tumor activities. RESULTS In the present study, we investigated the efficacy of hypericin in ATL cells. Clinically achievable concentrations of hypericin in association with PDT induced the inhibition of cell proliferation in ATL cell lines with minimal effect on peripheral blood CD4+ T lymphocytes. Moreover, hypericin-PDT treatment caused apoptosis and G2/M phase cell cycle arrest in leukemic cells. Western blot analyses revealed that hypericin-PDT treatment resulted in downregulation of Bcl-2 and enhanced the expression of Bad, cytochrome C, and AIF. Cleavage of caspases-3/-7/-9/-8, Bid, and PARP was increased in hypericin-PDT-treated ATL cells. In a luciferase assay, hypericin-PDT treatment was able to activate the promoter activity of Bax and p53, resulting in enhanced expression of Bax and p53 proteins. Finally, hypericin-PDT treatment suppressed the expression of viral protein HBZ and Tax by blocking the promoter activity via HTLV-1 5'LTR and 3'LTR. CONCLUSIONS Our results revealed that hypericin-PDT is highly effective against ATL cells by induction of apoptosis and suppression of viral transcription. These studies highlight the promising use of hypericin-PDT as a targeted therapy for ATL.
Collapse
Affiliation(s)
- Lingling Xu
- College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, Zhejiang, China
| | - Xueqing Zhang
- College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, Zhejiang, China
| | - Wenzhao Cheng
- College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, Zhejiang, China.,Biomedical Department, Huaqiao University, Quanzhou, China
| | - Yong Wang
- College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, Zhejiang, China
| | - Kaining Yi
- College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, Zhejiang, China
| | - Zhilong Wang
- College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, Zhejiang, China
| | - Yiling Zhang
- College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, Zhejiang, China
| | - Linxiang Shao
- College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, Zhejiang, China
| | - Tiejun Zhao
- College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, Zhejiang, China.
| |
Collapse
|
49
|
Kamoi K, Okayama A, Izumo S, Hamaguchi I, Uchimaru K, Tojo A, Ohno-Matsui K. Adult T-Cell Leukemia/Lymphoma-Related Ocular Manifestations: Analysis of the First Large-Scale Nationwide Survey. Front Microbiol 2019; 9:3240. [PMID: 30671044 PMCID: PMC6331419 DOI: 10.3389/fmicb.2018.03240] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/13/2018] [Indexed: 12/24/2022] Open
Abstract
Adult T-cell leukemia/lymphoma (ATL) is a rare and aggressive T-cell malignancy with a high mortality rate, resulting in a lack of information among ophthalmologists. Here, we investigated the state of ophthalmic medical care for ATL and ATL-related ocular manifestations by conducting the first large-scale nationwide survey in Japan. A total of 115 facilities were surveyed, including all university hospitals in Japan that were members of the Japanese Ophthalmological Society and regional core facilities that were members of the Japanese Ocular Inflammation Society. The collected nationwide data on the state of medical care for ATL-related ocular manifestations and ATL-associated ocular findings were categorized, tallied, and analyzed. Of the 115 facilities, 69 (60%) responded. Overall, 28 facilities (43.0%) had experience in providing ophthalmic care to ATL patients. ATL-related ocular manifestations were most commonly diagnosed “based on blood tests and characteristic ophthalmic findings.” By analyzing the 48 reported cases of ATL-related ocular manifestations, common ATL-related ocular lesions were intraocular infiltration (22 cases, 45.8%) and opportunistic infections (19 cases, 39.6%). All cases of opportunistic infection were cytomegalovirus retinitis. Dry eye (3 cases, 6.3%), scleritis (2 cases, 4.2%), uveitis (1 case, 2.1%), and anemic retinopathy (1 case, 2.1%) were also seen. In conclusion, intraocular infiltration and cytomegalovirus retinitis are common among ATL patients, and ophthalmologists should keep these findings in mind in their practice.
Collapse
Affiliation(s)
- Koju Kamoi
- Department of Ophthalmology and Visual Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Hematology/Oncology, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Akihiko Okayama
- Department of Rheumatology, Infectious Diseases and Laboratory Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Shuji Izumo
- Division of Molecular Pathology, Center for Chronic Viral Diseases, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Isao Hamaguchi
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kaoru Uchimaru
- Department of Hematology/Oncology, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Laboratory of Tumor Cell Biology, Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Arinobu Tojo
- Department of Hematology/Oncology, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kyoko Ohno-Matsui
- Department of Ophthalmology and Visual Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
50
|
Molecular targeting for treatment of human T-lymphotropic virus type 1 infection. Biomed Pharmacother 2019; 109:770-778. [DOI: 10.1016/j.biopha.2018.10.139] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/22/2018] [Accepted: 10/24/2018] [Indexed: 12/13/2022] Open
|