1
|
Liu Y, Parks AL. Diagnosis and Management of Monoclonal Gammopathy of Undetermined Significance: A Review. JAMA Intern Med 2025; 185:450-456. [PMID: 39960681 PMCID: PMC11975479 DOI: 10.1001/jamainternmed.2024.8124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Importance Nearly 5% of adults have the precursor malignant condition monoclonal gammopathy of unknown significance (MGUS). Management centers on differentiating MGUS from more serious conditions to determine additional diagnostic testing, monitoring, and potential therapy. Observations MGUS is defined by the absence of end-organ damage or symptoms, a small amount of monoclonal immunoglobulin (M protein), and low volume of plasma cells. MGUS must be distinguished from overt malignant diseases like multiple myeloma (MM), immunoglobulin light-chain (AL) amyloidosis, and monoclonal gammopathy of clinical significance (MGCS), all of which cause organ damage or symptoms. Although testing for M proteins is often prompted by clinical findings (eg, osteoporosis or autoimmune disease), recent evidence from screened populations suggests that previous MGUS disease associations were likely overestimated and that testing for M proteins should be reserved for when malignant disease or MGCS is suspected. Risk of progression to malignant disease ranges from 0.5% to 1%, meaning most patients have indolent disease. Guideline-concordant management of MGUS is determined by predicted risk of progression to malignant disease, which depends on subtype of immunoglobulin, M protein concentration, and free light chain ratio. Patients with low-risk MGUS can safely defer bone marrow biopsy and advanced imaging, and should undergo periodic laboratory monitoring. Intermediate- and high-risk MGUS should trigger bone marrow biopsy and bone imaging to detect overt MM and shorter monitoring intervals. Advanced molecular testing may improve on current risk stratification to target monitoring and treatment to those with highest risk of malignant progression and avoid overtreatment of those with low-risk disease. Management will also be informed by results of several clinical trials to clarify the risks and benefits of screening, optimal monitoring strategy, predictors of progression, and potential preventive or curative therapies. Conclusions and Relevance Evidence-based management of MGUS currently rests on separating clinically indolent from high-risk precursor disease. Research using novel detection methods, incorporating molecular testing into risk stratification, and evaluating screening, monitoring, and therapeutic or lifestyle interventions has the potential to improve outcomes.
Collapse
Affiliation(s)
- Yuxin Liu
- Division of Hematologic Oncology, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Anna L Parks
- Division of Hematology & Hematologic Malignancies, University of Utah, Salt Lake City
| |
Collapse
|
2
|
Mangelberger-Eberl D, Cosenza ME, Härtle S, Luetjens CM, Welsh BT, Steidl S, Flesher DL, Chinn LW. Enhanced Prenatal and Postnatal Development Study in Marmoset Monkeys Following Administration of Felzartamab. Int J Toxicol 2024; 43:561-578. [PMID: 39526914 DOI: 10.1177/10915818241289526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Felzartamab is a recombinant fully human immunoglobulin G1 anti-CD38 monoclonal antibody under clinical investigation for immune-mediated diseases. In support of felzartamab clinical development, toxicology studies were conducted in marmoset monkeys, which was the most relevant species based on CD38 binding affinity, pharmacologic activity, and target expression. The felzartamab toxicology program included an enhanced prenatal and postnatal development (ePPND) study to identify potential reproductive and postnatal development risks. In this ePPND study, pregnant marmoset monkeys were randomized to receive vehicle (0 mg/kg) or felzartamab at two dose levels (15 mg/kg and 75 mg/kg) twice per week until parturition, and maternal animals and infants were evaluated for 6 months thereafter. Felzartamab exposure was confirmed in maternal animals and infants in both dosing groups. Overall, felzartamab was well tolerated by pregnant animals at the evaluated doses, with no effect on body weight or body weight gain during pregnancy. No felzartamab-related effects on pregnancy loss or stillbirth rate were observed, and litter counts and numbers of liveborn infants were similar between the vehicle and felzartamab groups. Among infants, there were no felzartamab-related malformations or variations in external anatomy or skeletal morphology and no felzartamab-related observations in histopathology, hematologic and immune cell development, or humoral immune response to vaccination. In conclusion, among pregnant marmoset monkeys dosed with felzartamab, the lack of reproductive toxicity and felzartamab-related effects on offspring supports the clinical evaluation of felzartamab in women of childbearing potential and further demonstrates the suitability of the marmoset monkey for ePPND studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Donna L Flesher
- Human Immunology Biosciences, Inc., South San Francisco, CA, USA
| | - Leslie W Chinn
- Human Immunology Biosciences, Inc., South San Francisco, CA, USA
| |
Collapse
|
3
|
Ochieng BO, Zhao L, Ye Z. Three-Dimensional Bioprinting in Vascular Tissue Engineering and Tissue Vascularization of Cardiovascular Diseases. TISSUE ENGINEERING. PART B, REVIEWS 2024; 30:340-358. [PMID: 37885200 DOI: 10.1089/ten.teb.2023.0175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
In the 21st century, significant progress has been made in repairing damaged materials through material engineering. However, the creation of large-scale artificial materials still faces a major challenge in achieving proper vascularization. To address this issue, researchers have turned to biomaterials and three-dimensional (3D) bioprinting techniques, which allow for the combination of multiple biomaterials with improved mechanical and biological properties that mimic natural materials. Hydrogels, known for their ability to support living cells and biological components, have played a crucial role in this research. Among the recent developments, 3D bioprinting has emerged as a promising tool for constructing hybrid scaffolds. However, there are several challenges in the field of bioprinting, including the need for nanoscale biomimicry, the formulation of hydrogel blends, and the ongoing complexity of vascularizing biomaterials, which requires further research. On a positive note, 3D bioprinting offers a solution to the vascularization problem due to its precise spatial control, scalability, and reproducibility compared with traditional fabrication methods. This paper aims at examining the recent advancements in 3D bioprinting technology for creating blood vessels, vasculature, and vascularized materials. It provides a comprehensive overview of the progress made and discusses the limitations and challenges faced in current 3D bioprinting of vascularized tissues. In addition, the paper highlights the future research directions focusing on the development of 3D bioprinting techniques and bioinks for creating functional materials.
Collapse
Affiliation(s)
- Ben Omondi Ochieng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, China
| | - Leqian Zhao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, China
- Department of Biomedical Science and Biochemistry, Research School of Biology, The Australian National University, Canberra, Australia
| | - Zhiyi Ye
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
4
|
Bogun L, Koch A, Scherer B, Germing U, Fenk R, Maus U, Bormann F, Köhrer K, Petzsch P, Wachtmeister T, Kobbe G, Dietrich S, Haas R, Schroeder T, Geyh S, Jäger P. Overlapping Stromal Alterations in Myeloid and Lymphoid Neoplasms. Cancers (Basel) 2024; 16:2071. [PMID: 38893194 PMCID: PMC11171322 DOI: 10.3390/cancers16112071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Myeloid and lymphoid neoplasms share the characteristics of potential bone marrow infiltration as a primary or secondary effect, which readily leads to hematopoietic insufficiency. The mechanisms by which clonal malignant cells inhibit normal hematopoietic stem and progenitor cells (HSPCs) in the bone marrow (BM) have not been unraveled so far. Given the pivotal role of mesenchymal stromal cells (MSCs) in the regulation of hematopoiesis in the BM niche it is assumed that MSCs also play a relevant role in the pathogenesis of hematological neoplasms. We aimed to identify overlapping mechanisms in MSCs derived from myeloid and lymphoid neoplasms contributing to disease progression and suppression of HSPCs to develop interventions that target these mechanisms. MSCs derived from healthy donors (n = 44) and patients diagnosed with myeloproliferative neoplasia (n = 11), myelodysplastic syndromes (n = 16), or acute myeloid leukemia (n = 25) and B-Non-Hodgkin lymphoma (n = 9) with BM infiltration and acute lymphoblastic leukemia (n = 9) were analyzed for their functionality and by RNA sequencing. A reduced growth and differentiation capacity of MSCs was found in all entities. RNA sequencing distinguished both groups but clearly showed overlapping differentially expressed genes, including major players in the BMP/TGF and WNT-signaling pathway which are crucial for growth, osteogenesis, and hematopoiesis. Functional alterations in healthy MSCs were inducible by exposure to supernatants from malignant cells, implicating the involvement of these factors in disease progression. Overall, we were able to identify overlapping factors that pose potential future therapeutic targets.
Collapse
Affiliation(s)
- Lucienne Bogun
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty, University of Duesseldorf, 40225 Duesseldorf, Germany; (L.B.); (A.K.); (B.S.); (U.G.); (R.F.); (G.K.); (S.D.); (R.H.); (T.S.)
| | - Annemarie Koch
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty, University of Duesseldorf, 40225 Duesseldorf, Germany; (L.B.); (A.K.); (B.S.); (U.G.); (R.F.); (G.K.); (S.D.); (R.H.); (T.S.)
| | - Bo Scherer
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty, University of Duesseldorf, 40225 Duesseldorf, Germany; (L.B.); (A.K.); (B.S.); (U.G.); (R.F.); (G.K.); (S.D.); (R.H.); (T.S.)
| | - Ulrich Germing
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty, University of Duesseldorf, 40225 Duesseldorf, Germany; (L.B.); (A.K.); (B.S.); (U.G.); (R.F.); (G.K.); (S.D.); (R.H.); (T.S.)
| | - Roland Fenk
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty, University of Duesseldorf, 40225 Duesseldorf, Germany; (L.B.); (A.K.); (B.S.); (U.G.); (R.F.); (G.K.); (S.D.); (R.H.); (T.S.)
| | - Uwe Maus
- Department of Orthopedic Surgery and Traumatology, Medical Faculty, University of Duesseldorf, 40225 Duesseldorf, Germany;
| | | | - Karl Köhrer
- Biological and Medical Research Center (BMFZ), Medical Faculty, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany; (K.K.); (P.P.); (T.W.)
| | - Patrick Petzsch
- Biological and Medical Research Center (BMFZ), Medical Faculty, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany; (K.K.); (P.P.); (T.W.)
| | - Thorsten Wachtmeister
- Biological and Medical Research Center (BMFZ), Medical Faculty, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany; (K.K.); (P.P.); (T.W.)
| | - Guido Kobbe
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty, University of Duesseldorf, 40225 Duesseldorf, Germany; (L.B.); (A.K.); (B.S.); (U.G.); (R.F.); (G.K.); (S.D.); (R.H.); (T.S.)
| | - Sascha Dietrich
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty, University of Duesseldorf, 40225 Duesseldorf, Germany; (L.B.); (A.K.); (B.S.); (U.G.); (R.F.); (G.K.); (S.D.); (R.H.); (T.S.)
| | - Rainer Haas
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty, University of Duesseldorf, 40225 Duesseldorf, Germany; (L.B.); (A.K.); (B.S.); (U.G.); (R.F.); (G.K.); (S.D.); (R.H.); (T.S.)
| | - Thomas Schroeder
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty, University of Duesseldorf, 40225 Duesseldorf, Germany; (L.B.); (A.K.); (B.S.); (U.G.); (R.F.); (G.K.); (S.D.); (R.H.); (T.S.)
| | - Stefanie Geyh
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty, University of Duesseldorf, 40225 Duesseldorf, Germany; (L.B.); (A.K.); (B.S.); (U.G.); (R.F.); (G.K.); (S.D.); (R.H.); (T.S.)
| | - Paul Jäger
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty, University of Duesseldorf, 40225 Duesseldorf, Germany; (L.B.); (A.K.); (B.S.); (U.G.); (R.F.); (G.K.); (S.D.); (R.H.); (T.S.)
| |
Collapse
|
5
|
Gulla A, Fulciniti M. Mesenchymal stem cells: paving the way for myeloma onset? Blood Adv 2024; 8:2573-2574. [PMID: 38805218 PMCID: PMC11220371 DOI: 10.1182/bloodadvances.2024012705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024] Open
Affiliation(s)
- Annamaria Gulla
- Candiolo Cancer Institute, Fondazione del Piemonte per l'Oncologia-IRCCS, Candiolo, Italy
| | - Mariateresa Fulciniti
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Disease Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| |
Collapse
|
6
|
Bogun L, Koch A, Scherer B, Fenk R, Maus U, Bormann F, Köhrer K, Petzsch P, Wachtmeister T, Zukovs R, Dietrich S, Haas R, Schroeder T, Jäger P, Geyh S. Stromal alterations in patients with monoclonal gammopathy of undetermined significance, smoldering myeloma, and multiple myeloma. Blood Adv 2024; 8:2575-2588. [PMID: 38241490 PMCID: PMC11145751 DOI: 10.1182/bloodadvances.2023011632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/27/2023] [Accepted: 01/09/2024] [Indexed: 01/21/2024] Open
Abstract
ABSTRACT The hallmark of multiple myeloma (MM) is a clonal plasma cell infiltration in the bone marrow accompanied by myelosuppression and osteolysis. Premalignant stages such as monoclonal gammopathy of undetermined significance (MGUS) and asymptomatic stages such as smoldering myeloma (SMM) can progress to MM. Mesenchymal stromal cells (MSCs) are an integral component of the bone marrow microenvironment and play an important role in osteoblast differentiation and hematopoietic support. Although stromal alterations have been reported in MM contributing to hematopoietic insufficiency and osteolysis, it is not clear whether alterations in MSC already occur in MGUS or SMM. In this study, we analyzed MSCs from MGUS, SMM, and MM regarding their properties and functionality and performed messenger RNA sequencing to find underlying molecular signatures in different disease stages. A high number of senescent cells and a reduced osteogenic differentiation capacity and hematopoietic support were already present in MGUS MSC. As shown by RNA sequencing, there was a broad spectrum of differentially expressed genes including genes of the BMP/TGF-signaling pathway, detected already in MGUS and that clearly increases in patients with SMM and MM. Our data may help to block these signaling pathways in the future to hinder progression to MM.
Collapse
Affiliation(s)
- Lucienne Bogun
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Duesseldorf, Medical Faculty, Duesseldorf, Germany
| | - Annemarie Koch
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Duesseldorf, Medical Faculty, Duesseldorf, Germany
| | - Bo Scherer
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Duesseldorf, Medical Faculty, Duesseldorf, Germany
| | - Roland Fenk
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Duesseldorf, Medical Faculty, Duesseldorf, Germany
| | - Uwe Maus
- Department of Orthopedic Surgery and Traumatology, University Hospital Duesseldorf, Medical Faculty, Duesseldorf, Germany
| | | | - Karl Köhrer
- Biological and Medical Research Center, Medical Faculty, Heinrich-Heine-University, Duesseldorf, Germany
| | - Patrick Petzsch
- Biological and Medical Research Center, Medical Faculty, Heinrich-Heine-University, Duesseldorf, Germany
| | - Thorsten Wachtmeister
- Biological and Medical Research Center, Medical Faculty, Heinrich-Heine-University, Duesseldorf, Germany
| | - Romans Zukovs
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Duesseldorf, Medical Faculty, Duesseldorf, Germany
| | - Sascha Dietrich
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Duesseldorf, Medical Faculty, Duesseldorf, Germany
| | - Rainer Haas
- Institute of Medical Microbiology and Hospital Hygiene, University of Duesseldorf, Medical Faculty, Duesseldorf, Germany
| | - Thomas Schroeder
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Duesseldorf, Medical Faculty, Duesseldorf, Germany
| | - Paul Jäger
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Duesseldorf, Medical Faculty, Duesseldorf, Germany
| | - Stefanie Geyh
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Duesseldorf, Medical Faculty, Duesseldorf, Germany
| |
Collapse
|
7
|
Favaloro J, Bryant CE, Abadir E, Gardiner S, Yang S, King T, Nassif N, Sedger LM, Boyle R, Joshua DE, Ho PJ. Single-cell analysis of the CD8 + T-cell compartment in multiple myeloma reveals disease specific changes are chiefly restricted to a CD69 - subset suggesting potent cytotoxic effectors exist within the tumor bed. Haematologica 2024; 109:1220-1232. [PMID: 37794800 PMCID: PMC10985429 DOI: 10.3324/haematol.2023.283062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 09/28/2023] [Indexed: 10/06/2023] Open
Abstract
Multiple myeloma (MM) is an incurable disease of the bone marrow (BM) characterized by the uncontrolled proliferation of neoplastic plasma cells. While CD8+ T cells have an established role in disease control, few studies have focused on these cells within the MM tumor microenvironment (TME). We analyzed CD8+ T cells in the BM and peripheral blood (PB) of untreated patients with MM and non-myeloma controls using flow cytometry, mass cytometry and single-cell RNA sequencing, using several novel bioinformatics workflows. Inter-tissue differences were most evident in the differential expression of Granzymes B and K, which were strongly associated with two distinct subsets of CD8+ T cells delineated by the expression of CD69, accounting for roughly 50% of BM-CD8+ T cells of all assessed cohorts. While few differences were observable between health and disease in the BM-restricted CD8CD69+ T-cell subset, the CD8+CD69- T-cell subset in the BM of untreated MM patients demonstrated increased representation of highly differentiated effector cells and evident compositional parallels between the PB, absent in age-matched controls, where a marked reduction of effector cells was observed. We demonstrate the transcriptional signature of BM-CD8+ T cells from patients with MM more closely resembles TCR-activated CD8+ T cells from age-matched controls than their resting counterparts.
Collapse
Affiliation(s)
- James Favaloro
- Institute of Haematology, Multiple Myeloma Research Laboratory, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia; School of Life Sciences, University of Technology Sydney, Ultimo, NSW.
| | - Christian E Bryant
- Institute of Haematology, Multiple Myeloma Research Laboratory, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia; Sydney Medical School, The University of Sydney, Sydney, NSW.
| | - Edward Abadir
- Institute of Haematology, Multiple Myeloma Research Laboratory, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia; Sydney Medical School, The University of Sydney, Sydney, NSW
| | - Samuel Gardiner
- Sydney Local Health District Clinical Research Institute, Royal Prince Alfred Hospital, Camperdown, NSW
| | - Shihong Yang
- Institute of Haematology, Multiple Myeloma Research Laboratory, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW
| | - Tracy King
- Institute of Haematology, Multiple Myeloma Research Laboratory, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia; Sydney Medical School, The University of Sydney, Sydney, NSW
| | - Najah Nassif
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW
| | - Lisa M Sedger
- Institute for Clinical Pathology and Medical Research (ICPMR), NSW Health Pathology, Westmead Hospital. Westmead NSW, Sydney, Australia; Centre for Virus research, Westmead Institute for Medical research. Westmead NSW, Sydney
| | - Richard Boyle
- Orthopaedics Department, Sydney Local Health District, Royal Prince Alfred Hospital, Camperdown, NSW
| | - Douglas E Joshua
- Institute of Haematology, Multiple Myeloma Research Laboratory, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia; Sydney Medical School, The University of Sydney, Sydney, NSW
| | - P Joy Ho
- Institute of Haematology, Multiple Myeloma Research Laboratory, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia; School of Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia; Sydney Medical School, The University of Sydney, Sydney, NSW
| |
Collapse
|
8
|
Nollmann C, Moskorz W, Wimmenauer C, Jäger PS, Cadeddu RP, Timm J, Heinzel T, Haas R. Characterization of CD34 + Cells from Patients with Acute Myeloid Leukemia (AML) and Myelodysplastic Syndromes (MDS) Using a t-Distributed Stochastic Neighbor Embedding (t-SNE) Protocol. Cancers (Basel) 2024; 16:1320. [PMID: 38610998 PMCID: PMC11010974 DOI: 10.3390/cancers16071320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Using multi-color flow cytometry analysis, we studied the immunophenotypical differences between leukemic cells from patients with AML/MDS and hematopoietic stem and progenitor cells (HSPCs) from patients in complete remission (CR) following their successful treatment. The panel of markers included CD34, CD38, CD45RA, CD123 as representatives for a hierarchical hematopoietic stem and progenitor cell (HSPC) classification as well as programmed death ligand 1 (PD-L1). Rather than restricting the evaluation on a 2- or 3-dimensional analysis, we applied a t-distributed stochastic neighbor embedding (t-SNE) approach to obtain deeper insight and segregation between leukemic cells and normal HPSCs. For that purpose, we created a t-SNE map, which resulted in the visualization of 27 cell clusters based on their similarity concerning the composition and intensity of antigen expression. Two of these clusters were "leukemia-related" containing a great proportion of CD34+/CD38- hematopoietic stem cells (HSCs) or CD34+ cells with a strong co-expression of CD45RA/CD123, respectively. CD34+ cells within the latter cluster were also highly positive for PD-L1 reflecting their immunosuppressive capacity. Beyond this proof of principle study, the inclusion of additional markers will be helpful to refine the differentiation between normal HSPCs and leukemic cells, particularly in the context of minimal disease detection and antigen-targeted therapeutic interventions. Furthermore, we suggest a protocol for the assignment of new cell ensembles in quantitative terms, via a numerical value, the Pearson coefficient, based on a similarity comparison of the t-SNE pattern with a reference.
Collapse
Affiliation(s)
- Cathrin Nollmann
- Condensed Matter Physics Laboratory, Heinrich-Heine-University, 40204 Düsseldorf, Germany; (C.N.)
| | - Wiebke Moskorz
- Institute of Virology, Heinrich-Heine-University, 40204 Düsseldorf, Germany (J.T.)
| | - Christian Wimmenauer
- Condensed Matter Physics Laboratory, Heinrich-Heine-University, 40204 Düsseldorf, Germany; (C.N.)
| | - Paul S. Jäger
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (P.S.J.)
| | - Ron P. Cadeddu
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (P.S.J.)
| | - Jörg Timm
- Institute of Virology, Heinrich-Heine-University, 40204 Düsseldorf, Germany (J.T.)
| | - Thomas Heinzel
- Condensed Matter Physics Laboratory, Heinrich-Heine-University, 40204 Düsseldorf, Germany; (C.N.)
| | - Rainer Haas
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (P.S.J.)
| |
Collapse
|
9
|
Chong YP, Lim SM, Loh TP, Mollee P, Wijeratne N, Choy KW. Screening for and diagnosis of monoclonal gammopathy. J Clin Pathol 2023; 76:727-733. [PMID: 37604683 DOI: 10.1136/jcp-2023-208774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/03/2023] [Indexed: 08/23/2023]
Abstract
Monoclonal gammopathy is a spectrum of disorders characterised by clonal proliferation of plasma cells or lymphocytes, which produce abnormal immunoglobulin or its components (monoclonal proteins). Monoclonal gammopathies are often categorised as low-tumour-burden diseases (eg, amyloid light chain (AL) amyloidosis), premalignant disorders (such as monoclonal gammopathy of undetermined significance and smouldering multiple myeloma), and malignancies (eg, multiple myeloma and Waldenström's macroglobulinaemia). Such diversity of concentration and structure makes monoclonal protein a challenging clonal marker. This article provides an overview on initial laboratory testing of monoclonal gammopathy to guide clinicians and laboratory professionals in the selection and interpretation of appropriate investigations.
Collapse
Affiliation(s)
- Yuh Ping Chong
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Say Min Lim
- Department of Pathology, Hospital Teluk Intan, Teluk Intan, Malaysia
| | - Tze Ping Loh
- Department of Laboratory Medicine, National University Hospital, Singapore
| | - Peter Mollee
- Pathology Queensland, Princess Alexandra Hospital, Brisbane, Queensland, Australia
- School of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Nilika Wijeratne
- Dorevitch Pathology, Heidelberg, Victoria, Australia
- School of Clinical Sciences at Monash Health, Department of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
- Eastern Health Pathology, Eastern Health, Box Hill, Victoria, Australia
| | - Kay Weng Choy
- Department of Pathology, Northern Health, Epping, Victoria, Australia
| |
Collapse
|
10
|
Sukhtankar DD, Fung JJ, Kim MN, Cayton T, Chiou V, Caculitan NG, Zalicki P, Kim S, Jo Y, Kim S, Lee JM, Choi J, Mun S, Chin A, Jang Y, Lee JY, Kim G, Kim EH, Huh WK, Jeong JY, Seen DS, Cardarelli PM. GPC-100, a novel CXCR4 antagonist, improves in vivo hematopoietic cell mobilization when combined with propranolol. PLoS One 2023; 18:e0287863. [PMID: 37878624 PMCID: PMC10599528 DOI: 10.1371/journal.pone.0287863] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/27/2023] [Indexed: 10/27/2023] Open
Abstract
Autologous Stem Cell Transplant (ASCT) is increasingly used to treat hematological malignancies. A key requisite for ASCT is mobilization of hematopoietic stem cells into peripheral blood, where they are collected by apheresis and stored for later transplantation. However, success is often hindered by poor mobilization due to factors including prior treatments. The combination of G-CSF and GPC-100, a small molecule antagonist of CXCR4, showed potential in a multiple myeloma clinical trial for sufficient and rapid collection of CD34+ stem cells, compared to the historical results from the standards of care, G-CSF alone or G-CSF with plerixafor, also a CXCR4 antagonist. In the present study, we show that GPC-100 has high affinity towards the chemokine receptor CXCR4, and it potently inhibits β-arrestin recruitment, calcium flux and cell migration mediated by its ligand CXCL12. Proximity Ligation Assay revealed that in native cell systems with endogenous receptor expression, CXCR4 co-localizes with the beta-2 adrenergic receptor (β2AR). Co-treatment with CXCL12 and the β2AR agonist epinephrine synergistically increases β-arrestin recruitment to CXCR4 and calcium flux. This increase is blocked by the co-treatment with GPC-100 and propranolol, a non-selective beta-adrenergic blocker, indicating a functional synergy. In mice, GPC-100 mobilized more white blood cells into peripheral blood compared to plerixafor. GPC-100 induced mobilization was further amplified by propranolol pretreatment and was comparable to mobilization by G-CSF. Addition of propranolol to the G-CSF and GPC-100 combination resulted in greater stem cell mobilization than the G-CSF and plerixafor combination. Together, our studies suggest that the combination of GPC-100 and propranolol is a novel strategy for stem cell mobilization and support the current clinical trial in multiple myeloma registered as NCT05561751 at www.clinicaltrials.gov.
Collapse
Affiliation(s)
- Devki D. Sukhtankar
- GPCR Therapeutics USA, Inc., Redwood City, California, United States of America
| | - Juan José Fung
- GPCR Therapeutics USA, Inc., Redwood City, California, United States of America
| | - Mi-na Kim
- GPCR Therapeutics Inc., Gwanak-gu, Seoul, Republic of Korea
| | - Thomas Cayton
- GPCR Therapeutics USA, Inc., Redwood City, California, United States of America
| | - Valerie Chiou
- GPCR Therapeutics USA, Inc., Redwood City, California, United States of America
| | - Niña G. Caculitan
- GPCR Therapeutics USA, Inc., Redwood City, California, United States of America
| | - Piotr Zalicki
- GPCR Therapeutics USA, Inc., Redwood City, California, United States of America
| | - Sujeong Kim
- GPCR Therapeutics Inc., Gwanak-gu, Seoul, Republic of Korea
| | - Yoonjung Jo
- GPCR Therapeutics Inc., Gwanak-gu, Seoul, Republic of Korea
| | - SoHui Kim
- GPCR Therapeutics Inc., Gwanak-gu, Seoul, Republic of Korea
| | - Jae Min Lee
- GPCR Therapeutics Inc., Gwanak-gu, Seoul, Republic of Korea
| | - Junhee Choi
- GPCR Therapeutics Inc., Gwanak-gu, Seoul, Republic of Korea
| | | | - Ashley Chin
- GPCR Therapeutics USA, Inc., Redwood City, California, United States of America
| | - Yongdae Jang
- GPCR Therapeutics Inc., Gwanak-gu, Seoul, Republic of Korea
| | - Ji Yeong Lee
- GPCR Therapeutics Inc., Gwanak-gu, Seoul, Republic of Korea
| | - Gowoon Kim
- GPCR Therapeutics Inc., Gwanak-gu, Seoul, Republic of Korea
| | - Eun Hee Kim
- GPCR Therapeutics Inc., Gwanak-gu, Seoul, Republic of Korea
| | - Won-Ki Huh
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
- Institute of Microbiology, Seoul National University, Seoul, Republic of Korea
| | - Jae-Yeon Jeong
- GPCR Therapeutics Inc., Gwanak-gu, Seoul, Republic of Korea
| | | | - Pina M. Cardarelli
- GPCR Therapeutics USA, Inc., Redwood City, California, United States of America
| |
Collapse
|
11
|
Zanwar S, Jacob EK, Greiner C, Pavelko K, Strausbauch M, Anderson E, Arsana A, Weivoda M, Shah MV, Kourelis T. The immunome of mobilized peripheral blood stem cells is predictive of long-term outcomes and therapy-related myeloid neoplasms in patients with multiple myeloma undergoing autologous stem cell transplant. Blood Cancer J 2023; 13:151. [PMID: 37752130 PMCID: PMC10522581 DOI: 10.1038/s41408-023-00920-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/22/2023] [Accepted: 09/01/2023] [Indexed: 09/28/2023] Open
Abstract
Upfront autologous stem cell transplant (ASCT) is the standard of care for newly diagnosed multiple myeloma (MM) patients. However, relapse is ubiquitous and therapy-related myeloid neoplasms (t-MN) post-ASCT are commonly associated with poor outcomes. We hypothesized that the enrichment of abnormal myeloid progenitors and immune effector cells (IEC) in the peripheral blood stem cells (PBSCs) is associated with a higher risk of relapse and/or development of t-MN. We performed a comprehensive myeloid and lymphoid immunophenotyping on PBSCs from 54 patients with MM who underwent ASCT. Median progression-free (PFS), myeloid neoplasm-free (MNFS), and overall survival (OS) from ASCT were 49.6 months (95% CI: 39.5-Not Reached), 59.7 months (95% CI: 55-74), and 75.6 months (95% CI: 62-105), respectively. Abnormal expression of CD7 and HLA-DR on the myeloid progenitor cells was associated with an inferior PFS, MNFS, and OS. Similarly, enrichment of terminally differentiated (CD27/CD28-, CD57/KLRG1+) and exhausted (TIGIT/PD-1+) T-cells, and inhibitory NK-T like (CD159a+/CD56+) T-cells was associated with inferior PFS, MNFS, and OS post-transplant. Our observation of abnormal myeloid and IEC phenotype being present even before ASCT and maintenance therapy suggests an early predisposition to t-MN and inferior outcomes for MM, and has the potential to guide sequencing of future treatment modalities.
Collapse
Affiliation(s)
| | - Eapen K Jacob
- Division of Transfusion Medicine, Human Cellular Therapy Laboratory, Rochester, MN, USA
| | - Carl Greiner
- Division of Transfusion Medicine, Human Cellular Therapy Laboratory, Rochester, MN, USA
| | - Kevin Pavelko
- Immune Monitoring Core, Mayo Clinic, Rochester, MN, USA
| | | | - Emilie Anderson
- Division of Hematology Research, Mayo Clinic, Rochester, MN, USA
| | - Arini Arsana
- Division of Hematology Research, Mayo Clinic, Rochester, MN, USA
| | - Megan Weivoda
- Division of Hematology Research, Mayo Clinic, Rochester, MN, USA
| | | | | |
Collapse
|
12
|
Kuang C, Xia M, An G, Liu C, Hu C, Zhang J, Liu Z, Meng B, Su P, Xia J, Guo J, Zhu Y, Liu X, Wu X, Shen Y, Feng X, He Y, Li J, Qiu L, Zhou J, Zhou W. Excessive serine from the bone marrow microenvironment impairs megakaryopoiesis and thrombopoiesis in Multiple Myeloma. Nat Commun 2023; 14:2093. [PMID: 37055385 PMCID: PMC10102122 DOI: 10.1038/s41467-023-37699-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 03/27/2023] [Indexed: 04/15/2023] Open
Abstract
Thrombocytopenia is a major complication in a subset of patients with multiple myeloma (MM). However, little is known about its development and significance during MM. Here, we show thrombocytopenia is linked to poor prognosis in MM. In addition, we identify serine, which is released from MM cells into the bone marrow microenvironment, as a key metabolic factor that suppresses megakaryopoiesis and thrombopoiesis. The impact of excessive serine on thrombocytopenia is mainly mediated through the suppression of megakaryocyte (MK) differentiation. Extrinsic serine is transported into MKs through SLC38A1 and downregulates SVIL via SAM-mediated tri-methylation of H3K9, ultimately leading to the impairment of megakaryopoiesis. Inhibition of serine utilization or treatment with TPO enhances megakaryopoiesis and thrombopoiesis and suppresses MM progression. Together, we identify serine as a key metabolic regulator of thrombocytopenia, unveil molecular mechanisms governing MM progression, and provide potential therapeutic strategies for treating MM patients by targeting thrombocytopenia.
Collapse
Affiliation(s)
- Chunmei Kuang
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Geriatric Disorders, Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Meijuan Xia
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Gang An
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - CuiCui Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Cong Hu
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Geriatric Disorders, Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Jingyu Zhang
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Geriatric Disorders, Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Zhenhao Liu
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Geriatric Disorders, Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Bin Meng
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Geriatric Disorders, Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Pei Su
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jiliang Xia
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Geriatric Disorders, Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Jiaojiao Guo
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Geriatric Disorders, Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Yinghong Zhu
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Geriatric Disorders, Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Xing Liu
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Geriatric Disorders, Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Xuan Wu
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Geriatric Disorders, Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Yi Shen
- Department of Orthopaedic Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiangling Feng
- Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Yanjuan He
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Geriatric Disorders, Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jian Li
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lugui Qiu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jiaxi Zhou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
| | - Wen Zhou
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Geriatric Disorders, Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China.
| |
Collapse
|
13
|
Xu Y, Mao X, Que Y, Xu M, Li C, Almeida VDF, Wang D, Li C. The exploration of B cell maturation antigen expression in plasma cell dyscrasias beyond multiple myeloma. BMC Cancer 2023; 23:123. [PMID: 36750969 PMCID: PMC9903528 DOI: 10.1186/s12885-023-10591-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 01/30/2023] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND B cell maturation antigen (BCMA) targeted immunotherapies have demonstrated remarkable clinical efficacy in multiple myeloma (MM). Here, we evaluated the BCMA expression in MM and other plasma cell dyscrasias (PCDs), hoping to provide a potential treatment strategy for the relapsed/refractory PCDs besides MM. METHODS From January 2018 to August 2021, 377 patients with PCDs were enrolled in this study, including 334 MM, 21 systemic light chain amyloidosis (AL), 5 POEMS syndrome, 14 monoclonal gammopathy of undetermined significance (MGUS), and three monoclonal gammopathy of renal significance (MGRS). The membrane-bound BCMA expression measured by multiparameter flow cytometry was defined by BCMA positivity rate and the mean fluorescence intensity (MFI). RESULTS The patients with MM had a median BCMA positive rate of 88.55% (range, 0.2% - 99.9%) and median BCMA MFI of 1281 (range, 109 - 48586). While the median BCMA positive rate in other PCDs was 55.8% (6.2% -98.9%), and the median BCMA MFI was 553 (182- 5930). BCMA expression level was negatively associated with hemoglobin concentration in multivariate analysis in terms of BCMA positive rate and MFI. CONCLUSIONS In conclusion, BCMA has the potential to be a therapeutic target for other PCDs besides MM.
Collapse
Affiliation(s)
- Yanjie Xu
- grid.412793.a0000 0004 1799 5032Department of Hematology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie-Fang Avenue, Wuhan, Hubei 430030 P. R. China
| | - Xia Mao
- grid.412793.a0000 0004 1799 5032Department of Hematology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie-Fang Avenue, Wuhan, Hubei 430030 P. R. China ,Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, 430030 Hubei China
| | - Yimei Que
- grid.412793.a0000 0004 1799 5032Department of Hematology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie-Fang Avenue, Wuhan, Hubei 430030 P. R. China
| | - Menglei Xu
- grid.412793.a0000 0004 1799 5032Department of Hematology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie-Fang Avenue, Wuhan, Hubei 430030 P. R. China
| | - Chunhui Li
- grid.412793.a0000 0004 1799 5032Department of Hematology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie-Fang Avenue, Wuhan, Hubei 430030 P. R. China
| | | | - Di Wang
- Department of Hematology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie-Fang Avenue, Wuhan, Hubei, 430030, P. R. China. .,Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, 430030, Hubei, China.
| | - Chunrui Li
- Department of Hematology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie-Fang Avenue, Wuhan, Hubei, 430030, P. R. China. .,Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, 430030, Hubei, China.
| |
Collapse
|
14
|
Molecular Crosstalk between Chromatin Remodeling and Tumor Microenvironment in Multiple Myeloma. Curr Oncol 2022; 29:9535-9549. [PMID: 36547163 PMCID: PMC9777166 DOI: 10.3390/curroncol29120749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Multiple myeloma (MM) is a complex disease driven by numerous genetic and epigenetic alterations that are acquired over time. Despite recent progress in the understanding of MM pathobiology and the availability of innovative drugs, which have pronounced clinical outcome, this malignancy eventually progresses to a drug-resistant lethal stage and, thus, novel therapeutic drugs/models always play an important role in effective management of MM. Modulation of tumor microenvironment is one of the hallmarks of cancer biology, including MM, which affects the myeloma genomic architecture and disease progression subtly through chromatin modifications. The bone marrow niche has a prime role in progression, survival, and drug resistance of multiple myeloma cells. Therefore, it is important to develop means for targeting the ecosystem between multiple myeloma bone marrow microenvironment and chromatin remodeling. Extensive gene expression profile analysis has indeed provided the framework for new risk stratification of MM patients and identifying novel molecular targets and therapeutics. However, key tumor microenvironment factors/immune cells and their interactions with chromatin remodeling complex proteins that drive MM cell growth and progression remain grossly undefined.
Collapse
|
15
|
Al‐Kuraishy HM, Al‐Gareeb AI, Mohammed AA, Alexiou A, Papadakis M, Batiha GE. The potential link between Covid-19 and multiple myeloma: A new saga. Immun Inflamm Dis 2022; 10:e701. [PMID: 36444620 PMCID: PMC9673426 DOI: 10.1002/iid3.701] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Covid-19 is considered a primary respiratory disease-causing viral pneumonia and, in severe cases, leads to acute lung injury and acute respiratory distress syndrome (ARDS). In addition, though, extra-pulmonary manifestations of Covid-19 have been shown. Furthermore, severe acute respiratory distress syndrome coronavirus type 2 (SARS-CoV-2) infection may coexist with several malignancies, including multiple myeloma (MM). METHODS This critical literature review aimed to find the potential association between SARS-CoV-2 infection and MM in Covid-19 patients with underlying MM. Narrative literature and databases search revealed that ARDS is developed in both MM and Covid-19 due to hypercalcemia and proteasome dysfunction. RESULTS Notably, the expression of angiogenic factors and glutamine deficiency could link Covid-19 severity and MM in the pathogenesis of cardiovascular complications. MM and Covid-19 share thrombosis as a typical complication; unlike thrombosis in Covid-19, which reflects disease severity, thrombosis does not reflect disease severity in MM. In both conditions, thromboprophylaxis is essential to prevent pulmonary thrombosis and other thromboembolic disorders. Moreover, Covid-19 may exacerbate the development of acute kidney injury and neurological complications in MM patients. CONCLUSION These findings highlighted that MM patients might be a risk group for Covid-19 severity due to underlying immunosuppression and most of those patients need specific management in the Covid-19 era.
Collapse
Affiliation(s)
- Hayder M. Al‐Kuraishy
- Department of Clinical Pharmacology and Medicine, College of MedicineALmustansiriyia UniversityBaghdadIraq
| | - Ali I. Al‐Gareeb
- Department of Clinical Pharmacology and Medicine, College of MedicineALmustansiriyia UniversityBaghdadIraq
| | - Ali A Mohammed
- The Chest Clinic, Barts Health NHS TrustWhipps Cross University HospitalLondonUK
| | - Athanasios Alexiou
- Department of Science and EngineeringNovel Global Community Educational FoundationHebershamAustralia
- AFNP MedWienAustria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten‐HerdeckeUniversity of Witten‐HerdeckeWuppertalGermany
| | - Gaber El‐Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary MedicineDamanhour UniversityDamanhourEgypt
| |
Collapse
|
16
|
Abstract
Monoclonal gammopathy of undetermined significance (MGUS) is of considerable clinical importance to primary care physicians given its high prevalence in the general population. MGUS has a variable but lifelong risk for progression to hematologic cancer, such as multiple myeloma, Waldenström macroglobulinemia, or light-chain amyloidosis. In addition, MGUS has been associated with several nonmalignant yet symptomatic disorders that require therapy directed toward eliminating the monoclonal gammopathy. Thus, it is important not only to understand the essentials of diagnosing and monitoring patients with MGUS but also to recognize when to refer patients with MGUS to a specialist.
Collapse
Affiliation(s)
- Wilson I Gonsalves
- Division of Hematology, Mayo Clinic, Rochester, Minnesota (W.I.G., S.V.R.)
| | - S Vincent Rajkumar
- Division of Hematology, Mayo Clinic, Rochester, Minnesota (W.I.G., S.V.R.)
| |
Collapse
|
17
|
Peripheral blood monocyte count is a dynamic prognostic biomarker in multiple myeloma. Blood Adv 2022; 7:482-490. [PMID: 36409606 PMCID: PMC9979755 DOI: 10.1182/bloodadvances.2022008021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 11/22/2022] Open
Abstract
With the growing knowledge of multiple myeloma (MM) pathobiology and the introduction of novel therapies, risk stratification continues to evolve. Myeloid-derived suppressor cells and tumor-associated macrophages, derived from peripheral blood monocytes, support malignant plasma cell proliferation in the bone marrow. Because peripheral blood absolute monocyte count (AMC) is thought to reflect the bone marrow microenvironment, we sought to evaluate the prognostic significance of AMC in MM. We retrospectively analyzed 10 822 patients newly diagnosed with MM between 2000 and 2019 at Veteran's Administration hospitals. We obtained AMC closest to diagnosis and every 3 months thereafter up to 2.5 years. Patients were stratified into 4 groups: low, normal, elevated, and severely elevated AMC (<0.2, 0.2-<0.8, 0.8-<1.25, and ≥1.25 × 103/mm3, respectively). Abnormal AMC at diagnosis was observed in 25.3% of the patients and was associated with an inferior overall survival (OS). In patients with low, severely elevated, elevated, and normal AMC, respectively, median OS at diagnosis was 2.3, 2.7, 3.1, and 3.6 years (P < .001) and at 2.5 years was 2.0, 2.6, 3.4, and 3.9 years (P < .001). Patients with normal AMC at diagnosis who developed an abnormal AMC >1 year after diagnosis also had an inferior OS relative to patients who maintained a normal AMC. Abnormal AMC was also associated with inferior OS independent of validated prognostic markers, including the international staging system and lactate dehydrogenase. Our findings provide novel clues for future prospective studies on the functional role of monocytes in MM, which could be a readily available metric for risk stratification.
Collapse
|
18
|
Li L, Roest M, Sang Y, Remijn JA, Fijnheer R, Smit K, Huskens D, Wan J, de Laat B, Konings J. Patients With Multiple Myeloma Have a Disbalanced Whole Blood Thrombin Generation Profile. Front Cardiovasc Med 2022; 9:919495. [PMID: 35833182 PMCID: PMC9271700 DOI: 10.3389/fcvm.2022.919495] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/11/2022] [Indexed: 11/24/2022] Open
Abstract
Background Multiple myeloma (MM) is associated with a high prevalence of bleeding and an increased risk of thrombo-embolism. MM patients have reduced platelet- and red blood cell (RBC) numbers in blood, which may indicate that the paradoxical hemostasis profile is a consequence of a disturbed platelet and RBC homeostasis. Objectives To get better insight in the disbalanced hemostasis of MM patients. Methods We conducted a case-control study on the whole blood (WB) coagulation profiles of 21 MM patients and 21 controls. We measured thrombin generation (TG) in WB and platelet poor plasma (PPP) of MM patients and controls. Results In WB-TG, we observed that the median time to the thrombin Peak was 52% longer in MM patients than in controls, while the median endogenous thrombin potential until the Peak (ETPp) was 39% higher in MM-patients than in controls. In line with these findings, the levels of platelets, RBCs, white blood cells and agonist induced platelet activation were decreased in MM patients compared to controls. The plasma TG experiments showed no differences between MM-patients and controls. Conclusion Patients with MM have a disturbed blood cell metabolism and a disbalanced WB-TG profile. This disbalance may explain the paradoxically high prevalence of bleeding symptoms in MM patients vs. an increased thrombosis risk. There was no disturbance observed in plasma TG, indicating that blood cells are the major determinants for the disbalanced hemostasis in MM patients.
Collapse
Affiliation(s)
- Li Li
- Department of Platelet Pathophysiology, Synapse Research Institute, Maastricht, Netherlands
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| | - Mark Roest
- Department of Platelet Pathophysiology, Synapse Research Institute, Maastricht, Netherlands
| | - Yaqiu Sang
- Department of Platelet Pathophysiology, Synapse Research Institute, Maastricht, Netherlands
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| | - Jasper A. Remijn
- Department of Clinical Chemistry, Meander Medical Center, Amersfoort, Netherlands
| | - Rob Fijnheer
- Department of Internal Medicine, Meander Medical Center, Amersfoort, Netherlands
| | - Karel Smit
- Department of Internal Medicine, Meander Medical Center, Amersfoort, Netherlands
| | - Dana Huskens
- Department of Platelet Pathophysiology, Synapse Research Institute, Maastricht, Netherlands
- Department of Functional Coagulation, Synapse Research Institute, Maastricht, Netherlands
| | - Jun Wan
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
- Department of Functional Coagulation, Synapse Research Institute, Maastricht, Netherlands
| | - Bas de Laat
- Department of Platelet Pathophysiology, Synapse Research Institute, Maastricht, Netherlands
- Department of Functional Coagulation, Synapse Research Institute, Maastricht, Netherlands
| | - Joke Konings
- Department of Platelet Pathophysiology, Synapse Research Institute, Maastricht, Netherlands
- Department of Functional Coagulation, Synapse Research Institute, Maastricht, Netherlands
- *Correspondence: Joke Konings
| |
Collapse
|
19
|
Akbar NAN, Noor NHM, Hasan MN, Abdullah AD, Husin A. FACTORS INFLUENCING POST- CRYOPRESERVED CD34+ CELLS VIABILITY IN THE HARVESTED PRODUCTS OF AUTOLOGOUS HAEMATOPOIETIC STEM CELLS. Transfus Clin Biol 2022; 29:224-230. [PMID: 35476963 DOI: 10.1016/j.tracli.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/02/2022] [Accepted: 04/05/2022] [Indexed: 11/29/2022]
Abstract
The cryopreservation process of stem cells potentially cause the loss of CD34+ cells. The aim of this study is to evaluate association of patient, graft and technical characteristics with post cryopreserved CD34+ cells viability among lymphoproliferative disease namely multiple myeloma (MM) and lymphoma patients at Hospital Universiti Sains Malaysia (USM). This retrospective study was conducted in the Transplant Unit. A search of the hospital data (2008-2018) to identify 132 patients for both MM and lymphoma who underwent autologous peripheral blood haematopoietic stem cells (APBSC) mobilisation, and were successfully harvested and cryopreserved. Selected patients' profile as well as selected parameters of stem cell mobilization and cryopreservation were obtained from laboratory information system (LIS), record unit and the Transplant Unit. Multiple logistic regression (MLR) was used to find significant associated factors and p <0.05 was considered significant. The mean age of the patients was 39 years old with almost equal gender distribution and majority were lymphoma patients, 96 (72.7%) while 36 (27.3%) were multiple myeloma (MM) patients. The significant influencing factors of post-cryopreserved CD34+ cells viability were pre-cryopreserved CD34+ cell viability, total nucleated cells (TNC), and anti-platelet and antibiotics usage. Patients who are not on anti-platelet and have higher pre-cryopreserved CD34+ cells viability have higher chance for good post-cryopreserved CD34+ cells viability. While, those patients with higher TNC and on antibiotics have lower chance for good post cryopreserved CD34+ cells viability. This study showed patients who are not on anti-platelet and antibiotics will have higher probability of achieving good post cryopreserved CD34+ cells viability. The APBSC products with higher pre-cryopreserved CD34+ cells viability and lower TNC will achieve better post-cryopreserved CD34+ cells viability. The addition of extra plasma to the APBSC products is recommended to reduce the TNC.
Collapse
Affiliation(s)
- Nurul Asyikin Nizam Akbar
- Transfusion Medicine Unit, Hospital Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia; Haematology department, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Noor Haslina Mohd Noor
- Transfusion Medicine Unit, Hospital Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia; Haematology department, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia.
| | - Mohd Nazri Hasan
- Transfusion Medicine Unit, Hospital Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia; Haematology department, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Abu Dzar Abdullah
- Internal Medicine Unit, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Azlan Husin
- Internal Medicine Unit, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
20
|
Boquoi A, Banahan SM, Mohring A, Savickaite I, Strapatsas J, Hildebrandt B, Kobbe G, Gattermann N, Haas R, Schroeder T, Germing U, Fenk R. Therapy-related myeloid neoplasms following treatment for multiple myeloma-a single center analysis. Ann Hematol 2022; 101:1031-1038. [PMID: 35262868 PMCID: PMC8993729 DOI: 10.1007/s00277-022-04775-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 01/25/2022] [Indexed: 11/25/2022]
Abstract
Myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) can be late complications following mutagenic treatment. Limited data is available on the outcome of patients developing therapy-related MDS and AML after treatment for multiple myeloma (MM). We identified 250 patients with therapy-associated MDS or AML in the Duesseldorf MDS registry. Of those, 50 patients were previously diagnosed with multiple myeloma (mm-MDS/AML). We compared them to patients with de novo MDS (n = 4862) and to patients with MDS following other underlying diseases (tMDS) (n = 200). mm-MDS patients and tMDS patients showed similar karyotypes and degrees of cytopenia. However, mm-MDS patients had significantly higher blast counts and more often belonged to the high-risk group according to the International Prognostic Scoring System (IPSS) (both p < 0.05). Although the rate of progression to AML was similar in mm-MDS and tMDS, both transformed significantly more often than de novo MDS (p < 0.05). Median overall survival of patients with mm-MDS (13 months; range: 1–99) and tMDS (13 months; range 0–160) was also similar yet significantly shorter than patients with de novo MDS (32 months; range 0–345 months; p < 0.05). Furthermore, survival of mm-MDS patients was not affected by myeloma activity. Despite significantly more high-risk disease and higher blast cell counts, myeloma-associated MDS-patients show features akin to other tMDS. Survival is similar to other tMDS and irrespective of myeloma remission status or transformation to AML. Thus, patient outcome is not determined by competing clones but rather by MDS governing the stem cell niche.
Collapse
Affiliation(s)
- A Boquoi
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Duesseldorf, Heinrich-Heine-University, Duesseldorf, Germany.
| | - S M Banahan
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Duesseldorf, Heinrich-Heine-University, Duesseldorf, Germany
| | - A Mohring
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Duesseldorf, Heinrich-Heine-University, Duesseldorf, Germany
| | - I Savickaite
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Duesseldorf, Heinrich-Heine-University, Duesseldorf, Germany
| | - J Strapatsas
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Duesseldorf, Heinrich-Heine-University, Duesseldorf, Germany
| | - B Hildebrandt
- Institute of Human Genetics, Heinrich-Heine-University, Duesseldorf, Germany
| | - G Kobbe
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Duesseldorf, Heinrich-Heine-University, Duesseldorf, Germany
| | - N Gattermann
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Duesseldorf, Heinrich-Heine-University, Duesseldorf, Germany
| | - R Haas
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Duesseldorf, Heinrich-Heine-University, Duesseldorf, Germany
| | - T Schroeder
- Department of Hematology and Stem Cell Transplantation, University Medicine Essen, Essen, Germany
| | - U Germing
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Duesseldorf, Heinrich-Heine-University, Duesseldorf, Germany
| | - R Fenk
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Duesseldorf, Heinrich-Heine-University, Duesseldorf, Germany
| |
Collapse
|
21
|
Laurenzana I, Trino S, Lamorte D, De Stradis A, Santodirocco M, Sgambato A, De Luca L, Caivano A. Multiple Myeloma-Derived Extracellular Vesicles Impair Normal Hematopoiesis by Acting on Hematopoietic Stem and Progenitor Cells. Front Med (Lausanne) 2022; 8:793040. [PMID: 34977093 PMCID: PMC8716627 DOI: 10.3389/fmed.2021.793040] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/08/2021] [Indexed: 12/17/2022] Open
Abstract
Multiple myeloma (MM) is characterized by the abnormal proliferation of clonal plasma cells (PCs) in bone marrow (BM). MM-PCs progressively occupy and likely alter BM niches where reside hematopoietic stem and progenitor cells (HSPCs) whose viability, self-renewal, proliferation, commitment, and differentiation are essential for normal hematopoiesis. Extracellular vesicles (EVs) are particles released by normal and neoplastic cells, such as MM cells. They are important cell-to-cell communicators able to modify the phenotype, genotype, and the fate of the recipient cells. Investigation of mechanisms and mediators underlying HSPC-MM-PC crosstalk is warranted to better understand the MM hematopoietic impairment and for the identification of novel therapeutic strategies against this incurable malignancy. This study is aimed to evaluate whether EVs released by MM-PCs interact with HSPCs, what effects they exert, and the underlying mechanisms involved. Therefore, we investigated the viability, cell cycle, phenotype, clonogenicity, and microRNA profile of HSPCs exposed to MM cell line-released EVs (MM-EVs). Our data showed that: (i) MM cells released a heterogeneous population of EVs; (ii) MM-EVs caused a dose-dependent reduction of HSPCs viability; (iii) MM-EVs caused a redistribution of the HSPC pool characterized by a significant increase in the frequency of stem and early precursors accompanied by a reduction of late precursor cells, such as common myeloid progenitors (CMPs), megakaryocyte erythroid progenitors (MEPs), B and NK progenitors, and a slight increase of granulocyte macrophage progenitors (GMPs); (iv) MM-EVs caused an increase of stem and early precursors in S phase with a decreased number of cells in G0/G1 phase in a dose-dependent manner; (v) MM-EVs reduced the HSPC colony formation; and (vi) MM-EVs caused an increased expression level of C-X-C motif chemokine receptor type 4 (CXCR4) and activation of miRNAs. In conclusion, MM cells through the release of EVs, by acting directly on normal HSPCs, negatively dysregulate normal hematopoiesis, and this could have important therapeutic implications.
Collapse
Affiliation(s)
- Ilaria Laurenzana
- Laboratory of Preclinical and Translational Research, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), Rionero in Vulture, Italy
| | - Stefania Trino
- Laboratory of Preclinical and Translational Research, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), Rionero in Vulture, Italy
| | - Daniela Lamorte
- Laboratory of Preclinical and Translational Research, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), Rionero in Vulture, Italy
| | - Angelo De Stradis
- Institute for Sustainable Plant Protection, National Research Council (CNR), Bari, Italy
| | - Michele Santodirocco
- Trasfusional Medicine Department, Puglia CBB, Casa Sollievo Della Sofferenza Hospital, San Giovanni Rotondo, Italy
| | - Alessandro Sgambato
- Scientific Direction, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), Rionero in Vulture, Italy
| | - Luciana De Luca
- Unit of Clinical Pathology, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), Rionero in Vulture, Italy
| | - Antonella Caivano
- Unit of Clinical Pathology, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), Rionero in Vulture, Italy
| |
Collapse
|
22
|
Tirier SM, Mallm JP, Steiger S, Poos AM, Awwad MHS, Giesen N, Casiraghi N, Susak H, Bauer K, Baumann A, John L, Seckinger A, Hose D, Müller-Tidow C, Goldschmidt H, Stegle O, Hundemer M, Weinhold N, Raab MS, Rippe K. Subclone-specific microenvironmental impact and drug response in refractory multiple myeloma revealed by single-cell transcriptomics. Nat Commun 2021; 12:6960. [PMID: 34845188 PMCID: PMC8630108 DOI: 10.1038/s41467-021-26951-z] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 10/28/2021] [Indexed: 02/08/2023] Open
Abstract
Virtually all patients with multiple myeloma become unresponsive to treatment over time. Relapsed/refractory multiple myeloma (RRMM) is accompanied by the clonal evolution of myeloma cells with heterogeneous genomic aberrations and profound changes of the bone marrow microenvironment (BME). However, the molecular mechanisms that drive drug resistance remain elusive. Here, we analyze the heterogeneous tumor cell population and its complex interaction network with the BME of 20 RRMM patients by single cell RNA-sequencing before/after treatment. Subclones with chromosome 1q-gain express a specific transcriptomic signature and frequently expand during treatment. Furthermore, RRMM cells shape an immune suppressive BME by upregulation of inflammatory cytokines and close interaction with the myeloid compartment. It is characterized by the accumulation of PD1+ γδ T-cells and tumor-associated macrophages as well as the depletion of hematopoietic progenitors. Thus, our study resolves transcriptional features of subclones in RRMM and mechanisms of microenvironmental reprogramming with implications for clinical decision-making.
Collapse
Affiliation(s)
- Stephan M. Tirier
- grid.7497.d0000 0004 0492 0584Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany
| | - Jan-Philipp Mallm
- grid.7497.d0000 0004 0492 0584Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany ,grid.7497.d0000 0004 0492 0584Single Cell Open Lab, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany ,grid.461742.2Molecular Precision Oncology Program, NCT Heidelberg, Heidelberg, Germany
| | - Simon Steiger
- grid.7497.d0000 0004 0492 0584Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany
| | - Alexandra M. Poos
- grid.5253.10000 0001 0328 4908University Hospital Heidelberg, Internal Medicine V, Heidelberg, Germany ,grid.7497.d0000 0004 0492 0584CCU Molecular Hematology/Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mohamed H. S. Awwad
- grid.5253.10000 0001 0328 4908University Hospital Heidelberg, Internal Medicine V, Heidelberg, Germany
| | - Nicola Giesen
- grid.5253.10000 0001 0328 4908University Hospital Heidelberg, Internal Medicine V, Heidelberg, Germany ,grid.7497.d0000 0004 0492 0584CCU Molecular Hematology/Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nicola Casiraghi
- grid.7497.d0000 0004 0492 0584Division of Computational Genomics and System Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany ,grid.4709.a0000 0004 0495 846XEuropean Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Hana Susak
- grid.7497.d0000 0004 0492 0584Division of Computational Genomics and System Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany ,grid.4709.a0000 0004 0495 846XEuropean Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Katharina Bauer
- grid.7497.d0000 0004 0492 0584Single Cell Open Lab, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany ,grid.461742.2Molecular Precision Oncology Program, NCT Heidelberg, Heidelberg, Germany
| | - Anja Baumann
- grid.7497.d0000 0004 0492 0584CCU Molecular Hematology/Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lukas John
- grid.5253.10000 0001 0328 4908University Hospital Heidelberg, Internal Medicine V, Heidelberg, Germany ,grid.7497.d0000 0004 0492 0584CCU Molecular Hematology/Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anja Seckinger
- grid.5253.10000 0001 0328 4908University Hospital Heidelberg, Internal Medicine V, Heidelberg, Germany ,Department of Hematology and Immunology, Myeloma Center Brussels, Jette, Belgium
| | - Dirk Hose
- grid.5253.10000 0001 0328 4908University Hospital Heidelberg, Internal Medicine V, Heidelberg, Germany ,Department of Hematology and Immunology, Myeloma Center Brussels, Jette, Belgium
| | - Carsten Müller-Tidow
- grid.5253.10000 0001 0328 4908University Hospital Heidelberg, Internal Medicine V, Heidelberg, Germany
| | - Hartmut Goldschmidt
- grid.5253.10000 0001 0328 4908University Hospital Heidelberg, Internal Medicine V, Heidelberg, Germany ,grid.461742.2National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Oliver Stegle
- grid.7497.d0000 0004 0492 0584Division of Computational Genomics and System Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany ,grid.4709.a0000 0004 0495 846XEuropean Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Michael Hundemer
- grid.5253.10000 0001 0328 4908University Hospital Heidelberg, Internal Medicine V, Heidelberg, Germany
| | - Niels Weinhold
- grid.5253.10000 0001 0328 4908University Hospital Heidelberg, Internal Medicine V, Heidelberg, Germany ,grid.7497.d0000 0004 0492 0584CCU Molecular Hematology/Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marc S. Raab
- grid.5253.10000 0001 0328 4908University Hospital Heidelberg, Internal Medicine V, Heidelberg, Germany ,grid.7497.d0000 0004 0492 0584CCU Molecular Hematology/Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Karsten Rippe
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany.
| |
Collapse
|
23
|
Improving cancer treatments via dynamical biophysical models. Phys Life Rev 2021; 39:1-48. [PMID: 34688561 DOI: 10.1016/j.plrev.2021.10.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/13/2021] [Indexed: 12/17/2022]
Abstract
Despite significant advances in oncological research, cancer nowadays remains one of the main causes of mortality and morbidity worldwide. New treatment techniques, as a rule, have limited efficacy, target only a narrow range of oncological diseases, and have limited availability to the general public due their high cost. An important goal in oncology is thus the modification of the types of antitumor therapy and their combinations, that are already introduced into clinical practice, with the goal of increasing the overall treatment efficacy. One option to achieve this goal is optimization of the schedules of drugs administration or performing other medical actions. Several factors complicate such tasks: the adverse effects of treatments on healthy cell populations, which must be kept tolerable; the emergence of drug resistance due to the intrinsic plasticity of heterogeneous cancer cell populations; the interplay between different types of therapies administered simultaneously. Mathematical modeling, in which a tumor and its microenvironment are considered as a single complex system, can address this complexity and can indicate potentially effective protocols, that would require experimental verification. In this review, we consider classical methods, current trends and future prospects in the field of mathematical modeling of tumor growth and treatment. In particular, methods of treatment optimization are discussed with several examples of specific problems related to different types of treatment.
Collapse
|
24
|
Andrews RE, Brown JE, Lawson MA, Chantry AD. Myeloma Bone Disease: The Osteoblast in the Spotlight. J Clin Med 2021; 10:jcm10173973. [PMID: 34501423 PMCID: PMC8432062 DOI: 10.3390/jcm10173973] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 12/17/2022] Open
Abstract
Lytic bone disease remains a life-altering complication of multiple myeloma, with up to 90% of sufferers experiencing skeletal events at some point in their cancer journey. This tumour-induced bone disease is driven by an upregulation of bone resorption (via increased osteoclast (OC) activity) and a downregulation of bone formation (via reduced osteoblast (OB) activity), leading to phenotypic osteolysis. Treatments are limited, and currently exclusively target OCs. Despite existing bone targeting therapies, patients successfully achieving remission from their cancer can still be left with chronic pain, poor mobility, and reduced quality of life as a result of bone disease. As such, the field is desperately in need of new and improved bone-modulating therapeutic agents. One such option is the use of bone anabolics, drugs that are gaining traction in the osteoporosis field following successful clinical trials. The prospect of using these therapies in relation to myeloma is an attractive option, as they aim to stimulate OBs, as opposed to existing therapeutics that do little to orchestrate new bone formation. The preclinical application of bone anabolics in myeloma mouse models has demonstrated positive outcomes for bone repair and fracture resistance. Here, we review the role of the OB in the pathophysiology of myeloma-induced bone disease and explore whether novel OB targeted therapies could improve outcomes for patients.
Collapse
Affiliation(s)
- Rebecca E. Andrews
- Department of Oncology and Metabolism, The Medical School, The University of Sheffield, Sheffield S10 2RX, UK; (J.E.B.); (M.A.L.); (A.D.C.)
- Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Royal Hallamshire Hospital, Sheffield S10 2JF, UK
- Correspondence:
| | - Janet E. Brown
- Department of Oncology and Metabolism, The Medical School, The University of Sheffield, Sheffield S10 2RX, UK; (J.E.B.); (M.A.L.); (A.D.C.)
- Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Royal Hallamshire Hospital, Sheffield S10 2JF, UK
| | - Michelle A. Lawson
- Department of Oncology and Metabolism, The Medical School, The University of Sheffield, Sheffield S10 2RX, UK; (J.E.B.); (M.A.L.); (A.D.C.)
| | - Andrew D. Chantry
- Department of Oncology and Metabolism, The Medical School, The University of Sheffield, Sheffield S10 2RX, UK; (J.E.B.); (M.A.L.); (A.D.C.)
- Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Royal Hallamshire Hospital, Sheffield S10 2JF, UK
| |
Collapse
|
25
|
Varricchio L, Iancu-Rubin C, Upadhyaya B, Zingariello M, Martelli F, Verachi P, Clementelli C, Denis JF, Rahman AH, Tremblay G, Mascarenhas J, Mesa RA, O'Connor-McCourt M, Migliaccio AR, Hoffman R. TGFβ1 protein trap AVID200 beneficially affects hematopoiesis and bone marrow fibrosis in myelofibrosis. JCI Insight 2021; 6:e145651. [PMID: 34383713 PMCID: PMC8492354 DOI: 10.1172/jci.insight.145651] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 08/11/2021] [Indexed: 11/17/2022] Open
Abstract
Myelofibrosis (MF) is a progressive chronic myeloproliferative neoplasm characterized by hyperactivation of JAK/STAT signaling and dysregulation of the transcription factor GATA1 in megakaryocytes (MKs). TGF-β plays a pivotal role in the pathobiology of MF by promoting BM fibrosis and collagen deposition and by enhancing the dormancy of normal hematopoietic stem cells (HSCs). In this study, we show that MF-MKs elaborated significantly greater levels of TGF-β1 than TGF-β2 and TGF-β3 to a varying degree, and we evaluated the ability of AVID200, a potent TGF-β1/TGF-β3 protein trap, to block the excessive TGF-β signaling. Treatment of human mesenchymal stromal cells with AVID200 significantly reduced their proliferation, decreased phosphorylation of SMAD2, and interfered with the ability of TGF-β1 to induce collagen expression. Moreover, treatment of MF mononuclear cells with AVID200 led to increased numbers of progenitor cells (PCs) with WT JAK2 rather than mutated JAK2V617F. This effect of AVID200 on MF PCs was attributed to its ability to block TGF-β1–induced p57Kip2 expression and SMAD2 activation, thereby allowing normal rather than MF PCs to preferentially proliferate and form hematopoietic colonies. To assess the in vivo effects of AVID200, Gata1lo mice, a murine model of MF, were treated with AVID200, resulting in the reduction in BM fibrosis and an increase in BM cellularity. AVID200 treatment also increased the frequency and numbers of murine progenitor cells as well as short-term and long-term HSCs. Collectively, these data provide the rationale for TGF-β1 blockade, with AVID200 as a therapeutic strategy for patients with MF.
Collapse
Affiliation(s)
- Lilian Varricchio
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Camelia Iancu-Rubin
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Bhaskar Upadhyaya
- Human Immune Monitoring Core, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | | | - Fabrizio Martelli
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Paola Verachi
- Biomedical and Neuromotorial Sciences, Alma Mater University, Bologna, Italy
| | - Cara Clementelli
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | | | - Adeeb H Rahman
- Human Immune Monitoring Core, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | | | - John Mascarenhas
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Ruben A Mesa
- Hematology Oncology, Mays Cancer Center, San Antonio, United States of America
| | | | | | - Ronald Hoffman
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, United States of America
| |
Collapse
|
26
|
Schulz F, Nachtkamp K, Kasprzak A, Gattermann N, Haas R, Germing U. Luspatercept as a therapy for myelodysplastic syndromes with ring sideroblasts. Expert Rev Hematol 2021; 14:509-516. [PMID: 34161752 DOI: 10.1080/17474086.2021.1947791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
INTRODUCTION Myelodysplastic syndromes (MDS) are a heterogeneous group of hematopoietic stem cell diseases characterized by cell dysplasia, ineffective hematopoiesis and risk of transformation to acute myeloid leukemia (AML). The median age of 75 years at diagnosis is associated with the presence of comorbidities, which preclude intensive therapies like allogeneic hematopoietic stem cell transplantation in most MDS patients. Risk stratification using the (Revised) International Prognostic Scoring System (IPSS/IPSS-R) is necessary to plan individualized treatment. AREAS COVERED Luspatercept (ACE-536), a specific activin receptor fusion protein, promotes late-stage erythropoiesis. Two clinical trials, PACE-MDS (phase 2) and MEDALIST (phase 3), yielded positive results in terms of improved hemoglobin levels and loss of transfusion dependence, with hardly any side effects. A phase 3 trial to compare luspatercept to ESAs (COMMANDS study) is ongoing. EXPERT OPINION Luspatercept is a promising alternative to ESAs for a subset of transfusion-dependent patients with lower risk MDS, namely those with a sideroblastic phenotype who are either not suitable for or have already failed erythropoietin-based treatment. The favorable safety profile and convenient subcutaneous administration every 3 weeks are more conducive to patients' quality of life than chronic red blood cell transfusion therapy.
Collapse
Affiliation(s)
- Felicitas Schulz
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Kathrin Nachtkamp
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Annika Kasprzak
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Norbert Gattermann
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Rainer Haas
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Ulrich Germing
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
27
|
Jäger P, Geyh S, Twarock S, Cadeddu RP, Rabes P, Koch A, Maus U, Hesper T, Zilkens C, Rautenberg C, Bormann F, Köhrer K, Petzsch P, Wieczorek D, Betz B, Surowy H, Hildebrandt B, Germing U, Kobbe G, Haas R, Schroeder T. Acute myeloid leukemia-induced functional inhibition of healthy CD34+ hematopoietic stem and progenitor cells. STEM CELLS (DAYTON, OHIO) 2021; 39:1270-1284. [PMID: 34013984 DOI: 10.1002/stem.3387] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/01/2021] [Accepted: 03/21/2021] [Indexed: 11/11/2022]
Abstract
Acute myeloid leukemia (AML) is characterized by an expansion of leukemic cells and a simultaneous reduction of normal hematopoietic precursors in the bone marrow (BM) resulting in hematopoietic insufficiency, but the underlying mechanisms are poorly understood in humans. Assuming that leukemic cells functionally inhibit healthy CD34+ hematopoietic stem and progenitor cells (HSPC) via humoral factors, we exposed healthy BM-derived CD34+ HSPC to cell-free supernatants derived from AML cell lines as well as from 24 newly diagnosed AML patients. Exposure to AML-derived supernatants significantly inhibited proliferation, cell cycling, colony formation, and differentiation of healthy CD34+ HSPC. RNA sequencing of healthy CD34+ HSPC after exposure to leukemic conditions revealed a specific signature of genes related to proliferation, cell-cycle regulation, and differentiation, thereby reflecting their functional inhibition on a molecular level. Experiments with paired patient samples showed that these inhibitory effects are markedly related to the immunomagnetically enriched CD34+ leukemic cell population. Using PCR, ELISA, and RNA sequencing, we detected overexpression of TGFβ1 in leukemic cells on the transcriptional and protein level and, correspondingly, a molecular signature related to TGFβ1 signaling in healthy CD34+ HSPC. This inhibitory effect of TGFβ1 on healthy hematopoiesis was functionally corrobated and could be pharmacologically reverted by SD208, an inhibitor of TGFβ receptor 1 signaling. Overall, these data indicate that leukemic cells induce functional inhibition of healthy CD34+ HSPC, at least in part, through TGFβ1, suggesting that blockage of this pathway may improve hematopoiesis in AML.
Collapse
Affiliation(s)
- Paul Jäger
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Stefanie Geyh
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Sören Twarock
- Institute of Pharmacology and Clinical Pharmacology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Ron-Patrick Cadeddu
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Pablo Rabes
- Institute of Pharmacology and Clinical Pharmacology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Annemarie Koch
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Uwe Maus
- Department of Orthopaedies and Hand Surgery, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Tobias Hesper
- Department of Orthopaedies and Hand Surgery, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Christoph Zilkens
- Department of Orthopaedies and Hand Surgery, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Christina Rautenberg
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | | | - Karl Köhrer
- Biological and Medical Research Center (BMFZ), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Patrick Petzsch
- Biological and Medical Research Center (BMFZ), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Dagmar Wieczorek
- Institute of Human Genetics, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Beate Betz
- Institute of Human Genetics, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Harald Surowy
- Institute of Human Genetics, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Barbara Hildebrandt
- Institute of Human Genetics, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Ulrich Germing
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Guido Kobbe
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Rainer Haas
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Thomas Schroeder
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
28
|
Bonaud A, Lemos JP, Espéli M, Balabanian K. Hematopoietic Multipotent Progenitors and Plasma Cells: Neighbors or Roommates in the Mouse Bone Marrow Ecosystem? Front Immunol 2021; 12:658535. [PMID: 33936091 PMCID: PMC8083056 DOI: 10.3389/fimmu.2021.658535] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/25/2021] [Indexed: 11/25/2022] Open
Abstract
The bone marrow is a complex ecosystem in which hematopoietic and non-hematopoietic cells reside. In this review, we discuss the bone marrow niches in mice that facilitate the survival, maintenance, and differentiation of cells of hematopoietic origin based on the recent literature. Our review places a special focus on the hematopoietic multipotent progenitors and on plasma cells, corresponding to the last stage of the B-cell lineage, that play a key role in the humoral memory response. We highlight the similarities between the microenvironments necessary for the establishment and the maintenance of these two immune cell subsets, and how the chemokine CXCL12/CXCR4 signaling axis contributes to these processes. Finally, we bring elements to address the following question: are multipotent progenitors and plasma cells neighbors or roommates within the bone marrow?
Collapse
Affiliation(s)
- Amélie Bonaud
- Université de Paris, Institut de Recherche Saint-Louis, EMiLy, INSERM U1160, Paris, France.,OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Julia P Lemos
- Université de Paris, Institut de Recherche Saint-Louis, EMiLy, INSERM U1160, Paris, France.,OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Marion Espéli
- Université de Paris, Institut de Recherche Saint-Louis, EMiLy, INSERM U1160, Paris, France.,OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Karl Balabanian
- Université de Paris, Institut de Recherche Saint-Louis, EMiLy, INSERM U1160, Paris, France.,OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| |
Collapse
|
29
|
Biological and clinical significance of dysplastic hematopoiesis in patients with newly diagnosed multiple myeloma. Blood 2021; 135:2375-2387. [PMID: 32299093 DOI: 10.1182/blood.2019003382] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 03/15/2020] [Indexed: 02/07/2023] Open
Abstract
Risk of developing myelodysplastic syndrome (MDS) is significantly increased in both multiple myeloma (MM) and monoclonal gammopathy of undetermined significance, suggesting that it is therapy independent. However, the incidence and sequelae of dysplastic hematopoiesis at diagnosis are unknown. Here, we used multidimensional flow cytometry (MFC) to prospectively screen for the presence of MDS-associated phenotypic alterations (MDS-PA) in the bone marrow of 285 patients with MM enrolled in the PETHEMA/GEM2012MENOS65 trial (#NCT01916252). We investigated the clinical significance of monocytic MDS-PA in a larger series of 1252 patients enrolled in 4 PETHEMA/GEM protocols. At diagnosis, 33 (11.6%) of 285 cases displayed MDS-PA. Bulk and single-cell-targeted sequencing of MDS recurrently mutated genes in CD34+ progenitors (and dysplastic lineages) from 67 patients revealed clonal hematopoiesis in 13 (50%) of 26 cases with MDS-PA vs 9 (22%) of 41 without MDS-PA; TET2 and NRAS were the most frequently mutated genes. Dynamics of MDS-PA at diagnosis and after autologous transplant were evaluated in 86 of 285 patients and showed that in most cases (69 of 86 [80%]), MDS-PA either persisted or remained absent in patients with or without MDS-PA at diagnosis, respectively. Noteworthy, MDS-associated mutations infrequently emerged after high-dose therapy. Based on MFC profiling, patients with MDS-PA have altered hematopoiesis and T regulatory cell distribution in the tumor microenvironment. Importantly, the presence of monocytic MDS-PA at diagnosis anticipated greater risk of hematologic toxicity and was independently associated with inferior progression-free survival (hazard ratio, 1.5; P = .02) and overall survival (hazard ratio, 1.7; P = .01). This study reveals the biological and clinical significance of dysplastic hematopoiesis in newly diagnosed MM, which can be screened with moderate sensitivity using cost-effective MFC.
Collapse
|
30
|
Grzywa TM, Justyniarska M, Nowis D, Golab J. Tumor Immune Evasion Induced by Dysregulation of Erythroid Progenitor Cells Development. Cancers (Basel) 2021; 13:870. [PMID: 33669537 PMCID: PMC7922079 DOI: 10.3390/cancers13040870] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer cells harness normal cells to facilitate tumor growth and metastasis. Within this complex network of interactions, the establishment and maintenance of immune evasion mechanisms are crucial for cancer progression. The escape from the immune surveillance results from multiple independent mechanisms. Recent studies revealed that besides well-described myeloid-derived suppressor cells (MDSCs), tumor-associated macrophages (TAMs) or regulatory T-cells (Tregs), erythroid progenitor cells (EPCs) play an important role in the regulation of immune response and tumor progression. EPCs are immature erythroid cells that differentiate into oxygen-transporting red blood cells. They expand in the extramedullary sites, including the spleen, as well as infiltrate tumors. EPCs in cancer produce reactive oxygen species (ROS), transforming growth factor β (TGF-β), interleukin-10 (IL-10) and express programmed death-ligand 1 (PD-L1) and potently suppress T-cells. Thus, EPCs regulate antitumor, antiviral, and antimicrobial immunity, leading to immune suppression. Moreover, EPCs promote tumor growth by the secretion of growth factors, including artemin. The expansion of EPCs in cancer is an effect of the dysregulation of erythropoiesis, leading to the differentiation arrest and enrichment of early-stage EPCs. Therefore, anemia treatment, targeting ineffective erythropoiesis, and the promotion of EPC differentiation are promising strategies to reduce cancer-induced immunosuppression and the tumor-promoting effects of EPCs.
Collapse
Affiliation(s)
- Tomasz M. Grzywa
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (T.M.G.); (M.J.)
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
- Laboratory of Experimental Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Magdalena Justyniarska
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (T.M.G.); (M.J.)
| | - Dominika Nowis
- Laboratory of Experimental Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Jakub Golab
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (T.M.G.); (M.J.)
| |
Collapse
|
31
|
Qiu L, Han XY, He DH, Zhu F, Zhao Y, Zhu WW, Zheng GF, Yang Y, Wu WW, Cai Z, Yang XC, He JS. [The effect of peripheral blood cell score on the prognosis of multiple myeloma patients treated with bortezomib]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2021; 41:756-761. [PMID: 33113608 PMCID: PMC7595856 DOI: 10.3760/cma.j.issn.0253-2727.2020.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
目的 评估外周血细胞检测结果在以硼替佐米为一线治疗的多发性骨髓瘤(MM)患者中的预后作用。 方法 回顾性分析2014年1月至2016年12月浙江大学医学院附属第一医院和浙江省舟山医院收治的155例初诊MM患者的临床数据,患者均一线接受以硼替佐米为基础方案的治疗。分析外周血细胞检测结果,包括ANC、单核细胞计数(AMC)、HGB、红细胞平均体积(MCV)、PLT以及其他临床特征对MM患者的预后评估作用。 结果 AMC(>0.6×109/L)、MCV(>99.1fl)以及PLT(<150×109/L)明显影响MM患者无进展生存(PFS)和总生存(OS),以上3个因子分别赋值1分,形成血细胞积分。结果显示,64例(41.3%)积分0,57例(36.8%)积分1,32例(20.6%)积分2,2例(1.3%)积分3,4组患者中位PFS时间分别为42.8、26.5、15.8、6.4个月(P<0.001),中位OS时间分别为未达到和48.2、31.1、31.4个月(P=0.001)。多因素分析提示,血细胞积分(2~3对0~1)和骨髓浆细胞比例(>30%对≤30%)为PFS的独立预后因素(HR分别为1.95和1.76),而患者年龄(>65岁对≤65岁)、R-ISS分期(Ⅲ期对Ⅰ~Ⅱ期)和血细胞积分(2~3对0~1)是OS的独立预后因素(HR分别为2.08、2.13和2.12)。 结论 血细胞积分简单易得,可用于新药时代初治MM患者的预后评估,但仍需扩大病例并进行前瞻性研究进一步明确。
Collapse
Affiliation(s)
- L Qiu
- Department of Hematological Oncology and Chemotherapy, Zhoushan Hospital, Zhoushan 316004, China
| | - X Y Han
- Hematology and Bone Marrow Transplantation, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - D H He
- Hematology and Bone Marrow Transplantation, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - F Zhu
- Department of Hematological Oncology and Chemotherapy, Zhoushan Hospital, Zhoushan 316004, China
| | - Y Zhao
- Hematology and Bone Marrow Transplantation, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - W W Zhu
- Department of Hematological Oncology and Chemotherapy, Zhoushan Hospital, Zhoushan 316004, China
| | - G F Zheng
- Hematology and Bone Marrow Transplantation, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Y Yang
- Hematology and Bone Marrow Transplantation, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - W W Wu
- Hematology and Bone Marrow Transplantation, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Z Cai
- Hematology and Bone Marrow Transplantation, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - X C Yang
- Department of Hematological Oncology and Chemotherapy, Zhoushan Hospital, Zhoushan 316004, China
| | - J S He
- Hematology and Bone Marrow Transplantation, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
32
|
Yadav P, Vats R, Bano A, Bhardwaj R. Hematopoietic Stem Cells Culture, Expansion and Differentiation: An Insight into Variable and Available Media. Int J Stem Cells 2020; 13:326-334. [PMID: 32840223 PMCID: PMC7691860 DOI: 10.15283/ijsc19157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 07/15/2020] [Accepted: 07/20/2020] [Indexed: 12/13/2022] Open
Abstract
Owing to differentiation and self-renewal capacity, hematopoietic stem cells clasp potentiality to engender all blood cell types, leading to their immense competence to play a diverse role in therapeutic applications. Although these stem cells are the most investigated and exploited until now, further research is still essential to comprehend their nature, fate, and potential. Enhanced usage of hematopoietic stem cells in research and therapeutics intensified the requirement of expansion and differentiation of hematopoietic stem cells under in vitro conditions. Since these cells remain in senescence for a prolonged period before isolation, selection of appropriate growth medium along with supplements and culture conditions are crucial to initiate their cell division and to designate their destiny. The precise equilibrium between self-renewal and differentiation of stem cells sustained by exclusive medium along with special growth or differentiation factors is accountable for generating diverse cell lineages. Maintenance of hematopoietic stem and progenitor cell lines along with the advancement of research work generate an inexorable demand for production and commercialization of specialized stem cell culture media, with or without serum along with specific growth factors and supplements. Media commercialization for precise stem cell types, culturing and differentiation is a cost-effective developing field. Here in this review, we are assembling various types of hematopoietic stem cell self-renewal, expansion and differentiation media along with supplements and culture conditions, either developed and used by various scientists or are available commercially.
Collapse
Affiliation(s)
- Pooja Yadav
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Ravina Vats
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Afsareen Bano
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Rashmi Bhardwaj
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
33
|
Multiple myeloma hinders erythropoiesis and causes anaemia owing to high levels of CCL3 in the bone marrow microenvironment. Sci Rep 2020; 10:20508. [PMID: 33239656 PMCID: PMC7689499 DOI: 10.1038/s41598-020-77450-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/09/2020] [Indexed: 02/01/2023] Open
Abstract
Anaemia is the most common complication of myeloma and is associated with worse clinical outcomes. Although marrow replacement with myeloma cells is widely considered a mechanistic rationale for anaemia, the exact process has not been fully understood. Our large cohort of 1363 myeloma patients had more than 50% of patients with moderate or severe anaemia at the time of diagnosis. Anaemia positively correlated with myeloma cell infiltration in the bone marrow (BM) and worse patient outcomes. The quantity and erythroid differentiation of HSPCs were affected by myeloma cell infiltration in the BM. The master regulators of erythropoiesis, GATA1 and KLF1, were obviously downregulated in myeloma HSPCs. However, the gene encoding the chemokine CCL3 showed significantly upregulated expression. Elevated CCL3 in the BM plasma of myeloma further inhibited the erythropoiesis of HSPCs via activation of CCL3/CCR1/p38 signalling and suppressed GATA1 expression. Treatment with a CCR1 antagonist effectively recovered GATA1 expression and rescued erythropoiesis in HSPCs. Myeloma cell infiltration causes elevated expression of CCL3 in BM, which suppresses the erythropoiesis of HSPCs and results in anaemia by downregulating the level of GATA1 in HSPCs. Thus, our study indicates that targeting CCL3 would be a potential strategy against anaemia and improve the survival of myeloma patients.
Collapse
|
34
|
Evaluating the Relationship of GDF-15 with Clinical Characteristics, Cardinal Features, and Survival in Multiple Myeloma. Mediators Inflamm 2020; 2020:5657864. [PMID: 33144847 PMCID: PMC7596430 DOI: 10.1155/2020/5657864] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/17/2020] [Accepted: 10/09/2020] [Indexed: 12/21/2022] Open
Abstract
Growth differentiation factor 15 (GDF-15), a member of the transforming growth factor-β superfamily, participates in processes associated with myeloma development and its end-organ complications. It plays a significant role in both physiological and abnormal erythropoiesis and regulates iron homeostasis through modulation of hepcidin. It is abnormally secreted in marrow stromal cells of patients with multiple myeloma (MM), which may reflect the tumor microenvironment. We analyzed the associations of serum GDF-15 with clinical characteristics of 73 MM patients (including asymptomatic MM) and the laboratory indices of renal function, anemia, and inflammation. Baseline serum GDF-15 was studied as the predictor of two-year survival. We defined five clinically relevant subgroups of patients (symptomatic MM only, patients with and without remission, patients on chemotherapy, and without treatment). Increased GDF-15 concentrations were associated with more advanced MM stage, anemia, renal impairment (lower glomerular filtration and higher markers of tubular injury), and inflammation. Most of the results were confirmed in the subgroup analysis. Serum cystatin C and urine neutrophil gelatinase-associated lipocalin were associated with GDF-15 independently of other variables. In the studied MM patients, GDF-15 did not significantly predict survival (p = 0.06). Our results suggest that serum GDF-15 reflects myeloma burden and shares a relationship with several markers of prognostic significance, as well as major manifestations.
Collapse
|
35
|
Engineering a Humanised Niche to Support Human Haematopoiesis in Mice: Novel Opportunities in Modelling Cancer. Cancers (Basel) 2020; 12:cancers12082205. [PMID: 32781703 PMCID: PMC7466161 DOI: 10.3390/cancers12082205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/31/2020] [Accepted: 08/01/2020] [Indexed: 12/18/2022] Open
Abstract
Despite the bone marrow microenvironment being widely recognised as a key player in cancer research, the current animal models that represent a human haematopoietic system lack the contribution of the humanised marrow microenvironment. Here we describe a murine model that relies on the combination of an orthotopic humanised tissue-engineered bone construct (ohTEBC) with patient-specific bone marrow (BM) cells to create a humanised bone marrow (hBM) niche capable of supporting the engraftment of human haematopoietic cells. Results showed that this model supports the engraftment of human CD34+ cells from a healthy BM with human haematopoietic cells migrating into the mouse BM, human BM compartment, spleen and peripheral blood. We compared these results with the engraftment capacity of human CD34+ cells obtained from patients with multiple myeloma (MM). We demonstrated that CD34+ cells derived from a diseased BM had a reduced engraftment potential compared to healthy patients and that a higher cell dose is required to achieve engraftment of human haematopoietic cells in peripheral blood. Finally, we observed that hematopoietic cells obtained from the mobilised peripheral blood of patients yields a higher number of CD34+, overcoming this problem. In conclusion, this humanised mouse model has potential as a unique and patient-specific pre-clinical platform for the study of tumour–microenvironment interactions, including human bone and haematopoietic cells, and could, in the future, serve as a drug testing platform.
Collapse
|
36
|
Underwood J, Rahim M, West C, Britton R, Skipworth E, Graves V, Sexton S, Harris H, Schwering D, Sinn A, Pollok KE, Robertson KA, Goebel WS, Hege KM. How old is too old? In vivo engraftment of human peripheral blood stem cells cryopreserved for up to 18 years - implications for clinical transplantation and stability programs. World J Stem Cells 2020; 12:359-367. [PMID: 32547684 PMCID: PMC7280863 DOI: 10.4252/wjsc.v12.i5.359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/14/2020] [Accepted: 04/28/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Peripheral blood stem cells (PBSC) are commonly cryopreserved awaiting clinical use for hematopoietic stem cell transplant. Long term cryopreservation is commonly defined as five years or longer, and limited data exists regarding how long PBSC can be cryopreserved and retain the ability to successfully engraft. Clinical programs, stem cell banks, and regulatory and accrediting agencies interested in product stability would benefit from such data. Thus, we assessed recovery and colony forming ability of PBSC following long-term cryopreservation as well as their ability to engraft in NOD/SCID/IL-2Rγnull (NSG) mice.
AIM To investigate the in vivo engraftment potential of long-term cryopreserved PBSC units.
METHODS PBSC units which were collected and frozen using validated clinical protocols were obtained for research use from the Cellular Therapy Laboratory at Indiana University Health. These units were thawed in the Cellular Therapy Laboratory using clinical standards of practice, and the pre-freeze and post-thaw characteristics of the units were compared. Progenitor function was assessed using standard colony-forming assays. CD34-selected cells were transplanted into immunodeficient mice to assess stem cell function.
RESULTS Ten PBSC units with mean of 17 years in cryopreservation (range 13.6-18.3 years) demonstrated a mean total cell recovery of 88% ± 12% (range 68%-110%) and post-thaw viability of 69% ± 17% (range 34%-86%). BFU-E growth was shown in 9 of 10 units and CFU-GM growth in 7 of 10 units post-thaw. Immunodeficient mice were transplanted with CD34-selected cells from four randomly chosen PBSC units. All mice demonstrated long-term engraftment at 12 wk with mean 34% ± 24% human CD45+ cells, and differentiation with presence of human CD19+, CD3+ and CD33+ cells. Harvested bone marrow from all mice demonstrated growth of erythroid and myeloid colonies.
CONCLUSION We demonstrated engraftment of clinically-collected and thawed PBSC following cryopreservation up to 18 years in NSG mice, signifying likely successful clinical transplantation of PBSC following long-term cryopreservation.
Collapse
Affiliation(s)
- John Underwood
- Departments of Internal Medicine and Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Mahvish Rahim
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Carijo West
- Cellular Therapy Laboratory, Indiana University Health, Indianapolis, IN 46202, United States
| | - Rebecca Britton
- Cellular Therapy Laboratory, Indiana University Health, Indianapolis, IN 46202, United States
| | - Elaine Skipworth
- Cellular Therapy Laboratory, Indiana University Health, Indianapolis, IN 46202, United States
| | - Vicki Graves
- Cellular Therapy Laboratory, Indiana University Health, Indianapolis, IN 46202, United States
| | - Steven Sexton
- Cellular Therapy Laboratory, Indiana University Health, Indianapolis, IN 46202, United States
| | - Hillary Harris
- Cellular Therapy Laboratory, Indiana University Health, Indianapolis, IN 46202, United States
| | - Dave Schwering
- Cellular Therapy Laboratory, Indiana University Health, Indianapolis, IN 46202, United States
| | - Anthony Sinn
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, In Vivo Therapeutics Core and Angio Biocore Shared Resource Facilities for the Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Karen E Pollok
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, United States
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, In Vivo Therapeutics Core and Angio Biocore Shared Resource Facilities for the Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Kent A Robertson
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - W Scott Goebel
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Kerry M Hege
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| |
Collapse
|
37
|
Choi H, Kim Y, Kang D, Kwon A, Kim J, Min Kim J, Park SS, Kim YJ, Min CK, Kim M. Common and different alterations of bone marrow mesenchymal stromal cells in myelodysplastic syndrome and multiple myeloma. Cell Prolif 2020; 53:e12819. [PMID: 32372504 PMCID: PMC7260074 DOI: 10.1111/cpr.12819] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 03/13/2020] [Accepted: 04/11/2020] [Indexed: 12/12/2022] Open
Abstract
Objective The objective of this study was to explore characteristics of bone marrow mesenchymal stromal cells (BM‐MSCs) derived from patients with myelodysplastic syndrome (MDS) and multiple myeloma (MM). Methods BM‐MSCs were recovered from 17 of MDS patients, 23 of MM patients and 9 healthy donors and were passaged until proliferation stopped. General characteristics and gene expression profiles of MSCs were analysed. In vitro, ex vivo coculture, immunohistochemistry and knockdown experiments were performed to verify gene expression changes. Results BM‐MSCs failed to culture in 35.0% of patients and 50.0% of recovered BM‐MSCs stopped to proliferate before passage 6. MDS‐ and MM‐MSCs shared characteristics including decreased osteogenesis, increased angiogenesis and senescence‐associated molecular pathways. In vitro and ex vivo experiments showed disease‐specific changes such as neurogenic tendency in MDS‐MSCs and cardiomyogenic tendency in MM‐MSCs. Although the age of normal control was younger than patients and telomere length was shorter in patient's BM‐MSCs, they were not different according to disease category nor degree of proliferation. Specifically, poorly proliferation BM‐MSCs showed CDKN2A overexpression and CXCL12 downregulation. Immunohistochemistry of BM biopsy demonstrated that CDKN2A was intensely accumulation in perivascular BM‐MSCs failed to culture. Interestingly, patient's BM‐MSCs revealed improved proliferation activity after CDKN2A knockdown. Conclusion These results collectively indicate that MDS‐MSCs and MM‐MSCs have common and different alterations at various degrees. Hence, it is necessary to evaluate their alteration status using representative markers such as CDKN2A expression.
Collapse
Affiliation(s)
- Hayoung Choi
- Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, Korea
| | - Yonggoo Kim
- Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Dain Kang
- Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ahlm Kwon
- Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jiyeon Kim
- Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | - Sung-Soo Park
- Department of Hematology, Leukemia Research Institute, Seoul St. Mary's Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yoo-Jin Kim
- Department of Hematology, Leukemia Research Institute, Seoul St. Mary's Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Chang-Ki Min
- Department of Hematology, Leukemia Research Institute, Seoul St. Mary's Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Myungshin Kim
- Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, Korea.,Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
38
|
Nigra AD, Casale CH, Santander VS. Human erythrocytes: cytoskeleton and its origin. Cell Mol Life Sci 2020; 77:1681-1694. [PMID: 31654099 PMCID: PMC11105037 DOI: 10.1007/s00018-019-03346-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/27/2019] [Accepted: 10/16/2019] [Indexed: 01/02/2023]
Abstract
In the last few years, erythrocytes have emerged as the main determinant of blood rheology. In mammals, these cells are devoid of nuclei and are, therefore, unable to divide. Consequently, all circulating erythrocytes come from erythropoiesis, a process in the bone marrow in which several modifications are induced in the expression of membrane and cytoskeletal proteins, and different vertical and horizontal interactions are established between them. Cytoskeleton components play an important role in this process, which explains why they and the interaction between them have been the focus of much recent research. Moreover, in mature erythrocytes, the cytoskeleton integrity is also essential, because the cytoskeleton confers remarkable deformability and stability on the erythrocytes, thus enabling them to undergo deformation in microcirculation. Defects in the cytoskeleton produce changes in erythrocyte deformability and stability, affecting cell viability and rheological properties. Such abnormalities are seen in different pathologies of special interest, such as different types of anemia, hypertension, and diabetes, among others. This review highlights the main findings in mammalian erythrocytes and their progenitors regarding the presence, conformation and function of the three main components of the cytoskeleton: actin, intermediate filaments, and tubulin.
Collapse
Affiliation(s)
- Ayelén D Nigra
- Departamento de Biología Molecular, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, 5800, Río Cuarto, Córdoba, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Químicas, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), UNC-CONICET, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
| | - Cesar H Casale
- Departamento de Biología Molecular, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, 5800, Río Cuarto, Córdoba, Argentina
| | - Verónica S Santander
- Departamento de Biología Molecular, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, 5800, Río Cuarto, Córdoba, Argentina.
| |
Collapse
|
39
|
Al Saleh AS, Sidiqi MH, Dispenzieri A, Kapoor P, Muchtar E, Buadi FK, Warsame R, Lacy MQ, Dingli D, Leung N, Gonsalves WI, Kourelis TV, Gertz MA, Go RS, Kyle RA, Rajkumar SV, Kumar SK. Hematopoietic score predicts outcomes in newly diagnosed multiple myeloma patients. Am J Hematol 2020; 95:4-9. [PMID: 31612526 DOI: 10.1002/ajh.25657] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 10/04/2019] [Indexed: 12/15/2022]
Abstract
Risk stratification of multiple myeloma (MM) at diagnosis is critical. We examined the ability of hematopoietic indices including mean corpuscular volume (MCV), hemoglobin (Hgb), and platelet (Plt) to predict outcomes. This was a retrospective study of patients treated at Mayo Clinic between January 2004 and April 2018. We incorporated three variables (Hgb < 10 g/dL, Plt < 150 × 109 /L, and MCV > 96 fL), assigning a score of 1 to each. We identified 1540 newly diagnosed MM patients, of whom 707 (46%) had a score of 0, 513 (33%) had a score of 1, 260 (17%) had a score of 2, and 60 (4%) had a score of 3. The score risk stratified patients into four groups with differing survivals. The median PFS was 32.3 months for score 0, 24.8 months for score 1, 21.7 months for score 2, and 18.3 months for score 3, for P < .001. The median OS was 80.7 months for score 0, 59.9 months for score 1, 51.7 months for score 2, and 31.3 months for score 3, P < .0001. Predictors of OS on the multivariable analysis were age ≥ 65 (HR, 1.93; P < .0001), R-ISS stage (1-2 vs 3) (HR, 0.48; P < .0001), and hematopoietic score (0-2 vs 3) (HR, 0.51; P = .006). A hematopoietic score can predict survival in newly diagnosed myeloma patients.
Collapse
Affiliation(s)
- Abdullah S. Al Saleh
- Division of Hematology, Department of Internal MedicineMayo Clinic Rochester Minnesota
- King Saud bin Abdulaziz University for Health Sciences Riyadh Saudi Arabia
| | - M. Hasib Sidiqi
- Division of Hematology, Department of Internal MedicineMayo Clinic Rochester Minnesota
| | - Angela Dispenzieri
- Division of Hematology, Department of Internal MedicineMayo Clinic Rochester Minnesota
| | - Prashant Kapoor
- Division of Hematology, Department of Internal MedicineMayo Clinic Rochester Minnesota
| | - Eli Muchtar
- Division of Hematology, Department of Internal MedicineMayo Clinic Rochester Minnesota
| | - Francis K. Buadi
- Division of Hematology, Department of Internal MedicineMayo Clinic Rochester Minnesota
| | - Rahma Warsame
- Division of Hematology, Department of Internal MedicineMayo Clinic Rochester Minnesota
| | - Martha Q. Lacy
- Division of Hematology, Department of Internal MedicineMayo Clinic Rochester Minnesota
| | - David Dingli
- Division of Hematology, Department of Internal MedicineMayo Clinic Rochester Minnesota
| | - Nelson Leung
- Division of Hematology, Department of Internal MedicineMayo Clinic Rochester Minnesota
- Division of Nephrology, Department of Internal MedicineMayo Clinic Rochester Minnesota
| | - Wilson I. Gonsalves
- Division of Hematology, Department of Internal MedicineMayo Clinic Rochester Minnesota
| | | | - Morie A. Gertz
- Division of Hematology, Department of Internal MedicineMayo Clinic Rochester Minnesota
| | - Ronald S. Go
- Division of Hematology, Department of Internal MedicineMayo Clinic Rochester Minnesota
| | - Robert A. Kyle
- Division of Hematology, Department of Internal MedicineMayo Clinic Rochester Minnesota
| | - S. Vincent Rajkumar
- Division of Hematology, Department of Internal MedicineMayo Clinic Rochester Minnesota
| | - Shaji K. Kumar
- Division of Hematology, Department of Internal MedicineMayo Clinic Rochester Minnesota
| |
Collapse
|
40
|
Banaszkiewicz M, Małyszko J, Vesole DH, Woziwodzka K, Jurczyszyn A, Żórawski M, Krzanowski M, Małyszko J, Batko K, Kuźniewski M, Krzanowska K. New Biomarkers of Ferric Management in Multiple Myeloma and Kidney Disease-Associated Anemia. J Clin Med 2019; 8:jcm8111828. [PMID: 31683939 PMCID: PMC6912471 DOI: 10.3390/jcm8111828] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 02/07/2023] Open
Abstract
Multiple myeloma (MM) is a malignancy of clonal plasma cells accounting for approximately 10% of haematological malignancies. MM mainly affects older patients, more often males and is more frequently seen in African Americans. The most frequent manifestations of MM are anaemia, osteolytic bone lesions, kidney failure and hypercalcemia. The anaemia develops secondary to suppression of erythropoiesis by cytokine networks, similarly to the mechanism of anaemia of chronic disease. The concomitant presence of kidney failure, especially chronic kidney disease (CKD) and MM per se, leading to anaemia of chronic disease (ACD) in combination, provoked us to pose the question about their reciprocal dependence and relationship with specific biomarkers; namely, soluble transferrin receptor (sTfR), growth differentiation factor 15 (GDF15), hepcidin 25 and zonulin. One or more of these are new biomarkers of ferric management may be utilized in the near future as prognostic predictors for patients with MM and kidney failure.
Collapse
Affiliation(s)
- Małgorzata Banaszkiewicz
- Departament of Nephrology, Jagiellonian University Medical College, Kopernika 15-15c, 31-501 Cracow, Poland.
| | - Jolanta Małyszko
- Department of Nephrology, Dialysis and Internal Medicine, Warsaw Medical University, Banacha 1a, 02-097 Warsaw, Poland.
| | - David H Vesole
- John Theurer Cancer Center, Hackensack University Medical Center, 92 2nd St, Hackensack, NJ 07601, USA.
| | - Karolina Woziwodzka
- Departament of Nephrology, Jagiellonian University Medical College, Kopernika 15-15c, 31-501 Cracow, Poland.
| | - Artur Jurczyszyn
- Departament of Hematology, Jagiellonian University Medical College, Kopernika 17, 30-501 Cracow, Poland.
| | - Marcin Żórawski
- Departament of Clinical Medicine, Medical University, Szpitalna 37, 15-254 Bialystok, Poland.
| | - Marcin Krzanowski
- Departament of Nephrology, Jagiellonian University Medical College, Kopernika 15-15c, 31-501 Cracow, Poland.
| | - Jacek Małyszko
- Departament of Nephrology, Medical University, Żurawia 14, 15-540 Bialystok, Poland.
| | - Krzysztof Batko
- Departament of Nephrology, Jagiellonian University Medical College, Kopernika 15-15c, 31-501 Cracow, Poland.
| | - Marek Kuźniewski
- Departament of Nephrology, Jagiellonian University Medical College, Kopernika 15-15c, 31-501 Cracow, Poland.
| | - Katarzyna Krzanowska
- Departament of Nephrology, Jagiellonian University Medical College, Kopernika 15-15c, 31-501 Cracow, Poland.
| |
Collapse
|
41
|
Ryu D, Kim SJ, Hong Y, Jo A, Kim N, Kim HJ, Lee HO, Kim K, Park WY. Alterations in the Transcriptional Programs of Myeloma Cells and the Microenvironment during Extramedullary Progression Affect Proliferation and Immune Evasion. Clin Cancer Res 2019; 26:935-944. [PMID: 31558476 DOI: 10.1158/1078-0432.ccr-19-0694] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 07/02/2019] [Accepted: 09/23/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE In multiple myeloma, extramedullary progression is associated with treatment resistance and a high mortality rate. To understand the molecular mechanisms controlling the devastating progression of myeloma, we applied single-cell RNA-sequencing (RNA-seq) to myeloma in the bone marrow and myelomatous pleural effusions or ascites. EXPERIMENTAL DESIGN Bone marrow or extramedullary myeloma samples were collected from 15 patients and subjected to single-cell RNA-seq. The single-cell transcriptome data of malignant plasma cells and the surrounding immune microenvironment were analyzed. RESULTS Comparisons of single-cell transcriptomes revealed the systematic activation of proliferation, antigen presentation, proteasomes, glycolysis, and oxidative phosphorylation pathways in extramedullary myeloma cells. The myeloma cells expressed multiple combinations of growth factors and receptors, suggesting autonomous and pleiotropic growth potential at the single-cell level. Comparisons of the tumor microenvironment revealed the presence of cytotoxic T lymphocytes and natural killer (NK) cells in both the bone marrow and extramedullary ascites, demonstrating a gene-expression phenotype indicative of functional compromise. In parallel, isolated myeloma cells persistently expressed class I MHC molecules and upregulated inhibitory molecules for cytotoxic T and NK cells. CONCLUSIONS These data suggest that myeloma cells are equipped with specialized immune evasion mechanisms in cytotoxic microenvironments. Taken together, single-cell transcriptome analysis revealed transcriptional programs associated with aggressive myeloma progression that support autonomous cell proliferation and immune evasion.
Collapse
Affiliation(s)
- Daeun Ryu
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sunkyunkwan University School of Medicine, Seoul, Korea.,Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seok Jin Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yourae Hong
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea
| | - Areum Jo
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sunkyunkwan University School of Medicine, Seoul, Korea.,Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Nayoung Kim
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sunkyunkwan University School of Medicine, Seoul, Korea.,Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hee-Jin Kim
- Department of Laboratory Medicine and Genetics, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hae-Ock Lee
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea. .,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sunkyunkwan University School of Medicine, Seoul, Korea.,Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kihyun Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea. .,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sunkyunkwan University School of Medicine, Seoul, Korea.,Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
42
|
Fernández-Martínez JL, de Andrés-Galiana EJ, Fernández-Ovies FJ, Cernea A, Kloczkowski A. Robust Sampling of Defective Pathways in Multiple Myeloma. Int J Mol Sci 2019; 20:ijms20194681. [PMID: 31546608 PMCID: PMC6801400 DOI: 10.3390/ijms20194681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/12/2019] [Accepted: 09/19/2019] [Indexed: 11/16/2022] Open
Abstract
We present the analysis of defective pathways in multiple myeloma (MM) using two recently developed sampling algorithms of the biological pathways: The Fisher's ratio sampler, and the holdout sampler. We performed the retrospective analyses of different gene expression datasets concerning different aspects of the disease, such as the existing difference between bone marrow stromal cells in MM and healthy controls (HC), the gene expression profiling of CD34+ cells in MM and HC, the difference between hyperdiploid and non-hyperdiploid myelomas, and the prediction of the chromosome 13 deletion, to provide a deeper insight into the molecular mechanisms involved in the disease. Our analysis has shown the importance of different altered pathways related to glycosylation, infectious disease, immune system response, different aspects of metabolism, DNA repair, protein recycling and regulation of the transcription of genes involved in the differentiation of myeloid cells. The main difference in genetic pathways between hyperdiploid and non-hyperdiploid myelomas are related to infectious disease, immune system response and protein recycling. Our work provides new insights on the genetic pathways involved in this complex disease and proposes novel targets for future therapies.
Collapse
Affiliation(s)
- Juan Luis Fernández-Martínez
- Group of Inverse Problems, Optimization and Machine Learning, Department of Mathematics, University of Oviedo, Oviedo 33007, Asturias, Spain.
| | - Enrique J de Andrés-Galiana
- Group of Inverse Problems, Optimization and Machine Learning, Department of Mathematics, University of Oviedo, Oviedo 33007, Asturias, Spain.
- Department of Computer Science, University of Oviedo, Oviedo 33007, Asturias, Spain.
| | - Francisco Javier Fernández-Ovies
- Group of Inverse Problems, Optimization and Machine Learning, Department of Mathematics, University of Oviedo, Oviedo 33007, Asturias, Spain.
| | - Ana Cernea
- Group of Inverse Problems, Optimization and Machine Learning, Department of Mathematics, University of Oviedo, Oviedo 33007, Asturias, Spain.
| | - Andrzej Kloczkowski
- Battelle Center for Mathematical Medicine, Nationwide Children's Hospital, Columbus, OH 43205, USA.
- Department of Pediatrics, The Ohio State University, Columbus, OH 43205, USA.
- Future Value Creation Research Center, Graduate School of Informatics, Nagoya University, Nagoya 464-8601, Japan.
| |
Collapse
|
43
|
Chung SY, Huang WC, Chen ZS, Chao TC, Su Y. Elucidation of the mechanism underlying CD44v6-induced transformation of IEC-6 normal intestinal epithelial cells. J Cell Physiol 2019; 235:194-209. [PMID: 31219187 DOI: 10.1002/jcp.28959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 05/24/2019] [Indexed: 02/06/2023]
Abstract
The transformation abilities of CD44s and CD44v6 in normal intestinal epithelial cells have not yet been reported. Herein, we established both CD44s and CD44v6 overexpressing stable clones from rat IEC-6 cells and demonstrated that the CD44v6 clones had higher saturation density and anchorage independence. Additionally, CD44v6 clones were more resistant to oxaliplatin and irinotecan which might be attributed to a significantly increased B-cell lymphoma 2 level and a reduced DNA damage response in these cells. Moreover, c-Met and vascular endothelial growth factor receptor 2 signalings were involved in modulating the saturation density in CD44v6 clones. Interestingly, higher activation of both AKT and extracellular-signal-regulated kinase (ERK) were detected in CD44v6 clones which might account in part for the cell density-independent nuclear localization of Yes-associated protein (YAP). To no surprise, increases of both saturation density and anchorage independence in CD44v6 clones were markedly diminished by PI3K, AKT, MEK, and ERK inhibitors as well as YAP knockdown. By contrast, overexpression of a constitutively active YAP robustly increased the aforementioned phenotypes in IEC-6 cells. Collectively, our results suggest that upregulation of CD44v6, but not CD44s, induces the transformation of normal intestinal epithelial cells possibly via activating the c-Met/AKT/YAP pathway which might also explain the important role of CD44v6 in the initiation of various carcinomas.
Collapse
Affiliation(s)
- Shin-Yi Chung
- Institute of Biopharmaceutical Sciences, School of Pharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Wen-Chen Huang
- Institute of Biopharmaceutical Sciences, School of Pharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Zong-Siang Chen
- Institute of Biopharmaceutical Sciences, School of Pharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Ta-Chung Chao
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC.,Faculty of Medicine, School of Medicine, National Yang-Min University, Taipei, Taiwan, ROC
| | - Yeu Su
- Institute of Biopharmaceutical Sciences, School of Pharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan, ROC
| |
Collapse
|
44
|
Baberg F, Geyh S, Waldera-Lupa D, Stefanski A, Zilkens C, Haas R, Schroeder T, Stühler K. Secretome analysis of human bone marrow derived mesenchymal stromal cells. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:434-441. [PMID: 30716505 DOI: 10.1016/j.bbapap.2019.01.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 01/24/2019] [Accepted: 01/29/2019] [Indexed: 12/16/2022]
Abstract
As an essential cellular component of the bone marrow (BM) microenvironment mesenchymal stromal cells (MSC) play a pivotal role for the physiological regulation of hematopoiesis, in particular through the secretion of cytokines and chemokines. Mass spectrometry (MS) facilitates the identification and quantification of a large amount of secreted proteins (secretome), but can be hampered by the false-positive identification of contaminating proteins released from dead cells or derived from cell medium. To reduce the likelihood of contaminations we applied an approach combining secretome and proteome analysis to characterize the physiological secretome of BM derived human MSC. Our analysis revealed a secretome consisting of 315 proteins. Pathway analyses of these proteins revealed a high abundance of proteins related to cell growth and/or maintenance, signal transduction and cell communication thereby representing key biological functions of BM derived MSC on protein level. Within the MSC secretome we identified several cytokines and growth factors such as VEGFC, TGF-β1, TGF-β2 and GDF6 which are known to be involved in the physiological regulation of hematopoiesis. By comparing the peptide patterns of secretomes and cell lysates 17 proteins were identified as candidates for proteolytic processing. Taken together, our combined MS work-flow reduced the likelihood of contaminations and enabled us to carve out a specific overview about the composition of the secretome from human BM derived MSC. This methodological approach and the specific secretome signature of BM derived MSC may serve as basis for future comparative analyses of the interplay of MSC and HSPC in patients with hematological malignancies.
Collapse
Affiliation(s)
- Falk Baberg
- Institute of Molecular Medicine, Heinrich-Heine-University, Düsseldorf, Germany
| | - Stefanie Geyh
- Department of Hematology, Oncology and Clinical Immunology, University of Düsseldorf, Medical Faculty, Düsseldorf, Germany
| | - Daniel Waldera-Lupa
- Institute of Molecular Medicine, Heinrich-Heine-University, Düsseldorf, Germany
| | - Anja Stefanski
- Molecular Proteomics Laboratory, Biomedical Research Center (BMFZ), Heinrich-Heine-University, Düsseldorf, Germany
| | - Christoph Zilkens
- Department of Orthopedic Surgery, University of Düsseldorf, Medical Faculty, Düsseldorf, Germany
| | - Rainer Haas
- Department of Hematology, Oncology and Clinical Immunology, University of Düsseldorf, Medical Faculty, Düsseldorf, Germany
| | - Thomas Schroeder
- Department of Hematology, Oncology and Clinical Immunology, University of Düsseldorf, Medical Faculty, Düsseldorf, Germany
| | - Kai Stühler
- Molecular Proteomics Laboratory, Biomedical Research Center (BMFZ), Heinrich-Heine-University, Düsseldorf, Germany.
| |
Collapse
|
45
|
Cella D, McKendrick J, Kudlac A, Palumbo A, Oukessou A, Vij R, Zyczynski T, Davis C. Impact of elotuzumab treatment on pain and health-related quality of life in patients with relapsed or refractory multiple myeloma: results from the ELOQUENT-2 study. Ann Hematol 2018; 97:2455-2463. [PMID: 30178193 PMCID: PMC6208683 DOI: 10.1007/s00277-018-3469-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 08/01/2018] [Indexed: 02/07/2023]
Abstract
Treatment of relapsed/refractory multiple myeloma (RRMM) aims to prolong survival while maintaining health-related quality of life (HRQoL) by managing disease-related symptoms and complications-one of the most frequent and debilitating being bone pain. In the ELOQUENT-2 study (NCT01239797), which evaluated the addition of elotuzumab to lenalidomide plus dexamethasone versus lenalidomide plus dexamethasone, pain and HRQoL were assessed in patients with relapsed/refractory disease using the Brief Pain Inventory-Short Form (BPI-SF) and the European Organisation for Research and Treatment of Cancer (EORTC) Quality of Life Questionnaire-Core 30 module (QLQ-C30) and myeloma-specific module (QLQ-MY20). Mean baseline pain scores were low and remained so throughout treatment with both regimens; mean HRQoL scores did not change substantially from baseline. A significantly higher proportion of patients with objective response than without had clinically meaningful improvements in worst pain over two consecutive treatment cycles (29 versus 12%; p < 0.001). Patients with very good partial response (VGPR) or better reported reduced scores for pain severity and worst pain; those with progressive disease reported increased scores for these domains and pain interference. These findings show that previously reported improvements in progression-free survival and response rate with elotuzumab are achieved without detriment to HRQoL, which is maintained over time.
Collapse
Affiliation(s)
| | - Jan McKendrick
- PRMA Consulting Ltd, Fleet, Hampshire, UK
- University of Technology Sydney, Ultimo, NSW Australia
| | | | | | | | - Ravi Vij
- Washington University School of Medicine, St. Louis, MO USA
| | | | | |
Collapse
|
46
|
Mehdi SJ, Johnson SK, Epstein J, Zangari M, Qu P, Hoering A, van Rhee F, Schinke C, Thanendrarajan S, Barlogie B, Davies FE, Morgan GJ, Yaccoby S. Mesenchymal stem cells gene signature in high-risk myeloma bone marrow linked to suppression of distinct IGFBP2-expressing small adipocytes. Br J Haematol 2018; 184:578-593. [PMID: 30408155 DOI: 10.1111/bjh.15669] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 09/25/2018] [Indexed: 02/06/2023]
Abstract
Recent studies suggest that multiple myeloma (MM) induces proliferation and expansion of bone marrow (BM) mesenchymal stem cells (MSCs), but others showed that MM cells induce MSC senescence. To clarify the interaction between MM and MSCs, we exploited our established MSC gene signature to identify gene expression changes in myeloma MSCs and associated functional differences. Single MSCs from patients with MM had changes in expression of genes associated with cellular proliferation and senescence and a higher proportion of senescent cells and lower proliferative potential than those from age-matched healthy donors. Single MSCs from both sources heterogeneously express MSC genes associated with adipogenesis and osteoblastogenesis. We identified the gene encoding insulin-like growth factor-binding protein 2 (IGFBP2), an MSC gene commonly altered in high risk MM, as under-expressed. Morphologically, IGFBP2+ cells are underrepresented in MM BM compared to smouldering MM. Strong IGFBP2 and adiponectin co-expression was detected in a subset of small adipocytes. Co-culturing normal MSCs with myeloma cells suppressed MSC differentiation to adipocytes and osteoblasts, and reduced expression of IGFBP2 and adiponectin. Recombinant IGFBP2 blocked IGF1-mediated myeloma cell growth. Our data demonstrate that myeloma MSCs are less proliferative and that IGFBP2+ small adipocytes are a distinct mesenchymal cell population suppressed by myeloma.
Collapse
Affiliation(s)
- Syed J Mehdi
- Myeloma Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Sarah K Johnson
- Myeloma Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Joshua Epstein
- Myeloma Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Maurizio Zangari
- Myeloma Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Pingping Qu
- Cancer Research and Biostatistics, Seattle, WA, USA
| | | | - Frits van Rhee
- Myeloma Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Carolina Schinke
- Myeloma Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | - Bart Barlogie
- Myeloma Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Faith E Davies
- Myeloma Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Gareth J Morgan
- Myeloma Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Shmuel Yaccoby
- Myeloma Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
47
|
Abstract
Bone metastasis, or the development of secondary tumors within the bone of cancer patients, is a debilitating and incurable disease. Despite its morbidity, the biology of bone metastasis represents one of the most complex and intriguing of all oncogenic processes. This complexity derives from the intricately organized bone microenvironment in which the various stages of hematopoiesis, osteogenesis, and osteolysis are jointly regulated but spatially restricted. Disseminated tumor cells (DTCs) from various common malignancies such as breast, prostate, lung, and kidney cancers or myeloma are uniquely primed to subvert these endogenous bone stromal elements to grow into pathological osteolytic or osteoblastic lesions. This colonization process can be separated into three key steps: seeding, dormancy, and outgrowth. Targeting the processes of dormancy and initial outgrowth offers the most therapeutic promise. Here, we discuss the concepts of the bone metastasis niche, from controlling tumor-cell survival to growth into clinically detectable disease.
Collapse
Affiliation(s)
- Mark Esposito
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544
| | - Theresa Guise
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544
| |
Collapse
|
48
|
Geyh S, Rodríguez-Paredes M, Jäger P, Koch A, Bormann F, Gutekunst J, Zilkens C, Germing U, Kobbe G, Lyko F, Haas R, Schroeder T. Transforming growth factor β1-mediated functional inhibition of mesenchymal stromal cells in myelodysplastic syndromes and acute myeloid leukemia. Haematologica 2018; 103:1462-1471. [PMID: 29773599 PMCID: PMC6119130 DOI: 10.3324/haematol.2017.186734] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 05/14/2018] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stromal cells are involved in the pathogenesis of myelodysplastic syndromes and acute myeloid leukemia, but the underlying mechanisms are incompletely understood. To further characterize the pathological phenotype we performed RNA sequencing of mesenchymal stromal cells from patients with myelodysplastic syndromes and acute myeloid leukemia and found a specific molecular signature of genes commonly deregulated in these disorders. Pathway analysis showed a strong enrichment of genes related to osteogenesis, senescence, inflammation and inhibitory cytokines, thereby reflecting the structural and functional deficits of mesenchymal stromal cells in myelodysplastic syndromes and acute myeloid leukemia on a molecular level. Further analysis identified transforming growth factor β1 as the most probable extrinsic trigger factor for this altered gene expression. Following exposure to transforming growth factor β1, healthy mesenchymal stromal cells developed functional deficits and adopted a phenotype reminiscent of that observed in patient-derived stromal cells. These suppressive effects of transforming growth factor β1 on stromal cell functionality were abrogated by SD-208, an established inhibitor of transforming growth factor β receptor signaling. Blockade of transforming growth factor β signaling by SD-208 also restored the osteogenic differentiation capacity of patient-derived stromal cells, thus confirming the role of transforming growth factor β1 in the bone marrow microenvironment of patients with myelodysplastic syndromes and acute myeloid leukemia. Our findings establish transforming growth factor β1 as a relevant trigger causing functional inhibition of mesenchymal stromal cells in myelodysplastic syndromes and acute myeloid leukemia and identify SD-208 as a candidate to revert these effects.
Collapse
Affiliation(s)
- Stefanie Geyh
- Department of Hematology, Oncology and Clinical Immunology, University of Duesseldorf, Medical Faculty, Germany
| | - Manuel Rodríguez-Paredes
- Department of Hematology, Oncology and Clinical Immunology, University of Duesseldorf, Medical Faculty, Germany.,Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
| | - Paul Jäger
- Department of Hematology, Oncology and Clinical Immunology, University of Duesseldorf, Medical Faculty, Germany
| | - Annemarie Koch
- Department of Hematology, Oncology and Clinical Immunology, University of Duesseldorf, Medical Faculty, Germany
| | - Felix Bormann
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
| | - Julian Gutekunst
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
| | - Christoph Zilkens
- Department of Orthopedic Surgery, University of Duesseldorf, Medical Faculty, Germany
| | - Ulrich Germing
- Department of Hematology, Oncology and Clinical Immunology, University of Duesseldorf, Medical Faculty, Germany
| | - Guido Kobbe
- Department of Hematology, Oncology and Clinical Immunology, University of Duesseldorf, Medical Faculty, Germany
| | - Frank Lyko
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
| | - Rainer Haas
- Department of Hematology, Oncology and Clinical Immunology, University of Duesseldorf, Medical Faculty, Germany
| | - Thomas Schroeder
- Department of Hematology, Oncology and Clinical Immunology, University of Duesseldorf, Medical Faculty, Germany
| |
Collapse
|
49
|
Megakaryocyte-derived excessive transforming growth factor β1 inhibits proliferation of normal hematopoietic stem cells in acute myeloid leukemia. Exp Hematol 2018; 60:40-46.e2. [PMID: 29307605 DOI: 10.1016/j.exphem.2017.12.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 12/17/2017] [Accepted: 12/20/2017] [Indexed: 12/24/2022]
Abstract
Impaired production of healthy hematopoietic cells from residual hematopoietic stem cells (HSCs) leads to high mortality in acute myeloid leukemia (AML). Previous studies have identified p21 and Egr3 as intrinsic factors responsible for the growth arrest and differentiation blockade of normal HSCs in leukemia; however, the related extrinsic factors remain unknown. In this study, we found that transforming growth factor β (TGFβ) signaling was upregulated in HSCs from bone marrow of mice with MLL-AF9-induced acute myeloid leukemia (AML) because of excessive production of TGFβ1, especially from megakaryocytes, and overactivation of latent TGFβ1 protein. We also found that SMAD3, a signal transducer of TGFβ1, directly bound to Egr3 and upregulated its expression to arrest proliferation of HSCs. Our study provides evidence for targeting TGFβ1 in AML to rectify normal hematopoiesis defects in clinical practice.
Collapse
|
50
|
Platzbecker U, Germing U, Götze KS, Kiewe P, Mayer K, Chromik J, Radsak M, Wolff T, Zhang X, Laadem A, Sherman ML, Attie KM, Giagounidis A. Luspatercept for the treatment of anaemia in patients with lower-risk myelodysplastic syndromes (PACE-MDS): a multicentre, open-label phase 2 dose-finding study with long-term extension study. Lancet Oncol 2017; 18:1338-1347. [PMID: 28870615 DOI: 10.1016/s1470-2045(17)30615-0] [Citation(s) in RCA: 223] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/07/2017] [Accepted: 07/17/2017] [Indexed: 12/18/2022]
Abstract
BACKGROUND Myelodysplastic syndromes are characterised by ineffective erythropoiesis. Luspatercept (ACE-536) is a novel fusion protein that blocks transforming growth factor beta (TGF β) superfamily inhibitors of erythropoiesis, giving rise to a promising new investigative therapy. We aimed to assess the safety and efficacy of luspatercept in patients with anaemia due to lower-risk myelodysplastic syndromes. METHODS In this phase 2, multicentre, open-label, dose-finding study (PACE-MDS), with long-term extension, eligible patients were aged 18 years or older, had International Prognostic Scoring System-defined low or intermediate 1 risk myelodysplastic syndromes or non-proliferative chronic myelomonocytic leukaemia (white blood cell count <13 000/μL), and had anaemia with or without red blood cell transfusion support. Enrolled patients were classified as having low transfusion burden, defined as requiring less than 4 red blood cell units in the 8 weeks before treatment (and baseline haemoglobin <10 g/dL), or high transfusion burden, defined as requiring 4 or more red blood cell units in the 8 weeks before treatment. Patients received luspatercept subcutaneously once every 21 days at dose concentrations ranging from 0·125 mg/kg to 1·75 mg/kg bodyweight for five doses (over a maximum of 12 weeks). Patients in the expansion cohort were treated with 1·0 mg/kg luspatercept; dose titration up to 1·75 mg/kg was allowed, and patients could be treated with luspatercept for a maximum of 5 years. Patients in the base study were assessed for response and safety after 12 weeks in order to be considered for enrolment into the extension study. The primary endpoint was the proportion of patients achieving modified International Working Group-defined haematological improvement-erythroid (HI-E), defined as a haemoglobin concentration increase of 1·5 g/dL or higher from baseline for 14 days or longer in low transfusion burden patients, and a reduction in red blood cell transfusion of 4 or more red blood cell units or a 50% or higher reduction in red blood cell units over 8 weeks versus pre-treatment transfusion burden in high transfusion burden patients. Patient data were subcategorised by: luspatercept dose concentrations (0·125-0·5 mg/kg vs 0·75-1·75 mg/kg); pre-study transfusion burden (high transfusion burden vs low transfusion burden, defined as ≥4 vs <4 red blood cell units per 8 weeks); pre-study serum erythropoietin concentration (<200 IU/L, 200-500 IU/L, and >500 IU/L); presence of 15% or more ring sideroblasts; and presence of SF3B1 mutations. Efficacy analyses were carried out on the efficacy evaluable and intention-to-treat populations. This trial is currently ongoing. This study is registered with ClinicalTrials.gov, numbers NCT01749514 and NCT02268383. FINDINGS Between Jan 21, 2013, and Feb 12, 2015, 58 patients with myelodysplastic syndromes were enrolled in the 12 week base study at nine treatment centres in Germany; 27 patients were enrolled in the dose-escalation cohorts (0·125-1·75 mg/kg) and 31 patients in the expansion cohort (1·0-1·75 mg/kg). 32 (63% [95% CI 48-76]) of 51 patients receiving higher dose luspatercept concentrations (0·75-1·75 mg/kg) achieved HI-E versus two (22% [95% CI 3-60]) of nine receiving lower dose concentrations (0·125-0·5 mg/kg). Three treatment-related grade 3 adverse events occurred in one patient each: myalgia (one [2%]), increased blast cell count (one [2%]), and general physical health deterioration (one [2%]). Two of these treatment-related grade 3 adverse events were reversible serious grade 3 adverse events: one patient (2%) had myalgia and one patient (2%) had general physical health deterioration. INTERPRETATION Luspatercept was well tolerated and effective for the treatment of anaemia in lower-risk myelodysplastic syndromes and so could therefore provide a novel therapeutic approach for the treatment of anaemia associated with lower-risk myelodysplastic syndromes; further studies are ongoing. FUNDING Acceleron Pharma.
Collapse
Affiliation(s)
- Uwe Platzbecker
- Universitätsklinikum "Carl Gustav Carus" der Technischen Universität Dresden, Dresden, Germany.
| | - Ulrich Germing
- Klinik für Hämatologie, Onkologie und klinische Immunologie, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
| | | | - Philipp Kiewe
- Onkologischer Schwerpunkt am Oskar-Helene-Heim, Berlin, Germany
| | | | - Jörg Chromik
- Universitätsklinikum Frankfurt, Johann-Wolfgang-Goethe-Universität, Frankfurt, Germany
| | | | | | | | | | | | | | | |
Collapse
|