1
|
McShane AN, Malinova D. The Ins and Outs of Antigen Uptake in B cells. Front Immunol 2022; 13:892169. [PMID: 35572544 PMCID: PMC9097226 DOI: 10.3389/fimmu.2022.892169] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
A review of our current knowledge of B cell antigen uptake mechanisms, the relevance of these processes to pathology, and outstanding questions in the field. Specific antigens induce B cell activation through the B cell receptor (BCR) which initiates downstream signaling and undergoes endocytosis. While extensive research has shed light on the signaling pathways in health and disease, the endocytic mechanisms remain largely uncharacterized. Given the importance of BCR-antigen internalization for antigen presentation in initiating adaptive immune responses and its role in autoimmunity and malignancy, understanding the molecular mechanisms represents critical, and largely untapped, potential therapeutics. In this review, we discuss recent advancements in our understanding of BCR endocytic mechanisms and the role of the actin cytoskeleton and post-translational modifications in regulating BCR uptake. We discuss dysregulated BCR endocytosis in the context of B cell malignancies and autoimmune disorders. Finally, we pose several outstanding mechanistic questions which will critically advance our understanding of the coordination between BCR endocytosis and B cell activation.
Collapse
Affiliation(s)
- Adam Nathan McShane
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Dessislava Malinova
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
2
|
Hua XY, Bie XX, Cheng X, Zhang SG. High expression of CIN85 promotes proliferation and invasion of human esophageal squamous cell carcinoma. Mol Med Rep 2020; 23:12. [PMID: 33179079 PMCID: PMC7673327 DOI: 10.3892/mmr.2020.11650] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 10/13/2020] [Indexed: 01/01/2023] Open
Abstract
SH3 domain-containing kinase-binding protein 1 (CIN85), an 85 kDa protein known to be a member of the signal adaptor family, is abnormally expressed in several human malignancies and has been found to be involved in the growth, migration and invasion of these tumors. The objective of the present study was to clarify the clinical significance of CIN85 in human esophageal squamous cell carcinoma (ESCC), as well as its in vitro functions. CIN85 expression was evaluated in 129 cases of ESCC and its adjacent normal tissues using immunohistochemistry to explore its clinical relevance and prognostic value. The functions of CIN85 in the ESCC TE1 cell line were analyzed in vitro using the interfering short hairpin RNA silencing technique. MTS, wound healing, clone formation and Transwell assays were used to detect the proliferation, migration and invasion of ESCC cells. CIN85 expression was identified mainly in ESCCs and their adjacent normal tissues, and the high expression of CIN85 was significantly associated with advanced Tumor Node Metastasis stage and lymph node metastasis. CIN85 gene silencing significantly inhibited TE1 cell proliferation, migration and invasion. These results demonstrated that CIN85 was highly expressed in advanced stage ESCC and lymph node metastasis, and played a critical role in tumor proliferation and progression. Therefore, CIN85 may be a promising therapeutic target for human ESCC.
Collapse
Affiliation(s)
- Xiao-Yang Hua
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xing-Xing Bie
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xi Cheng
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Shu-Guang Zhang
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
3
|
Jabłońska E, Białopiotrowicz E, Szydłowski M, Prochorec-Sobieszek M, Juszczyński P, Szumera-Ciećkiewicz A. DEPTOR is a microRNA-155 target regulating migration and cytokine production in diffuse large B-cell lymphoma cells. Exp Hematol 2020; 88:56-67.e2. [PMID: 32702393 DOI: 10.1016/j.exphem.2020.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/24/2020] [Accepted: 07/15/2020] [Indexed: 12/24/2022]
Abstract
MicroRNA-155 (MiR-155) is involved in normal B-cell development and lymphomagenesis, affecting cell differentiation, motility, and intracellular signaling. In this study, we searched for new targets of MiR-155 potentially involved in deregulation of the B-cell receptor pathway (BCR) in diffuse large B-cell lymphoma (DLBCL). We report that MiR-155 represses DEPTOR (an mTOR phosphatase) and c-CBL (SYK ubiquitin E3 ligase) through direct 3'-untranslated region interactions. In primary DLBCLs, MiR-155 exhibits a reciprocal expression pattern with DEPTOR and c-CBL. Inhibition of MiR-155 decreased expression of NFκB target genes and sensitized DLBCL cells to ibrutinib, confirming the role of MiR-155 in the modulation of BCR signaling. As the function of DEPTOR in DLBCLs has never been addressed, we first evaluated its expression in a series of 76 newly diagnosed DLBCL patients. DEPTOR protein expression was markedly lower in more aggressive nongerminal center-like (non-GCB) DLBCLs than in GCB tumors. In cell line models, inhibition of DEPTOR expression favored the migration of DLBCL cells toward the CXCL12 gradient. Finally, loss or gain of DEPTOR modulated the expression of specific pro-inflammatory cytokines and chemokines. We thus identified DEPTOR as a new MiR-155 target that is differentially expressed between GCB- and non-GCB-type DLBCLs and modulates cell migration and cytokine expression in DLBCL cells.
Collapse
Affiliation(s)
- Ewa Jabłońska
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Emilia Białopiotrowicz
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Maciej Szydłowski
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | | | - Przemysław Juszczyński
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland.
| | - Anna Szumera-Ciećkiewicz
- Department of Diagnostic Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland.
| |
Collapse
|
4
|
Kong MS, Hashimoto-Tane A, Kawashima Y, Sakuma M, Yokosuka T, Kometani K, Onishi R, Carpino N, Ohara O, Kurosaki T, Phua KK, Saito T. Inhibition of T cell activation and function by the adaptor protein CIN85. Sci Signal 2019; 12:12/567/eaav4373. [PMID: 30723173 DOI: 10.1126/scisignal.aav4373] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
T cell activation is initiated by signaling molecules downstream of the T cell receptor (TCR) that are organized by adaptor proteins. CIN85 (Cbl-interacting protein of 85 kDa) is one such adaptor protein. Here, we showed that CIN85 limited T cell responses to TCR stimulation. Compared to activated wild-type (WT) T cells, those that lacked CIN85 produced more IL-2 and exhibited greater proliferation. After stimulation of WT T cells with their cognate antigen, CIN85 was recruited to the TCR signaling complex. Early TCR signaling events, such as phosphorylation of ζ-chain-associated protein kinase 70 (Zap70), Src homology 2 (SH2) domain-containing leukocyte protein of 76 kDa (SLP76), and extracellular signal-regulated kinase (Erk), were enhanced in CIN85-deficient T cells. The inhibitory function of CIN85 required the SH3 and PR regions of the adaptor, which associated with the phosphatase suppressor of TCR signaling-2 (Sts-2) after TCR stimulation. Together, our data suggest that CIN85 is recruited to the TCR signaling complex and mediates inhibition of T cell activation through its association with Sts-2.
Collapse
Affiliation(s)
- Mei Suen Kong
- Laboratory for Cell Signaling, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan.,Institute for Research in Molecular Medicine, Main Campus, Universiti Sains Malaysia, 11800 Pulau Pinang, Malaysia
| | - Akiko Hashimoto-Tane
- Laboratory for Cell Signaling, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Yusuke Kawashima
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan.,Department of Technology Development, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Machie Sakuma
- Laboratory for Cell Signaling, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Tadashi Yokosuka
- Laboratory for Cell Signaling, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Kohei Kometani
- Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Reiko Onishi
- Laboratory for Cell Signaling, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Nick Carpino
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794-8434, USA
| | - Osamu Ohara
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan.,Department of Technology Development, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Tomohiro Kurosaki
- Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan.,Lymphocyte Differentiation, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kia Kien Phua
- Institute for Research in Molecular Medicine, Main Campus, Universiti Sains Malaysia, 11800 Pulau Pinang, Malaysia
| | - Takashi Saito
- Laboratory for Cell Signaling, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan. .,Cell Signaling, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
5
|
Martini V, Frezzato F, Severin F, Raggi F, Trimarco V, Martinello L, Molfetta R, Visentin A, Facco M, Semenzato G, Paolini R, Trentin L. Abnormal regulation of BCR signalling by c-Cbl in chronic lymphocytic leukaemia. Oncotarget 2018; 9:32219-32231. [PMID: 30181811 PMCID: PMC6114956 DOI: 10.18632/oncotarget.25951] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/21/2018] [Indexed: 11/25/2022] Open
Abstract
Abnormalities of molecules involved in signal transduction pathways are connected to Chronic Lymphocytic Leukemia (CLL) pathogenesis and a critical role has been already ascribed to B-Cell Receptor (BCR)-Lyn axis. E3 ubiquitin ligase c-Cbl, working together with adapter protein CIN85, controls the degradation of protein kinases involved in BCR signaling. To investigate cell homeostasis in CLL, we studied c-Cbl since in normal B cells it is involved in the ubiquitin-dependent Lyn degradation and in the down-regulation of BCR signaling. We found that c-Cbl is overexpressed and not ubiquitinated after BCR engagement. We observed that c-Cbl did not associate to CIN85 in CLL with respect to normal B cells at steady state, nor following BCR engagement. c-Cbl association to Lyn was not detectable in CLL after BCR stimulation, as it happens in normal B cells. In some CLL patients, c-Cbl is constitutively phosphorylated at Y731 and in the same subjects, it associated to regulatory subunit p85 of PI3K. Moreover, c-Cbl is constitutive associated to Cortactin in those CLL patients presenting Cortactin overexpression and bad prognosis. These results support the hypothesis that c-Cbl, rather than E3 ligase activity, could have an adaptor function in turn influencing cell homeostasis in CLL.
Collapse
Affiliation(s)
- Veronica Martini
- Department of Medicine, Hematology and Clinical Immunology Branch, University School of Medicine, Padua, Italy.,Venetian Institute of Molecular Medicine, VIMM, Padua, Italy
| | - Federica Frezzato
- Department of Medicine, Hematology and Clinical Immunology Branch, University School of Medicine, Padua, Italy.,Venetian Institute of Molecular Medicine, VIMM, Padua, Italy
| | - Filippo Severin
- Department of Medicine, Hematology and Clinical Immunology Branch, University School of Medicine, Padua, Italy.,Venetian Institute of Molecular Medicine, VIMM, Padua, Italy
| | - Flavia Raggi
- Department of Medicine, Hematology and Clinical Immunology Branch, University School of Medicine, Padua, Italy.,Venetian Institute of Molecular Medicine, VIMM, Padua, Italy
| | - Valentina Trimarco
- Department of Medicine, Hematology and Clinical Immunology Branch, University School of Medicine, Padua, Italy.,Venetian Institute of Molecular Medicine, VIMM, Padua, Italy
| | - Leonardo Martinello
- Department of Medicine, Hematology and Clinical Immunology Branch, University School of Medicine, Padua, Italy.,Venetian Institute of Molecular Medicine, VIMM, Padua, Italy
| | - Rosa Molfetta
- Department of Molecular Medicine, University of La Sapienza, Rome, Italy
| | - Andrea Visentin
- Department of Medicine, Hematology and Clinical Immunology Branch, University School of Medicine, Padua, Italy.,Venetian Institute of Molecular Medicine, VIMM, Padua, Italy
| | - Monica Facco
- Department of Medicine, Hematology and Clinical Immunology Branch, University School of Medicine, Padua, Italy.,Venetian Institute of Molecular Medicine, VIMM, Padua, Italy
| | - Gianpietro Semenzato
- Department of Medicine, Hematology and Clinical Immunology Branch, University School of Medicine, Padua, Italy.,Venetian Institute of Molecular Medicine, VIMM, Padua, Italy
| | - Rossella Paolini
- Department of Molecular Medicine, University of La Sapienza, Rome, Italy
| | - Livio Trentin
- Department of Medicine, Hematology and Clinical Immunology Branch, University School of Medicine, Padua, Italy.,Venetian Institute of Molecular Medicine, VIMM, Padua, Italy
| |
Collapse
|
6
|
Keller B, Shoukier M, Schulz K, Bhatt A, Heine I, Strohmeier V, Speckmann C, Engels N, Warnatz K, Wienands J. Germline deletion of CIN85 in humans with X chromosome-linked antibody deficiency. J Exp Med 2018; 215:1327-1336. [PMID: 29636373 PMCID: PMC5940257 DOI: 10.1084/jem.20170534] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 07/20/2017] [Accepted: 03/15/2018] [Indexed: 12/13/2022] Open
Abstract
Despite the numerous cellular functions attributed to the scaffolding protein CIN85, Keller et al. show that an inactivating germline deletion within the human CIN85 gene causes a remarkably specific defect in the activation of B lymphocytes, preventing proper immune responses. Ubiquitously expressed Cbl-interacting protein of 85 kD (CIN85) is a multifunctional adapter molecule supposed to regulate numerous cellular processes that are critical for housekeeping as well as cell type–specific functions. However, limited information exists about the in vivo roles of CIN85, because only conditional mouse mutants with cell type–specific ablation of distinct CIN85 isoforms in brain and B lymphocytes have been generated so far. No information is available about the roles of CIN85 in humans. Here, we report on primary antibody deficiency in patients harboring a germline deletion within the CIN85 gene on the X chromosome. In the absence of CIN85, all immune cell compartments developed normally, but B lymphocytes showed intrinsic defects in distinct effector pathways of the B cell antigen receptor, most notably NF-κB activation and up-regulation of CD86 expression on the cell surface. These results reveal nonredundant functions of CIN85 for humoral immune responses.
Collapse
Affiliation(s)
- Baerbel Keller
- Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Moneef Shoukier
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Kathrin Schulz
- Institute of Cellular & Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Arshiya Bhatt
- Institute of Cellular & Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Ines Heine
- Institute of Cellular & Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Valentina Strohmeier
- Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Carsten Speckmann
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Niklas Engels
- Institute of Cellular & Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Klaus Warnatz
- Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jürgen Wienands
- Institute of Cellular & Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
7
|
Abstract
Immune tolerance hinders the potentially destructive responses of lymphocytes to host tissues. Tolerance is regulated at the stage of immature B cell development (central tolerance) by clonal deletion, involving apoptosis, and by receptor editing, which reprogrammes the specificity of B cells through secondary recombination of antibody genes. Recent mechanistic studies have begun to elucidate how these divergent mechanisms are controlled. Single-cell antibody cloning has revealed defects of B cell central tolerance in human autoimmune diseases and in several human immunodeficiency diseases caused by single gene mutations, which indicates the relevance of B cell tolerance to disease and suggests possible genetic pathways that regulate tolerance.
Collapse
|
8
|
Generation mechanism of RANKL(+) effector memory B cells: relevance to the pathogenesis of rheumatoid arthritis. Arthritis Res Ther 2016; 18:67. [PMID: 26980135 PMCID: PMC4793760 DOI: 10.1186/s13075-016-0957-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 02/12/2016] [Indexed: 11/13/2022] Open
Abstract
Background The efficacy of B cell-depleting therapies for rheumatoid arthritis underscores antibody-independent functions of effector B cells such as cognate T–B interactions and production of pro-inflammatory cytokines. Receptor activator of nuclear factor κB ligand (RANKL) is a key cytokine involved in bone destruction and is highly expressed in synovial fluid B cells in patients with rheumatoid arthritis. In this study we sought to clarify the generation mechanism of RANKL+ effector B cells and their impacts on osteoclast differentiation. Methods Peripheral blood and synovial fluid B cells from healthy controls and patients with rheumatoid arthritis were isolated using cell sorter. mRNA expression of RANKL, osteoprotegerin, tumor necrosis factor (TNF)-α, and Blimp-1 was analyzed by quantitative real-time polymerase chain reaction. Levels of RANKL, CD80, CD86, and CXCR3 were analyzed using flow cytometry. Functional analysis of osteoclastogenesis was carried out in the co-culture system using macrophage RAW264 reporter cells. Results RANKL expression was accentuated in CD80+CD86+ B cells, a highly activated B-cell subset more abundantly observed in patients with rheumatoid arthritis. Upon activation via B-cell receptor and CD40, switched-memory B cells predominantly expressed RANKL, which was further augmented by interferon-γ (IFN-γ) but suppressed by interleukin-21. Strikingly, IFN-γ also enhanced TNF-α expression, while it strongly suppressed osteoprotegerin expression in B cells. IFN-γ increased the generation of CXCR3+RANKL+ effector B cells, mimicking the synovial B cell phenotype in patients with rheumatoid arthritis. Finally, RANKL+ effector B cells in concert with TNF-α facilitated osteoclast differentiation in vitro. Conclusions Our current findings have shed light on the generation mechanism of pathogenic RANKL+ effector B cells that would be an ideal therapeutic target for rheumatoid arthritis in the future. Electronic supplementary material The online version of this article (doi:10.1186/s13075-016-0957-6) contains supplementary material, which is available to authorized users.
Collapse
|
9
|
Preserved in vivo reconstitution ability of PBSCs cryopreserved for a decade at −80 °C. Bone Marrow Transplant 2015; 50:1195-200. [DOI: 10.1038/bmt.2015.147] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 05/14/2015] [Accepted: 05/19/2015] [Indexed: 12/14/2022]
|
10
|
Martín-Bermudo MD, Bardet PL, Bellaïche Y, Malartre M. The vav oncogene antagonises EGFR signalling and regulates adherens junction dynamics during Drosophila eye development. Development 2015; 142:1492-501. [PMID: 25813543 DOI: 10.1242/dev.110585] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 03/02/2015] [Indexed: 12/13/2022]
Abstract
Organ shaping and patterning depends on the coordinated regulation of multiple processes. The Drosophila compound eye provides an excellent model to study the coordination of cell fate and cell positioning during morphogenesis. Here, we find that loss of vav oncogene function during eye development is associated with a disorganised retina characterised by the presence of additional cells of all types. We demonstrate that these defects result from two distinct roles of Vav. First, and in contrast to its well-established role as a positive effector of the EGF receptor (EGFR), we show that readouts of the EGFR pathway are upregulated in vav mutant larval eye disc and pupal retina, indicating that Vav antagonises EGFR signalling during eye development. Accordingly, decreasing EGFR signalling in vav mutant eyes restores retinal organisation and rescues most vav mutant phenotypes. Second, using live imaging in the pupal retina, we observe that vav mutant cells do not form stable adherens junctions, causing various defects, such as recruitment of extra primary pigment cells. In agreement with this role in junction dynamics, we observe that these phenotypes can be exacerbated by lowering DE-Cadherin or Cindr levels. Taken together, our findings establish that Vav acts at multiple times during eye development to prevent excessive cell recruitment by limiting EGFR signalling and by regulating junction dynamics to ensure the correct patterning and morphogenesis of the Drosophila eye.
Collapse
Affiliation(s)
| | - Pierre-Luc Bardet
- Institut Curie, CNRS UMR3215, INSERM U934, Paris Cedex 05 75248, France
| | - Yohanns Bellaïche
- Institut Curie, CNRS UMR3215, INSERM U934, Paris Cedex 05 75248, France
| | - Marianne Malartre
- Centro Andaluz de Biología del Desarrollo CSIC-Univ. Pablo de Olavide, Sevilla 41013, Spain Université Paris-Sud, INSERM UMR-S757, Orsay 91405, France Centre de Génétique Moléculaire (UPR3404), CNRS, 1 avenue de la Terrasse, Gif-Sur-Yvette 91198, France
| |
Collapse
|
11
|
Lutz-Nicoladoni C, Wolf D, Sopper S. Modulation of Immune Cell Functions by the E3 Ligase Cbl-b. Front Oncol 2015; 5:58. [PMID: 25815272 PMCID: PMC4356231 DOI: 10.3389/fonc.2015.00058] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 02/24/2015] [Indexed: 01/10/2023] Open
Abstract
Maintenance of immunological tolerance is a critical hallmark of the immune system. Several signaling checkpoints necessary to balance activating and inhibitory input to immune cells have been described so far, among which the E3 ligase Cbl-b appears to be a central player. Cbl-b is expressed in all leukocyte subsets and regulates several signaling pathways in T cells, NK cells, B cells, and different types of myeloid cells. In most cases, Cbl-b negatively regulates activation signals through antigen or pattern recognition receptors and co-stimulatory molecules. In line with this function, cblb-deficient immune cells display lower activation thresholds and cblb knockout mice spontaneously develop autoimmunity and are highly susceptible to experimental autoimmunity. Interestingly, genetic association studies link CBLB-polymorphisms with autoimmunity also in humans. Vice versa, the increased activation potential of cblb-deficient cells renders them more potent to fight against malignancies or infections. Accordingly, several reports have shown that cblb knockout mice reject tumors, which mainly depends on cytotoxic T and NK cells. Thus, targeting Cbl-b may be an interesting strategy to enhance anti-cancer immunity. In this review, we summarize the findings on the molecular function of Cbl-b in different cell types and illustrate the potential of Cbl-b as target for immunomodulatory therapies.
Collapse
Affiliation(s)
- Christina Lutz-Nicoladoni
- Department of Hematology and Oncology, Medical University Innsbruck , Innsbruck , Austria ; Tumor Immunology Laboratory, Tyrolean Cancer Research Institute , Innsbruck , Austria
| | - Dominik Wolf
- Medical Clinic III for Oncology, Haematology and Rheumatology, University Clinic Bonn (UKB) , Bonn , Germany
| | - Sieghart Sopper
- Department of Hematology and Oncology, Medical University Innsbruck , Innsbruck , Austria ; Tumor Immunology Laboratory, Tyrolean Cancer Research Institute , Innsbruck , Austria
| |
Collapse
|
12
|
Complex of MUC1, CIN85 and Cbl in Colon Cancer Progression and Metastasis. Cancers (Basel) 2015; 7:342-52. [PMID: 25675408 PMCID: PMC4381262 DOI: 10.3390/cancers7010342] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 02/03/2015] [Indexed: 12/30/2022] Open
Abstract
We previously reported that CIN85, an 85 KDa protein known to be involved in tumor cell migration and metastasis through its interaction with Cbl, associates with MUC1 in tumor cells. MUC1/CIN85 complex also regulates migration and invasion of tumor cells in vitro. Here, we examined specifically human colon carcinoma tissue microarrays (TMA) by immunohistochemistry for the expression of MUC1 and CIN85 and their potential role in cancer progression and metastasis. We detected a significant increase in expression of both MUC1 and CIN85 associated with advanced tumor stage and lymph node metastasis. We further investigated if Cbl could also be present in the MUC1/CIN85 complex. Co-immunoprecipitation assay showed that Cbl co-localized both with CIN85 and with MUC1 in a human colon cancer cell line. To begin to investigate the in vivo relevance of MUC1 overexpression and association with CIN85 and Cbl in cancer development and progression, we used human MUC1 transgenic mice that express MUC1 on the colonic epithelial cells, treated with azoxymethane to initiate and dextran sulfate sodium (AOM/DSS) to promote colorectal carcinogenesis. MUC1.Tg mice showed higher tumor incidence and decreased survival when compared with wild-type mice. Consistent with the in vitro data, the association of MUC1, CIN85 and Cbl was detected in colon tissues of AOM/DSS-treated MUC1 transgenic mice. MUC1/CIN85/Cbl complex appears to contribute to promotion and progression of colon cancer and thus increased expression of MUC1, CIN85 and Cbl in early stage colon cancer might be predictive of poor prognosis.
Collapse
|
13
|
Ahmad G, Mohapatra BC, Schulte NA, Nadeau SA, Luan H, Zutshi N, Tom E, Ortega-Cava C, Tu C, Sanada M, Ogawa S, Toews ML, Band V, Band H. Cbl-family ubiquitin ligases and their recruitment of CIN85 are largely dispensable for epidermal growth factor receptor endocytosis. Int J Biochem Cell Biol 2014; 57:123-34. [PMID: 25449262 DOI: 10.1016/j.biocel.2014.10.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 10/03/2014] [Accepted: 10/16/2014] [Indexed: 11/15/2022]
Abstract
Members of the casitas B-lineage lymphoma (Cbl) family (Cbl, Cbl-b and Cbl-c) of ubiquitin ligases serve as negative regulators of receptor tyrosine kinases (RTKs). An essential role of Cbl-family protein-dependent ubiquitination for efficient ligand-induced lysosomal targeting and degradation is now well-accepted. However, a more proximal role of Cbl and Cbl-b as adapters for CIN85-endophilin recruitment to mediate ligand-induced initial internalization of RTKs is supported by some studies but refuted by others. Overexpression and/or incomplete depletion of Cbl proteins in these studies is likely to have contributed to this dichotomy. To address the role of endogenous Cbl and Cbl-b in the internalization step of RTK endocytic traffic, we established Cbl/Cbl-b double-knockout (DKO) mouse embryonic fibroblasts (MEFs) and demonstrated that these cells lack the expression of both Cbl-family members as well as endophilin A, while they express CIN85. We show that ligand-induced ubiquitination of EGFR, as a prototype RTK, was abolished in DKO MEFs, and EGFR degradation was delayed. These traits were reversed by ectopic human Cbl expression. EGFR endocytosis, assessed using the internalization of (125)I-labeled or fluorescent EGF, or of EGFR itself, was largely retained in Cbl/Cbl-b DKO compared to wild type MEFs. EGFR internalization was also largely intact in Cbl/Cbl-b depleted MCF-10A human mammary epithelial cell line. Inducible shRNA-mediated knockdown of CIN85 in wild type or Cbl/Cbl-b DKO MEFs had no impact on EGFR internalization. Our findings, establish that, at physiological expression levels, Cbl, Cbl-b and CIN85 are largely dispensable for EGFR internalization. Our results support the model that Cbl-CIN85-endophilin complex is not required for efficient internalization of EGFR, a prototype RTK.
Collapse
Affiliation(s)
- Gulzar Ahmad
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | - Bhopal C Mohapatra
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198-5950, USA; Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | - Nancy A Schulte
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | - Scott A Nadeau
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198-5950, USA; Department of Genetics, Cell Biology & Anatomy, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | - Haitao Luan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198-5950, USA; Department of Genetics, Cell Biology & Anatomy, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | - Neha Zutshi
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198-5950, USA; Department of Pathology & Microbiology, College of Medicine, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | - Eric Tom
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198-5950, USA; Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | - Cesar Ortega-Cava
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | - Chun Tu
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | - Masashi Sanada
- Department of Pathology and Tumor Biology, Kyoto University, Yoshida-Konoe-Cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Kyoto University, Yoshida-Konoe-Cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Myron L Toews
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | - Vimla Band
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198-5950, USA; Department of Genetics, Cell Biology & Anatomy, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198-5950, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | - Hamid Band
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198-5950, USA; Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198-5950, USA; Department of Genetics, Cell Biology & Anatomy, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198-5950, USA; Department of Pathology & Microbiology, College of Medicine, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198-5950, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198-5950, USA.
| |
Collapse
|
14
|
Wang J, Sohn H, Sun G, Milner JD, Pierce SK. The autoinhibitory C-terminal SH2 domain of phospholipase C-γ2 stabilizes B cell receptor signalosome assembly. Sci Signal 2014; 7:ra89. [PMID: 25227611 DOI: 10.1126/scisignal.2005392] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The binding of antigen to the B cell receptor (BCR) stimulates the assembly of a signaling complex (signalosome) composed initially of the kinases Lyn, spleen tyrosine kinase (Syk), and Bruton's tyrosine kinase (Btk), as well as the adaptor protein B cell linker (BLNK). Together, these proteins recruit and activate phospholipase C-γ2 (PLC-γ2), a critical effector that stimulates increases in intracellular Ca(2+) and activates various signaling pathways downstream of the BCR. Individuals with one copy of a mutant PLCG2 gene, which encodes a variant PLC-γ2 that lacks the autoinhibitory C-terminal Src homology 2 (cSH2) domain, exhibit PLC-γ2-associated antibody deficiency and immune dysregulation (PLAID). Paradoxically, although COS-7 cells expressing the variant PLC-γ2 show enhanced basal and stimulated PLC-γ2 activity, B cells from PLAID patients show defective intracellular Ca(2+) responses upon cross-linking of the BCR. We found that the cSH2 domain of PLC-γ2 played a critical role in stabilizing the early signaling complex that is stimulated by BCR cross-linking. In the presence of the variant PLC-γ2, Syk, Btk, and BLNK were only weakly phosphorylated and failed to stably associate with the BCR. Thus, BCRs could not form stable clusters, resulting in dysregulation of downstream signaling and trafficking of the BCR. Thus, the cSH2 domain functions not only to inhibit the active site of PLC-γ2 but also to directly or indirectly stabilize the early BCR signaling complex.
Collapse
Affiliation(s)
- Jing Wang
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Haewon Sohn
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Guangping Sun
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joshua D Milner
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Susan K Pierce
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA.
| |
Collapse
|