1
|
Pant A, Laliwala A, Holstein SA, Mohs AM. Recent advances in targeted drug delivery systems for multiple myeloma. J Control Release 2024; 376:215-230. [PMID: 39384153 DOI: 10.1016/j.jconrel.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/25/2024] [Accepted: 10/02/2024] [Indexed: 10/11/2024]
Abstract
Despite significant therapeutic advances, multiple myeloma (MM) remains a challenging, incurable, hematological malignancy. The efficacy of traditional chemotherapy and currently available anti-MM agents is in part limited by their adverse effects, which restrict their therapeutic potential. Nanotherapeutics is an emerging field of cancer therapy that can overcome the biological and chemical barriers of existing anticancer drugs. This review presents an overview of recent advancements in nanoparticle- and immunotherapy-based drug delivery systems for MM treatment. It further delves into the targeting strategies, mechanism of controlled drug release, and challenges associated with the development of drug delivery systems for the treatment of MM.
Collapse
Affiliation(s)
- Ashruti Pant
- Department of Pharmaceutical Sciences, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA.
| | - Aayushi Laliwala
- Department of Pharmaceutical Sciences, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA.
| | - Sarah A Holstein
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA; Department of Internal Medicine, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA.
| | - Aaron M Mohs
- Department of Pharmaceutical Sciences, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, S 45th St, Omaha, NE 68198, USA.
| |
Collapse
|
2
|
De Santis A, Grifagni D, Orsetti A, Lenci E, Rosato A, D’Onofrio M, Trabocchi A, Ciofi-Baffoni S, Cantini F, Calderone V. A Structural Investigation of the Interaction between a GC-376-Based Peptidomimetic PROTAC and Its Precursor with the Viral Main Protease of Coxsackievirus B3. Biomolecules 2024; 14:1260. [PMID: 39456193 PMCID: PMC11506516 DOI: 10.3390/biom14101260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/16/2024] [Accepted: 10/02/2024] [Indexed: 10/28/2024] Open
Abstract
The conservation of the main protease in viral genomes, combined with the absence of a homologous protease in humans, makes this enzyme family an ideal target for developing broad-spectrum antiviral drugs with minimized host toxicity. GC-376, a peptidomimetic 3CL protease inhibitor, has shown significant efficacy against coronaviruses. Recently, a GC-376-based PROTAC was developed to target and induce the proteasome-mediated degradation of the dimeric SARS-CoV-2 3CLPro protein. Extending this approach, the current study investigates the application of the GC-376 PROTAC to the 3CPro protease of enteroviruses, specifically characterizing its interaction with CVB3 3CPro through X-ray crystallography, NMR (Nuclear Magnetic Resonance) and biochemical techniques. The crystal structure of CVB3 3CPro bound to the GC-376 PROTAC precursor was obtained at 1.9 Å resolution. The crystallographic data show that there are some changes between the binding of CVB3 3CPro and SARS-CoV-2 3CLPro, but the overall similarity is strong (RMSD on C-alpha 0.3 Å). The most notable variation is the orientation of the benzyloxycarbonyl group of GC-376 with the S4 subsite of the proteases. NMR backbone assignment of CVB3 3CPro bound and unbound to the GC-376 PROTAC precursor (80% and 97%, respectively) was obtained. This information complemented the investigation, by NMR, of the interaction of CVB3 3CPro with the GC-376 PROTAC, and its precursor allows us to define that the GC-376 PROTAC binds to CVB3 3CPro in a mode very similar to that of the precursor. The NMR relaxation data indicate that a quench of dynamics of a large part of the protein backbone involving the substrate-binding site and surrounding regions occurs upon GC-376 PROTAC precursor binding. This suggests that the substrate cavity, by sampling different backbone conformations in the absence of the substrate, is able to select the suitable one necessary to covalently bind the substrate, this being the latter reaction, which is the fundamental step required to functionally activate the enzymatic reaction. The inhibition activity assay showed inhibition potency in the micromolar range for GC-376 PROTAC and its precursor. Overall, we can conclude that the GC-376 PROTAC fits well within the binding sites of both proteases, demonstrating its potential as a broad-spectrum antiviral agent.
Collapse
Affiliation(s)
- Alessia De Santis
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy; (A.D.S.); (D.G.); (A.O.); (A.R.); (S.C.-B.)
- Department of Chemistry, University of Florence, Via della Lastruccia 3-13, Sesto Fiorentino, 50019 Florence, Italy; (E.L.); (A.T.)
| | - Deborah Grifagni
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy; (A.D.S.); (D.G.); (A.O.); (A.R.); (S.C.-B.)
- Department of Chemistry, University of Florence, Via della Lastruccia 3-13, Sesto Fiorentino, 50019 Florence, Italy; (E.L.); (A.T.)
| | - Andrea Orsetti
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy; (A.D.S.); (D.G.); (A.O.); (A.R.); (S.C.-B.)
- Department of Chemistry, University of Florence, Via della Lastruccia 3-13, Sesto Fiorentino, 50019 Florence, Italy; (E.L.); (A.T.)
| | - Elena Lenci
- Department of Chemistry, University of Florence, Via della Lastruccia 3-13, Sesto Fiorentino, 50019 Florence, Italy; (E.L.); (A.T.)
| | - Antonio Rosato
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy; (A.D.S.); (D.G.); (A.O.); (A.R.); (S.C.-B.)
- Department of Chemistry, University of Florence, Via della Lastruccia 3-13, Sesto Fiorentino, 50019 Florence, Italy; (E.L.); (A.T.)
| | - Mariapina D’Onofrio
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy;
| | - Andrea Trabocchi
- Department of Chemistry, University of Florence, Via della Lastruccia 3-13, Sesto Fiorentino, 50019 Florence, Italy; (E.L.); (A.T.)
| | - Simone Ciofi-Baffoni
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy; (A.D.S.); (D.G.); (A.O.); (A.R.); (S.C.-B.)
- Department of Chemistry, University of Florence, Via della Lastruccia 3-13, Sesto Fiorentino, 50019 Florence, Italy; (E.L.); (A.T.)
| | - Francesca Cantini
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy; (A.D.S.); (D.G.); (A.O.); (A.R.); (S.C.-B.)
- Department of Chemistry, University of Florence, Via della Lastruccia 3-13, Sesto Fiorentino, 50019 Florence, Italy; (E.L.); (A.T.)
| | - Vito Calderone
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy; (A.D.S.); (D.G.); (A.O.); (A.R.); (S.C.-B.)
- Department of Chemistry, University of Florence, Via della Lastruccia 3-13, Sesto Fiorentino, 50019 Florence, Italy; (E.L.); (A.T.)
| |
Collapse
|
3
|
Wang B, Li M, Cao D, Sun Q, Yu W, Ma J, Ren H, Xu G, Zhou L. Lys-63-specific deubiquitinase BRCC36 enhances the sensitivity of multiple myeloma cells to lenalidomide by inhibiting lysosomal degradation of cereblon. Cell Mol Life Sci 2024; 81:349. [PMID: 39136771 PMCID: PMC11335271 DOI: 10.1007/s00018-024-05390-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 07/17/2024] [Accepted: 07/30/2024] [Indexed: 08/22/2024]
Abstract
Multiple myeloma (MM) is the second most common hematological tumor in adults. Immunomodulatory drugs (IMiDs), such as thalidomide and lenalidomide (Len), are effective drugs for the treatment of multiple myeloma. Len can recruit IKZF1 and IKZF3 to cereblon (CRBN), a substrate receptor of the cullin 4-RING E3 ligase (CRL4), promote their ubiquitination and degradation, and finally inhibit the proliferation of myeloma cells. However, MM patients develop resistance to IMiDs over time, leading to disease recurrence and deterioration. To explore the possible approaches that may enhance the sensitivity of IMiDs to MM, in this study, we used the proximity labeling technique TurboID and quantitative proteomics to identify Lys-63-specific deubiquitinase BRCC36 as a CRBN-interacting protein. Biochemical experiments demonstrated that BRCC36 in the BRISC complex protects CRBN from lysosomal degradation by specifically cleaving the K63-linked polyubiquitin chain on CRBN. Further studies found that a small-molecule compound SHIN1, which binds to BRISC complex subunit SHMT2, can upregulate CRBN by elevating BRCC36. The combination of SHIN1 and Len can further increase the sensitivity of MM cells to IMiDs. Therefore, this study provides the basis for the exploration of a possible strategy for the SHIN1 and Len combination treatment for MM.
Collapse
Affiliation(s)
- Busong Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Min Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Dan Cao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Qing Sun
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Wenjun Yu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Jingjing Ma
- Department of Pharmacy, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou, 215123, Jiangsu, China
| | - Haigang Ren
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China.
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China.
| | - Liang Zhou
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
4
|
Brodermann MH, Henderson EK, Sellar RS. The emerging role of targeted protein degradation to treat and study cancer. J Pathol 2024; 263:403-417. [PMID: 38886898 DOI: 10.1002/path.6301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/18/2024] [Accepted: 04/30/2024] [Indexed: 06/20/2024]
Abstract
The evolution of cancer treatment has provided increasingly targeted strategies both in the upfront and relapsed disease settings. Small-molecule inhibitors and immunotherapy have risen to prominence with chimeric antigen receptor T-cells, checkpoint inhibitors, kinase inhibitors, and monoclonal antibody therapies being deployed across a range of solid organ and haematological malignancies. However, novel approaches are required to target transcription factors and oncogenic fusion proteins that are central to cancer biology and have generally eluded successful drug development. Thalidomide analogues causing protein degradation have been a cornerstone of treatment in multiple myeloma, but a lack of in-depth mechanistic understanding initially limited progress in the field. When the protein cereblon (CRBN) was found to mediate thalidomide analogues' action and CRBN's neo-targets were identified, existing and novel drug development accelerated, with applications outside multiple myeloma, including non-Hodgkin's lymphoma, myelodysplastic syndrome, and acute leukaemias. Critically, transcription factors were the first canonical targets described. In addition to broadening the application of protein-degrading drugs, resistance mechanisms are being overcome and targeted protein degradation is widening the scope of druggable proteins against which existing approaches have been ineffective. Examples of targeted protein degraders include molecular glues and proteolysis targeting chimeras (PROTACs): heterobifunctional molecules that bind to proteins of interest and cause proximity-induced ubiquitination and proteasomal degradation via a linked E3 ligase. Twenty years since their inception, PROTACs have begun progressing through clinical trials, with early success in targeting the oestrogen receptor and androgen receptor in breast and prostate cancer respectively. This review explores important developments in targeted protein degradation to both treat and study cancer. It also considers the potential advantages and challenges in the translational aspects of developing new treatments. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
| | - Elizabeth K Henderson
- Department of Haematology, UCL Cancer Institute, University College London, London, UK
| | - Rob S Sellar
- Department of Haematology, UCL Cancer Institute, University College London, London, UK
| |
Collapse
|
5
|
Liu Y, Mo CC, Hartley-Brown MA, Sperling AS, Midha S, Yee AJ, Bianchi G, Piper C, Tattersall A, Nadeem O, Laubach JP, Richardson PG. Targeting Ikaros and Aiolos: reviewing novel protein degraders for the treatment of multiple myeloma, with a focus on iberdomide and mezigdomide. Expert Rev Hematol 2024; 17:445-465. [PMID: 39054911 DOI: 10.1080/17474086.2024.2382897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/30/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
INTRODUCTION The treatment of multiple myeloma (MM) is evolving rapidly. Quadruplet regimens incorporating proteasome inhibitors, immunomodulatory drugs (IMiDs), and CD38 monoclonal antibodies have emerged as standard-of-care options for newly diagnosed MM, and numerous novel therapies have been approved for relapsed/refractory MM. However, there remains a need for novel options in multiple settings, including refractoriness to frontline standards of care. AREAS COVERED Targeting degradation of IKZF1 and IKZF3 - Ikaros and Aiolos - through modulation of cereblon, an E3 ligase substrate recruiter/receptor, is a key mechanism of action of the IMiDs and the CELMoD agents. Two CELMoD agents, iberdomide and mezigdomide, have demonstrated substantial preclinical and clinical activity in MM and have entered phase 3 investigation. Using a literature search methodology comprising searches of PubMed (unlimited time-frame) and international hematology/oncology conference abstracts (2019-2023), this paper reviews the importance of Ikaros and Aiolos in MM, the mechanism of action of the IMiDs and CELMoD agents and their relative potency for targeting Ikaros and Aiolos, and preclinical and clinical data on iberdomide and mezigdomide. EXPERT OPINION Emerging data suggest that iberdomide and mezigdomide have promising activity, including in IMiD-resistant settings and, pending phase 3 findings, may provide additional treatment options for patients with MM.
Collapse
Affiliation(s)
- Yuxin Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Jerome Lipper Center for Multiple Myeloma Research, Harvard Medical School, Boston, MA, USA
| | - Clifton C Mo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Jerome Lipper Center for Multiple Myeloma Research, Harvard Medical School, Boston, MA, USA
| | - Monique A Hartley-Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Jerome Lipper Center for Multiple Myeloma Research, Harvard Medical School, Boston, MA, USA
- Division of Hematology, Brigham and Women's Hospital, Boston, MA, USA
| | - Adam S Sperling
- Department of Medical Oncology, Dana-Farber Cancer Institute, Jerome Lipper Center for Multiple Myeloma Research, Harvard Medical School, Boston, MA, USA
- Division of Hematology, Brigham and Women's Hospital, Boston, MA, USA
| | - Shonali Midha
- Department of Medical Oncology, Dana-Farber Cancer Institute, Jerome Lipper Center for Multiple Myeloma Research, Harvard Medical School, Boston, MA, USA
- Division of Hematology, Brigham and Women's Hospital, Boston, MA, USA
| | - Andrew J Yee
- Massachusetts General Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Giada Bianchi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Jerome Lipper Center for Multiple Myeloma Research, Harvard Medical School, Boston, MA, USA
- Division of Hematology, Brigham and Women's Hospital, Boston, MA, USA
| | - Catherine Piper
- Department of Medical Oncology, Dana-Farber Cancer Institute, Jerome Lipper Center for Multiple Myeloma Research, Harvard Medical School, Boston, MA, USA
| | - Alice Tattersall
- Department of Medical Oncology, Dana-Farber Cancer Institute, Jerome Lipper Center for Multiple Myeloma Research, Harvard Medical School, Boston, MA, USA
| | - Omar Nadeem
- Department of Medical Oncology, Dana-Farber Cancer Institute, Jerome Lipper Center for Multiple Myeloma Research, Harvard Medical School, Boston, MA, USA
| | - Jacob P Laubach
- Department of Medical Oncology, Dana-Farber Cancer Institute, Jerome Lipper Center for Multiple Myeloma Research, Harvard Medical School, Boston, MA, USA
| | - Paul G Richardson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Jerome Lipper Center for Multiple Myeloma Research, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Davis LN, Walker ZJ, Reiman LT, Parzych SE, Stevens BM, Jordan CT, Forsberg PA, Sherbenou DW. MYC Inhibition Potentiates CD8+ T Cells Against Multiple Myeloma and Overcomes Immunomodulatory Drug Resistance. Clin Cancer Res 2024; 30:3023-3035. [PMID: 38723281 PMCID: PMC11250500 DOI: 10.1158/1078-0432.ccr-24-0256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/10/2024] [Accepted: 05/07/2024] [Indexed: 07/16/2024]
Abstract
PURPOSE Immunomodulatory drugs (IMiDs), such as lenalidomide and pomalidomide, are a cornerstone of multiple myeloma (MM) therapies, yet the disease inevitably becomes refractory. IMiDs exert cytotoxicity by inducing cereblon-dependent proteasomal degradation of IKZF1 and IKZF3, resulting in downregulation of the oncogenic transcription factors IRF4 and MYC. To date, clinical IMiD resistance independent of cereblon or IKZF1/3 has not been well explored. Here, we investigated the roles of IRF4 and MYC in this context. EXPERIMENTAL DESIGN Using bone marrow aspirates from patients with IMiD-naïve or refractory MM, we examined IKZF1/3 protein levels and IRF4/MYC gene expression following ex vivo pomalidomide treatment via flow cytometry and qPCR. We also assessed exvivo sensitivity to the MYC inhibitor MYCi975 using flow cytometry. RESULTS We discovered that although pomalidomide frequently led to IKZF1/3 degradation in MM cells, it did not affect MYC gene expression in most IMiD-refractory samples. We subsequently demonstrated that MYCi975 exerted strong anti-MM effects in both IMiD-naïve and -refractory samples. Unexpectedly, we identified a cluster of differentiation 8+ (CD8+ T) cells from patients with MM as crucial effectors of MYCi975-induced cytotoxicity in primary MM samples, and we discovered that MYCi975 enhanced the cytotoxic functions of memory CD8+ T cells. We lastly observed synergy between MYCi975 and pomalidomide in IMiD-refractory samples, suggesting that restoring MYC downregulation can re-sensitize refractory MM to IMiDs. CONCLUSIONS Our study supports the concept that MYC represents an Achilles' heel in MM across disease states and that MYCi975 may be a promising therapeutic for patients with MM, particularly in combination with IMiDs.
Collapse
Affiliation(s)
- Lorraine N. Davis
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Zachary J. Walker
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Lauren T. Reiman
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sarah E. Parzych
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Brett M. Stevens
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Craig T. Jordan
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Peter A. Forsberg
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Daniel W. Sherbenou
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
7
|
Grigoreva TA, Novikova DS, Melino G, Barlev NA, Tribulovich VG. Ubiquitin recruiting chimera: more than just a PROTAC. Biol Direct 2024; 19:55. [PMID: 38978100 PMCID: PMC11232244 DOI: 10.1186/s13062-024-00497-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024] Open
Abstract
Ubiquitinylation of protein substrates results in various but distinct biological consequences, among which ubiquitin-mediated degradation is most well studied for its therapeutic application. Accordingly, artificially targeted ubiquitin-dependent degradation of various proteins has evolved into the therapeutically relevant PROTAC technology. This tethered ubiquitinylation of various targets coupled with a broad assortment of modifying E3 ubiquitin ligases has been made possible by rational design of bi-specific chimeric molecules that bring these proteins in proximity. However, forced ubiquitinylation inflicted by the binary warheads of a chimeric PROTAC molecule should not necessarily result in protein degradation but can be used to modulate other cellular functions. In this respect it should be noted that the ubiquitinylation of a diverse set of proteins is known to control their transport, transcriptional activity, and protein-protein interactions. This review provides examples of potential PROTAC usage based on non-degradable ubiquitinylation.
Collapse
Affiliation(s)
- Tatyana A Grigoreva
- Laboratory of Molecular Pharmacology, St. Petersburg State Institute of Technology (Technical University), St. Petersburg, 190013, Russia.
| | - Daria S Novikova
- Laboratory of Molecular Pharmacology, St. Petersburg State Institute of Technology (Technical University), St. Petersburg, 190013, Russia
| | - Gerry Melino
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Nick A Barlev
- Institute of Cytology RAS, Saint-Petersburg, 194064, Russia
- Department of Biomedical Studies, School of Medicine, Nazarbayev University, Astana, 010000, Kazakhstan
| | - Vyacheslav G Tribulovich
- Laboratory of Molecular Pharmacology, St. Petersburg State Institute of Technology (Technical University), St. Petersburg, 190013, Russia.
| |
Collapse
|
8
|
Bhowmick K, von Suskil M, Al-Odat OS, Elbezanti WO, Jonnalagadda SC, Budak-Alpdogan T, Pandey MK. Pathways to therapy resistance: The sheltering effect of the bone marrow microenvironment to multiple myeloma cells. Heliyon 2024; 10:e33091. [PMID: 39021902 PMCID: PMC11252793 DOI: 10.1016/j.heliyon.2024.e33091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/30/2024] [Accepted: 06/13/2024] [Indexed: 07/20/2024] Open
Abstract
Multiple Myeloma (MM) is a malignant expansion of plasma cells in the bone marrow (BM), resulting in a disease characterized by symptoms of end organ damage from light chain secretion, crowding of the BM, and bone lesions. Although the past two decades have been characterized by numerous novel therapies emerging, the disease remains incurable due to intrinsic or acquired drug resistance. A major player in MM's drug resistance arises from its intimate relationship with the BM microenvironment (BMME). Through stress-inducing conditions, soluble messengers, and physical adhesion to BM elements, the BMME activates numerous pathways in the myeloma cell. This not only propagates myeloma progression through survival and growth signals, but also specific mechanisms to circumvent therapeutic actions. In this review, we provide an overview of the BMME, the role of individual components in MM survival, and various therapy-specific resistance mechanisms reported in the literature.
Collapse
Affiliation(s)
- Kuntal Bhowmick
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Max von Suskil
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Omar S. Al-Odat
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Weam Othman Elbezanti
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
- Department of Hematology, MD Anderson Cancer Center at Cooper, Cooper University Health Care, Camden, NJ, USA
| | - Subash C. Jonnalagadda
- Department of Chemistry and Biochemistry, College of Science and Mathematics, Rowan University, Glassboro, NJ, USA
| | - Tulin Budak-Alpdogan
- Department of Hematology, MD Anderson Cancer Center at Cooper, Cooper University Health Care, Camden, NJ, USA
| | - Manoj K. Pandey
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
| |
Collapse
|
9
|
Barton BE, Collins MK, Chau CH, Choo-Wosoba H, Venzon DJ, Steinebach C, Garchitorena KM, Shah B, Sarin EL, Gütschow M, Figg WD. Preclinical Evaluation of a Novel Series of Polyfluorinated Thalidomide Analogs in Drug-Resistant Multiple Myeloma. Biomolecules 2024; 14:725. [PMID: 38927128 PMCID: PMC11201495 DOI: 10.3390/biom14060725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/09/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Immunomodulatory imide drugs (IMiDs) play a crucial role in the treatment landscape across various stages of multiple myeloma. Despite their evident efficacy, some patients may exhibit primary resistance to IMiD therapy, and acquired resistance commonly arises over time leading to inevitable relapse. It is critical to develop novel therapeutic options to add to the treatment arsenal to overcome IMiD resistance. We designed, synthesized, and screened a new class of polyfluorinated thalidomide analogs and investigated their anti-cancer, anti-angiogenic, and anti-inflammatory activity using in vitro and ex vivo biological assays. We identified four lead compounds that exhibit potent anti-myeloma, anti-angiogenic, anti-inflammatory properties using three-dimensional tumor spheroid models, in vitro tube formation, and ex vivo human saphenous vein angiogenesis assays, as well as the THP-1 inflammatory assay. Western blot analyses investigating the expression of proteins downstream of cereblon (CRBN) reveal that Gu1215, our primary lead candidate, exerts its activity through a CRBN-independent mechanism. Our findings demonstrate that the lead compound Gu1215 is a promising candidate for further preclinical development to overcome intrinsic and acquired IMiD resistance in multiple myeloma.
Collapse
Affiliation(s)
- Blaire E. Barton
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Matthew K. Collins
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cindy H. Chau
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hyoyoung Choo-Wosoba
- Biostatics and Data Management Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David J. Venzon
- Biostatics and Data Management Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christian Steinebach
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, 53121 Bonn, Germany
| | - Kathleen M. Garchitorena
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bhruga Shah
- Inova Heart and Vascular Institute, Inova Health System, Falls Church, VA 22042, USA
| | - Eric L. Sarin
- Inova Heart and Vascular Institute, Inova Health System, Falls Church, VA 22042, USA
| | - Michael Gütschow
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, 53121 Bonn, Germany
| | - William D. Figg
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
10
|
Van Oekelen O, Amatangelo M, Guo M, Upadhyaya B, Cribbs AP, Kelly G, Patel M, Kim-Schulze S, Flynt E, Lagana A, Gooding S, Merad M, Jagganath S, Pierceall WE, Oppermann U, Thakurta A, Parekh S. Iberdomide increases innate and adaptive immune cell subsets in the bone marrow of patients with relapsed/refractory multiple myeloma. Cell Rep Med 2024; 5:101584. [PMID: 38776911 PMCID: PMC11228551 DOI: 10.1016/j.xcrm.2024.101584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/11/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024]
Abstract
Iberdomide is a potent cereblon E3 ligase modulator (CELMoD agent) with promising efficacy and safety as a monotherapy or in combination with other therapies in patients with relapsed/refractory multiple myeloma (RRMM). Using a custom mass cytometry panel designed for large-scale immunophenotyping of the bone marrow tumor microenvironment (TME), we demonstrate significant increases of effector T and natural killer (NK) cells in a cohort of 93 patients with multiple myeloma (MM) treated with iberdomide, correlating findings to disease characteristics, prior therapy, and a peripheral blood immune phenotype. Notably, changes are dose dependent, associated with objective response, and independent of prior refractoriness to MM therapies. This suggests that iberdomide broadly induces innate and adaptive immune activation in the TME, contributing to its antitumor efficacy. Our approach establishes a strategy to study treatment-induced changes in the TME of patients with MM and, more broadly, patients with cancer and establishes rational combination strategies for iberdomide with immune-enhancing therapies to treat MM.
Collapse
Affiliation(s)
- Oliver Van Oekelen
- Department of Medicine, Mount Sinai Beth Israel, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Manman Guo
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Oxford University, Oxford, UK
| | - Bhaskar Upadhyaya
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Medicine, Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adam P Cribbs
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Geoffrey Kelly
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Manishkumar Patel
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Seunghee Kim-Schulze
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Erin Flynt
- Translational Medicine, Bristol Myers Squibb, Summit, NJ, USA
| | - Alessandro Lagana
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sarah Gooding
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Miriam Merad
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sundar Jagganath
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Medicine, Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Udo Oppermann
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Oxford University, Oxford, UK; Oxford Translational Myeloma Centre (OTMC), Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Anjan Thakurta
- Translational Medicine, Bristol Myers Squibb, Summit, NJ, USA; Oxford Translational Myeloma Centre (OTMC), Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Samir Parekh
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Medicine, Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
11
|
Nutt MJ, Stewart SG. Strengthening Molecular Glues: Design Strategies for Improving Thalidomide Analogs as Cereblon Effectors and Anticancer Agents. Drug Discov Today 2024; 29:104010. [PMID: 38704021 DOI: 10.1016/j.drudis.2024.104010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/19/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
In the two decades since a novel thalidomide analog was last approved, many promising drug candidates have emerged with remarkable potency as targeted protein degraders. Likewise, the advent of PROTACs for suppressing 'undruggable' protein targets reinforces the need for new analogs with improved cereblon affinity, target selectivity and drug-like properties. However, thalidomide and its approved derivatives remain plagued by several shortcomings, such as structural instability and poor solubility. Herein, we present a review of strategies for mitigating these shortcomings and highlight contemporary drug discovery approaches that have generated novel thalidomide analogs with enhanced efficacy as cereblon effectors and/or anticancer agents.
Collapse
Affiliation(s)
- Michael J Nutt
- School of Molecular Sciences, University of Western Australia, 35 Stirling Hwy, Crawley 6009, Australia.
| | - Scott G Stewart
- School of Molecular Sciences, University of Western Australia, 35 Stirling Hwy, Crawley 6009, Australia.
| |
Collapse
|
12
|
Akizuki Y, Kaypee S, Ohtake F, Ikeda F. The emerging roles of non-canonical ubiquitination in proteostasis and beyond. J Cell Biol 2024; 223:e202311171. [PMID: 38517379 PMCID: PMC10959754 DOI: 10.1083/jcb.202311171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/23/2024] Open
Abstract
Ubiquitin regulates various cellular functions by posttranslationally modifying substrates with diverse ubiquitin codes. Recent discoveries of new ubiquitin chain topologies, types of bonds, and non-protein substrates have substantially expanded the complexity of the ubiquitin code. Here, we describe the ubiquitin system covering the basic principles and recent discoveries related to mechanisms, technologies, and biological importance.
Collapse
Affiliation(s)
- Yoshino Akizuki
- Institute for Advanced Life Sciences, Hoshi University, Tokyo, Japan
| | - Stephanie Kaypee
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Fumiaki Ohtake
- Institute for Advanced Life Sciences, Hoshi University, Tokyo, Japan
| | - Fumiyo Ikeda
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| |
Collapse
|
13
|
Chen Y, Xue H, Jin J. Applications of protein ubiquitylation and deubiquitylation in drug discovery. J Biol Chem 2024; 300:107264. [PMID: 38582446 PMCID: PMC11087986 DOI: 10.1016/j.jbc.2024.107264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/08/2024] Open
Abstract
The ubiquitin (Ub)-proteasome system (UPS) is the major machinery mediating specific protein turnover in eukaryotic cells. By ubiquitylating unwanted, damaged, or harmful proteins and driving their degradation, UPS is involved in many important cellular processes. Several new UPS-based technologies, including molecular glue degraders and PROTACs (proteolysis-targeting chimeras) to promote protein degradation, and DUBTACs (deubiquitinase-targeting chimeras) to increase protein stability, have been developed. By specifically inducing the interactions between different Ub ligases and targeted proteins that are not otherwise related, molecular glue degraders and PROTACs degrade targeted proteins via the UPS; in contrast, by inducing the proximity of targeted proteins to deubiquitinases, DUBTACs are created to clear degradable poly-Ub chains to stabilize targeted proteins. In this review, we summarize the recent research progress in molecular glue degraders, PROTACs, and DUBTACs and their applications. We discuss immunomodulatory drugs, sulfonamides, cyclin-dependent kinase-targeting molecular glue degraders, and new development of PROTACs. We also introduce the principle of DUBTAC and its applications. Finally, we propose a few future directions of these three technologies related to targeted protein homeostasis.
Collapse
Affiliation(s)
- Yilin Chen
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Haoan Xue
- Life Sciences Institute, Zhejiang University, Hangzhou, China; Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, China
| | - Jianping Jin
- Life Sciences Institute, Zhejiang University, Hangzhou, China; Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, China; Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
14
|
Ito T. Protein degraders - from thalidomide to new PROTACs. J Biochem 2024; 175:507-519. [PMID: 38140952 DOI: 10.1093/jb/mvad113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Recently, the development of protein degraders (protein-degrading compounds) has prominently progressed. There are two remarkable classes of protein degraders: proteolysis-targeting chimeras (PROTACs) and molecular glue degraders (MGDs). Almost 70 years have passed since thalidomide was initially developed as a sedative-hypnotic drug, which is currently recognized as one of the most well-known MGDs. During the last two decades, a myriad of PROTACs and MGDs have been developed, and the molecular mechanism of action (MOA) of thalidomide was basically elucidated, including identifying its molecular target cereblon (CRBN). CRBN forms a Cullin Ring Ligase 4 with Cul4 and DDB1, whose substrate specificity is controlled by its binding ligands. Thalidomide, lenalidomide and pomalidomide, three CRBN-binding MGDs, were clinically approved to treat several intractable diseases (including multiple myeloma). Several other MGDs and CRBN-based PROTACs (ARV-110 and AVR-471) are undergoing clinical trials. In addition, several new related technologies regarding PROTACs and MGDs have also been developed, and achievements of protein degraders impact not only therapeutic fields but also basic biological science. In this article, I introduce the history of protein degraders, from the development of thalidomide to the latest PROTACs and related technologies.
Collapse
Affiliation(s)
- Takumi Ito
- Institute of Medical Science, Tokyo Medical University, 6-1-1, Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| |
Collapse
|
15
|
Luo Y, Li C, Niu Y, Wu S, Tian J, Hu Z, He J, Zhang Z, Liu H, Li Y, Wang T, Fang Y. Pomalidomide combined with dexamethasone for the treatment of relapsed/refractory multiple myeloma: a systematic review and meta-analysis. Expert Rev Hematol 2024; 17:127-134. [PMID: 38421372 DOI: 10.1080/17474086.2024.2326219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/15/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND To evaluate the efficacy and safety of pomalidomide in combination treatment of relapsed/refractory multiple myeloma (RRMM). METHODS Published clinical trials were searched in the Cochrane Library, PubMed, EMBASE to February 2023. The literature was screened and evaluated according to the inclusion criteria, and the data were analyzed by a random effect model. Overall response rate (ORR), overall survival (OS), progression-free survival (PFS) and full grade or ≥ 3 adverse events (AEs) were the outcomes. RESULTS This study included 31 clinical trials, which included 4776 patients. The pooled ORR of the doublet regimens was 33.3% (95%CI: 27-39%) and the triplet regimens was 66% (95%CI: 58-74%). Among the 25 included studies, the median PFS was 8.29 months (95%CI: 7.27-9.31), and nine studies reported median OS of 19.43 months (95%CI: 14.56-24.30). In terms of safety, the most common hematologic AEs of grade ≥ 3 were neutropenia (41%) and anemia (20%); Non-hematologic AEs were pneumonia (14%) and infection/febrile neutropenia (14%). CONCLUSIONS Pomalidomide combined treatment regimens have shown good clinical efficacy, especially in pomalidomide + dexamethasone combined with other drugs. In terms of safety, it's important to pay attention to the likelihood of hematological adverse events when used clinically. SYSTEMATIC REVIEW REGISTRATION PROSPERO: CRD42023420644.
Collapse
Affiliation(s)
- Ying Luo
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
- Phase I Clinical Research Center, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangdong, China
| | - Chen Li
- Phase I Clinical Research Center, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangdong, China
| | - Yuanchen Niu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
- Phase I Clinical Research Center, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangdong, China
| | - Shuanzhi Wu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
- Phase I Clinical Research Center, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangdong, China
| | - Jingyuan Tian
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
- Phase I Clinical Research Center, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangdong, China
| | - Zhiqin Hu
- Phase I Clinical Research Center, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangdong, China
| | - Jin He
- Phase I Clinical Research Center, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangdong, China
| | - Zhixin Zhang
- Phase I Clinical Research Center, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangdong, China
| | - Haiyan Liu
- Phase I Clinical Research Center, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangdong, China
| | - Yongmei Li
- Phase I Clinical Research Center, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangdong, China
| | - Tenghua Wang
- Phase I Clinical Research Center, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangdong, China
| | - Yi Fang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
- Phase I Clinical Research Center, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangdong, China
- Clinical Trial Institution Research Ward, Peking University People's Hospital, Beijing, China
| |
Collapse
|
16
|
Du MT, Bergsagel PL, Chesi M. Immunocompetent Mouse Models of Multiple Myeloma: Therapeutic Implications. Hematol Oncol Clin North Am 2024; 38:533-546. [PMID: 38233233 PMCID: PMC10942746 DOI: 10.1016/j.hoc.2023.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Immunocompetent mouse models of multiple myeloma (MM) are particularly needed in the era of T cell redirected therapy to understand drivers of sensitivity and resistance, optimize responses, and prevent toxicities. Three mouse models have been extensively characterized: the Balb/c plasmacytomas, the 5TMM, and the Vk*MYC. In the last year, additional models have been generated, which, for the first time, capture primary MM initiating events, like MMSET/NSD2 or cyclin D1 dysregulation. However, the long latency needed for tumor development and the lack of transplantable lines limit their utilization. Future studies should focus on modeling hyperdiploid MM.
Collapse
Affiliation(s)
- Megan Tien Du
- Department of Medicine, Mayo Clinic, 13400 East Shea Boulevard, MCCRB 3-040, Scottsdale, AZ 85259, USA
| | - Peter Leif Bergsagel
- Department of Medicine, Mayo Clinic, 13400 East Shea Boulevard, MCCRB 3-040, Scottsdale, AZ 85259, USA
| | - Marta Chesi
- Department of Medicine, Mayo Clinic, 13400 East Shea Boulevard, MCCRB 3-040, Scottsdale, AZ 85259, USA.
| |
Collapse
|
17
|
Lee H, Neri P, Bahlis NJ. Cereblon-Targeting Ligase Degraders in Myeloma: Mechanisms of Action and Resistance. Hematol Oncol Clin North Am 2024; 38:305-319. [PMID: 38302306 DOI: 10.1016/j.hoc.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Cereblon-targeting degraders, including immunomodulatory imide drugs lenalidomide and pomalidomide alongside cereblon E3 ligase modulators like iberdomide and mezigdomide, have demonstrated significant anti-myeloma effects. These drugs play a crucial role in diverse therapeutic approaches for multiple myeloma (MM), emphasizing their therapeutic importance across various disease stages. Despite their evident efficacy, approximately 5% to 10% of MM patients exhibit primary resistance to lenalidomide, and resistance commonly develops over time. Understanding the intricate mechanisms of action and resistance to this drug class becomes imperative for refining and advancing novel therapeutic combinations.
Collapse
Affiliation(s)
- Holly Lee
- Arnie Charbonneau Cancer Institute, University of Calgary, Heritage Medical Research Building, 3330 Hospital Drive N.W., Calgary, Alberta T2N 4N1, Canada
| | - Paola Neri
- Arnie Charbonneau Cancer Institute, University of Calgary, Heritage Medical Research Building, 3330 Hospital Drive N.W., Calgary, Alberta T2N 4N1, Canada
| | - Nizar J Bahlis
- Arnie Charbonneau Cancer Institute, University of Calgary, Heritage Medical Research Building, 3330 Hospital Drive N.W., Calgary, Alberta T2N 4N1, Canada.
| |
Collapse
|
18
|
Chowdhury B, Garg S, Ni W, Sattler M, Sanchez D, Meng C, Akatsu T, Stone R, Forrester W, Harrington E, Buhrlage SJ, Griffin JD, Weisberg E. Synergy between BRD9- and IKZF3-Targeting as a Therapeutic Strategy for Multiple Myeloma. Cancers (Basel) 2024; 16:1319. [PMID: 38610997 PMCID: PMC11010819 DOI: 10.3390/cancers16071319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Progress in the treatment of multiple myeloma (MM) has resulted in improvement in the survival rate. However, there is still a need for more efficacious and tolerated therapies. We and others have shown that bromodomain-containing protein 9 (BRD9), a member of the non-canonical SWI/SNF chromatin remodeling complex, plays a role in MM cell survival, and targeting BRD9 selectively blocks MM cell proliferation and synergizes with IMiDs. We found that synergy in vitro is associated with the downregulation of MYC and Ikaros proteins, including IKZF3, and overexpression of IKZF3 or MYC could partially reverse synergy. RNA-seq analysis revealed synergy to be associated with the suppression of pathways associated with MYC and E2F target genes and pathways, including cell cycle, cell division, and DNA replication. Stimulated pathways included cell adhesion and immune and inflammatory response. Importantly, combining IMiD treatment and BRD9 targeting, which leads to the downregulation of MYC protein and upregulation of CRBN protein, was able to override IMiD resistance of cells exposed to iberdomide in long-term culture. Taken together, our results support the notion that combination therapy based on agents targeting BRD9 and IKZF3, two established dependencies in MM, represents a promising novel therapeutic strategy for MM and IMiD-resistant disease.
Collapse
Affiliation(s)
- Basudev Chowdhury
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; (B.C.); (S.G.); (W.N.); (M.S.); (D.S.); (T.A.); (R.S.)
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Swati Garg
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; (B.C.); (S.G.); (W.N.); (M.S.); (D.S.); (T.A.); (R.S.)
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Wei Ni
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; (B.C.); (S.G.); (W.N.); (M.S.); (D.S.); (T.A.); (R.S.)
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Martin Sattler
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; (B.C.); (S.G.); (W.N.); (M.S.); (D.S.); (T.A.); (R.S.)
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Dana Sanchez
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; (B.C.); (S.G.); (W.N.); (M.S.); (D.S.); (T.A.); (R.S.)
| | - Chengcheng Meng
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; (B.C.); (S.G.); (W.N.); (M.S.); (D.S.); (T.A.); (R.S.)
| | - Taisei Akatsu
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; (B.C.); (S.G.); (W.N.); (M.S.); (D.S.); (T.A.); (R.S.)
| | - Richard Stone
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; (B.C.); (S.G.); (W.N.); (M.S.); (D.S.); (T.A.); (R.S.)
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | | | | | - Sara J. Buhrlage
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA;
| | - James D. Griffin
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; (B.C.); (S.G.); (W.N.); (M.S.); (D.S.); (T.A.); (R.S.)
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Ellen Weisberg
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; (B.C.); (S.G.); (W.N.); (M.S.); (D.S.); (T.A.); (R.S.)
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
19
|
Tomita U, Ishimoto Y, Ri M, Kawase Y, Hizukuri Y, Maru C, Nanai K, Nakamura R, Nakayama M, Oguchi-Oshima K, Sumi H, Ohtsuka T, Iida S, Agatsuma T. A novel T cell-redirecting anti-GPRC5D × CD3 bispecific antibody with potent antitumor activity in multiple myeloma preclinical models. Sci Rep 2024; 14:5135. [PMID: 38429446 PMCID: PMC10907593 DOI: 10.1038/s41598-024-55143-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/20/2024] [Indexed: 03/03/2024] Open
Abstract
G-protein-coupled receptor class 5 member D (GPRC5D) is detected in malignant plasma cells in approximately 90% of patients diagnosed with multiple myeloma (MM). Here, we constructed BsAb5003, a novel humanized bispecific monoclonal antibody targeting CD3 and GPRC5D, and evaluated its therapeutic impact on MM. BsAb5003 induced specific cytotoxicity of GPRC5D-positive MM cells with concomitant T cell activation and cytokine release. The efficacy of BsAb5003 was associated with GPRC5D expression levels in MM cell lines. Flow cytometry analysis of bone marrow mononuclear cells (BMMNCs) from 49 MM patients revealed that GPRC5D was expressed in a wide population of MM patients, including heavily treated and high-risk patients. In ex vivo assays using BMMNCs, BsAb5003 induced potent efficacy against CD138 + MM cells in both newly diagnosed and relapsed/refractory patient samples in a GPRC5D expression-dependent manner. BsAb5003 significantly enhanced T cell activation and cytokine production in combination with immunomodulatory drugs (IMiDs) against MM cell lines. BsAb5003 also demonstrated significant inhibition of in vivo tumor growth by recruiting T cells. Taken together, these results suggest that T cell-redirecting bispecific antibody targeting GPRC5D as monotherapy and combination therapy with IMiDs could be a highly potent and effective treatment approach for a wide population of MM patients.
Collapse
Affiliation(s)
| | | | - Masaki Ri
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | | | | | | | | | | | | | | | | | | | - Shinsuke Iida
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | | |
Collapse
|
20
|
Nie X, Zhao Y, Tang H, Zhang Z, Liao J, Almodovar-Rivera CM, Sundaresan R, Xie H, Guo L, Wang B, Guan H, Xing Y, Tang W. Development of Phenyl-substituted Isoindolinone- and Benzimidazole-type Cereblon Ligands for Targeted Protein Degradation. Chembiochem 2024; 25:e202300685. [PMID: 38116854 PMCID: PMC10922875 DOI: 10.1002/cbic.202300685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/08/2023] [Accepted: 12/19/2023] [Indexed: 12/21/2023]
Abstract
Thalidomide, pomalidomide and lenalidomide, collectively referred to as immunomodulatory imide drugs (IMiDs), are frequently employed in proteolysis-targeting chimeras (PROTACs) as cereblon (CRBN) E3 ligase-recruiting ligands. However, their molecular glue properties that co-opt the CRL4CRBN to degrade its non-natural substrates may lead to undesired off-target effects for the IMiD-based PROTAC degraders. Herein, we reported a small library of potent and cell-permeable CRBN ligands, which exert high selectivity over the well-known CRBN neo-substrates of IMiDs by structure-based design. They were further utilized to construct bromodomain-containing protein 4 (BRD4) degraders, which successfully depleted BRD4 in the tested cells. Overall, we reported a series of functionalized CRBN recruiters that circumvent the promiscuity from traditional IMiDs, and this study is informative to the development of selective CRBN-recruiting PROTACs for many other therapeutic targets.
Collapse
Affiliation(s)
- Xueqing Nie
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Yu Zhao
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Hua Tang
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Zhongrui Zhang
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Junzhuo Liao
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Chelsi M Almodovar-Rivera
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Ramya Sundaresan
- Department of Oncology, UW Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Haibo Xie
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Le Guo
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Bo Wang
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Hongqing Guan
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Yongna Xing
- Department of Oncology, UW Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Weiping Tang
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53705, USA
| |
Collapse
|
21
|
Setia N, Almuqdadi HTA, Abid M. Journey of Von Hippel-Lindau (VHL) E3 ligase in PROTACs design: From VHL ligands to VHL-based degraders. Eur J Med Chem 2024; 265:116041. [PMID: 38199162 DOI: 10.1016/j.ejmech.2023.116041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/08/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024]
Abstract
The scientific community has shown considerable interest in proteolysis-targeting chimeras (PROTACs) in the last decade, indicating their remarkable potential as a means of achieving targeted protein degradation (TPD). Not only are PROTACs seen as valuable tools in molecular biology but their emergence as a modality for drug discovery has also garnered significant attention. PROTACs bind to E3 ligases and target proteins through respective ligands connected via a linker to induce proteasome-mediated protein degradation. The discovery of small molecule ligands for E3 ligases has led to the prevalent use of various E3 ligases in PROTAC design. Furthermore, the incorporation of different types of linkers has proven beneficial in enhancing the efficacy of PROTACs. By far more than 3300 PROTACs have been reported in the literature. Notably, Von Hippel-Lindau (VHL)-based PROTACs have surfaced as a propitious strategy for targeting proteins, even encompassing those that were previously considered non-druggable. VHL is extensively utilized as an E3 ligase in the advancement of PROTACs owing to its widespread expression in various tissues and well-documented binders. Here, we review the discovery of VHL ligands, the types of linkers employed to develop VHL-based PROTACs, and their subsequent modulation to design advanced non-conventional degraders to target various disease-causing proteins. Furthermore, we provide an overview of other E3 ligases recruited in the field of PROTAC technology.
Collapse
Affiliation(s)
- Nisha Setia
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | | | - Mohammad Abid
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India.
| |
Collapse
|
22
|
Zhan X, Liu X, Rang L, Shen M, Zhang J, Tang R, Fan S, Zhao F, Li X, Zhang X, Huang Z, Zhang S. Detection of lenalidomide metabolites in urine to discover drug-resistant compounds. Clin Chim Acta 2024; 553:117707. [PMID: 38103853 DOI: 10.1016/j.cca.2023.117707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/03/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
Lenalidomide is the first-line drug for the clinical treatment of multiple myeloma. However, its efficacy differs significantly among patients. Clinically, after lenalidomide treatment, few patients' conditions worsened, whereas others remained stable or improved. To clarify the reasons for this difference in efficacy, 20 patients with multiple myeloma who received maintenance treatment with lenalidomide were retrospectively included in this study. Lenalidomide metabolic compounds were detected in patient urine using mass spectrometry. A rapid and accurate ultra-performance liquid chromatography-time-of-flight tandem mass spectrometry (UPLC-TOF-MS/MS) method was used to characterize metabolites in the urine of different patients. Eleven metabolites, including four new compounds, were identified and characterized in all the samples. Among these, two metabolites were found to have obvious discrepancies in different groups of patients. One metabolite named Denitrified-2 glutarimide, a new potential compound, was only detected in the urine of ineffective and stable patients, whereas the other metabolite named 5-Hydroxy-lenalidomide was found only in the urine of effective patients.
Collapse
Affiliation(s)
- Xiaokai Zhan
- Division of Oncology and hematology, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gongren Tiyuchang Nanlu, Chaoyang District, Beijing, 100020, PR China
| | - Xikun Liu
- State key laboratory of bioactive substances and functions of natural medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union medical college, 1 Xian Nong Tan Street, Xicheng District, Beijing, 100050, PR China
| | - Li Rang
- Pathology Department, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gongren Tiyuchang Nanlu, Chaoyang District, Beijing, 100020, PR China
| | - Man Shen
- Division of Oncology and hematology, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gongren Tiyuchang Nanlu, Chaoyang District, Beijing, 100020, PR China
| | - Jiajia Zhang
- Division of Oncology and hematology, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gongren Tiyuchang Nanlu, Chaoyang District, Beijing, 100020, PR China
| | - Ran Tang
- Division of Oncology and hematology, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gongren Tiyuchang Nanlu, Chaoyang District, Beijing, 100020, PR China
| | - Sibin Fan
- Division of Oncology and hematology, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gongren Tiyuchang Nanlu, Chaoyang District, Beijing, 100020, PR China
| | - Fengyi Zhao
- Division of Oncology and hematology, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gongren Tiyuchang Nanlu, Chaoyang District, Beijing, 100020, PR China
| | - Xin Li
- Division of Oncology and hematology, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gongren Tiyuchang Nanlu, Chaoyang District, Beijing, 100020, PR China
| | - Xiaoying Zhang
- State key laboratory of bioactive substances and functions of natural medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union medical college, 1 Xian Nong Tan Street, Xicheng District, Beijing, 100050, PR China.
| | - Zhongxia Huang
- Division of Oncology and hematology, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gongren Tiyuchang Nanlu, Chaoyang District, Beijing, 100020, PR China.
| | - Sen Zhang
- State key laboratory of bioactive substances and functions of natural medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union medical college, 1 Xian Nong Tan Street, Xicheng District, Beijing, 100050, PR China.
| |
Collapse
|
23
|
Neri P, Barwick BG, Jung D, Patton JC, Maity R, Tagoug I, Stein CK, Tilmont R, Leblay N, Ahn S, Lee H, Welsh SJ, Riggs DL, Stong N, Flynt E, Thakurta A, Keats JJ, Lonial S, Bergsagel PL, Boise LH, Bahlis NJ. ETV4-Dependent Transcriptional Plasticity Maintains MYC Expression and Results in IMiD Resistance in Multiple Myeloma. Blood Cancer Discov 2024; 5:56-73. [PMID: 37934799 PMCID: PMC10772538 DOI: 10.1158/2643-3230.bcd-23-0061] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 10/01/2023] [Accepted: 11/03/2023] [Indexed: 11/09/2023] Open
Abstract
Immunomodulatory drugs (IMiD) are a backbone therapy for multiple myeloma (MM). Despite their efficacy, most patients develop resistance, and the mechanisms are not fully defined. Here, we show that IMiD responses are directed by IMiD-dependent degradation of IKZF1 and IKZF3 that bind to enhancers necessary to sustain the expression of MYC and other myeloma oncogenes. IMiD treatment universally depleted chromatin-bound IKZF1, but eviction of P300 and BRD4 coactivators only occurred in IMiD-sensitive cells. IKZF1-bound enhancers overlapped other transcription factor binding motifs, including ETV4. Chromatin immunoprecipitation sequencing showed that ETV4 bound to the same enhancers as IKZF1, and ETV4 CRISPR/Cas9-mediated ablation resulted in sensitization of IMiD-resistant MM. ETV4 expression is associated with IMiD resistance in cell lines, poor prognosis in patients, and is upregulated at relapse. These data indicate that ETV4 alleviates IKZF1 and IKZF3 dependency in MM by maintaining oncogenic enhancer activity and identify transcriptional plasticity as a previously unrecognized mechanism of IMiD resistance. SIGNIFICANCE We show that IKZF1-bound enhancers are critical for IMiD efficacy and that the factor ETV4 can bind the same enhancers and substitute for IKZF1 and mediate IMiD resistance by maintaining MYC and other oncogenes. These data implicate transcription factor redundancy as a previously unrecognized mode of IMiD resistance in MM. See related article by Welsh, Barwick, et al., p. 34. See related commentary by Yun and Cleveland, p. 5. This article is featured in Selected Articles from This Issue, p. 4.
Collapse
Affiliation(s)
- Paola Neri
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Canada
| | - Benjamin G. Barwick
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - David Jung
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Canada
| | - Jonathan C. Patton
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Ranjan Maity
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Canada
| | - Ines Tagoug
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Canada
| | - Caleb K. Stein
- Division of Hematology and Oncology, Mayo Clinic, Scottsdale, Arizona
| | - Remi Tilmont
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Canada
| | - Noemie Leblay
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Canada
| | - Sungwoo Ahn
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Canada
| | - Holly Lee
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Canada
| | - Seth J. Welsh
- Division of Hematology and Oncology, Mayo Clinic, Scottsdale, Arizona
| | - Daniel L. Riggs
- Division of Hematology and Oncology, Mayo Clinic, Scottsdale, Arizona
| | - Nicholas Stong
- Translational Medicine, Bristol Myers Squibb, Summit, New Jersey
| | - Erin Flynt
- Predictive Sciences, Bristol Myers Squibb, Summit, New Jersey
| | - Anjan Thakurta
- Oxford Centre for Translational Myeloma Research, University of Oxford, Oxford, United Kingdom
| | | | - Sagar Lonial
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - P. Leif Bergsagel
- Division of Hematology and Oncology, Mayo Clinic, Scottsdale, Arizona
| | - Lawrence H. Boise
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Nizar J. Bahlis
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Canada
| |
Collapse
|
24
|
Mikulski D, Robak P, Mirocha G, Ryżewska W, Stańczak K, Okoński K, Kościelny K, Robak T. An elevated systemic inflammation index is related to an inferior response to pomalidomide and dexamethasone treatment in patients with relapsed and refractory multiple myeloma. Contemp Oncol (Pozn) 2023; 27:139-146. [PMID: 38239862 PMCID: PMC10793620 DOI: 10.5114/wo.2023.133506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 09/19/2023] [Indexed: 01/22/2024] Open
Abstract
Introduction The systemic inflammation index (SII) might serve as an indicator of the equilibrium between the inflammatory and immune responses. The aim of the study was to determine the clinical value and prognostic significance of SII in the cohort of multiple myeloma (MM) patients treated with a regimen of pomalidomide and dexamethasone (Pd). Material and methods This retrospective, real-life study included patients who received a Pd regimen in our centre between November 2018 and July 2022. The systemic inflammation index was calculated from peripheral blood counts of platelets, neutrophils, and lymphocytes collected shortly before commencement of Pd treatment using the equation: SII = N × P/L, where N, P, and L are the respective counts per litre of peripheral blood for neutrophils, platelets, and lymphocytes. Results The study group consisted of 54 patients. Most patients received Pd as the third (38.9%) or fourth (37.0%) line of treatment. The median number of completed treatment cycles was 5 (IQR: 1-12). The median progression-free survival (PFS) was 6.8 months and overall survival (OS) 14.8 months. High SII (> 374) was an independent prognostic factor for PFS (HR = 3.0, 95% CI: 1.4-6.3, p < 0.01) and OS (HR = 2.2, 95% CI: 1.0-4.6, p = 0.04). In the low SII group, the respective median PFS and OS values were 9.6 and 21.7 months, compared to 2.6 (p = 0.018) and 5.5 months (p = 0.035) in the high SII group. Conclusions The systemic inflammation index has prognostic significance in MM patients treated with Pd. A high SII predicts a poorer outcome in pretreated MM patients undergoing Pd treatment evaluation. As such, it may well be a key factor for guiding subsequent treatment decisions.
Collapse
Affiliation(s)
- Damian Mikulski
- Department of Hematooncology, Copernicus Memorial Hospital, Comprehensive Cancer Centre and Traumatology, Łódź, Poland
- Department of Biostatistics and Translational Medicine, Medical University of Łódź, Łódź, Poland
| | - Paweł Robak
- Department of Hematooncology, Copernicus Memorial Hospital, Comprehensive Cancer Centre and Traumatology, Łódź, Poland
- Department of Hematology, Medical University of Łódź, Łódź, Poland
| | - Grzegorz Mirocha
- Department of Biostatistics and Translational Medicine, Medical University of Łódź, Łódź, Poland
| | | | - Kamila Stańczak
- Department of Hematology, Medical University of Łódź, Łódź, Poland
| | - Karol Okoński
- Department of Biostatistics and Translational Medicine, Medical University of Łódź, Łódź, Poland
| | - Kacper Kościelny
- Department of Biostatistics and Translational Medicine, Medical University of Łódź, Łódź, Poland
| | - Tadeusz Robak
- Department of Hematology, Medical University of Łódź, Łódź, Poland
- Department of General Hematology, Copernicus Memorial Hospital, Comprehensive Cancer Centre and Traumatology, Łódź, Poland
| |
Collapse
|
25
|
Borsi E, Mazzocchetti G, Dico AF, Vigliotta I, Martello M, Poletti A, Solli V, Armuzzi S, Taurisano B, Kanapari A, Pistis I, Zamagni E, Tacchetti P, Pantani L, Mancuso K, Rocchi S, Rizzello I, Cavo M, Terragna C. High levels of CRBN isoform lacking IMiDs binding domain predicts for a worse response to IMiDs-based upfront therapy in newly diagnosed myeloma patients. Clin Exp Med 2023; 23:5227-5239. [PMID: 37815734 PMCID: PMC10725394 DOI: 10.1007/s10238-023-01205-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/22/2023] [Indexed: 10/11/2023]
Abstract
In recent years, the immunoderivative (IMiD) agents have been extensively used for the treatment of multiple myeloma (MM). IMiDs and their newer derivatives CRBN E3 ligase modulator bind the E3 ligase substrate recognition adapter protein cereblon (CRBN), which has been recognized as one of the IMiDs' direct target proteins, and it is essential for the therapeutic effect of these agents.High expression of CRBN was associated with improved clinical response in patients with MM treated with IMiDs, further confirming that the expression of IMiDs' direct target protein CRBN is required for the anti-MM activity. CRBN's central role as a target of IMiDs suggests potential utility as a predictive biomarker of response or resistance to IMiDs therapy. Additionally, the presence of alternatively spliced variants of CRBN in MM cells, especially those lacking the drug-binding domain for IMiDs, raise questions concerning their potential biological function, making difficult the transcript measurement, which leads to inaccurate overestimation of full-length CRBN transcripts. In sight of this, in the present study, we evaluated the CRBN expression, both full-length and spliced isoforms, by using real-time assay data from 87 patients and RNA sequencing data from 50 patients (n = 137 newly diagnosed MM patients), aiming at defining CRBN's role as a predictive biomarker for response to IMiDs-based induction therapy. We found that the expression level of the spliced isoform tends to be higher in not-responding patients, confirming that the presence of a more CRBN spliced transcript predicts for lack of IMiDs response.
Collapse
Affiliation(s)
- Enrica Borsi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna-Istituto di Ematologia "Seràgnoli", Bologna, Italy.
| | - Gaia Mazzocchetti
- IRCCS Azienda Ospedaliero-Universitaria di Bologna-Istituto di Ematologia "Seràgnoli", Bologna, Italy
- DIMEC-Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | | | - Ilaria Vigliotta
- IRCCS Azienda Ospedaliero-Universitaria di Bologna-Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Marina Martello
- IRCCS Azienda Ospedaliero-Universitaria di Bologna-Istituto di Ematologia "Seràgnoli", Bologna, Italy
- DIMEC-Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - Andrea Poletti
- IRCCS Azienda Ospedaliero-Universitaria di Bologna-Istituto di Ematologia "Seràgnoli", Bologna, Italy
- DIMEC-Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - Vincenza Solli
- IRCCS Azienda Ospedaliero-Universitaria di Bologna-Istituto di Ematologia "Seràgnoli", Bologna, Italy
- DIMEC-Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - Silvia Armuzzi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna-Istituto di Ematologia "Seràgnoli", Bologna, Italy
- DIMEC-Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - Barbara Taurisano
- IRCCS Azienda Ospedaliero-Universitaria di Bologna-Istituto di Ematologia "Seràgnoli", Bologna, Italy
- DIMEC-Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - Ajsi Kanapari
- IRCCS Azienda Ospedaliero-Universitaria di Bologna-Istituto di Ematologia "Seràgnoli", Bologna, Italy
- DIMEC-Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - Ignazia Pistis
- IRCCS Azienda Ospedaliero-Universitaria di Bologna-Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Elena Zamagni
- IRCCS Azienda Ospedaliero-Universitaria di Bologna-Istituto di Ematologia "Seràgnoli", Bologna, Italy
- DIMEC-Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - Paola Tacchetti
- IRCCS Azienda Ospedaliero-Universitaria di Bologna-Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Lucia Pantani
- IRCCS Azienda Ospedaliero-Universitaria di Bologna-Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Katia Mancuso
- IRCCS Azienda Ospedaliero-Universitaria di Bologna-Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Serena Rocchi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna-Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Ilaria Rizzello
- IRCCS Azienda Ospedaliero-Universitaria di Bologna-Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Michele Cavo
- IRCCS Azienda Ospedaliero-Universitaria di Bologna-Istituto di Ematologia "Seràgnoli", Bologna, Italy
- DIMEC-Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - Carolina Terragna
- IRCCS Azienda Ospedaliero-Universitaria di Bologna-Istituto di Ematologia "Seràgnoli", Bologna, Italy.
| |
Collapse
|
26
|
Mitchell JL, Khan D, Rana RH, Kriek N, Unsworth AJ, Sage T, Bye AP, Laffan M, Shapiro S, Thakurta A, Grech H, Ramasamy K, Gibbins JM. Multiple myeloma and its treatment contribute to increased platelet reactivity. Platelets 2023; 34:2264940. [PMID: 37822056 DOI: 10.1080/09537104.2023.2264940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023]
Abstract
Multiple myeloma (MM) and its precursor states, smoldering myeloma (SM) and monoclonal gammopathy of undetermined significance (MGUS) are associated with increased incidence of thrombosis, however the cause of this is unknown. Lenalidomide treatment of MM substantially improves patient survival, although significantly increases thrombotic risk by an unknown mechanism. This pilot study aimed to establish the impact of MM and its treatment with Lenalidomide on platelet function. We analyzed platelet function in MGUS, SM and MM compared to healthy controls. We report an increase in platelet reactivity in MGUS, SM, and MM where increases in fibrinogen binding, P-selectin exposure, altered receptor expression, elevated levels of aggregation and enhanced sensitivity to agonist stimulation were observed. We also demonstrate an increase in patient platelet reactivity post Lenalidomide treatment compared to pre-treatment. We show Lenalidomide treatment of platelets ex vivo increased reactivity that was associated with formation of larger thrombi at arterial shear rates but not venous shear rates. This study demonstrates a clear increase in platelet reactivity and prothrombotic potential in patients with MGUS, SM and MM which is elevated further upon treatment with Lenalidomide. Our observations suggest that more detailed studies are warranted to determine mechanisms of thrombotic complications to enable the development of new preventative strategies that specifically target platelets.
Collapse
Affiliation(s)
- Joanne L Mitchell
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, UK
- Institute for Cardiovascular Research, University of Birmingham, Birmingham, UK
| | - Dalia Khan
- Blood Theme Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Rekha H Rana
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, UK
| | - Neline Kriek
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, UK
| | - Amanda J Unsworth
- Department of Life Sciences, Manchester Metropolitan University, Manchester, UK
| | - Tanya Sage
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, UK
| | - Alexander P Bye
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, UK
| | - Michael Laffan
- Centre for Haematology, Department of Medicine, Imperial College London, London, UK
| | - Susan Shapiro
- Blood Theme Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Radcliffe Department of Medicine, Oxford University, Oxford, UK
| | - Anjan Thakurta
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, UK
| | - Henri Grech
- Department of Haematology, Royal Berkshire Hospitals NHS Foundation Trust, Reading, UK
| | - Karthik Ramasamy
- Blood Theme Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Jonathan M Gibbins
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, UK
| |
Collapse
|
27
|
Jiang Y, Ni S, Xiao B, Jia L. Function, mechanism and drug discovery of ubiquitin and ubiquitin-like modification with multiomics profiling for cancer therapy. Acta Pharm Sin B 2023; 13:4341-4372. [PMID: 37969742 PMCID: PMC10638515 DOI: 10.1016/j.apsb.2023.07.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/21/2023] [Accepted: 07/17/2023] [Indexed: 11/17/2023] Open
Abstract
Ubiquitin (Ub) and ubiquitin-like (Ubl) pathways are critical post-translational modifications that determine whether functional proteins are degraded or activated/inactivated. To date, >600 associated enzymes have been reported that comprise a hierarchical task network (e.g., E1-E2-E3 cascade enzymatic reaction and deubiquitination) to modulate substrates, including enormous oncoproteins and tumor-suppressive proteins. Several strategies, such as classical biochemical approaches, multiomics, and clinical sample analysis, were combined to elucidate the functional relations between these enzymes and tumors. In this regard, the fundamental advances and follow-on drug discoveries have been crucial in providing vital information concerning contemporary translational efforts to tailor individualized treatment by targeting Ub and Ubl pathways. Correspondingly, emphasizing the current progress of Ub-related pathways as therapeutic targets in cancer is deemed essential. In the present review, we summarize and discuss the functions, clinical significance, and regulatory mechanisms of Ub and Ubl pathways in tumorigenesis as well as the current progress of small-molecular drug discovery. In particular, multiomics analyses were integrated to delineate the complexity of Ub and Ubl modifications for cancer therapy. The present review will provide a focused and up-to-date overview for the researchers to pursue further studies regarding the Ub and Ubl pathways targeted anticancer strategies.
Collapse
Affiliation(s)
| | | | - Biying Xiao
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Lijun Jia
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| |
Collapse
|
28
|
Chong PSY, Chooi JY, Lim JSL, Leow ACY, Toh SHM, Azaman I, Koh MY, Teoh PJ, Tan TZ, Chung TH, Chng WJ. Histone Methyltransferase NSD2 Activates PKCα to Drive Metabolic Reprogramming and Lenalidomide Resistance in Multiple Myeloma. Cancer Res 2023; 83:3414-3427. [PMID: 37463241 DOI: 10.1158/0008-5472.can-22-3481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/07/2023] [Accepted: 07/14/2023] [Indexed: 07/20/2023]
Abstract
Multiple myeloma cells undergo metabolic reprogramming in response to the hypoxic and nutrient-deprived bone marrow microenvironment. Primary oncogenes in recurrent translocations might be able to drive metabolic heterogeneity to survive the microenvironment that can present new vulnerabilities for therapeutic targeting. t(4;14) translocation leads to the universal overexpression of histone methyltransferase NSD2 that promotes plasma cell transformation through a global increase in H3K36me2. Here, we identified PKCα as an epigenetic target that contributes to the oncogenic potential of NSD2. RNA sequencing of t(4;14) multiple myeloma cell lines revealed a significant enrichment in the regulation of metabolic processes by PKCα, and the glycolytic gene, hexokinase 2 (HK2), was transcriptionally regulated by PKCα in a PI3K/Akt-dependent manner. Loss of PKCα displaced mitochondria-bound HK2 and reversed sensitivity to the glycolytic inhibitor 3-bromopyruvate. In addition, the perturbation of glycolytic flux led to a metabolic shift to a less energetic state and decreased ATP production. Metabolomics analysis indicated lactate as a differential metabolite associated with PKCα. As a result, PKCα conferred resistance to the immunomodulatory drugs (IMiD) lenalidomide in a cereblon-independent manner and could be phenocopied by either overexpression of HK2 or direct supplementation of lactate. Clinically, t(4;14) patients had elevated plasma lactate levels and did not benefit from lenalidomide-based regimens. Altogether, this study provides insights into the epigenetic-metabolism cross-talk in multiple myeloma and highlights the opportunity for therapeutic intervention that leverages the distinct metabolic program in t(4;14) myeloma. SIGNIFICANCE Aberrant glycolysis driven by NSD2-mediated upregulation of PKCα can be therapeutically exploited using metabolic inhibitors with lactate as a biomarker to identify high-risk patients who exhibit poor response towards IMiD-based regimens.
Collapse
Affiliation(s)
- Phyllis S Y Chong
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Jing-Yuan Chooi
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Julia S L Lim
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Aaron C Y Leow
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Sabrina Hui Min Toh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Irfan Azaman
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Mun Yee Koh
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Phaik Ju Teoh
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Tae-Hoon Chung
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Wee Joo Chng
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- Department of Hematology-Oncology, National University Cancer Institute of Singapore, National University Health System, Singapore
| |
Collapse
|
29
|
Tang S, Zhang F, Li J, Dong H, Yang Q, Liu J, Fu Y. The selective activator protein-1 inhibitor T-5224 regulates the IRF4/MYC axis and exerts cooperative antimyeloma activity with bortezomib. Chem Biol Interact 2023; 384:110687. [PMID: 37657595 DOI: 10.1016/j.cbi.2023.110687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/13/2023] [Accepted: 08/26/2023] [Indexed: 09/03/2023]
Abstract
The activating protein-1 (AP-1) transcription factors (TFs) have been associated with many different cancer types and are promising therapeutic targets in logical malignancies. However, the mechanisms of their role in multiple myeloma (MM) remain elusive. The present study determined and compared the mRNA and protein expression levels of the AP-1 family member JunB in CD138+ mononuclear cells from MM patients and healthy donors. Herein, we investigated the effect of T-5224, an inhibitor of JUN/AP-1, on MM. We found that the cytotoxicity of T-5224 toward myeloma is due to its ability to induce cell apoptosis, inhibit proliferation, and induce cell cycle arrest by increasing the levels of cleaved caspase3/7 and concomitantly inhibiting the IRF4/MYC axis. We also noticed that siJunB-mediated deletion of JunB/AP-1 enhanced MM cell apoptosis and affected cell proliferation. The software PROMO was used in the present study to predict the AP-1 TF that may bind the promoter region of IRF4. We confirmed the correlation between JunB/AP-1 and IRF4. Given that bortezomib (BTZ) facilitates IRF4 degradation in MM cells, we applied combination treatment of BTZ with T-5224. T-5224 and BTZ exerted synergistic effects, and T-5224 reversed the effect of BTZ on CD138+ primary resistance in MM cells, in part due to suppression of the IRF4/MYC axis. Our results suggest that targeting AP-1 TFs is a promising therapeutic strategy for MM. Additionally, targeting both AP-1 and IRF4 with T-5224 may be a synergistic therapeutic strategy for this clinically challenging subset of MM.
Collapse
Affiliation(s)
- Sishi Tang
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Fangrong Zhang
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Jian Li
- Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Hang Dong
- Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Qin Yang
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Jing Liu
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China.
| | - Yunfeng Fu
- Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Changsha, 410013, China.
| |
Collapse
|
30
|
Zhuang Y, Li C, Jiang H, Li L, Zhang Y, Yu W, Fu W. Multi-omics investigation of the resistance mechanisms of pomalidomide in multiple myeloma. Front Oncol 2023; 13:1264422. [PMID: 37799465 PMCID: PMC10549987 DOI: 10.3389/fonc.2023.1264422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/31/2023] [Indexed: 10/07/2023] Open
Abstract
Background Despite significant therapeutic advances over the last decade, multiple myeloma remains an incurable disease. Pomalidomide is the third Immunomodulatory drug that is commonly used to treat patients with relapsed/refractory multiple myeloma. However, approximately half of the patients exhibit resistance to pomalidomide treatment. While previous studies have identified Cereblon as a primary target of Immunomodulatory drugs' anti-myeloma activity, it is crucial to explore additional mechanisms that are currently less understood. Methods To comprehensively investigate the mechanisms of drug resistance, we conducted integrated proteomic and metabonomic analyses of 12 plasma samples from multiple myeloma patients who had varying responses to pomalidomide. Differentially expressed proteins and metabolites were screened, and were further analyzed using pathway analysis and functional correlation analysis. Also, we estimated the cellular proportions based on ssGSEA algorithm. To investigate the potential role of glycine in modulating the response of MM cells to pomalidomide, cell viability and apoptosis were analyzed. Results Our findings revealed a consistent decrease in the levels of complement components in the pomalidomide-resistant group. Additionally, there were significant differences in the proportion of T follicular helper cell and B cells in the resistant group. Furthermore, glycine levels were significantly decreased in pomalidomide-resistant patients, and exogenous glycine administration increased the sensitivity of MM cell lines to pomalidomide. Conclusion These results demonstrate distinct molecular changes in the plasma of resistant patients that could be used as potential biomarkers for identifying resistance mechanisms for pomalidomide in multiple myeloma and developing immune-related therapeutic strategies.
Collapse
Affiliation(s)
- Yan Zhuang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Department of Hematology, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chenyu Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Hua Jiang
- Department of Hematology, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lu Li
- Department of Hematology, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuanteng Zhang
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - WeiJun Fu
- Department of Hematology, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
31
|
Oh DH, Ma X, Hogg SJ, He J, Kearney C, Brasacchio D, Susanto O, Maher B, Jennings IG, Newbold A, Fraser P, Gruber E, Kats LM, Gregory GP, Johnstone RW, Thompson PE, Shortt J. Rationally designed chimeric PI3K-BET bromodomain inhibitors elicit curative responses in MYC-driven lymphoma. Proc Natl Acad Sci U S A 2023; 120:e2306414120. [PMID: 37643213 PMCID: PMC10483632 DOI: 10.1073/pnas.2306414120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/01/2023] [Indexed: 08/31/2023] Open
Abstract
Targeted inhibitors of bromodomain and extraterminal (BET)-bromodomains and phosphatidylinositol-3-kinase (PI3K) signaling demonstrate potent but self-limited antilymphoma activity as single agents in the context of cellular Myelocytomatosis (cMYC) oncogene-dysregulation. However, combined PI3K and BET inhibition imparts synergistic anticancer activity with the potential for more sustained disease responses due to the mutual antagonism of compensatory epigenetic and signaling networks. Here, we describe the mechanistic and therapeutic validation of rationally designed dual PI3K/BET bromodomain inhibitors, built by linkage of established PI3K and BET inhibitor pharmacophores. The lead candidate demonstrates high selectivity, nanomolar range cellular potency, and compelling in vivo efficacy, including curative responses in the aggressive Eµ-Myc lymphoma model. These studies further support the therapeutic strategy of combined PI3K and BET inhibition and provide a potential step-change in approach to orthogonal MYC antagonism using optimized chimeric small-molecule technology.
Collapse
Affiliation(s)
- Danielle H. Oh
- Blood Cancer Therapeutics Laboratory, School of Clinical Sciences at Monash Health, Faculty of Medicine Nursing and Health Sciences, Monash University, MelbourneVIC3168, Australia
- Monash Haematology, Monash Health, MelbourneVIC3168, Australia
- Cancer Biology Therapeutics Program, Peter MacCallum Cancer Centre, MelbourneVIC3000, Australia
| | - Xiao Ma
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, ParkvilleVIC3052, Australia
- Department of Systems Biology, Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA02115
| | - Simon J. Hogg
- Cancer Biology Therapeutics Program, Peter MacCallum Cancer Centre, MelbourneVIC3000, Australia
- Oncology Discovery Research, Abbvie, South San Francisco, CA94080
| | - Jackson He
- Blood Cancer Therapeutics Laboratory, School of Clinical Sciences at Monash Health, Faculty of Medicine Nursing and Health Sciences, Monash University, MelbourneVIC3168, Australia
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, ParkvilleVIC3052, Australia
| | - Conor Kearney
- Olivia Newton-John Cancer Research Institute, HeidelbergVIC3084, Australia
- School of Cancer Medicine, La Trobe University, HeidelbergVIC3084, Australia
| | - Daniella Brasacchio
- Blood Cancer Therapeutics Laboratory, School of Clinical Sciences at Monash Health, Faculty of Medicine Nursing and Health Sciences, Monash University, MelbourneVIC3168, Australia
| | - Olivia Susanto
- Blood Cancer Therapeutics Laboratory, School of Clinical Sciences at Monash Health, Faculty of Medicine Nursing and Health Sciences, Monash University, MelbourneVIC3168, Australia
| | - Belinda Maher
- Blood Cancer Therapeutics Laboratory, School of Clinical Sciences at Monash Health, Faculty of Medicine Nursing and Health Sciences, Monash University, MelbourneVIC3168, Australia
| | - Ian G. Jennings
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, ParkvilleVIC3052, Australia
| | - Andrea Newbold
- Cancer Biology Therapeutics Program, Peter MacCallum Cancer Centre, MelbourneVIC3000, Australia
- Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, MelbourneVIC3000, Australia
| | - Peter Fraser
- Cancer Biology Therapeutics Program, Peter MacCallum Cancer Centre, MelbourneVIC3000, Australia
- Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, MelbourneVIC3000, Australia
| | - Emily Gruber
- Cancer Biology Therapeutics Program, Peter MacCallum Cancer Centre, MelbourneVIC3000, Australia
- Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, MelbourneVIC3000, Australia
| | - Lev M. Kats
- Cancer Biology Therapeutics Program, Peter MacCallum Cancer Centre, MelbourneVIC3000, Australia
- Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, MelbourneVIC3000, Australia
| | - Gareth P. Gregory
- Blood Cancer Therapeutics Laboratory, School of Clinical Sciences at Monash Health, Faculty of Medicine Nursing and Health Sciences, Monash University, MelbourneVIC3168, Australia
- Monash Haematology, Monash Health, MelbourneVIC3168, Australia
- Cancer Biology Therapeutics Program, Peter MacCallum Cancer Centre, MelbourneVIC3000, Australia
| | - Ricky W. Johnstone
- Cancer Biology Therapeutics Program, Peter MacCallum Cancer Centre, MelbourneVIC3000, Australia
- Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, MelbourneVIC3000, Australia
| | - Philip E. Thompson
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, ParkvilleVIC3052, Australia
| | - Jake Shortt
- Blood Cancer Therapeutics Laboratory, School of Clinical Sciences at Monash Health, Faculty of Medicine Nursing and Health Sciences, Monash University, MelbourneVIC3168, Australia
- Monash Haematology, Monash Health, MelbourneVIC3168, Australia
- Cancer Biology Therapeutics Program, Peter MacCallum Cancer Centre, MelbourneVIC3000, Australia
- Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, MelbourneVIC3000, Australia
| |
Collapse
|
32
|
Jaeger HK, Davis DA, Nair A, Shrestha P, Stream A, Yaparla A, Yarchoan R. Mechanism and therapeutic implications of pomalidomide-induced immune surface marker upregulation in EBV-positive lymphomas. Sci Rep 2023; 13:11596. [PMID: 37463943 DOI: 10.1038/s41598-023-38156-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/04/2023] [Indexed: 07/20/2023] Open
Abstract
Epstein-Barr virus (EBV) downregulates immune surface markers to avoid immune recognition. Pomalidomide (Pom) was previously shown to increase immune surface marker expression in EBV-infected tumor cells. We explored the mechanism by which Pom leads to these effects in EBV-infected cells. Pom increased B7-2/CD86 mRNA, protein, and surface expression in EBV-infected cells but this was virtually eliminated in EBV-infected cells made resistant to Pom-induced cytostatic effects. This indicates that Pom initiates the upregulation of these markers by interacting with its target, cereblon. Interestingly, Pom increased the proinflammatory cytokines IP-10 and MIP-1∝/β in EBV infected cells, supporting a possible role for the phosphoinositide 3-kinase (PI3K)/AKT pathway in Pom's effects. Idelalisib, an inhibitor of the delta subunit of PI3 Kinase, blocked AKT-Ser phosphorylation and Pom-induced B7-2 surface expression. PU.1 is a downstream target for AKT that is expressed in EBV-infected cells. Pom treatment led to an increase in PU.1 binding to the B7-2 promoter based on ChIP analysis. Thus, our data indicates Pom acts through cereblon leading to degradation of Ikaros and activation of the PI3K/AKT/PU.1 pathway resulting in upregulation of B7-2 mRNA and protein expression. The increased immune recognition in addition to the increases in proinflammatory cytokines upon Pom treatment suggests Pom may be useful in the treatment of EBV-positive lymphomas.
Collapse
Affiliation(s)
- Hannah K Jaeger
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, Building 10, Rm. 6N106, MSC 1868, 10 Center Drive, Bethesda, MD, 20892-1868, USA
| | - David A Davis
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, Building 10, Rm. 6N106, MSC 1868, 10 Center Drive, Bethesda, MD, 20892-1868, USA
| | - Ashwin Nair
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, Building 10, Rm. 6N106, MSC 1868, 10 Center Drive, Bethesda, MD, 20892-1868, USA
| | - Prabha Shrestha
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, Building 10, Rm. 6N106, MSC 1868, 10 Center Drive, Bethesda, MD, 20892-1868, USA
| | - Alexandra Stream
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, Building 10, Rm. 6N106, MSC 1868, 10 Center Drive, Bethesda, MD, 20892-1868, USA
| | - Amulya Yaparla
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, Building 10, Rm. 6N106, MSC 1868, 10 Center Drive, Bethesda, MD, 20892-1868, USA
| | - Robert Yarchoan
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, Building 10, Rm. 6N106, MSC 1868, 10 Center Drive, Bethesda, MD, 20892-1868, USA.
| |
Collapse
|
33
|
Jelloul FZ, Quesada AE, Yang RK, Li S, Wang W, Xu J, Tang G, Yin CC, Fang H, El Hussein S, Khoury J, Bassett RL, Garcia-Manero G, Manasanch EE, Orlowski RZ, Qazilbash MH, Patel KP, Medeiros LJ, Lin P. Clinicopathologic Features of Therapy-Related Myeloid Neoplasms in Patients with Myeloma in the Era of Novel Therapies. Mod Pathol 2023; 36:100166. [PMID: 36990279 DOI: 10.1016/j.modpat.2023.100166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/27/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023]
Abstract
The development of therapy-related myeloid neoplasms (t-MN) is a rare complication that can occur in myeloma patients treated primarily with novel therapies. To better understand t-MNs in this context, we reviewed 66 such patients and compared them with a control group of patients who developed t-MN after cytotoxic therapies for other malignancies. The study group included 50 men and 16 women, with a median age of 68 years (range, 48-86 years). Therapies included proteasome inhibitors, immunomodulatory agents, and high-dose melphalan-based autologous stem cell transplantation (HDM-ASCT) in 64 (97%), 65 (98.5%), and 64 (97%) patients, respectively; 29 (43.9%) patients were exposed to other cytotoxic drugs besides HDM. The latency interval from therapy to t-MN was 4.9 years (range, 0.6-21.9 years). Patients who received HDM-ASCT in addition to other cytotoxic therapies had a longer latency period to t-MN compared with patients who only received HDM-ASCT (6.1 vs 4.7 years, P = .009). Notably, 11 patients developed t-MN within 2 years. Therapy-related myelodysplastic syndrome was the most common type of neoplasm (n = 60), followed by therapy-related acute myeloid leukemia (n = 4) and myelodysplastic syndrome/myeloproliferative neoplasm (n = 2). The most common cytogenetic aberrations included complex karyotypes (48.5%), del7q/-7 (43.9%), and/or del5q/-5 (40.9%). The most frequent molecular alteration was TP53 mutation, in 43 (67.2%) patients and the sole mutation in 20 patients. Other mutations included DNMT3A, 26.6%; TET2, 14.1%; RUNX1, 10.9%; ASXL1, 7.8%; and U2AF1, 7.8%. Other mutations in less than 5% of cases included SRSF2, EZH2, STAG2, NRAS, SETBP, SF3B1, SF3A1, and ASXL2. After a median follow-up of 15.3 months, 18 patients were alive and 48 died. The median overall survival after the diagnosis of t-MN in the study group was 18.4 months. Although the overall features are comparable to the control group, the short interval to t-MN (<2 years) underscores the unique vulnerable status of myeloma patients.
Collapse
Affiliation(s)
- Fatima Zahra Jelloul
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Andres E Quesada
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Richard K Yang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shaoying Li
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wei Wang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jie Xu
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Guilin Tang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - C Cameron Yin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hong Fang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Siba El Hussein
- Department of Pathology, University of Rochester Medical Center, Rochester, New York
| | - Joseph Khoury
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Roland L Bassett
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Elizabet E Manasanch
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Robert Z Orlowski
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Muzaffar H Qazilbash
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Keyur P Patel
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Pei Lin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
34
|
Arp CJ, Reynders M, Sreekanth V, Kokkonda P, Pagano M, Choudhary A, Trauner D. Photoswitchable Molecular Glues Enable Optical Control of Transcription Factor Degradation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.09.536172. [PMID: 37066279 PMCID: PMC10104231 DOI: 10.1101/2023.04.09.536172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Immunomodulatory drugs (IMiDs), which include thalidomide and its derivatives, have emerged as the standard of care against multiple myeloma. They function as molecular glues that bind to the E3 ligase cereblon (CRBN) and induce protein interactions with neosubstrates, including the transcription factors Ikaros (IKZF1) and Aiolos (IKZF3). The subsequent ubiquitylation and degradation of these transcription factors underlies the antiproliferative activity of IMiDs. Here, we introduce photoswitchable immunomodulatory drugs (PHOIMiDs) that can be used to degrade Ikaros and Aiolos in a light-dependent fashion. Our lead compound shows minimal activity in the dark and becomes an active degrader upon irradiation with violet light. It shows high selectivity over other transcription factors, regardless of its state, and could therefore be used to control the levels of Ikaros and Aiolos with high spatiotemporal precision.
Collapse
Affiliation(s)
- Christopher J Arp
- Department of Chemistry, New York University, 100 Washington Sq E, New York, New York 10003, United States
| | - Martin Reynders
- Department of Chemistry, New York University, 100 Washington Sq E, New York, New York 10003, United States
| | - Vedagopuram Sreekanth
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, 415 Main St, Cambridge, MA 02142, United States
- Department of Medicine, Harvard Medical School, Boston, MA 02115, United States
- Divisions of Renal Medicine and Engineering, Brigham and Women's Hospital, Boston, MA 02115, United States
| | - Praveen Kokkonda
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, 415 Main St, Cambridge, MA 02142, United States
- Department of Medicine, Harvard Medical School, Boston, MA 02115, United States
| | - Michele Pagano
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, United States
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, United States
- Howard Hughes Medical Institute, New York University School of Medicine, New York, NY 10016, United States
| | - Amit Choudhary
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, 415 Main St, Cambridge, MA 02142, United States
- Department of Medicine, Harvard Medical School, Boston, MA 02115, United States
- Divisions of Renal Medicine and Engineering, Brigham and Women's Hospital, Boston, MA 02115, United States
| | - Dirk Trauner
- Department of Chemistry, University of Pennsylvania, College of Arts and Sciences, 231 South 34 Street, Philadelphia, PA 19104-6323, United States
- Department of Chemistry, New York University, 100 Washington Sq E, New York, New York 10003, United States
| |
Collapse
|
35
|
Xue Y, Bolinger AA, Zhou J. Novel approaches to targeted protein degradation technologies in drug discovery. Expert Opin Drug Discov 2023; 18:467-483. [PMID: 36895136 PMCID: PMC11089573 DOI: 10.1080/17460441.2023.2187777] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023]
Abstract
INTRODUCTION Target protein degradation (TPD) provides a novel therapeutic modality, other than inhibition, through the direct depletion of target proteins. Two primary human protein homeostasis mechanisms are exploited: the ubiquitin-proteasome system (UPS) and the lysosomal system. TPD technologies based on these two systems are progressing at an impressive pace. AREAS COVERED This review focuses on the TPD strategies based on UPS and lysosomal system, mainly classified into three types: Molecular Glue (MG), PROteolysis Targeting Chimera (PROTAC), and lysosome-mediated TPD. Starting with a brief background introduction of each strategy, exciting examples and perspectives on these novel approaches are provided. EXPERT OPINION MGs and PROTACs are two major UPS-based TPD strategies that have been extensively investigated in the past decade. Despite some clinical trials, several critical issues remain, among which is emphasized by the limitation of targets. Recently developed lysosomal system-based approaches provide alternative solutions for TPD beyond UPS' capability. The newly emerging novel approaches may partially address issues that have long plagued researchers, such as low potency, poor cell permeability, on-/off-target toxicity, and delivery efficiency. Comprehensive considerations for the rational design of protein degraders and continuous efforts to seek effective solutions are imperative to advance these strategies into clinical medications.
Collapse
Affiliation(s)
- Yu Xue
- Chemical Biology Program, Department of Pharmacology and Toxicology University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Andrew A. Bolinger
- Chemical Biology Program, Department of Pharmacology and Toxicology University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
36
|
Saltarella I, Altamura C, Campanale C, Laghetti P, Vacca A, Frassanito MA, Desaphy JF. Anti-Angiogenic Activity of Drugs in Multiple Myeloma. Cancers (Basel) 2023; 15:cancers15071990. [PMID: 37046651 PMCID: PMC10093708 DOI: 10.3390/cancers15071990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/20/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Angiogenesis represents a pivotal hallmark of multiple myeloma (MM) that correlates to patients’ prognosis, overall survival, and drug resistance. Hence, several anti-angiogenic drugs that directly target angiogenic cytokines (i.e., monoclonal antibodies, recombinant molecules) or their cognate receptors (i.e., tyrosine kinase inhibitors) have been developed. Additionally, many standard antimyeloma drugs currently used in clinical practice (i.e., immunomodulatory drugs, bisphosphonates, proteasome inhibitors, alkylating agents, glucocorticoids) show anti-angiogenic effects further supporting the importance of inhibiting angiogenesis from potentiating the antimyeloma activity. Here, we review the most important anti-angiogenic therapies used for the management of MM patients with a particular focus on their pharmacological profile and on their anti-angiogenic effect in vitro and in vivo. Despite the promising perspective, the direct targeting of angiogenic cytokines/receptors did not show a great efficacy in MM patients, suggesting the need to a deeper knowledge of the BM angiogenic niche for the design of novel multi-targeting anti-angiogenic therapies.
Collapse
Affiliation(s)
- Ilaria Saltarella
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Pharmacology, School of Medicine, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Concetta Altamura
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Pharmacology, School of Medicine, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Carmen Campanale
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Pharmacology, School of Medicine, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Paola Laghetti
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Pharmacology, School of Medicine, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Angelo Vacca
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, School of Medicine, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Maria Antonia Frassanito
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Clinical Pathology, School of Medicine, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Jean-François Desaphy
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Pharmacology, School of Medicine, University of Bari Aldo Moro, 70124 Bari, Italy
- Correspondence:
| |
Collapse
|
37
|
Cereblon-Recruiting PROTACs: Will New Drugs Have to Face Old Challenges? Pharmaceutics 2023; 15:pharmaceutics15030812. [PMID: 36986673 PMCID: PMC10053963 DOI: 10.3390/pharmaceutics15030812] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
The classical low-molecular-weight drugs are designed to bind with high affinity to the biological targets endowed with receptor or enzymatic activity, and inhibit their function. However, there are many non-receptor or non-enzymatic disease proteins that seem undruggable using the traditional drug approach. This limitation has been overcome by PROTACs, bifunctional molecules that are able to bind the protein of interest and the E3 ubiquitin ligase complex. This interaction results in the ubiquitination of POI and subsequent proteolysis in the cellular proteasome. Out of hundreds of proteins serving as substrate receptors in E3 ubiquitin ligase complexes, current PROTACs recruit only a few of them, including CRBN, cIAP1, VHL or MDM-2. This review will focus on PROTACs recruiting CRBN E3 ubiquitin ligase and targeting various proteins involved in tumorigenesis, such as transcription factors, kinases, cytokines, enzymes, anti-apoptotic proteins and cellular receptors. The structure of several PROTACs, their chemical and pharmacokinetic properties, target affinity and biological activity in vitro and in vivo, will be discussed. We will also highlight cellular mechanisms that may affect the efficacy of PROTACs and pose a challenge for the future development of PROTACs.
Collapse
|
38
|
Kulig P, Milczarek S, Bakinowska E, Szalewska L, Baumert B, Machaliński B. Lenalidomide in Multiple Myeloma: Review of Resistance Mechanisms, Current Treatment Strategies and Future Perspectives. Cancers (Basel) 2023; 15:963. [PMID: 36765919 PMCID: PMC9913106 DOI: 10.3390/cancers15030963] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Multiple myeloma (MM) is the second most common hematologic malignancy, accounting for approximately 1% of all cancers. Despite the initial poor prognosis for MM patients, their life expectancy has improved significantly with the development of novel agents. Immunomodulatory drugs (IMiDs) are widely used in MM therapy. Their implementation has been a milestone in improving the clinical outcomes of patients. The first molecule belonging to the IMiDs was thalidomide. Subsequently, its novel derivatives, lenalidomide (LEN) and pomalidomide (POM), were implemented. Almost all MM patients are exposed to LEN, which is the most commonly used IMiD. Despite the potent anti-MM activity of LEN, some patients eventually relapse and become LEN-resistant. Drug resistance is one of the greatest challenges of modern oncology and has become the main cause of cancer treatment failures. The number of patients receiving LEN is increasing, hence the problem of LEN resistance has become a great obstacle for hematologists worldwide. In this review, we intended to shed more light on the pathophysiology of LEN resistance in MM, with particular emphasis on the molecular background. Moreover, we have briefly summarized strategies to overcome LEN resistance and we have outlined future directions.
Collapse
Affiliation(s)
- Piotr Kulig
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Sławomir Milczarek
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland
- Department of Hematology and Transplantology, Pomeranian Medical University, 71-252 Szczecin, Poland
| | - Estera Bakinowska
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Laura Szalewska
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Bartłomiej Baumert
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland
- Department of Hematology and Transplantology, Pomeranian Medical University, 71-252 Szczecin, Poland
| | - Bogusław Machaliński
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland
- Department of Hematology and Transplantology, Pomeranian Medical University, 71-252 Szczecin, Poland
| |
Collapse
|
39
|
Zhao HY, Xin M, Zhang SQ. Progress of small molecules for targeted protein degradation: PROTACs and other technologies. Drug Dev Res 2023; 84:337-394. [PMID: 36606428 DOI: 10.1002/ddr.22026] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 12/01/2022] [Accepted: 12/17/2022] [Indexed: 01/07/2023]
Abstract
Recent years have witnessed the rapid development of targeted protein degradation (TPD), especially proteolysis targeting chimeras. These degraders have manifested many advantages over small molecule inhibitors. To date, a huge number of degraders have been excavated against over 70 disease-related targets. In particular, degraders against estrogen receptor and androgen receptor have crowded into phase II clinical trial. TPD technologies largely expand the scope of druggable targets, and provide powerful tools for addressing intractable problems that can not be tackled by traditional small molecule inhibitors. In this review, we mainly focus on the structures and biological activities of small molecule degraders as well as the elucidation of mechanisms of emerging TPD technologies. We also propose the challenges that exist in the TPD field at present.
Collapse
Affiliation(s)
- Hong-Yi Zhao
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Minhang Xin
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - San-Qi Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| |
Collapse
|
40
|
Fuchs O. Targeting cereblon in hematologic malignancies. Blood Rev 2023; 57:100994. [PMID: 35933246 DOI: 10.1016/j.blre.2022.100994] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 01/28/2023]
Abstract
The protein cereblon (CRBN) is a substrate receptor of the cullin 4-really interesting new gene (RING) E3 ubiquitin ligase complex CRL4CRBN. Targeting CRBN mediates selective protein ubiquitination and subsequent degradation via the proteasome. This review describes novel thalidomide analogs, immunomodulatory drugs, also known as CRBN E3 ubiquitin ligase modulators or molecular glues (avadomide, iberdomide, CC-885, CC-90009, BTX-1188, CC-92480, CC-99282, CFT7455, and CC-91633), and CRBN-based proteolysis targeting chimeras (PROTACs) with increased efficacy and potent activity for application in hematologic malignancies. Both types of CRBN-binding drugs, molecular glues, and PROTACs stimulate the interaction between CRBN and its neosubstrates, recruiting target disease-promoting proteins and the E3 ubiquitin ligase CRL4CRBN. Proteins that are traditionally difficult to target (transcription factors and oncoproteins) can be polyubiquitinated and degraded in this way. The competition of CRBN neosubstrates with endogenous CRBN-interacting proteins and the pharmacology and rational combination therapies of and mechanisms of resistance to CRL4CRBN modulators or CRBN-based PROTACs are described.
Collapse
Affiliation(s)
- Ota Fuchs
- Institute of Hematology and Blood Transfusion, U Nemocnice 1, 12800 Praha 2, Czech Republic.
| |
Collapse
|
41
|
Zuo X, Liu D. Mechanism of immunomodulatory drug resistance and novel therapeutic strategies in multiple myeloma. HEMATOLOGY (AMSTERDAM, NETHERLANDS) 2022; 27:1110-1121. [PMID: 36121114 DOI: 10.1080/16078454.2022.2124694] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The mechanism of immunomodulatory drugs (IMiDs) resistance to multiple myeloma (MM) cells has been gradually demonstrated by recently studies, and some potential novel strategies have been confirmed to have antimyeloma activity and be associated with IMiD activity in MM. METHODS This article searched the Pubmed library, reviewed some recently studies related to IMiD resistance to MM cells and summarized some potent agents to improve IMiD resistance to MM cells. RESULTS Studies have confirmed that cereblon is a primary direct protein target of IMiDs. IRF4 not only is affected by the IKZF protein but also can directly inhibit the expression of BMF and BIM, thereby promoting the survival of MM cells. Additionally, the expression of IRF4 and MYC also plays an important role in three important signaling pathways (Wnt, STAT3 and MAPK/ERK) related to IMiD resistance. Notably, MYC, a downstream factor of IRF4, may be upregulated by BRD4, and upregulation of MYC promotes cell proliferation in MM and disease progression. Recently, some novel therapeutic agents targeting BRD4, a histone modification-related 'reader' of epigenetic marks, or other important factors (e.g. TAK1) in relevant signaling pathways have been developed and they may provide new options for relapse/refractory MM therapy, such as BET inhibitors, CBP/EP300 inhibitors, dual-target BET-CBP/EP300 inhibitors, TAK1 inhibitors, and they may provide new options for relapsed/refractory MM therapy. CONCLUSIONS Accumulated studies have revealed that some key factors associated with the mechanism of IMiD resistance to MM cells. Some agents represent promising new therapeutics of MM to regulate the IRF4/MYC axis by inhibiting BRD4 expression or signaling pathway activation.
Collapse
Affiliation(s)
- Xiaojia Zuo
- Department of Hematology, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai, People's Republic of China.,Department of Oncology and Hematology, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, People's Republic of China.,Guizhou Medical University, Guiyang, People's Republic of China
| | - Dingsheng Liu
- Department of Hematology, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai, People's Republic of China
| |
Collapse
|
42
|
Chen LY, Gooding S. Tumor and microenvironmental mechanisms of resistance to immunomodulatory drugs in multiple myeloma. Front Oncol 2022; 12:1038329. [PMID: 36439455 PMCID: PMC9682014 DOI: 10.3389/fonc.2022.1038329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/04/2022] [Indexed: 10/07/2023] Open
Abstract
Resistance to immunomodulatory drugs (IMiDs®) is a major cause of treatment failure, disease relapse and ultimately poorer outcomes in multiple myeloma (MM). In order to optimally deploy IMiDs and their newer derivates CRBN E3 ligase modulators (CELMoDs®) into future myeloma therapeutic regimens, it is imperative to understand the mechanisms behind the inevitable emergence of IMiD resistance. IMiDs bind and modulate Cereblon (CRBN), the substrate receptor of the CUL4CRBN E3 ubiquitin ligase, to target novel substrate proteins for ubiquitination and degradation. Most important of these are IKZF1 and IKZF3, key MM survival transcription factors which sustain the expression of myeloma oncogenes IRF4 and MYC. IMiDs directly target MM cell proliferation, but also stimulate T/NK cell activation by their CRBN-mediated effects, and therefore enhance anti-MM immunity. Thus, their benefits in myeloma are directed against tumor and immune microenvironment - and in considering the mechanisms by which IMiD resistance emerges, both these effects must be appraised. CRBN-dependent mechanisms of IMiD resistance, including CRBN genetic aberrations, CRBN protein loss and CRBN-substrate binding defects, are beginning to be understood. However, only a proportion of IMiD-resistant cases are related to CRBN and therefore additional mechanisms, which are currently less well described, need to be sought. These include resistance within the immune microenvironment. Here we review the existing evidence on both tumor and immune microenvironment mechanisms of resistance to IMiDs, pose important questions for future study, and consider how knowledge regarding resistance mechanism may be utilized to guide treatment decision making in the clinic.
Collapse
Affiliation(s)
- Lucia Y. Chen
- Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
- Oxford Centre for Translational Myeloma Research, University of Oxford, Oxford, United Kingdom
| | - Sarah Gooding
- Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
- Oxford Centre for Translational Myeloma Research, University of Oxford, Oxford, United Kingdom
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
43
|
Mejia Saldarriaga M, Darwiche W, Jayabalan D, Monge J, Rosenbaum C, Pearse RN, Niesvizky R, Bustoros M. Advances in the molecular characterization of multiple myeloma and mechanism of therapeutic resistance. Front Oncol 2022; 12:1020011. [PMID: 36387095 PMCID: PMC9646612 DOI: 10.3389/fonc.2022.1020011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/07/2022] [Indexed: 11/25/2022] Open
Abstract
Recent insight in the genomic landscape of newly diagnosed multiple myeloma (NDMM) and its precursor conditions, monoclonal gammopathy of uncertain significance (MGUS), and smoldering myeloma have allowed the identification of patients with precursor conditions with a high risk of progression. These cases with "progressor" MGUS/SMM have a higher average mutation burden, have higher rates of mutations in specific genes such as MAPK, DNA repair, MYC, DIS3, and are enriched for specific mutational signatures when compared to non-progressors and are comparable to those found in NDMM. The highly preserved clonal heterogeneity seen upon progression of SMM, combined with the importance of these early variables, suggests that the identification of progressors based on these findings could complement and enhance the currently available clinical models based on tumor burden. Mechanisms leading to relapse/refractory multiple myeloma (RRMM) are of clinical interest given worse overall survival in this population. An Increased mutational burden is seen in patients with RRMM when compared to NDMM, however, there is evidence of branching evolution with many of these mutations being present at the subclonal level. Likewise, alterations in proteins associated with proteosome inhibitor and immunomodulatory drugs activity could partially explain clinical resistance to these agents. Evidence of chromosomal events leading to copy number changes is seen, with the presence of TP53 deletion, mutation, or a combination of both being present in many cases. Additional chromosomal events such as 1q gain and amplification may also interact and lead to resistance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mark Bustoros
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
44
|
Palacios DS. Drug Hunting at the Nexus of Medicinal Chemistry and Chemical Biology and the Discovery of Novel Therapeutic Modalities. J Med Chem 2022; 65:13594-13613. [PMID: 36206538 DOI: 10.1021/acs.jmedchem.2c01491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Small molecules designed to modulate protein function have been remarkably successful in advancing human health. As the frontiers of medicine and understanding of disease pathogenesis continue to expand, small molecule scientists must also pursue the development of novel therapeutic modalities beyond functional protein modulation to address diseases of unmet medical need. In this vein, this Perspective will highlight two emerging modalities, selective mRNA splice modulation and targeted protein degradation, as mechanisms that affect protein abundance, rather than protein function, to broaden the scope of low-molecular-weight treatable diseases. Key to the elucidation and development of these mechanisms was the interplay and contemporaneous efforts in medicinal chemistry and chemical biology. Continued research at the intersection of these two fields will be critical for the identification of novel targets and mechanisms toward the development of the next generation of small molecule therapeutics.
Collapse
Affiliation(s)
- Daniel S Palacios
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| |
Collapse
|
45
|
Guo H, Yang J, Wang H, Liu X, Liu Y, Zhou K. Reshaping the tumor microenvironment: The versatility of immunomodulatory drugs in B-cell neoplasms. Front Immunol 2022; 13:1017990. [PMID: 36311747 PMCID: PMC9596992 DOI: 10.3389/fimmu.2022.1017990] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/27/2022] [Indexed: 11/24/2022] Open
Abstract
Immunomodulatory drugs (IMiDs) such as thalidomide, lenalidomide and pomalidomide are antitumor compounds that have direct tumoricidal activity and indirect effects mediated by multiple types of immune cells in the tumor microenvironment (TME). IMiDs have shown remarkable therapeutic efficacy in a set of B-cell neoplasms including multiple myeloma, B-cell lymphomas and chronic lymphocytic leukemia. More recently, the advent of immunotherapy has revolutionized the treatment of these B-cell neoplasms. However, the success of immunotherapy is restrained by immunosuppressive signals and dysfunctional immune cells in the TME. Due to the pleiotropic immunobiological properties, IMiDs have shown to generate synergetic effects in preclinical models when combined with monoclonal antibodies, immune checkpoint inhibitors or CAR-T cell therapy, some of which were successfully translated to the clinic and lead to improved responses for both first-line and relapsed/refractory settings. Mechanistically, despite cereblon (CRBN), an E3 ubiquitin ligase, is considered as considered as the major molecular target responsible for the antineoplastic activities of IMiDs, the exact mechanisms of action for IMiDs-based TME re-education remain largely unknown. This review presents an overview of IMiDs in regulation of immune cell function and their utilization in potentiating efficacy of immunotherapies across multiple types of B-cell neoplasms.
Collapse
Affiliation(s)
| | | | | | | | | | - Keshu Zhou
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
46
|
Lee J, Lee Y, Jung YM, Park JH, Yoo HS, Park J. Discovery of E3 Ligase Ligands for Target Protein Degradation. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196515. [PMID: 36235052 PMCID: PMC9573645 DOI: 10.3390/molecules27196515] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/22/2022] [Accepted: 09/30/2022] [Indexed: 12/02/2022]
Abstract
Target protein degradation has emerged as a promising strategy for the discovery of novel therapeutics during the last decade. Proteolysis-targeting chimera (PROTAC) harnesses a cellular ubiquitin-dependent proteolysis system for the efficient degradation of a protein of interest. PROTAC consists of a target protein ligand and an E3 ligase ligand so that it enables the target protein degradation owing to the induced proximity with ubiquitin ligases. Although a great number of PROTACs has been developed so far using previously reported ligands of proteins for their degradation, E3 ligase ligands have been mostly limited to either CRBN or VHL ligands. Those PROTACs showed their limitation due to the cell type specific expression of E3 ligases and recently reported resistance toward PROTACs with CRBN ligands or VHL ligands. To overcome these hurdles, the discovery of various E3 ligase ligands has been spotlighted to improve the current PROTAC technology. This review focuses on currently reported E3 ligase ligands and their application in the development of PROTACs.
Collapse
Affiliation(s)
- Jaeseok Lee
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Korea
| | - Youngjun Lee
- Department of Chemistry and Biochemistry, University of California, San Diego, CA 92093, USA
| | - Young Mee Jung
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Korea
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Korea
- Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon 24341, Korea
| | - Ju Hyun Park
- Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon 24341, Korea
- Department of Biomedical Science, Kangwon National University, Chuncheon 24341, Korea
| | - Hyuk Sang Yoo
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Korea
- Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon 24341, Korea
- Department of Biomedical Science, Kangwon National University, Chuncheon 24341, Korea
| | - Jongmin Park
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Korea
- Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon 24341, Korea
- Correspondence: ; Tel.: +82-33-250-8482
| |
Collapse
|
47
|
Sha Y, Wu J, Paul B, Zhao Y, Mathews P, Li Z, Norris J, Wang E, McDonnell DP, Kang Y. PPAR agonists attenuate lenalidomide's anti-myeloma activity in vitro and in vivo. Cancer Lett 2022; 545:215832. [PMID: 35872263 PMCID: PMC10355274 DOI: 10.1016/j.canlet.2022.215832] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 07/10/2022] [Accepted: 07/14/2022] [Indexed: 01/05/2023]
Abstract
Many patients with multiple myeloma (MM) have comorbidities and are treated with PPAR agonists. Immunomodulatory agents (IMiDs) are the cornerstones for MM therapy. Currently, little is known about how co-administration of PPAR agonists impacts lenalidomide treatment in patients with MM. Here, we determined the effects of PPAR agonists on anti-myeloma activities of lenalidomide in vitro and in a myeloma xenograft mouse model. Genetic overexpression and CRISPR/cas9 knockout experiments were performed to determine the role of CRBN in the PPAR-mediated pathway. A retrospective cohort study was performed to determine the correlation of PPAR expression with the outcomes of patients with MM. PPAR agonists down-regulated CRBN expression and reduced the anti-myeloma efficacy of lenalidomide in vitro and in vivo. Co-treatment with PPAR antagonists increased CRBN expression and improved sensitivity to lenalidomide. PPAR expression was higher in bone marrow cells of patients with newly diagnosed MM than in normal control bone marrow samples. High PPAR expression was correlated with poor clinical outcomes. Our study provides the first evidence that PPARs transcriptionally regulate CRBN and that drug-drug interactions between PPAR agonists and IMiDs may impact myeloma treatment outcomes.
Collapse
Affiliation(s)
- Yonggang Sha
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Jian Wu
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Barry Paul
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Yue Zhao
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Parker Mathews
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Zhiguo Li
- Duke Cancer Institute Bioinformatics Shared Resources, Duke University Medical Center, Durham, NC, USA
| | - John Norris
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Endi Wang
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Donald P McDonnell
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Yubin Kang
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
48
|
CRL4 CRBN E3 Ligase Complex as a Therapeutic Target in Multiple Myeloma. Cancers (Basel) 2022; 14:cancers14184492. [PMID: 36139651 PMCID: PMC9496858 DOI: 10.3390/cancers14184492] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/14/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Immunomodulatory drugs (IMiDs) are effective in the treatment of multiple myeloma (MM) and other hematological malignancies. Cereblon (CRBN), a target of IMiDs, forms the CRL4 E3 ubiquitin ligase complex (CRL4CRBN) with DDB1, CUL4A and RBX1. The insight into the molecular mechanism of IMiDs action has advanced dramatically since the identification of cereblon (CRBN) as their direct target. Targeting CRBN by IMiDs modifies CRL4CRBN substrate specificity towards non-physiological protein targets which are subsequently ubiquitinated and degraded by the proteasome. To date, IMiDs are the only known group of protein degraders used in clinical practice. This review provides the current state of knowledge about thalidomide and its derivatives’ mechanisms of action, and highlights the future perspectives for targeted protein degraders. Abstract Multiple myeloma (MM) is the second most common hematological malignancy with a recurrent clinical course. The introduction of immunomodulatory drugs (IMiDs) was one of the milestones in MM therapy leading to a significant improvement in patients’ prognosis. Currently, IMiDs are the backbone of MM therapy in newly diagnosed and relapsed/refractory settings. It is now known that IMiDs exert their anti-myeloma activity mainly by binding cereblon (CRBN), the substrate receptor protein of the CRL4 E3 ubiquitin ligase (CRL4CRBN) complex. By binding CRBN, IMiDs alter its substrate specificity, leading to ubiquitination and proteasomal degradation of proteins essential for MM cell survival. Following the success of IMiDs, it is not surprising that the possibility of using the CRL4CRBN complex’s activity to treat MM is being further explored. In this review, we summarize the current state of knowledge about novel players in the MM therapeutic landscape, namely the CRBN E3 ligase modulators (CELMoDs), the next generation of IMiDs with broader biological activity. In addition, we discuss a new strategy of tailored proteolysis called proteolysis targeting chimeras (PROTACs) using the CRL4CRBN to degrade typically undruggable proteins, which may have relevance for the treatment of MM and other malignancies in the future.
Collapse
|
49
|
Abstract
Germline loss-of-function mutations of the VHL tumor suppressor gene cause von Hippel–Lindau disease, which is associated with an increased risk of hemangioblastomas, clear cell renal cell carcinomas (ccRCCs), and paragangliomas. This Review describes mechanisms involving the VHL gene product in oxygen sensing, protein degradation, and tumor development and current therapeutic strategies targeting these mechanisms. The VHL gene product is the substrate recognition subunit of a ubiquitin ligase that targets the α subunit of the heterodimeric hypoxia-inducible factor (HIF) transcription factor for proteasomal degradation when oxygen is present. This oxygen dependence stems from the requirement that HIFα be prolyl-hydroxylated on one (or both) of two conserved prolyl residues by members of the EglN (also called PHD) prolyl hydroxylase family. Deregulation of HIF, and particularly HIF2, drives the growth of VHL-defective ccRCCs. Drugs that inhibit the HIF-responsive gene product VEGF are now mainstays of ccRCC treatment. An allosteric HIF2 inhibitor was recently approved for the treatment of ccRCCs arising in the setting of VHL disease and has advanced to phase III testing for sporadic ccRCCs based on promising phase I/II data. Orally available EglN inhibitors are being tested for the treatment of anemia and ischemia. Five of these agents have been approved for the treatment of anemia in the setting of chronic kidney disease in various countries around the world.
Collapse
|
50
|
Steps towards a Multiple Myeloma Cure? J Pers Med 2022; 12:jpm12091451. [PMID: 36143236 PMCID: PMC9504254 DOI: 10.3390/jpm12091451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Multiple myeloma survival has increased in last 20 years because of new treatments, better clinical management due to novel diagnostic tools such as imaging, and better understanding of the disease, biologically and genetically. Novel drugs have been introduced that act with different therapeutic mechanisms, but so have novel therapeutic strategies such as consolidation and maintenance after autologous stem cell transplant. Imaging (such as PET-CT and MRI) has been applied at diagnosis and after therapy for minimal residual disease monitoring. Multiparametric flow and molecular NGS may detect, with high-sensitivity, residual monoclonal plasma cells in the bone marrow. With this novel therapeutic and biological approach, a considerable fraction of multiple myeloma patients can achieve durable remission or even MGUS-like regression, which can ultimately lead to disease disappearance. The big dogma, “Myeloma is an incurable disease”, is hopefully fading.
Collapse
|