1
|
Gibouin VC, Durand M, Boudesco C, Hermetet F, Nozickova K, Chassagne-Clement C, Abdelwahed M, Klener P, Garrido C, Jego G. First-in-class inhibitor of HSP110 blocks BCR activation through SYK phosphorylation in diffuse large B-cell lymphoma. Leukemia 2024; 38:1742-1750. [PMID: 38906964 DOI: 10.1038/s41375-024-02302-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/23/2024]
Abstract
Activated B-cell-like diffuse large B-cell lymphoma (ABC-DLBCL) is driven by aberrant activation of the B-cell receptor (BCR) and the TLR/MyD88 signaling pathways. The heat-shock protein HSP110 is a candidate for their regulation as it stabilizes MyD88. However, its role in overall BCR signaling remains unknown. Here, we used first-in-class HSP110 inhibitors to address this question. HSP110 inhibitors decreased the survival of several ABC-DLBCL cell lines in vitro and in vivo, and reduced the phosphorylation of BCR signaling kinases, including BTK and SYK. We identified an interaction between HSP110 and SYK and demonstrated that HSP110 promotes SYK phosphorylation. Finally, the combination of the HSP110 inhibitor with the PI3K inhibitor copanlisib decreases SYK/BTK and AKT phosphorylation synergistically, leading to suppression of tumor growth in cell line xenografts and strong reduction in patient-derived xenografts. In conclusion, by regulating the BCR/TLR signaling pathway, HSP110 inhibitors are potential drug candidates for ABC-DLBCL patients.
Collapse
MESH Headings
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/pathology
- Syk Kinase/antagonists & inhibitors
- Syk Kinase/metabolism
- Humans
- Phosphorylation/drug effects
- Animals
- Mice
- Receptors, Antigen, B-Cell/metabolism
- Signal Transduction/drug effects
- HSP110 Heat-Shock Proteins/metabolism
- Xenograft Model Antitumor Assays
- Pyrimidines/pharmacology
- Cell Line, Tumor
- Tumor Cells, Cultured
- Mice, SCID
- Quinazolines
Collapse
Affiliation(s)
- Vincent Cabaud Gibouin
- INSERM, UMR1231, Université de Bourgogne, 21078, Dijon, France
- Equipe Labellisée « Ligue Nationale Contre le Cancer », Paris, France
| | - Manon Durand
- INSERM, UMR1231, Université de Bourgogne, 21078, Dijon, France
- Equipe Labellisée « Ligue Nationale Contre le Cancer », Paris, France
| | - Christophe Boudesco
- INSERM, UMR1231, Université de Bourgogne, 21078, Dijon, France
- Equipe Labellisée « Ligue Nationale Contre le Cancer », Paris, France
| | - François Hermetet
- INSERM, UMR1231, Université de Bourgogne, 21078, Dijon, France
- Equipe Labellisée « Ligue Nationale Contre le Cancer », Paris, France
| | - Kristyna Nozickova
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University Prague, Prague, Czech Republic
| | | | - Mayssa Abdelwahed
- INSERM, UMR1231, Université de Bourgogne, 21078, Dijon, France
- Equipe Labellisée « Ligue Nationale Contre le Cancer », Paris, France
| | - Pavel Klener
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University Prague, Prague, Czech Republic
| | - Carmen Garrido
- INSERM, UMR1231, Université de Bourgogne, 21078, Dijon, France
- Equipe Labellisée « Ligue Nationale Contre le Cancer », Paris, France
- Centre Georges François Leclerc, 21000, Dijon, France
| | - Gaëtan Jego
- INSERM, UMR1231, Université de Bourgogne, 21078, Dijon, France.
- Equipe Labellisée « Ligue Nationale Contre le Cancer », Paris, France.
| |
Collapse
|
2
|
Durand M, Cabaud Gibouin V, Duplomb L, Salmi L, Caillot M, Sola B, Camus V, Jardin F, Garrido C, Jego G. A first-in-class inhibitor of HSP110 to potentiate XPO1-targeted therapy in primary mediastinal B-cell lymphoma and classical Hodgkin lymphoma. J Exp Clin Cancer Res 2024; 43:148. [PMID: 38773631 PMCID: PMC11110392 DOI: 10.1186/s13046-024-03068-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/10/2024] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND Primary mediastinal B-cell lymphoma (PMBL) and classical Hodgkin lymphoma (cHL) are distinct hematological malignancies of B-cell origin that share many biological, molecular, and clinical characteristics. In particular, the JAK/STAT signaling pathway is a driver of tumor development due to multiple recurrent mutations, particularly in STAT6. Furthermore, the XPO1 gene that encodes exportin 1 (XPO1) shows a frequent point mutation (E571K) resulting in an altered export of hundreds of cargo proteins, which may impact the success of future therapies in PMBL and cHL. Therefore, targeted therapies have been envisioned for these signaling pathways and mutations. METHODS To identify novel molecular targets that could overcome the treatment resistance that occurs in PMBL and cHL patients, we have explored the efficacy of a first-in-class HSP110 inhibitor (iHSP110-33) alone and in combination with selinexor, a XPO1 specific inhibitor, both in vitro and in vivo. RESULTS We show that iHSP110-33 decreased the survival of several PMBL and cHL cell lines and the size of tumor xenografts. We demonstrate that HSP110 is a cargo of XPO1wt as well as of XPO1E571K. Using immunoprecipitation, proximity ligation, thermophoresis and kinase assays, we showed that HSP110 directly interacts with STAT6 and favors its phosphorylation. The combination of iHSP110-33 and selinexor induces a synergistic reduction of STAT6 phosphorylation and of lymphoma cell growth in vitro and in vivo. In biopsies from PMBL patients, we show a correlation between HSP110 and STAT6 phosphorylation levels. CONCLUSIONS These findings suggest that HSP110 could be proposed as a novel target in PMBL and cHL therapy.
Collapse
Affiliation(s)
- Manon Durand
- INSERM, UMR1231, Team HSP-Pathies Labellisée « Ligue Nationale Contre Le Cancer » and Labex LipSTIC, Dijon, 21000, France
- University of Burgundy, Medical Sciences Faculty, Dijon, 21078, France
| | - Vincent Cabaud Gibouin
- INSERM, UMR1231, Team HSP-Pathies Labellisée « Ligue Nationale Contre Le Cancer » and Labex LipSTIC, Dijon, 21000, France
- University of Burgundy, Medical Sciences Faculty, Dijon, 21078, France
| | - Laurence Duplomb
- INSERM, UMR1231, Equipe GAD, University of Burgundy, Dijon, 21078, France
| | - Leila Salmi
- INSERM, UMR1231, Team HSP-Pathies Labellisée « Ligue Nationale Contre Le Cancer » and Labex LipSTIC, Dijon, 21000, France
- University of Burgundy, Medical Sciences Faculty, Dijon, 21078, France
| | | | - Brigitte Sola
- INSERM, U1245, Normandy University, Caen, 14000, France
| | - Vincent Camus
- Department of Hematology, Centre Henri Becquerel, Rouen, 76000, France
| | - Fabrice Jardin
- Department of Hematology, Centre Henri Becquerel, Rouen, 76000, France
| | - Carmen Garrido
- INSERM, UMR1231, Team HSP-Pathies Labellisée « Ligue Nationale Contre Le Cancer » and Labex LipSTIC, Dijon, 21000, France
- University of Burgundy, Medical Sciences Faculty, Dijon, 21078, France
- Georges François Leclerc Cancer Centre, CGFL, Dijon, France
| | - Gaëtan Jego
- INSERM, UMR1231, Team HSP-Pathies Labellisée « Ligue Nationale Contre Le Cancer » and Labex LipSTIC, Dijon, 21000, France.
- University of Burgundy, Medical Sciences Faculty, Dijon, 21078, France.
- INSERM, UMR1231, Université Bourgogne, 7 Boulevard Jeanne d'Arc, Dijon, 21078, France.
| |
Collapse
|
3
|
Wu Y, Zhao J, Tian Y, Jin H. Cellular functions of heat shock protein 20 (HSPB6) in cancer: A review. Cell Signal 2023; 112:110928. [PMID: 37844714 DOI: 10.1016/j.cellsig.2023.110928] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/07/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023]
Abstract
Heat shock proteins (HSP) are a large family of peptide proteins that are widely found in cells. Studies have shown that the expression and function of HSPs in cells are very complex, and they can participate in cellular physiological and pathological processes through multiple pathways. Multiple heat shock proteins are associated with cancer cell growth, proliferation, metastasis, and resistance to anticancer drugs, and they play a key role in cancer development by ensuring the correct folding or degradation of proteins in cancer cells. As research hotspots, HSP90, HSP70 and HSP27 have been extensively studied in cancer so far. However, HSP20, also referred to as HSPB6, as a member of the small heat shock protein family, has been shown to play an important role in the cardiovascular system, but little research has been conducted on HSP20 in cancer. This review summarizes the current cellular functions of HSP20 in different cancer types, as well as its effects on cancer proliferation, progression, prognosis, and its other functions in cancer, to illustrate the close association between HSP20 and cancer. We show that, unlike most HSPs, HSP20 mainly plays an active anticancer role in cancer development, which is expected to provide new ideas and help for cancer diagnosis and treatment and research.
Collapse
Affiliation(s)
- Yifeng Wu
- Department of General Surgery, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214000, People's Republic of China
| | - Jinjin Zhao
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, People's Republic of China
| | - Yun Tian
- Department of Oncology, Jiangsu Province Hospital of Chinese Medicine Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, People's Republic of China.
| | - Hongdou Jin
- Department of General Surgery, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214000, People's Republic of China.
| |
Collapse
|
4
|
Heat-Shock Proteins in Leukemia and Lymphoma: Multitargets for Innovative Therapeutic Approaches. Cancers (Basel) 2023; 15:cancers15030984. [PMID: 36765939 PMCID: PMC9913431 DOI: 10.3390/cancers15030984] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Heat-shock proteins (HSPs) are powerful chaperones that provide support for cellular functions under stress conditions but also for the homeostasis of basic cellular machinery. All cancer cells strongly rely on HSPs, as they must continuously adapt to internal but also microenvironmental stresses to survive. In solid tumors, HSPs have been described as helping to correct the folding of misfolded proteins, sustain oncogenic pathways, and prevent apoptosis. Leukemias and lymphomas also overexpress HSPs, which are frequently associated with resistance to therapy. HSPs have therefore been proposed as new therapeutic targets. Given the specific biology of hematological malignancies, it is essential to revise their role in this field, providing a more adaptable and comprehensive picture that would help design future clinical trials. To that end, this review will describe the different pathways and functions regulated by HSP27, HSP70, HSP90, and, not least, HSP110 in leukemias and lymphomas.
Collapse
|
5
|
Noel K, Bokhari A', Bertrand R, Renaud F, Bourgoin P, Cohen R, Svrcek M, Joly AC, Duval A, Collura A. Consequences of the Hsp110DE9 mutation in tumorigenesis and the 5-fluorouracil-based chemotherapy response in Msh2-deficient mice. Cell Mol Life Sci 2022; 79:332. [PMID: 35648235 PMCID: PMC11072706 DOI: 10.1007/s00018-022-04293-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/22/2022] [Accepted: 04/06/2022] [Indexed: 11/03/2022]
Abstract
Heat shock proteins (HSPs) play oncogenic roles in human tumours. We reported a somatic inactivating mutation of HSP110 (HSP110DE9) in mismatch repair-deficient (dMMR) cancers displaying microsatellite instability (MSI) but did not assess its impact. We evaluated the impact of the Hsp110DE9 mutation on tumour development and the chemotherapy response in a dMMR knock-in mouse model (Hsp110DE9KIMsh2KO mice). The effect of the Hsp110DE9 mutation on tumorigenesis and survival was evaluated in Msh2KO mice that were null (Hsp110wt), heterozygous (Hsp110DE9KI/+), or homozygous (Hsp110DE9KI/KI) for the Hsp110DE9 mutation by assessing tumoral syndrome (organomegaly index, tumour staging) and survival (Kaplan-Meier curves). 5-Fluorouracil (5-FU), which is the backbone of chemotherapy regimens in gastrointestinal cancers and is commonly used in other tumour types but is not effective against dMMR cells in vivo, was administered to Hsp110DE9KI/KI, Hsp110DE9KI/+, and Hsp110wtMsh2KO mice. Hsp110, Ki67 (proliferation marker) and activated caspase-3 (apoptosis marker) expression were assessed in normal and tumour tissue samples by western blotting, immunophenotyping and cell sorting. Hsp110wt expression was drastically reduced or totally lost in tumours from Msh2KOHsp110DE9KI/+ and Msh2KOHsp110DE9KI/KI mice. The Hsp110DE9 mutation did not affect overall survival or tumoral syndrome in Msh2KOHsp110DE9KI/+ and Msh2KOHsp110DE9KI/KI mice but drastically improved the 5-FU response in all cohorts (Msh2KOHsp110DE9KI/KI: P5fu = 0.001; Msh2KOHsp110DE9KI/+: P5fu = 0.005; Msh2KOHsp110wt: P5fu = 0.335). Histopathological examination and cell sorting analyses confirmed major hypersensitization to 5-FU-induced death of both Hsp110DE9KI/KI and Hsp110DE9KI/+ dMMR cancer cells. This study highlights how dMMR tumour cells adapt to HSP110 inactivation but become hypersensitive to 5-FU, suggesting Hsp110DE9 as a predictive factor of 5-FU efficacy.
Collapse
Affiliation(s)
- Kathleen Noel
- Sorbonne Université, UPMC Univ Paris 06, INSERM, UMRS 938, SIRIC CURAMUS, Equipe Instabilité Des Microsatellites Et Cancer, Equipe Labellisée Par La Ligue Contre Le Cancer, Centre de Recherche Saint Antoine, 75012, Paris, France
| | - A 'dem Bokhari
- Sorbonne Université, UPMC Univ Paris 06, INSERM, UMRS 938, SIRIC CURAMUS, Equipe Instabilité Des Microsatellites Et Cancer, Equipe Labellisée Par La Ligue Contre Le Cancer, Centre de Recherche Saint Antoine, 75012, Paris, France
| | - Romane Bertrand
- Sorbonne Université, UPMC Univ Paris 06, INSERM, UMRS 938, SIRIC CURAMUS, Equipe Instabilité Des Microsatellites Et Cancer, Equipe Labellisée Par La Ligue Contre Le Cancer, Centre de Recherche Saint Antoine, 75012, Paris, France
| | - Florence Renaud
- Sorbonne Université, UPMC Univ Paris 06, INSERM, UMRS 938, SIRIC CURAMUS, Equipe Instabilité Des Microsatellites Et Cancer, Equipe Labellisée Par La Ligue Contre Le Cancer, Centre de Recherche Saint Antoine, 75012, Paris, France
| | - Pierre Bourgoin
- Sorbonne Université, UPMC Univ Paris 06, INSERM, UMRS 938, SIRIC CURAMUS, Equipe Instabilité Des Microsatellites Et Cancer, Equipe Labellisée Par La Ligue Contre Le Cancer, Centre de Recherche Saint Antoine, 75012, Paris, France
| | - Romain Cohen
- Sorbonne Université, UPMC Univ Paris 06, INSERM, UMRS 938, SIRIC CURAMUS, Equipe Instabilité Des Microsatellites Et Cancer, Equipe Labellisée Par La Ligue Contre Le Cancer, Centre de Recherche Saint Antoine, 75012, Paris, France
- Sorbonne Université, Service D'oncologie Médicale, Hôpital Saint-Antoine, AP-HP, 75012, Paris, France
| | - Magali Svrcek
- Sorbonne Université, UPMC Univ Paris 06, INSERM, UMRS 938, SIRIC CURAMUS, Equipe Instabilité Des Microsatellites Et Cancer, Equipe Labellisée Par La Ligue Contre Le Cancer, Centre de Recherche Saint Antoine, 75012, Paris, France
- Sorbonne Université, Laboratoire D'anatomie Et Cytologie Pathologiques, Hôpital Saint-Antoine, AP-HP, 75012, Paris, France
| | - Anne-Christine Joly
- UPAC and C (Unité De Préparation Des Anticancéreux Et Contrôle), Saint Antoine Hospital, AP-HP, Paris, France
| | - Alex Duval
- Sorbonne Université, UPMC Univ Paris 06, INSERM, UMRS 938, SIRIC CURAMUS, Equipe Instabilité Des Microsatellites Et Cancer, Equipe Labellisée Par La Ligue Contre Le Cancer, Centre de Recherche Saint Antoine, 75012, Paris, France
| | - Ada Collura
- Sorbonne Université, UPMC Univ Paris 06, INSERM, UMRS 938, SIRIC CURAMUS, Equipe Instabilité Des Microsatellites Et Cancer, Equipe Labellisée Par La Ligue Contre Le Cancer, Centre de Recherche Saint Antoine, 75012, Paris, France.
| |
Collapse
|
6
|
Huang Y, Peng C, Tang J, Wang S, Yang F, Wang Q, Zhou L, Yang L, Ju S. The expression of heat shock protein A12B (HSPA12B) in non-Hodgkin's lymphomas. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1462. [PMID: 34734014 PMCID: PMC8506729 DOI: 10.21037/atm-21-4185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/10/2021] [Indexed: 11/18/2022]
Abstract
Background Heat shock protein A12B (HSPA12B) plays a considerable protective role for cells, tissues, and organs against various noxious conditions. However, the expression of HSPA12B in cancer biology remains controversial. This study aimed to investigate the expression of HSPA12B and its role in cell adhesion mediated drug resistance (CAM-DR) of non-Hodgkin’s lymphoma (NHL). Methods In this study, the expression of HSPA12B in NHL was determined by immunohistochemical, and the effect of HSPA12B expression on the prognosis of NHL was analyzed by Kaplan–Meier curves. Then, the transfection technique was used to research the effect of HSPA12B in cell apoptosis. The most important was to study the expression changes of HSPA12B in the adhesion model and the effect of overexpression of HSPA12B on CAM-DR. Results We analyzed the relationship between the expression levels of HSPA12B and clinical parameters in NHL. The expression of HSPA12B was directly related to the different NHL variants. We overexpressed HSPA12B in 2 NHL cell lines and found a subsequent reduction in apoptosis. More specifically, we used an adhesion assay to demonstrate that HSPA12B expression was induced in NHL cells when they adhered to fibronectin (FN) or bone marrow stroma cells (BMSCs). Finally, it was revealed that HSPA12B overexpression enhances CAM-DR. Conclusions Our data suggest that HSPA12B may play a functional role in CAM-DR and is thus a potential novel target for NHL treatment.
Collapse
Affiliation(s)
- Yuejiao Huang
- Department of Medical Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, China.,Medical School of Nantong University, Nantong, China
| | - Chunlei Peng
- Department of Medical Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Jie Tang
- Medical School of Nantong University, Nantong, China
| | - Shitao Wang
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, China
| | - Fan Yang
- Medical School of Nantong University, Nantong, China
| | - Qiufei Wang
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, China
| | - Li Zhou
- Medical School of Nantong University, Nantong, China
| | - Lei Yang
- Department of Medical Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Shaoqing Ju
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
7
|
Jia M, Li FZ, Ye Q, Chen KJ, Fang S. Expression of Heat Shock Protein 105 in Cutaneous Squamous Cell Carcinoma: Correlation with Clinicopathological Characteristics. Clin Cosmet Investig Dermatol 2021; 14:633-641. [PMID: 34163202 PMCID: PMC8213956 DOI: 10.2147/ccid.s308000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/25/2021] [Indexed: 12/31/2022]
Abstract
Background Heat shock proteins (HSPs), a group of heat stress proteins, are characterized by highly conserved properties. Malignant transformation is a cellular stress, and the expression of HSPs may be affected during this process. Heat shock protein 105 (HSP105) is a protective protein that has long been observed in many cancer types, but little attention has been given to cutaneous squamous cell carcinoma (CSCC). As such, the objectives of this study were to observe the expression of HSP105 on CSCC and evaluate its correlation with clinicopathological characteristics. Methods This retrospective study enrolled 60 patients with CSCC. The patients’ clinical data, including sex, age, tumor location, tumor type, and degree of pathological differentiation, were collected. The expression of HSP105 was measured by Western blot and immunohistochemical staining. Results HSP105 expression was decreased in CSCC (HSCORE=0.65 (0.30, 1.98)) compared with normal skin (HSCORE=2.20 (1.50, 2.80)) (P<0.001). These results were consistent with the Western blot analysis. HSP105 immunostaining of Bowen disease (HSCORE=1.28 (1.08, 2.40)) revealed higher expression than in verrucous carcinoma (HSCORE=0.30 (0.23, 0.85)), keratoacanthoma (HSCORE=0.53 (0.29, 0.93)) and acantholytic squamous cell carcinoma (HSCORE=0.53 (0.41, 0.68) (P<0.01)). Poorly differentiated CSCC showed significantly higher expression of HSP105. Conclusion Our study reveals for the first time that the expression of HSP105 is decreased in CSCC. We suggest that the molecular mechanisms underlying the differential expression of HSP deserve a more rigorous future study, the results of which might explain its role in carcinogenesis and its potential as a target for selective tumor therapy.
Collapse
Affiliation(s)
- Meng Jia
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Feng-Zeng Li
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Qian Ye
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Ke-Jun Chen
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Sheng Fang
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
8
|
Fucà G, Ambrosini M, Agnelli L, Brich S, Sgambelluri F, Mortarini R, Pupa SM, Magni M, Devizzi L, Matteucci P, Cabras A, Zappasodi R, De Santis F, Anichini A, De Braud F, Gianni AM, Di Nicola M. Fifteen-year follow-up of relapsed indolent non-Hodgkin lymphoma patients vaccinated with tumor-loaded dendritic cells. J Immunother Cancer 2021; 9:jitc-2020-002240. [PMID: 34127544 PMCID: PMC8204168 DOI: 10.1136/jitc-2020-002240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2021] [Indexed: 12/23/2022] Open
Abstract
We previously published the results of a pilot study showing that vaccination with tumor-loaded dendritic cells (DCs) induced both T and B cell response and produced clinical benefit in the absence of toxicity in patients with relapsed, indolent non-Hodgkin lymphoma (iNHL). The purpose of the present short report is to provide a 15-year follow-up of our study and to expand the biomarker analysis previously performed. The long-term follow-up highlighted the absence of particular or delayed toxicity and the benefit of active immunization with DCs loaded with autologous, heat-shocked and UV-C treated tumor cells in relapsed iNHL (5-year and 10-year progression-free survival (PFS) rates: 55.6% and 33.3%, respectively; 10-year overall survival (OS) rate: 83.3%). Female patients experienced a better PFS (p=0.016) and a trend towards a better OS (p=0.185) compared with male patients. Of note, we observed a non-negligible fraction of patients (22%) who experienced a long-lasting complete response. In a targeted gene expression profiling of pre-treatment tumor biopsies in 11 patients with available formalin-fixed, paraffin-embedded tissue, we observed that KIT, ATG12, TNFRSF10C, PBK, ITGA2, GATA3, CLU, NCAM1, SYT17 and LTK were differentially expressed in patients with responder versus non-responder tumors. The characterization of peripheral monocytic cells in a subgroup of 14 patients with available baseline blood samples showed a higher frequency of the subset of CD14++CD16+ cells (intermediate monocytes) in patients with responding tumors. Since in patients with relapsed iNHL the available therapeutic options are often incapable of inducing a long-lasting complete remission and can be sometimes characterized by intolerable toxicity, we think that the encouraging results of our long-term follow-up analysis represent a stimulus to further investigate the role of active vaccination in this specific setting and in earlier lines of therapy and to explore novel combinatorial strategies encompassing other innovative immunotherapy agents, such as immune-checkpoint inhibitors.
Collapse
Affiliation(s)
- Giovanni Fucà
- Immunotherapy and Innovative Therapeutics Unit, Medical Oncology and Hematology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Margherita Ambrosini
- Immunotherapy and Innovative Therapeutics Unit, Medical Oncology and Hematology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Luca Agnelli
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Silvia Brich
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Francesco Sgambelluri
- Human Tumors Immunobiology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Roberta Mortarini
- Human Tumors Immunobiology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Serenella M Pupa
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Michele Magni
- Immunotherapy and Innovative Therapeutics Unit, Medical Oncology and Hematology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Liliana Devizzi
- Hematology Division, Medical Oncology and Hematology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Paola Matteucci
- Hematology Division, Medical Oncology and Hematology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Antonello Cabras
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Roberta Zappasodi
- Swim Across America and Ludwig Collaborative Laboratory, Immunology Program, Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Francesca De Santis
- Immunotherapy and Innovative Therapeutics Unit, Medical Oncology and Hematology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Andrea Anichini
- Human Tumors Immunobiology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Filippo De Braud
- Immunotherapy and Innovative Therapeutics Unit, Medical Oncology and Hematology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.,Oncology and Hemato-oncology Department, University of Milan, Milan, Italy
| | | | - Massimo Di Nicola
- Immunotherapy and Innovative Therapeutics Unit, Medical Oncology and Hematology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
9
|
Li Y, Zhang N, Zhang L, Song Y, Liu J, Yu J, Yang M. Oncogene HSPH1 modulated by the rs2280059 genetic variant diminishes EGFR-TKIs efficiency in advanced lung adenocarcinoma. Carcinogenesis 2021; 41:1195-1202. [PMID: 32815538 DOI: 10.1093/carcin/bgaa069] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 06/17/2020] [Accepted: 07/06/2020] [Indexed: 12/18/2022] Open
Abstract
Although epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor (TKI) therapy is effective for most advanced non-small-cell lung cancer (NSCLC) patients with mutant EGFR, some patients show little or no response. Germline variations, such as single-nucleotide polymorphisms (SNPs), have been proved to be involved in disease progression after EGFR-TKI therapy. In this study, we hypothesized that the functional HSPH1 SNP may affect gene expression and, thus, prognosis of NSCLC patients treated with EGFR-TKIs. We systematically examined impacts of HSPH1 SNPs on NSCLC survival in two independent cohorts consisted of 319 EGFR-TKI treated stage IIIB/IV NSCLC patients. The promoter rs2280059 polymorphism was significantly associated with patient survival in both cohorts. In vitro and In vivo assays elucidated that rs2280059 G allele shows higher capability to drive HSPH1 promoter activities. Silencing HSPH1 significantly increases the antineoplastic effects of gefitinib on NSCLC cells. Our findings demonstrated potential implications of HSPH1 in clinic, which may lead to better understanding and outcome assessment of EGFR-TKI treatment.
Collapse
Affiliation(s)
- Yankang Li
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China.,Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Nasha Zhang
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China.,Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, China.,Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Li Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yemei Song
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Jie Liu
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China.,Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Ming Yang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| |
Collapse
|
10
|
Cox MC, Lapenta C, Santini SM. Advances and perspectives of dendritic cell-based active immunotherapies in follicular lymphoma. Cancer Immunol Immunother 2020; 69:913-925. [PMID: 32322910 DOI: 10.1007/s00262-020-02577-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/11/2020] [Indexed: 12/13/2022]
Abstract
Follicular lymphoma (FL) is a remarkably immune-responsive malignancy, which is still considered incurable. As, standard immunochemotherapy is complex, toxic and not curative, improvement in FL care is now a crucial topic in hemato-oncology. Recently, we and others have shown that dendritic cell (DC)-based therapies allow a specific immune response associated with sustained lymphoma regression in a proportion of low-tumor burden FL patients. Importantly, the rate of objective clinical response (33-50%) and of sustained remission is remarkably higher compared to similar studies in solid tumors, corroborating the assumption of the immune responsiveness of FL. Our experimental intra-tumoral strategy combined injection with rituximab and interferon-α-derived dendritic cells (IFN-DC), a novel DC population particularly efficient in biasing T-helper response toward the Th1 type and in the cross-priming of CD8 + T cells. Noteworthy, intra-tumoral injection of DC is a new therapeutic option based on the assumption that following the induction of cancer-cell immunogenic death, unloaded DC would phagocytize in vivo the tumor associated antigens and give rise to a specific immune response. This approach allows the design of easy and inexpensive schedules. On the other hand, advanced and straightforward methods to produce clinical-grade antigenic formulations are currently under development. Both unloaded DC strategies and DC-vaccines are suited for combination with radiotherapy, immune checkpoint inhibitors, immunomodulators and metronomic chemotherapy. In fact, studies in animal models have already shown impressive results, while early-phase combination trials are ongoing. Here, we summarize the recent advances and the future perspectives of DC-based therapies in the treatment of FL patients.
Collapse
Affiliation(s)
- Maria Christina Cox
- Department of Haematology, King's College Hospital NHS Foundation Trust and Sant'Andrea University Hospital, Rome, Italy
| | - Caterina Lapenta
- Dipartimento Di Oncologia e Medicina Molecolare, Istituto Superiore Di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| | - Stefano M Santini
- Dipartimento Di Oncologia e Medicina Molecolare, Istituto Superiore Di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| |
Collapse
|
11
|
HSP110 sustains chronic NF-κB signaling in activated B-cell diffuse large B-cell lymphoma through MyD88 stabilization. Blood 2018; 132:510-520. [PMID: 29871863 DOI: 10.1182/blood-2017-12-819706] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 05/30/2018] [Indexed: 02/06/2023] Open
Abstract
Activated B-cell diffuse large B-cell lymphoma (ABC-DLBCL) is an aggressive lymphoproliferative disorder involving chronic NF-κB activation. Several mutations in the BCR and MyD88 signaling pathway components, such as MyD88 L265P, are implicated in this aberrant activation. Among heat shock proteins, HSP110 has recently been identified as a prosurvival and/or proliferation factor in many cancers, but its role in ABC-DLBCL survival mechanisms remained to be established. We observed that short hairpin RNA-mediated HSP110 silencing decreased the survival of several ABC-DLBCL cell lines and decreased immunoglobulin M-MyD88 co-localization and subsequent NF-κB signaling. Conversely, overexpression of HSP110 in ABC-DLBCL or non-DLBCL cell lines increased NF-κB signaling, indicating a tight interplay between HSP110 and the NF-κB pathway. By using immunoprecipitation and proximity ligation assays, we identified an interaction between HSP110 and both wild-type MyD88 and MyD88 L265P. HSP110 stabilized both MyD88 forms with a stronger effect on MyD88 L265P, thus facilitating chronic NF-κB activation. Finally, HSP110 expression was higher in lymph node biopsies from patients with ABC-DLBCL than in normal reactive lymph nodes, and a strong correlation was found between the level of HSP110 and MyD88. In conclusion, we identified HSP110 as a regulator of NF-κB signaling through MyD88 stabilization in ABC-DLBCL. This finding reveals HSP110 as a new potential therapeutic target in ABC-DLBCL.
Collapse
|
12
|
Griggio V, Mandili G, Vitale C, Capello M, Macor P, Serra S, Castella B, Peola S, Foglietta M, Drandi D, Omedé P, Sblattero D, Cappello P, Chiarle R, Deaglio S, Boccadoro M, Novelli F, Massaia M, Coscia M. Humoral immune responses toward tumor-derived antigens in previously untreated patients with chronic lymphocytic leukemia. Oncotarget 2018; 8:3274-3288. [PMID: 27906678 PMCID: PMC5356881 DOI: 10.18632/oncotarget.13712] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 11/22/2016] [Indexed: 11/25/2022] Open
Abstract
In chronic lymphocytic leukemia (CLL) the occurrence and the impact of antibody responses toward tumor-derived antigens are largely unexplored. Our serological proteomic data show that antibodies toward 47 identified antigens are detectable in 29 out of 35 patients (83%) with untreated CLL. The glycolytic enzyme alpha-enolase (ENO1) is the most frequently recognized antigen (i.e. 54% of CLL sera). We show that ENO1 is upregulated in the proliferating B-cell fraction of CLL lymph nodes. In CLL cells of the peripheral blood, ENO1 is exclusively expressed at the intracellular level, whereas it is exposed on the surface of apoptotic leukemic cells. From the clinical standpoint, patients with progressive CLL show a higher number of antigen recognitions compared to patients with stable disease. Consistently, the anti-ENO1 antibodies are prevalent in sera from patients with progressive disease and their presence is predictive of a shorter time to first treatment. This clinical inefficacy associates with the inability of patients’ sera to trigger complement-dependent cytotoxicity and antibody-dependent cellular cytotoxicity against leukemic cells. Together, these results indicate that antibody responses toward tumor-derived antigens are frequently detectable in sera from patients with CLL, but they are expression of a disrupted immune system and unable to hamper disease progression.
Collapse
Affiliation(s)
- Valentina Griggio
- Division of Hematology, University of Torino, AOU Città della Salute e della Scienza di Torino, Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Giorgia Mandili
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.,Center for Experimental Research and Medical Studies (CeRMS), AOU Città della Salute e della Scienza di Torino, Torino, Italy
| | - Candida Vitale
- Division of Hematology, University of Torino, AOU Città della Salute e della Scienza di Torino, Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Michela Capello
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.,Center for Experimental Research and Medical Studies (CeRMS), AOU Città della Salute e della Scienza di Torino, Torino, Italy
| | - Paolo Macor
- Department of Life Sciences - University of Trieste, Trieste, Italy
| | - Sara Serra
- Department of Medical Sciences, University of Torino and Immunogenetics Unit - Human Genetics Foundation (HuGeF), Torino, Italy
| | - Barbara Castella
- Division of Hematology, University of Torino, AOU Città della Salute e della Scienza di Torino, Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.,Center for Experimental Research and Medical Studies (CeRMS), AOU Città della Salute e della Scienza di Torino, Torino, Italy
| | - Silvia Peola
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.,Center for Experimental Research and Medical Studies (CeRMS), AOU Città della Salute e della Scienza di Torino, Torino, Italy
| | - Myriam Foglietta
- Division of Hematology, University of Torino, AOU Città della Salute e della Scienza di Torino, Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.,Center for Experimental Research and Medical Studies (CeRMS), AOU Città della Salute e della Scienza di Torino, Torino, Italy
| | - Daniela Drandi
- Division of Hematology, University of Torino, AOU Città della Salute e della Scienza di Torino, Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Paola Omedé
- Division of Hematology, University of Torino, AOU Città della Salute e della Scienza di Torino, Torino, Italy
| | | | - Paola Cappello
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.,Center for Experimental Research and Medical Studies (CeRMS), AOU Città della Salute e della Scienza di Torino, Torino, Italy.,Molecular Biotechnology Center, Torino, Italy
| | - Roberto Chiarle
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.,Center for Experimental Research and Medical Studies (CeRMS), AOU Città della Salute e della Scienza di Torino, Torino, Italy.,Department of Pathology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Silvia Deaglio
- Department of Medical Sciences, University of Torino and Immunogenetics Unit - Human Genetics Foundation (HuGeF), Torino, Italy
| | - Mario Boccadoro
- Division of Hematology, University of Torino, AOU Città della Salute e della Scienza di Torino, Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Francesco Novelli
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.,Center for Experimental Research and Medical Studies (CeRMS), AOU Città della Salute e della Scienza di Torino, Torino, Italy.,Molecular Biotechnology Center, Torino, Italy.,Service of Immunogenetics and Transplantation, AOU Città della Salute e della Scienza di Torino, Torino, Italy
| | - Massimo Massaia
- Division of Hematology, University of Torino, AOU Città della Salute e della Scienza di Torino, Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.,Center for Experimental Research and Medical Studies (CeRMS), AOU Città della Salute e della Scienza di Torino, Torino, Italy
| | - Marta Coscia
- Division of Hematology, University of Torino, AOU Città della Salute e della Scienza di Torino, Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| |
Collapse
|
13
|
Targeting Heat Shock Proteins in Cancer: A Promising Therapeutic Approach. Int J Mol Sci 2017; 18:ijms18091978. [PMID: 28914774 PMCID: PMC5618627 DOI: 10.3390/ijms18091978] [Citation(s) in RCA: 312] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 09/01/2017] [Accepted: 09/05/2017] [Indexed: 12/12/2022] Open
Abstract
Heat shock proteins (HSPs) are a large family of chaperones that are involved in protein folding and maturation of a variety of "client" proteins protecting them from degradation, oxidative stress, hypoxia, and thermal stress. Hence, they are significant regulators of cellular proliferation, differentiation and strongly implicated in the molecular orchestration of cancer development and progression as many of their clients are well established oncoproteins in multiple tumor types. Interestingly, tumor cells are more HSP chaperonage-dependent than normal cells for proliferation and survival because the oncoproteins in cancer cells are often misfolded and require augmented chaperonage activity for correction. This led to the development of several inhibitors of HSP90 and other HSPs that have shown promise both preclinically and clinically in the treatment of cancer. In this article, we comprehensively review the roles of some of the important HSPs in cancer, and how targeting them could be efficacious, especially when traditional cancer therapies fail.
Collapse
|
14
|
Wu J, Liu T, Rios Z, Mei Q, Lin X, Cao S. Heat Shock Proteins and Cancer. Trends Pharmacol Sci 2016; 38:226-256. [PMID: 28012700 DOI: 10.1016/j.tips.2016.11.009] [Citation(s) in RCA: 444] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/23/2016] [Accepted: 11/11/2016] [Indexed: 12/21/2022]
Abstract
Heat shock proteins (HSPs) constitute a large family of proteins involved in protein folding and maturation whose expression is induced by heat shock or other stressors. The major groups are classified based on their molecular weights and include HSP27, HSP40, HSP60, HSP70, HSP90, and large HSPs. HSPs play a significant role in cellular proliferation, differentiation, and carcinogenesis. In this article we comprehensively review the roles of major HSPs in cancer biology and pharmacology. HSPs are thought to play significant roles in the molecular mechanisms leading to cancer development and metastasis. HSPs may also have potential clinical uses as biomarkers for cancer diagnosis, for assessing disease progression, or as therapeutic targets for cancer therapy.
Collapse
Affiliation(s)
- Jianming Wu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Tuoen Liu
- Department of Biomedical Sciences, West Virginia School of Osteopathic Medicine, Lewisburg, WV 24901, USA.
| | - Zechary Rios
- University of Illinois College of Medicine at Chicago, Chicago, IL 60612, USA
| | - Qibing Mei
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xiukun Lin
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Shousong Cao
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
15
|
HSP110 promotes colorectal cancer growth through STAT3 activation. Oncogene 2016; 36:2328-2336. [PMID: 27819670 DOI: 10.1038/onc.2016.403] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 09/09/2016] [Accepted: 09/23/2016] [Indexed: 01/09/2023]
Abstract
Heat shock protein 110 (HSP110) is induced by different stresses and, through its anti-apoptotic and chaperoning properties, helps cells survive these adverse situations. In colon cancers, HSP110 is abnormally abundant. We have recently shown that colorectal cancer patients with microsatellite instability (MSI) had an improved response to chemotherapy because they harbor an HSP110-inactivating mutation (HSP110DE9). In this work, we used patient biopsies, human colorectal cancer cells grown in vitro and in vivo (xenografts), and intestinal crypts to demonstrate that HSP110 is also involved in colon cancer growth. We showed that HSP110 induces colon cancer cell proliferation and that this effect is associated with STAT3 activation, specifically an increase in STAT3 phosphorylation, nuclear translocation and transcription factor activity. STAT3 inhibition blocks the proliferative effect of HSP110. From a molecular standpoint, we demonstrated that HSP110 directly binds to STAT3, thereby facilitating its phosphorylation by JAK2. Finally, we showed a correlation between HSP110 expression and STAT3 phosphorylation in colon cancer patient samples. Thus, the expression of HSP110 in colon cancer contributes to STAT3-dependent tumor growth and the frequent inactivating mutation of this chaperone is probably an important event underlying the improved prognosis in colon cancer displaying MSI.
Collapse
|
16
|
Marullo R, Rutherford SC, Leonard JP, Cerchietti L. Therapeutic implication of concomitant chromosomal aberrations in patients with aggressive B-cell lymphomas. Cell Cycle 2016; 15:2241-7. [PMID: 27419806 DOI: 10.1080/15384101.2016.1207839] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A subset of diffuse large B-cell lymphomas (DLBCL) harbors concomitant rearrangements of MYC, BCL2 and BCL6 and is characterized by clinical aggressiveness and intrinsic refractoriness to standard chemo-immunotherapy. Commonly identified as "double or triple hit" lymphomas, these diseases represent a therapeutic challenge to chemotherapy-based regimens and likely require a more targeted approach. Herein we summarize the unique biological behavior of double and triple hit lymphomas focusing on the coordinated network of pathways that enable cancer cells to tolerate the oncogenic stress imposed by the co-expression of MYC, BCL2 and BCL6. We discuss how these enabling pathways contribute to the chemo-refractoriness of these tumors. We propose to exploit lymphoma cells' addiction to these oncogenic networks to design combinatorial treatments for this aggressive disease based on the modulation of epigenetically-silenced pathways and decreasing expression and activity of these oncogenic drivers.
Collapse
Affiliation(s)
- Rossella Marullo
- a Division of Hematology and Medical Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine , New York , NY , USA
| | - Sarah C Rutherford
- a Division of Hematology and Medical Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine , New York , NY , USA
| | - John P Leonard
- a Division of Hematology and Medical Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine , New York , NY , USA
| | - Leandro Cerchietti
- a Division of Hematology and Medical Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine , New York , NY , USA
| |
Collapse
|
17
|
Zuo D, Subjeck J, Wang XY. Unfolding the Role of Large Heat Shock Proteins: New Insights and Therapeutic Implications. Front Immunol 2016; 7:75. [PMID: 26973652 PMCID: PMC4771732 DOI: 10.3389/fimmu.2016.00075] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 02/15/2016] [Indexed: 11/13/2022] Open
Abstract
Heat shock proteins (HSPs) of eukaryotes are evolutionarily conserved molecules present in all the major intracellular organelles. They mainly function as molecular chaperones and participate in maintenance of protein homeostasis in physiological state and under stressful conditions. Despite their relative abundance, the large HSPs, i.e., Hsp110 and glucose-regulated protein 170 (Grp170), have received less attention compared to other conventional HSPs. These proteins are distantly related to the Hsp70 and belong to Hsp70 superfamily. Increased sizes of Hsp110 and Grp170, due to the presence of a loop structure, result in their exceptional capability in binding to polypeptide substrates or non-protein ligands, such as pathogen-associated molecules. These interactions that occur in the extracellular environment during tissue injury or microbial infection may lead to amplification of an immune response engaging both innate and adaptive immune components. Here, we review the current advances in understanding these large HSPs as molecular chaperones in proteostasis control and immune modulation as well as their therapeutic implications in treatment of cancer and neurodegeneration. Given their unique immunoregulatory activities, we also discuss the emerging evidence of their potential involvement in inflammatory and immune-related diseases.
Collapse
Affiliation(s)
- Daming Zuo
- Department of Immunology, Southern Medical University, Guangzhou, China; State Key Laboratory of Organ Failure Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - John Subjeck
- Department of Cellular Stress Biology, Roswell Park Cancer Institute , Buffalo, NY , USA
| | - Xiang-Yang Wang
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
18
|
Wurz GT, Kao CJ, DeGregorio MW. Novel cancer antigens for personalized immunotherapies: latest evidence and clinical potential. Ther Adv Med Oncol 2016; 8:4-31. [PMID: 26753003 DOI: 10.1177/1758834015615514] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The clinical success of monoclonal antibody immune checkpoint modulators such as ipilimumab, which targets cytotoxic T lymphocyte-associated antigen 4 (CTLA-4), and the recently approved agents nivolumab and pembrolizumab, which target programmed cell death receptor 1 (PD-1), has stimulated renewed enthusiasm for anticancer immunotherapy, which was heralded by Science as 'Breakthrough of the Year' in 2013. As the potential of cancer immunotherapy has been recognized since the 1890s when William Coley showed that bacterial products could be beneficial in cancer patients, leveraging the immune system in the treatment of cancer is certainly not a new concept; however, earlier attempts to develop effective therapeutic vaccines and antibodies against solid tumors, for example, melanoma, frequently met with failure due in part to self-tolerance and the development of an immunosuppressive tumor microenvironment. Increased knowledge of the mechanisms through which cancer evades the immune system and the identification of tumor-associated antigens (TAAs) and negative immune checkpoint regulators have led to the development of vaccines and monoclonal antibodies targeting specific tumor antigens and immune checkpoints such as CTLA-4 and PD-1. This review first discusses the established targets of currently approved cancer immunotherapies and then focuses on investigational cancer antigens and their clinical potential. Because of the highly heterogeneous nature of tumors, effective anticancer immunotherapy-based treatment regimens will likely require a personalized combination of therapeutic vaccines, antibodies and chemotherapy that fit the specific biology of a patient's disease.
Collapse
Affiliation(s)
- Gregory T Wurz
- Department of Internal Medicine, Division of Hematology and Oncology, University of California, Davis, Sacramento, CA, USA
| | - Chiao-Jung Kao
- Department of Obstetrics and Gynecology, University of California, Davis Sacramento, CA, USA
| | - Michael W DeGregorio
- Department of Internal Medicine, Division of Hematology and Oncology, University of California, Davis, 4501 X Street Suite 3016, Sacramento, CA 95817, USA
| |
Collapse
|
19
|
Okada S, Furuya M, Takenaka S, Fukui A, Matsubayashi M, Tani H, Sasai K. Localization of heat shock protein 110 in canine mammary gland tumors. Vet Immunol Immunopathol 2015; 167:139-46. [DOI: 10.1016/j.vetimm.2015.07.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 07/28/2015] [Accepted: 07/30/2015] [Indexed: 12/31/2022]
|
20
|
Zappasodi R, de Braud F, Di Nicola M. Lymphoma Immunotherapy: Current Status. Front Immunol 2015; 6:448. [PMID: 26388871 PMCID: PMC4555084 DOI: 10.3389/fimmu.2015.00448] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 08/17/2015] [Indexed: 11/13/2022] Open
Abstract
The rationale to treat lymphomas with immunotherapy comes from long-standing evidence on their distinctive immune responsiveness. Indolent B-cell non-Hodgkin lymphomas, in particular, establish key interactions with the immune microenvironment to ensure prosurvival signals and prevent antitumor immune activation. However, reports of spontaneous regressions indicate that, under certain circumstances, patients develop therapeutic antitumor immunity. Several immunotherapeutic approaches have been thus developed to boost these effects in all patients. To date, targeting CD20 on malignant B cells with the antibody rituximab has been the most clinically effective strategy. However, relapse and resistance prevent to cure approximately half of B-NHL patients, underscoring the need of more effective therapies. The recognition of B-cell receptor variable regions as B-NHL unique antigens promoted the development of specific vaccines to immunize patients against their own tumor. Despite initial promising results, this strategy has not yet demonstrated a sufficient clinical benefit to reach the regulatory approval. Several novel agents are now available to stimulate immune effector functions or counteract immunosuppressive mechanisms, such as engineered antitumor T cells, co-stimulatory receptor agonist, and immune checkpoint-blocking antibodies. Thus, multiple elements can now be exploited in more effective combinations to break the barriers for the induction of anti-lymphoma immunity.
Collapse
Affiliation(s)
- Roberta Zappasodi
- Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center , New York, NY , USA
| | - Filippo de Braud
- Unit of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori , Milan , Italy
| | - Massimo Di Nicola
- Unit of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori , Milan , Italy ; Unit of Immunotherapy and Anticancer Innovative Therapeutics, Fondazione IRCCS Istituto Nazionale dei Tumori , Milan , Italy
| |
Collapse
|
21
|
Allegra A, Russo S, Gerace D, Calabrò L, Maisano V, Innao V, Musolino C. Vaccination strategies in lymphoproliferative disorders: Failures and successes. Leuk Res 2015; 39:1006-19. [PMID: 26298174 DOI: 10.1016/j.leukres.2015.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 08/02/2015] [Accepted: 08/03/2015] [Indexed: 01/24/2023]
Abstract
Anti-tumor vaccines in lymphoproliferative disorders hold out the prospect of effective tumor therapies with minimal side effects. The addition of immunotherapy to old and new chemotherapy regimens has improved both response rates and disease-free survival, leading in many cases to an extended overall survival. Ideally, an antigen that is used for vaccination would be specifically expressed in the tumor; it must have an important, causal part in the multifactorial process that leads to cancer, and it must be expressed stably even after it is attacked by the immune system. Immunotherapies, which aim to activate the immune system to kill cancer cells, include strategies to increase the frequency or potency of antitumor T cells, to overcome suppressive factors in the tumor microenvironment, and to reduce T-cell suppression systemically. In this review, we focus on the results of clinical trials of vaccination in lymphoma, and discuss potential strategies to enhance the efficacy of immunotherapy in the future.
Collapse
Affiliation(s)
- A Allegra
- Division of Hematology, Department of General Surgery, Oncology and Pathological Anatomy, University of Messina, Messina, Italy.
| | - S Russo
- Division of Hematology, Department of General Surgery, Oncology and Pathological Anatomy, University of Messina, Messina, Italy
| | - D Gerace
- Division of Hematology, Department of General Surgery, Oncology and Pathological Anatomy, University of Messina, Messina, Italy
| | - L Calabrò
- Division of Hematology, Department of General Surgery, Oncology and Pathological Anatomy, University of Messina, Messina, Italy
| | - V Maisano
- Division of Hematology, Department of General Surgery, Oncology and Pathological Anatomy, University of Messina, Messina, Italy
| | - V Innao
- Division of Hematology, Department of General Surgery, Oncology and Pathological Anatomy, University of Messina, Messina, Italy
| | - C Musolino
- Division of Hematology, Department of General Surgery, Oncology and Pathological Anatomy, University of Messina, Messina, Italy
| |
Collapse
|
22
|
|
23
|
Sensitivity and dose dependency of radiation-induced injury in hematopoietic stem/progenitor cells in mice. Sci Rep 2015; 5:8055. [PMID: 25623887 PMCID: PMC4306913 DOI: 10.1038/srep08055] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 01/02/2015] [Indexed: 01/07/2023] Open
Abstract
We evaluated the sensitivity and dose dependency of radiation-induced injury in hematopoietic stem/progenitor cells. Adult C57BL/6 mice were daily exposed to 0, 2, 10, 50, and 250 mGy γ-ray for 1 month in succession, respectively. The damage of hematopoietic stem/progenitor cells in bone marrow were investigated within 2 hours (acute phase) or at 3 months (chronic phase) after the last exposure. Daily exposure to over 10 mGy γ-ray significantly decreased the number and colony-forming capacity of hematopoietic stem/progenitor cells at acute phase, and did not completely recover at chronic phase with 250 mGy exposure. Interestingly, the daily exposure to 10 or 50 mGy γ-ray decreased the formation of mixed types of colonies at chronic phase, but the total number of colonies was comparable to control. Immunostaining analysis showed that the formation of 53BP1 foci in c-kit+ stem/progenitor cells was significantly increased with daily exposure to 50 and 250 mGy at acute phase, and 250 mGy at chronic phase. Many genes involved in toxicity responses were up- or down-regulated with the exposures to all doses. Our data have clearly shown the sensitivity and dose dependency of radiation-induced injury in hematopoietic stem/progenitor cells of mice with daily exposures to 2 ~ 250 mGy γ-ray.
Collapse
|
24
|
HSPH1 inhibition downregulates Bcl-6 and c-Myc and hampers the growth of human aggressive B-cell non-Hodgkin lymphoma. Blood 2015; 125:1768-71. [PMID: 25573990 DOI: 10.1182/blood-2014-07-590034] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have shown that human B-cell non-Hodgkin lymphomas (B-NHLs) express heat shock protein (HSP)H1/105 in function of their aggressiveness. Here, we now clarify its role as a functional B-NHL target by testing the hypothesis that it promotes the stabilization of key lymphoma oncoproteins. HSPH1 silencing in 4 models of aggressive B-NHLs was paralleled by Bcl-6 and c-Myc downregulation. In vitro and in vivo analysis of HSPH1-silenced Namalwa cells showed that this effect was associated with a significant growth delay and the loss of tumorigenicity when 10(4) cells were injected into mice. Interestingly, we found that HSPH1 physically interacts with c-Myc and Bcl-6 in both Namalwa cells and primary aggressive B-NHLs. Accordingly, expression of HSPH1 and either c-Myc or Bcl-6 positively correlated in these diseases. Our study indicates that HSPH1 concurrently favors the expression of 2 key lymphoma oncoproteins, thus confirming its candidacy as a valuable therapeutic target of aggressive B-NHLs.
Collapse
|
25
|
Zappasodi R, Cavanè A, Iorio MV, Tortoreto M, Guarnotta C, Ruggiero G, Piovan C, Magni M, Zaffaroni N, Tagliabue E, Croce CM, Zunino F, Gianni AM, Di Nicola M. Pleiotropic antitumor effects of the pan-HDAC inhibitor ITF2357 against c-Myc-overexpressing human B-cell non-Hodgkin lymphomas. Int J Cancer 2014; 135:2034-45. [DOI: 10.1002/ijc.28852] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 03/04/2014] [Indexed: 02/05/2023]
Affiliation(s)
- Roberta Zappasodi
- Medical Oncology Department; Fondazione IRCCS Istituto Nazionale per lo Studio e la Cura dei Tumori; Milan Italy
| | - Alessandra Cavanè
- Medical Oncology Department; Fondazione IRCCS Istituto Nazionale per lo Studio e la Cura dei Tumori; Milan Italy
| | - Marilena V. Iorio
- Start Up Unit Molecular Targeting Unit; Fondazione IRCCS Istituto Nazionale per lo Studio e la Cura dei Tumori; Milan Italy
| | - Monica Tortoreto
- Molecular Pharmacology Unit; Fondazione IRCCS Istituto Nazionale per lo Studio e la Cura dei Tumori; Milan Italy
| | - Carla Guarnotta
- Tumor Immunology Unit Department of Health Science Human Pathology Section; School of Medicine, University of Palermo; Palermo Italy
| | - Giusi Ruggiero
- Medical Oncology Department; Fondazione IRCCS Istituto Nazionale per lo Studio e la Cura dei Tumori; Milan Italy
| | - Claudia Piovan
- Start Up Unit Molecular Targeting Unit; Fondazione IRCCS Istituto Nazionale per lo Studio e la Cura dei Tumori; Milan Italy
| | - Michele Magni
- Medical Oncology Department; Fondazione IRCCS Istituto Nazionale per lo Studio e la Cura dei Tumori; Milan Italy
| | - Nadia Zaffaroni
- Molecular Pharmacology Unit; Fondazione IRCCS Istituto Nazionale per lo Studio e la Cura dei Tumori; Milan Italy
| | - Elda Tagliabue
- Molecular Targeting Unit; Fondazione IRCCS Istituto Nazionale per lo Studio e la Cura dei Tumori; Milan Italy
| | - Carlo M. Croce
- Department of Molecular Virology Immunology and Medical Genetics; Ohio State University; Columbus OH
| | - Franco Zunino
- Molecular Pharmacology Unit; Fondazione IRCCS Istituto Nazionale per lo Studio e la Cura dei Tumori; Milan Italy
| | - Alessandro M. Gianni
- Medical Oncology Department; Fondazione IRCCS Istituto Nazionale per lo Studio e la Cura dei Tumori; Milan Italy
- Medical Oncology; University of Milan; Milan Italy
| | - Massimo Di Nicola
- Medical Oncology Department; Fondazione IRCCS Istituto Nazionale per lo Studio e la Cura dei Tumori; Milan Italy
| |
Collapse
|
26
|
Kawai T, Enomoto Y, Morikawa T, Matsushita H, Kume H, Fukayama M, Yamaguchi H, Kakimi K, Homma Y. High expression of heat shock protein 105 predicts a favorable prognosis for patients with urinary bladder cancer treated with radical cystectomy. Mol Clin Oncol 2013; 2:38-42. [PMID: 24649305 DOI: 10.3892/mco.2013.203] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 10/14/2013] [Indexed: 01/24/2023] Open
Abstract
Heat shock protein 105 (Hsp105) is one of the cancer/testis antigens, which is overexpressed in a variety of cancer cells, including urinary bladder cancer, and has been investigated as a target molecule for immunotherapy due to its immunogenicity. In this study, we assessed the expression of Hsp105 in primary bladder cancer samples from 84 patients treated with radical cystectomy, using immunohistochemical analysis, and investigated its correlation with clinicopathological characteristics and cancer-specific survival. The immunoreactivity of Hsp105 expression was evaluated as a score of 0-3, according to the intensity of the signal. The Hsp105 expression was high (score 2 or 3) in 31 cases and low (score 0 or 1) in 53 cases; however, it was not significantly correlated with age, nuclear grade, pathological tumor stage and previous intravesical Bacillus Calmette-Guérin immunotherapy. Female gender, lymphovascular invasion and lymph node metastasis were associated with low Hsp105 scores, although the differences were not statistically significant (P=0.071, 0.061 and 0.175, respectively). However, a high Hsp105 score was significantly associated with a favorable prognosis (P=0.017) and was identified as an independent prognostic factor by multivariate analysis (P=0.032; hazard ratio, 2.34). These findings suggested that the expression of Hsp105 may be a novel indicator of a favorable prognosis in bladder cancer.
Collapse
Affiliation(s)
- Taketo Kawai
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo 1138655
| | - Yutaka Enomoto
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo 1138655; ; Department of Urology, Mitsui Memorial Hospital, Tokyo 1018643
| | - Teppei Morikawa
- Departments of Pathology, The University of Tokyo, Tokyo 1138655
| | - Hirokazu Matsushita
- Immunotherapeutics, Graduate School of Medicine, The University of Tokyo, Tokyo 1138655
| | - Haruki Kume
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo 1138655
| | - Masashi Fukayama
- Departments of Pathology, The University of Tokyo, Tokyo 1138655
| | | | - Kazuhiro Kakimi
- Immunotherapeutics, Graduate School of Medicine, The University of Tokyo, Tokyo 1138655
| | - Yukio Homma
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo 1138655
| |
Collapse
|
27
|
Wang XY, Subjeck JR. High molecular weight stress proteins: Identification, cloning and utilisation in cancer immunotherapy. Int J Hyperthermia 2013; 29:364-75. [PMID: 23829534 DOI: 10.3109/02656736.2013.803607] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Although the large stress/heat shock proteins (HSPs), i.e. Hsp110 and Grp170, were identified over 30 years ago, these abundant and highly conserved molecules have received much less attention compared to other conventional HSPs. Large stress proteins act as molecular chaperones with exceptional protein-holding capability and prevent the aggregation of proteins induced by thermal stress. The chaperoning properties of Hsp110 and Grp170 are integral to the ability of these molecules to modulate immune functions and are essential for developing large chaperone complex vaccines for cancer immunotherapy. The potent anti-tumour activity of the Hsp110/Grp170-tumour protein antigen complexes demonstrated in preclinical studies has led to a phase I clinical trial through the National Cancer Institute's rapid access to intervention development (RAID) programme that is presently underway. Here we review aspects of the structure and function of these large stress proteins, their roles as molecular chaperones in the biology of cell stress, and prospects for their use in immune regulation and cancer immunotherapy. Lastly, we will discuss the recently revealed immunosuppressive activity of scavenger receptor A that binds to Hsp110 and Grp170, as well as the feasibility of targeting this receptor to promote T-cell activation and anti-tumour immunity induced by large HSP vaccines and other immunotherapies.
Collapse
Affiliation(s)
- Xiang-Yang Wang
- Department of Human Molecular Genetics, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | | |
Collapse
|
28
|
Graner MW, Romanoski A, Katsanis E. The 'peptidome' of tumour-derived chaperone-rich cell lysate anti-cancer vaccines reveals potential tumour antigens that stimulate tumour immunity. Int J Hyperthermia 2013; 29:380-9. [PMID: 23725202 DOI: 10.3109/02656736.2013.793406] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Tumour-derived chaperone-rich cell lysate (CRCL) when isolated from tumour tissue or when embedded with peptide antigens is a potent anti-cancer vaccine consisting of numerous chaperone/heat shock proteins, including the highly immunogenic Hsp70, Hsp90, glucose regulated protein 94, and calreticulin. We have previously documented that CRCL provides both a source of tumour antigens and danger signals triggering antigen presenting cell activation. In this report we describe the 'peptidome' of potential antigens extracted from CRCL prepared from a murine tumour. Using mass spectrometry techniques we identify almost 60 different proteins of origin for the CRCL peptides; we determine that the parental proteins come from essentially all parts of the cell, and are involved in a broad range of functions. Further in silico analysis demonstrates that the parental proteins are components of major signalling networks of vital importance for cancer cell survival, proliferation, and migration. In many instances the peptides identified possess amino acid sequences that would allow their putative binding and display by murine major histocompatibility complex class I and II molecules, and there are also predicted binding motifs for Hsp70-type chaperones. By mixing fractionated pools of peptides with antigen-free (normal liver) CRCL, we were able to reconstitute effective anti-tumour activity of the vaccine, showing that the peptides are indeed the major purveyors of CRCL vaccines' efficacy.
Collapse
Affiliation(s)
- Michael W Graner
- Department of Neurosurgery, University of Colorado School of Medicine, Anschutz Medical Campus, Denver, CO 80045, USA.
| | | | | |
Collapse
|
29
|
Furuya M, Funasaki M, Tani H, Sasai K. Identification of novel tumour-associated antigens in canine mammary gland tumour. Vet Comp Oncol 2013; 13:194-202. [DOI: 10.1111/vco.12034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 12/27/2012] [Accepted: 01/31/2013] [Indexed: 11/29/2022]
Affiliation(s)
- M. Furuya
- Department of Veterinary Internal Medicine, Division of Veterinary Science, Graduate School of Life and Environmental Sciences; Osaka Prefecture University; Izumisano Osaka Japan
| | - M. Funasaki
- Department of Veterinary Internal Medicine, Division of Veterinary Science, Graduate School of Life and Environmental Sciences; Osaka Prefecture University; Izumisano Osaka Japan
| | - H. Tani
- Department of Veterinary Internal Medicine, Division of Veterinary Science, Graduate School of Life and Environmental Sciences; Osaka Prefecture University; Izumisano Osaka Japan
| | - K. Sasai
- Department of Veterinary Internal Medicine, Division of Veterinary Science, Graduate School of Life and Environmental Sciences; Osaka Prefecture University; Izumisano Osaka Japan
| |
Collapse
|