1
|
Liu Y, Zheng L, Li Y, Ma L, Zheng N, Liu X, Zhao Y, Yu L, Liu N, Liu S, Zhang K, Zhou J, Wei M, Yang C, Yang G. Neratinib impairs function of m6A recognition on AML1-ETO pre-mRNA and induces differentiation of t (8;21) AML cells by targeting HNRNPA3. Cancer Lett 2024; 594:216980. [PMID: 38797229 DOI: 10.1016/j.canlet.2024.216980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/07/2024] [Accepted: 05/19/2024] [Indexed: 05/29/2024]
Abstract
Acute myeloid leukemia (AML) is frequently linked to genetic abnormalities, with the t (8; 21) translocation, resulting in the production of a fusion oncoprotein AML1-ETO (AE), being a prevalent occurrence. This protein plays a pivotal role in t (8; 21) AML's onset, advancement, and recurrence, making it a therapeutic target. However, the development of drug molecules targeting AML1-ETO are markedly insufficient, especially used in clinical treatment. In this study, it was uncovered that Neratinib could significantly downregulate AML1-ETO protein level, subsequently promoting differentiation of t (8; 21) AML cells. Based on "differentiated active" probes, Neratinib was identified as a functional inhibitor against HNRNPA3 through covalent binding. The further studies demonstrated that HNRNPA3 function as a putative m6A reader responsible for recognizing and regulating the alternative splicing of AML-ETO pre-mRNA. These findings not only contribute to a novel insight to the mechanism governing post-transcriptional modification of AML1-ETO transcript, but also suggest that Neratinib would be promising therapeutic potential for t (8; 21) AML treatment.
Collapse
MESH Headings
- Humans
- Core Binding Factor Alpha 2 Subunit/genetics
- Core Binding Factor Alpha 2 Subunit/metabolism
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Quinolines/pharmacology
- Cell Differentiation/drug effects
- RUNX1 Translocation Partner 1 Protein/genetics
- RUNX1 Translocation Partner 1 Protein/metabolism
- RNA Precursors/metabolism
- RNA Precursors/genetics
- Heterogeneous-Nuclear Ribonucleoprotein Group A-B/metabolism
- Heterogeneous-Nuclear Ribonucleoprotein Group A-B/genetics
- Translocation, Genetic/drug effects
- Adenosine/analogs & derivatives
- Adenosine/metabolism
- Adenosine/pharmacology
- Alternative Splicing/drug effects
- Cell Line, Tumor
- Animals
- Mice
Collapse
Affiliation(s)
- Yulin Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, College of Life Sciences, Nankai University, Tianjin, 300071, PR China
| | - Liting Zheng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, College of Life Sciences, Nankai University, Tianjin, 300071, PR China
| | - Ying Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, College of Life Sciences, Nankai University, Tianjin, 300071, PR China
| | - Lan Ma
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, College of Life Sciences, Nankai University, Tianjin, 300071, PR China
| | - Nan Zheng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, College of Life Sciences, Nankai University, Tianjin, 300071, PR China
| | - Xinhua Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, College of Life Sciences, Nankai University, Tianjin, 300071, PR China
| | - Yanli Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, College of Life Sciences, Nankai University, Tianjin, 300071, PR China
| | - Li Yu
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Xueyuan AVE 1098, Nanshan District, Shenzhen, Guangdong, 518000, PR China
| | - Ning Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, College of Life Sciences, Nankai University, Tianjin, 300071, PR China.
| | - Shuangwei Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, College of Life Sciences, Nankai University, Tianjin, 300071, PR China.
| | - Kun Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, College of Life Sciences, Nankai University, Tianjin, 300071, PR China.
| | - Jingfeng Zhou
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Xueyuan AVE 1098, Nanshan District, Shenzhen, Guangdong, 518000, PR China.
| | - Mingming Wei
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, College of Life Sciences, Nankai University, Tianjin, 300071, PR China.
| | - Cheng Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, College of Life Sciences, Nankai University, Tianjin, 300071, PR China.
| | - Guang Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, College of Life Sciences, Nankai University, Tianjin, 300071, PR China.
| |
Collapse
|
2
|
Zhang K, Zhang X, Xu Y, Xue S, Qiu H, Tang X, Han Y, Chen S, Sun A, Zhang Y, Wu D, Wang Y. Efficacy of venetoclax combined with hypomethylating agents in young, and unfit patients with newly diagnosed core binding factor acute myeloid leukemia. Blood Cancer J 2023; 13:155. [PMID: 37821435 PMCID: PMC10567686 DOI: 10.1038/s41408-023-00928-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/09/2023] [Accepted: 09/28/2023] [Indexed: 10/13/2023] Open
Affiliation(s)
- Keyuan Zhang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiang Zhang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yang Xu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Shengli Xue
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Huiying Qiu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Xiaowen Tang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Yue Han
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Suning Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Aining Sun
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Yanming Zhang
- Department of Hematology, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, No 62, Huaihai Road (S.), Huai'an, China.
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China.
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China.
| | - Ying Wang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China.
| |
Collapse
|
3
|
Lang Y, Lyu Y, Tan Y, Hu Z. Progress in construction of mouse models to investigate the pathogenesis and immune therapy of human hematological malignancy. Front Immunol 2023; 14:1195194. [PMID: 37646021 PMCID: PMC10461088 DOI: 10.3389/fimmu.2023.1195194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/27/2023] [Indexed: 09/01/2023] Open
Abstract
Hematological malignancy is a disease arisen by complicate reasons that seriously endangers human health. The research on its pathogenesis and therapies depends on the usage of animal models. Conventional animal model cannot faithfully mirror some characteristics of human features due to the evolutionary divergence, whereas the mouse models hosting human hematological malignancy are more and more applied in basic as well as translational investigations in recent years. According to the construction methods, they can be divided into different types (e.g. cell-derived xenograft (CDX) and patient-derived xenograft model (PDX) model) that have diverse characteristics and application values. In addition, a variety of strategies have been developed to improve human hematological malignant cell engraftment and differentiation in vivo. Moreover, the humanized mouse model with both functional human immune system and autologous human hematological malignancy provides a unique tool for the evaluation of the efficacy of novel immunotherapeutic drugs/approaches. Herein, we first review the evolution of the mouse model of human hematological malignancy; Then, we analyze the characteristics of different types of models and summarize the ways to improve the models; Finally, the way and value of humanized mouse model of human immune system in the immunotherapy of human hematological malignancy are discussed.
Collapse
Affiliation(s)
- Yue Lang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, China
- Department of Dermatology, The First Hospital, Jilin University, Changchun, China
| | - Yanan Lyu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, China
| | - Yehui Tan
- Department of Hematology, The First Hospital, Jilin University, Changchun, China
| | - Zheng Hu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, China
| |
Collapse
|
4
|
Deregulated Gene Expression Profiles and Regulatory Networks in Adult and Pediatric RUNX1/RUNX1T1-Positive AML Patients. Cancers (Basel) 2023; 15:cancers15061795. [PMID: 36980682 PMCID: PMC10046396 DOI: 10.3390/cancers15061795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous and complex disease concerning molecular aberrations and prognosis. RUNX1/RUNX1T1 is a fusion oncogene that results from the chromosomal translocation t(8;21) and plays a crucial role in AML. However, its impact on the transcriptomic profile of different age groups of AML patients is not completely understood. Here, we investigated the deregulated gene expression (DEG) profiles in adult and pediatric RUNX1/RUNX1T1-positive AML patients, and compared their functions and regulatory networks. We retrospectively analyzed gene expression data from two independent Gene Expression Omnibus (GEO) datasets (GSE37642 and GSE75461) and computed their differentially expressed genes and upstream regulators, using limma, GEO2Enrichr, and X2K. For validation purposes, we used the TCGA-LAML (adult) and TARGET-AML (pediatric) patient cohorts. We also analyzed the protein–protein interaction (PPI) networks, as well as those composed of transcription factors (TF), intermediate proteins, and kinases foreseen to regulate the top deregulated genes in each group. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enrichment analyses were further performed for the DEGs in each dataset. We found that the top upregulated genes in (both adult and pediatric) RUNX1/RUNX1T1-positive AML patients are enriched in extracellular matrix organization, the cell projection membrane, filopodium membrane, and supramolecular fiber. Our data corroborate that RUNX1/RUNX1T1 reprograms a large transcriptional network to establish and maintain leukemia via intricate PPI interactions and kinase-driven phosphorylation events.
Collapse
|
5
|
DiNardo CD, Lachowiez CA, Takahashi K, Loghavi S, Xiao L, Kadia T, Daver N, Adeoti M, Short NJ, Sasaki K, Wang S, Borthakur G, Issa G, Maiti A, Alvarado Y, Pemmaraju N, Montalban Bravo G, Masarova L, Yilmaz M, Jain N, Andreeff M, Jabbour E, Garcia-Manero G, Kornblau S, Ravandi F, Konopleva MY, Kantarjian HM. Venetoclax Combined With FLAG-IDA Induction and Consolidation in Newly Diagnosed and Relapsed or Refractory Acute Myeloid Leukemia. J Clin Oncol 2021; 39:2768-2778. [PMID: 34043428 DOI: 10.1200/jco.20.03736] [Citation(s) in RCA: 182] [Impact Index Per Article: 60.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
PURPOSE Sixty percent of newly diagnosed patients with acute myeloid leukemia (ND-AML) receiving frontline therapy attain a complete response (CR), yet 30%-40% of patients relapse. Relapsed or refractory AML (R/R-AML) remains a particularly adverse population necessitating improved therapeutic options. This phase Ib/II study evaluated the safety and efficacy of fludarabine, cytarabine, granulocyte colony-stimulating factor, and idarubicin combined with the B-cell lymphoma-2 inhibitor venetoclax in ND-AML and R/R-AML. MATERIALS AND METHODS The phase IB portion (PIB) enrolled patients with R/R-AML using a 3 + 3 dose escalation and de-escalation algorithm for identification of maximum tolerated dose and dose-limiting toxicities. The phase II portion enrolled patients into two arms to evaluate response and time-to-event end points: phase IIA (PIIA): ND-AML and phase IIB (PIIB): R/R-AML. RESULTS Sixty-eight patients have enrolled to date (PIB, 16; PIIA, 29; PIIB, 23). Median age was 46 years (range, 20-73). Grade 3 and 4 adverse events occurring in ≥ 10% of patients included febrile neutropenia (50%), bacteremia (35%), pneumonia (28%), and sepsis (12%). The overall response rate for PIB, PIIA, and PIIB was 75%, 97%, and 70% with 75%, 90%, and 61%, respectively, achieving a composite CR. Measurable residual disease-negative composite CR was attained in 96% of ND-AML and 69% of R/R-AML patients. After a median follow-up of 12 months, median overall survival (OS) for both PII cohorts was not reached. Fifty-six percent of patients proceeded to allogeneic hematopoietic stem-cell transplantation (ND-AML, 69%; R/R-AML, 46%). In R/R-AML, allogeneic hematopoietic stem-cell transplantation resulted in a significant improvement in OS (median OS, NR; 1-year OS, 87%). One-year survival post-HSCT was 94% in ND-AML and 78% in R/R-AML. CONCLUSION Fludarabine, cytarabine, granulocyte colony-stimulating factor, and idarubicin + venetoclax represents an effective intensive treatment regimen in ND-AML and R/R-AML patients, associated with deep remissions and a high rate of transition to successful transplantation.
Collapse
Affiliation(s)
- Courtney D DiNardo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Curtis A Lachowiez
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Koichi Takahashi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Sanam Loghavi
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Lianchun Xiao
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Tapan Kadia
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Naval Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Maria Adeoti
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Nicholas J Short
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Koji Sasaki
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Sa Wang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Gautam Borthakur
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ghayas Issa
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Abhishek Maiti
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Yesid Alvarado
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Naveen Pemmaraju
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Lucia Masarova
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Musa Yilmaz
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Nitin Jain
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Michael Andreeff
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Elias Jabbour
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Steven Kornblau
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Farhad Ravandi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Marina Y Konopleva
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Hagop M Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
6
|
Recombinant human thrombopoietin promotes platelet engraftment after umbilical cord blood transplantation. Blood Adv 2021; 4:3829-3839. [PMID: 32790845 DOI: 10.1182/bloodadvances.2020002257] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/08/2020] [Indexed: 01/01/2023] Open
Abstract
Delayed platelet engraftment is a common complication after umbilical cord blood transplantation (UCBT) accompanied by increased transplant-related complications or death. This study was designed to determine the safety and efficacy of recombinant human thrombopoietin (rhTPO) in promoting platelet engraftment after UCBT. A total of 120 patients scheduled to receive UCBT were randomly assigned to the rhTPO group (300 U/kg once daily from days 14 to 28 after UCBT, n = 60) or the control group (n = 60). The primary outcome was the 60-day cumulative incidence of platelet engraftment after single-unit cord blood transplantation. The 60-day cumulative incidence of platelet engraftment (platelet count ≥20 × 109/L) and the 120-day cumulative incidence of platelet recovery (platelet count ≥50 × 109/L) were both significantly higher in the rhTPO group than in the control group (83.1% vs 66.7%, P = .020; and 81.4% vs 65.0%, P = .032, respectively). In addition, the number of required platelet infusions was significantly lower in the rhTPO group than in the control group (6 vs 8 units, respectively; P = .026). The cumulative incidence of neutrophil engraftment and the probability of 2-year overall survival, disease-free survival, and graft-versus-host disease-free relapse-free survival did not differ between the 2 groups. Other transplant-related outcomes and complications did not differ between the 2 groups, and no severe adverse effects were observed in patients receiving rhTPO. This study demonstrated that rhTPO is well tolerated in patients and could effectively promote platelet engraftment after UCBT. This study was registered on the Chinese Clinical Trial Registry (http://www.chictr.org.cn/index.aspx) as ChiCTR-IPR-16009357.
Collapse
|
7
|
An update on the molecular pathogenesis and potential therapeutic targeting of AML with t(8;21)(q22;q22.1);RUNX1-RUNX1T1. Blood Adv 2021; 4:229-238. [PMID: 31935293 DOI: 10.1182/bloodadvances.2019000168] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 11/22/2019] [Indexed: 02/07/2023] Open
Abstract
Acute myeloid leukemia (AML) with t(8;21)(q22;q22.1);RUNX1-RUNX1T1, one of the core-binding factor leukemias, is one of the most common subtypes of AML with recurrent genetic abnormalities and is associated with a favorable outcome. The translocation leads to the formation of a pathological RUNX1-RUNX1T1 fusion that leads to the disruption of the normal function of the core-binding factor, namely, its role in hematopoietic differentiation and maturation. The consequences of this alteration include the recruitment of repressors of transcription, thus blocking the expression of genes involved in hematopoiesis, and impaired apoptosis. A number of concurrent and cooperating mutations clearly play a role in modulating the proliferative potential of cells, including mutations in KIT, FLT3, and possibly JAK2. RUNX1-RUNX1T1 also appears to interact with microRNAs during leukemogenesis. Epigenetic factors also play a role, especially with the recruitment of histone deacetylases. A better understanding of the concurrent mutations, activated pathways, and epigenetic modulation of the cellular processes paves the way for exploring a number of approaches to achieve cure. Potential approaches include the development of small molecules targeting the RUNX1-RUNX1T1 protein, the use of tyrosine kinase inhibitors such as dasatinib and FLT3 inhibitors to target mutations that lead to a proliferative advantage of the leukemic cells, and experimentation with epigenetic therapies. In this review, we unravel some of the recently described molecular pathways and explore potential therapeutic strategies.
Collapse
|
8
|
Lamba JK, Cao X, Raimondi S, Downing J, Ribeiro R, Gruber TA, Rubnitz J, Pounds S. DNA Methylation Clusters and Their Relation to Cytogenetic Features in Pediatric AML. Cancers (Basel) 2020; 12:cancers12103024. [PMID: 33080932 PMCID: PMC7603219 DOI: 10.3390/cancers12103024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 10/15/2020] [Indexed: 12/13/2022] Open
Abstract
Acute Myeloid Leukemia (AML) is characterized by recurrent genetic and cytogenetic lesions that are utilized for risk stratification and for making treatment decisions. In recent years, methylation dysregulation has been extensively studied and associated with risk groups and prognosis in adult AML, however, such studies in pediatric AML are limited. Moreover, the mutations in epigenetic genes such as DNMT3A, IDH1 or IDH2 are almost absent or rare in pediatric patients as compared to their abundance in adult AML. In the current study, we evaluated methylation patterns that occur with or independent of the well-defined cytogenetic features in pediatric AML patients enrolled on multi-site AML02 clinical trial (NCT00136084). Our results demonstrate that unlike adult AML, cytosine DNA methylation does not result in significant unique clusters in pediatric AML, however, DNA methylation signatures correlated significantly with the most common and recurrent cytogenetic features. Paired evaluation of DNA methylation and expression identified genes and pathways of biological relevance that hold promise for novel therapeutic strategies. Our results further demonstrate that epigenetic signatures occur complimentary to the well-established chromosomal/mutational landscape, implying that dysregulation of oncogenes or tumor suppressors might be leveraging both genetic and epigenetic mechanisms to impact biological pathways critical for leukemogenesis.
Collapse
Affiliation(s)
- Jatinder K. Lamba
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL 32608, USA
- Correspondence:
| | - Xueyuan Cao
- Department of Acute and Tertiary Care, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Susana Raimondi
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (S.R.); (J.D.)
| | - James Downing
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (S.R.); (J.D.)
| | - Raul Ribeiro
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (R.R.); (J.R.)
| | - Tanja A. Gruber
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA;
| | - Jeffrey Rubnitz
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (R.R.); (J.R.)
| | - Stanley Pounds
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
| |
Collapse
|
9
|
Chin PS, Bonifer C. Modelling t(8;21) acute myeloid leukaemia - What have we learned? MedComm (Beijing) 2020; 1:260-269. [PMID: 34766123 PMCID: PMC8491201 DOI: 10.1002/mco2.30] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/04/2020] [Accepted: 08/04/2020] [Indexed: 12/11/2022] Open
Abstract
Acute myeloid leukaemia (AML) is a heterogeneous haematopoietic malignancy caused by recurrent mutations in haematopoietic stem and progenitor cells that affect both the epigenetic regulatory machinery and signalling molecules. The t(8;21) or RUNX1‐RUNX1T1 translocation generates the RUNX1‐ETO chimeric transcription factor which primes haematopoietic stem cells for further oncogenic mutational events that in their sum cause overt disease. Significant progress has been made in generating both in vitro and in vivo model systems to recapitulate t(8;21) AML which are crucial for the understanding of the biology of the disease and the development of effective treatment. This review provides a comprehensive overview of the in vivo and in vitro model systems that were developed to gain insights into the molecular mechanisms of RUNX1‐ETO oncogenic activity and their contribution to the advancement of knowledge in the t(8;21) AML field. Such models include transgenic mice, patient‐derived xenografts, RUNX1‐ETO transduced human progenitor cells, cell lines and human embryonic stem cell model systems, making the t(8;21) as one of the well‐characterized sub‐type of AML at the molecular level.
Collapse
Affiliation(s)
- Paulynn Suyin Chin
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences University of Birmingham Birmingham UK
| | - Constanze Bonifer
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences University of Birmingham Birmingham UK
| |
Collapse
|
10
|
Chen G, Zhou W, Gong D, Li Y, Huang S, Wang N, Xu Q, Xiong Q, Jing Y, Lv N, Wang L, Li Y, Yu L. Loss of X chromosome predicts favorable prognosis in female patients with t(8;21) acute myeloid leukemia. Leuk Lymphoma 2020; 61:1168-1177. [PMID: 31916883 DOI: 10.1080/10428194.2019.1709836] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The prognostic significance of loss of X chromosome (-X) in t(8;21) acute myeloid leukemia (AML) remains unclear. We evaluated the role of -X in 158 female patients with t(8;21) AML collected retrospectively from 15 Chinese AML study groups. Patients with -X accounted for 25.3% and showed a significantly higher complete remission rate, better 3-year cumulative incidence of relapse (25.2 vs. 50.5%, p = 0.013), relapse-free survival (69.4 vs. 44.7%, p = 0.025), and overall survival (77.4 vs. 52.7%, p = 0.026) compared with those without -X. Patients with -X were more likely to achieve minimal residual disease negativity (risk ratio = 1.62; p = 0.020). A Multivariate analysis adjusting for age, white blood cell, KIT-D816 mutation, high-dose cytarabine consolidation therapy, and allogeneic hematopoietic stem-cell transplantation showed -X to be an independent favorable prognostic factor. Our results suggest that -X may be associated with better outcomes in patients with t(8;21) AML.
Collapse
Affiliation(s)
- Guofeng Chen
- Department of Hematology-Oncology, International Cancer Center, Shenzhen University General Hospital, Shenzhen University Health Science Center, Shenzhen, Guangdong, China.,Department of Hematology, Chinese PLA General Hospital, Beijing, China.,Department of Endoscopy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Wei Zhou
- School of Medicine, Nankai University, Tianjin, China
| | - Dan Gong
- Department of Hematology, Chinese PLA No.965 Hospital, Jilin, China
| | - Yan Li
- Department of Hematology, Chinese PLA General Hospital, Beijing, China.,Department of Hematology, Hainan Branch of Chinese PLA General Hospital, Sanya, Hainan, China
| | - Sai Huang
- Department of Hematology, Chinese PLA General Hospital, Beijing, China
| | - Nan Wang
- Department of Hematology, Chinese PLA General Hospital, Beijing, China
| | - Qingyu Xu
- Medical Faculty Mannheim, Department of Hematology and Oncology, Heidelberg University, Mannheim, Germany
| | - Qian Xiong
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yu Jing
- Department of Hematology, Chinese PLA General Hospital, Beijing, China
| | - Na Lv
- Department of Hematology-Oncology, International Cancer Center, Shenzhen University General Hospital, Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| | - Lili Wang
- Department of Hematology, Chinese PLA General Hospital, Beijing, China
| | - Yonghui Li
- Department of Hematology, Chinese PLA General Hospital, Beijing, China
| | - Li Yu
- Department of Hematology-Oncology, International Cancer Center, Shenzhen University General Hospital, Shenzhen University Health Science Center, Shenzhen, Guangdong, China.,Department of Hematology, Chinese PLA General Hospital, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
11
|
Yuan C, Boyd AM, Nelson J, Patel RD, Varela JC, Goldstein SC, Ahmad S, Zhu X, Mori S. Eltrombopag for Treating Thrombocytopenia after Allogeneic Stem Cell Transplantation. Biol Blood Marrow Transplant 2019; 25:1320-1324. [PMID: 30710685 DOI: 10.1016/j.bbmt.2019.01.027] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 01/22/2019] [Indexed: 01/18/2023]
Abstract
Thrombocytopenia after allogeneic hematopoietic stem cell transplantation (allo-SCT) can pose significant problems in management of patients. Eltrombopag is a small-molecule thrombopoietin receptor agonist that has been approved for use in immune thrombocytopenic purpura and aplastic anemia; but its use after allo-SCT is limited. Between 2014 and 2017, we treated 13 patients with eltrombopag for poor platelet engraftment without evidence of relapse at the time of initiation, including 6 patients with primary platelet engraftment failure and 7 with secondary platelet engraftment failure. Eltrombopag was started at an initial dose of 25 or 50 mg per day, and dose adjustments were made in accordance with the manufacturer's recommendation. The cumulative incidence of platelet recovery to ≥50,000/μL without the need for transfusion for at least 7 days was defined as response. The overall response rate was 62% (n = 8). Of the 6 patients with primary isolated platelet failure, 3 (50%) responded, and of the 7 patients with secondary platelet failure, 5 (71%) responded. The median time to response was 33 days (range, 11 to 68 days). In addition, no significant differences in platelet recovery were noted in patients with adequate and decreased bone marrow megakaryocytic reserve (60% and 67%, respectively). Although eltrombopag was well tolerated, and no patient discontinued treatment because of adverse events, only 3 patients were alive at the end of the observation period, with relapse and graft-versus-host disease accounting for majority of the deaths. This suggested that despite the relatively good overall response rate to eltrombopag, inadequate platelet engraftment is a harbinger of poor outcome in allo-SCT.
Collapse
Affiliation(s)
- Cai Yuan
- Department of Hematology and Oncology, University of Florida, Gainesville, Florida
| | - Angela M Boyd
- Pharmacy Department, Florida Hospital, Orlando, Florida
| | - Jan Nelson
- Pharmacy Department, Florida Hospital, Orlando, Florida
| | - Rushang D Patel
- Blood and Marrow Transplant Center, Florida Hospital Cancer Institute, Orlando, Florida
| | - Juan C Varela
- Blood and Marrow Transplant Center, Florida Hospital Cancer Institute, Orlando, Florida
| | - Steven C Goldstein
- Blood and Marrow Transplant Center, Florida Hospital Cancer Institute, Orlando, Florida
| | - Sarfraz Ahmad
- Department of Gynecologic Oncology, Florida Hospital Cancer Institute, Orlando, Florida
| | - Xiang Zhu
- Center for Collaborative Research, Florida Hospital, Orlando, Florida
| | - Shahram Mori
- Blood and Marrow Transplant Center, Florida Hospital Cancer Institute, Orlando, Florida.
| |
Collapse
|
12
|
Different roles of E proteins in t(8;21) leukemia: E2-2 compromises the function of AETFC and negatively regulates leukemogenesis. Proc Natl Acad Sci U S A 2018; 116:890-899. [PMID: 30593567 DOI: 10.1073/pnas.1809327116] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The AML1-ETO fusion protein, generated by the t(8;21) chromosomal translocation, is causally involved in nearly 20% of acute myeloid leukemia (AML) cases. In leukemic cells, AML1-ETO resides in and functions through a stable protein complex, AML1-ETO-containing transcription factor complex (AETFC), that contains multiple transcription (co)factors. Among these AETFC components, HEB and E2A, two members of the ubiquitously expressed E proteins, directly interact with AML1-ETO, confer new DNA-binding capacity to AETFC, and are essential for leukemogenesis. However, the third E protein, E2-2, is specifically silenced in AML1-ETO-expressing leukemic cells, suggesting E2-2 as a negative factor of leukemogenesis. Indeed, ectopic expression of E2-2 selectively inhibits the growth of AML1-ETO-expressing leukemic cells, and this inhibition requires the bHLH DNA-binding domain. RNA-seq and ChIP-seq analyses reveal that, despite some overlap, the three E proteins differentially regulate many target genes. In particular, studies show that E2-2 both redistributes AETFC to, and activates, some genes associated with dendritic cell differentiation and represses MYC target genes. In AML patients, the expression of E2-2 is relatively lower in the t(8;21) subtype, and an E2-2 target gene, THPO, is identified as a potential predictor of relapse. In a mouse model of human t(8;21) leukemia, E2-2 suppression accelerates leukemogenesis. Taken together, these results reveal that, in contrast to HEB and E2A, which facilitate AML1-ETO-mediated leukemogenesis, E2-2 compromises the function of AETFC and negatively regulates leukemogenesis. The three E proteins thus define a heterogeneity of AETFC, which improves our understanding of the precise mechanism of leukemogenesis and assists development of diagnostic/therapeutic strategies.
Collapse
|
13
|
Efremov YR, Proskurina AS, Potter EA, Dolgova EV, Efremova OV, Taranov OS, Ostanin AA, Chernykh ER, Kolchanov NA, Bogachev SS. Cancer Stem Cells: Emergent Nature of Tumor Emergency. Front Genet 2018; 9:544. [PMID: 30505319 PMCID: PMC6250818 DOI: 10.3389/fgene.2018.00544] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/26/2018] [Indexed: 12/12/2022] Open
Abstract
A functional analysis of 167 genes overexpressed in Krebs-2 tumor initiating cells was performed. In the first part of the study, the genes were analyzed for their belonging to one or more of the three groups, which represent the three major phenotypic manifestation of malignancy of cancer cells, namely (1) proliferative self-sufficiency, (2) invasive growth and metastasis, and (3) multiple drug resistance. 96 genes out of 167 were identified as possible contributors to at least one of these fundamental properties. It was also found that substantial part of these genes are also known as genes responsible for formation and/or maintenance of the stemness of normal pluri-/multipotent stem cells. These results suggest that the malignancy is simply the ability to maintain the stem cell specific genes expression profile, and, as a consequence, the stemness itself regardless of the controlling effect of stem niches. In the second part of the study, three stress factors combined into the single concept of "generalized cellular stress," which are assumed to activate the expression of these genes, were defined. In addition, possible mechanisms for such activation were identified. The data obtained suggest the existence of a mechanism for the de novo formation of a pluripotent/stem phenotype in the subpopulation of "committed" tumor cells.
Collapse
Affiliation(s)
- Yaroslav R Efremov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Anastasia S Proskurina
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Ekaterina A Potter
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Evgenia V Dolgova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Oksana V Efremova
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Oleg S Taranov
- The State Research Center of Virology and Biotechnology Vector, Koltsovo, Russia
| | - Aleksandr A Ostanin
- Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Elena R Chernykh
- Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Nikolay A Kolchanov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Sergey S Bogachev
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
14
|
Li H, Zhao N, Li Y, Xing H, Chen S, Xu Y, Tang K, Tian Z, Wang M, Rao Q, Wang J. c-MPL Is a Candidate Surface Marker and Confers Self-Renewal, Quiescence, Chemotherapy Resistance, and Leukemia Initiation Potential in Leukemia Stem Cells. Stem Cells 2018; 36:1685-1696. [PMID: 30106501 DOI: 10.1002/stem.2897] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/29/2018] [Accepted: 07/23/2018] [Indexed: 12/12/2022]
Abstract
Acute myeloid leukemia (AML) is initiated and maintained by a unique, small subset of leukemia cells known as leukemia stem cells (LSCs). Self-renewal, quiescence, and chemotherapy resistance are key stemness properties of LSCs that are essential for poor clinical responses to conventional therapies. Identifying LSC surface markers and targeting LSCs are important for the development of potential therapies. In this study, application of chemotherapy treatment in AML-ETO9a (AE9a) leukemia mice led to the enrichment of a chemotherapy-resistant cell population identified as Lin- c-Kit+ c-MPL+ . In addition, this c-MPL-positive cell population within Lin- c-Kit+ leukemia cells included a high percentage of cells in a quiescent state, enhanced colony formation ability, and increased homing efficiency. Serial transplantation demonstrated that Lin- c-Kit+ c-MPL+ cells displayed a significantly high potential for leukemia initiation. Furthermore, it was demonstrated that in AML patients, c-MPL was expressed on the majority of CD34+ leukemia cells and that the proportion of c-MPL+ cells in CD34+ leukemia cells is associated with poor prognosis. Finally, AMM2, an inhibitor of c-MPL, was shown to significantly enhance the survival of AE9a leukemia mice when combined with chemotherapeutic agent. These results indicate that c-MPL is a candidate LSC surface marker that may serve as a therapeutic target for the elimination of LSCs. Stem Cells 2018;36:1685-1696.
Collapse
Affiliation(s)
- Huan Li
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, People's Republic of China
| | - Na Zhao
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, People's Republic of China
| | - Yihui Li
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, People's Republic of China
| | - Haiyan Xing
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, People's Republic of China
| | - Shuying Chen
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, People's Republic of China
| | - Yingxi Xu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, People's Republic of China
| | - Kejing Tang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, People's Republic of China
| | - Zheng Tian
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, People's Republic of China
| | - Min Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, People's Republic of China
| | - Qing Rao
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, People's Republic of China
| | - Jianxiang Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, People's Republic of China
| |
Collapse
|
15
|
Bhat FA, Advani J, Khan AA, Mohan S, Pal A, Gowda H, Chakrabarti P, Keshava Prasad TS, Chatterjee A. A network map of thrombopoietin signaling. J Cell Commun Signal 2018; 12:737-743. [PMID: 30039510 DOI: 10.1007/s12079-018-0480-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 07/05/2018] [Indexed: 10/28/2022] Open
Abstract
Thrombopoietin (THPO), also known as megakaryocyte growth and development factor (MGDF), is a cytokine involved in the production of platelets. THPO is a glycoprotein produced by liver and kidney. It regulates the production of platelets by stimulating the differentiation and maturation of megakaryocyte progenitors. It acts as a ligand for MPL receptor, a member of the hematopoietic cytokine receptor superfamily and is essential for megakaryocyte maturation. THPO binding induces homodimerization of the receptor which results in activation of JAKSTAT and MAPK signaling cascades that subsequently control cellular proliferation, differentiation and other signaling events. Despite the importance of THPO signaling in various diseases and biological processes, a detailed signaling network of THPO is not available in any publicly available database. Therefore, in this study, we present a resource of signaling events induced by THPO that was manually curated from published literature on THPO. Our manual curation of thrombopoietin pathway resulted in identification of 48 molecular associations, 66 catalytic reactions, 100 gene regulation events, 19 protein translocation events and 43 activation/inhibition reactions that occur upon activation of thrombopoietin receptor by THPO. THPO signaling pathway is made available on NetPath, a freely available human signaling pathway resource developed previously by our group. We believe this resource will provide a platform for scientific community to accelerate further research in this area on potential therapeutic interventions.
Collapse
Affiliation(s)
- Firdous A Bhat
- Institute of Bioinformatics, International Technology Park, Bangalore, 560 066, India.,School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, 690525, India
| | - Jayshree Advani
- Institute of Bioinformatics, International Technology Park, Bangalore, 560 066, India.,Manipal Academy of Higher Education, Manipal, 576104, India
| | - Aafaque Ahmad Khan
- Institute of Bioinformatics, International Technology Park, Bangalore, 560 066, India.,School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, 751024, India
| | - Sonali Mohan
- Institute of Bioinformatics, International Technology Park, Bangalore, 560 066, India
| | - Arnab Pal
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Harsha Gowda
- Institute of Bioinformatics, International Technology Park, Bangalore, 560 066, India
| | - Prantar Chakrabarti
- Department of Haematology, Nil Ratan Sircar Medical College and Hospital, Kolkata, 700014, India
| | - T S Keshava Prasad
- Institute of Bioinformatics, International Technology Park, Bangalore, 560 066, India. .,Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Mangalore, 575018, India.
| | - Aditi Chatterjee
- Institute of Bioinformatics, International Technology Park, Bangalore, 560 066, India.
| |
Collapse
|
16
|
Hall T, Walker M, Ganuza M, Holmfeldt P, Bordas M, Kang G, Bi W, Palmer LE, Finkelstein D, McKinney-Freeman S. Nfix Promotes Survival of Immature Hematopoietic Cells via Regulation of c-Mpl. Stem Cells 2018; 36:943-950. [PMID: 29430853 DOI: 10.1002/stem.2800] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 12/15/2017] [Accepted: 01/10/2018] [Indexed: 12/31/2022]
Abstract
Hematopoietic stem and progenitor cells (HSPCs) are necessary for life-long blood production and replenishment of the hematopoietic system during stress. We recently reported that nuclear factor I/X (Nfix) promotes HSPC survival post-transplant. Here, we report that ectopic expression of Nfix in primary mouse HSPCs extends their ex vivo culture from about 20 to 40 days. HSPCs overexpressing Nfix display hypersensitivity to supportive cytokines and reduced apoptosis when subjected to cytokine deprivation relative to controls. Ectopic Nfix resulted in elevated levels of c-Mpl transcripts and cell surface protein on primary murine HSPCs as well as increased phosphorylation of STAT5, which is known to be activated down-stream of c-MPL. Blocking c-MPL signaling by removal of thrombopoietin or addition of a c-MPL neutralizing antibody negated the antiapoptotic effect of Nfix overexpression on cultured HSPCs. Furthermore, NFIX was capable of binding to and transcriptionally activating a proximal c-Mpl promoter fragment. In sum, these data suggest that NFIX-mediated upregulation of c-Mpl transcription can protect primitive hematopoietic cells from stress ex vivo. Stem Cells 2018;36:943-950.
Collapse
Affiliation(s)
- Trent Hall
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Megan Walker
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Miguel Ganuza
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Per Holmfeldt
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Marie Bordas
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Guolian Kang
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Wenjian Bi
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Lance E Palmer
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - David Finkelstein
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | | |
Collapse
|
17
|
Lin S, Wei J, Wunderlich M, Chou FS, Mulloy JC. Immortalization of human AE pre-leukemia cells by hTERT allows leukemic transformation. Oncotarget 2018; 7:55939-55950. [PMID: 27509060 PMCID: PMC5302887 DOI: 10.18632/oncotarget.11093] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 06/13/2016] [Indexed: 01/21/2023] Open
Abstract
Human CD34+ hematopoietic stem and progenitor cells (HSPC) expressing fusion protein AML1-ETO (AE), generated by the t(8;21)(q22;q22) rearrangement, manifest enhanced self-renewal and dysregulated differentiation without leukemic transformation, representing a pre-leukemia stage. Enabling replicative immortalization via telomerase reactivation is a crucial step in cancer development. However, AE expression alone is not sufficient to maintain high telomerase activity to immortalize human HSPC cells, which may hamper transformation. Here, we investigated the cooperativity of telomerase reverse transcriptase (hTERT), the catalytic subunit of telomerase, and AE in disease progression. Enforced expression of hTERT immortalized human AE pre-leukemia cells in a telomere-lengthening independent manner, and improved the pre-leukemia stem cell function by enhancing cell proliferation and survival. AE-hTERT cells retained cytokine dependency and multi-lineage differentiation potential similar to parental AE clones. Over the short-term, AE-hTERT cells did not show features of stepwise transformation, with no leukemogenecity evident upon initial injection into immunodeficient mice. Strikingly, after extended culture, we observed full transformation of one AE-hTERT clone, which recapitulated the disease evolution process in patients and emphasizes the importance of acquiring cooperating mutations in t(8;21) AML leukemogenesis. In summary, achieving unlimited proliferative potential via hTERT activation, and thereby allowing for acquisition of additional mutations, is a critical link for transition from pre-leukemia to overt disease in human cells. AE-hTERT cells represent a tractable model to study cooperating genetic lesions important for t(8;21) AML disease progression.
Collapse
Affiliation(s)
- Shan Lin
- Cancer and Blood Disease Institute, Cincinnati Children's Hospital Research Center, Cincinnati, OH, USA
| | - Junping Wei
- Cancer and Blood Disease Institute, Cincinnati Children's Hospital Research Center, Cincinnati, OH, USA
| | - Mark Wunderlich
- Cancer and Blood Disease Institute, Cincinnati Children's Hospital Research Center, Cincinnati, OH, USA
| | - Fu-Sheng Chou
- Cancer and Blood Disease Institute, Cincinnati Children's Hospital Research Center, Cincinnati, OH, USA
| | - James C Mulloy
- Cancer and Blood Disease Institute, Cincinnati Children's Hospital Research Center, Cincinnati, OH, USA
| |
Collapse
|
18
|
|
19
|
Lin S, Mulloy JC, Goyama S. RUNX1-ETO Leukemia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 962:151-173. [PMID: 28299657 DOI: 10.1007/978-981-10-3233-2_11] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AML1-ETO leukemia is the most common cytogenetic subtype of acute myeloid leukemia, defined by the presence of t(8;21). Remarkable progress has been achieved in understanding the molecular pathogenesis of AML1-ETO leukemia. Proteomic surveies have shown that AML-ETO forms a stable complex with several transcription factors, including E proteins. Genome-wide transcriptome and ChIP-seq analyses have revealed the genes directly regulated by AML1-ETO, such as CEBPA. Several lines of evidence suggest that AML1-ETO suppresses endogenous DNA repair in cells to promote mutagenesis, which facilitates acquisition of cooperating secondary events. Furthermore, it has become increasingly apparent that a delicate balance of AML1-ETO and native AML1 is important to sustain the malignant cell phenotype. Translation of these findings into the clinical setting is just beginning.
Collapse
Affiliation(s)
- Shan Lin
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - James C Mulloy
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Susumu Goyama
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
20
|
A FOXO1-induced oncogenic network defines the AML1-ETO preleukemic program. Blood 2017; 130:1213-1222. [PMID: 28710059 DOI: 10.1182/blood-2016-11-750976] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 07/07/2017] [Indexed: 12/18/2022] Open
Abstract
Understanding and blocking the self-renewal pathway of preleukemia stem cells could prevent acute myeloid leukemia (AML) relapse. In this study, we show that increased FOXO1 represents a critical mechanism driving aberrant self-renewal in preleukemic cells expressing the t(8;21)-associated oncogene AML1-ETO (AE). Although generally considered as a tumor suppressor, FOXO1 is consistently upregulated in t(8;21) AML. Expression of FOXO1 in human CD34+ cells promotes a preleukemic state with enhanced self-renewal and dysregulated differentiation. The DNA binding domain of FOXO1 is essential for these functions. FOXO1 activates a stem cell molecular signature that is also present in AE preleukemia cells and preserved in t(8;21) patient samples. Genome-wide binding studies show that AE and FOXO1 share the majority of their binding sites, whereby FOXO1 binds to multiple crucial self-renewal genes and is required for their activation. In agreement with this observation, genetic and pharmacological ablation of FOXO1 inhibited the long-term proliferation and clonogenicity of AE cells and t(8;21) AML cell lines. Targeting of FOXO1 therefore provides a potential therapeutic strategy for elimination of stem cells at both preleukemic and leukemic stages.
Collapse
|
21
|
Goyama S, Shrestha M, Schibler J, Rosenfeldt L, Miller W, O’Brien E, Mizukawa B, Kitamura T, Palumbo JS, Mulloy JC. Protease-activated receptor-1 inhibits proliferation but enhances leukemia stem cell activity in acute myeloid leukemia. Oncogene 2017; 36:2589-2598. [PMID: 27819671 PMCID: PMC5418093 DOI: 10.1038/onc.2016.416] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 09/04/2016] [Accepted: 09/30/2016] [Indexed: 01/27/2023]
Abstract
Eradication of leukemia stem cells (LSCs) is the ultimate goal of treating acute myeloid leukemia (AML). We recently showed that the combined loss of Runx1/Cbfb inhibited the development of MLL-AF9-induced AML. However, c-Kit+/Gr-1- cells remained viable in Runx1/Cbfb-deleted cells, indicating that suppressing RUNX activity may not eradicate the most immature LSCs. In this study, we found upregulation of several hemostasis-related genes, including the thrombin-activatable receptor PAR-1 (protease-activated receptor-1), in Runx1/Cbfb-deleted MLL-AF9 cells. Similar to the effect of Runx1/Cbfb deletion, PAR-1 overexpression induced CDKN1A/p21 expression and attenuated proliferation in MLL-AF9 cells. To our surprise, PAR-1 deficiency also prevented leukemia development induced by a small number of MLL-AF9 leukemia stem cells (LSCs) in vivo. PAR-1 deficiency also reduced leukemogenicity of AML1-ETO-induced leukemia. Re-expression of PAR-1 in PAR-1-deficient cells combined with a limiting-dilution transplantation assay demonstrated the cell-dose-dependent role of PAR-1 in MLL-AF9 leukemia: PAR-1 inhibited rapid leukemic proliferation when there were a large number of LSCs, while a small number of LSCs required PAR-1 for their efficient growth. Mechanistically, PAR-1 increased the adherence properties of MLL-AF9 cells and promoted their engraftment to bone marrow. Taken together, these data revealed a multifaceted role for PAR-1 in leukemogenesis, and highlight this receptor as a potential target to eradicate primitive LSCs in AML.
Collapse
Affiliation(s)
- S Goyama
- Cancer and Blood Diseases Institute, Cincinnati Children’s
Hospital Medical Center and the University of Cincinnati College of Medicine,
Cincinnati, OH, USA
- Division of Cellular Therapy, The Institute of Medical Science, The
University of Tokyo, Tokyo, Japan
| | - M Shrestha
- Cancer and Blood Diseases Institute, Cincinnati Children’s
Hospital Medical Center and the University of Cincinnati College of Medicine,
Cincinnati, OH, USA
| | - J Schibler
- Cancer and Blood Diseases Institute, Cincinnati Children’s
Hospital Medical Center and the University of Cincinnati College of Medicine,
Cincinnati, OH, USA
| | - L Rosenfeldt
- Cancer and Blood Diseases Institute, Cincinnati Children’s
Hospital Medical Center and the University of Cincinnati College of Medicine,
Cincinnati, OH, USA
| | - W Miller
- Cancer and Blood Diseases Institute, Cincinnati Children’s
Hospital Medical Center and the University of Cincinnati College of Medicine,
Cincinnati, OH, USA
| | - E O’Brien
- Cancer and Blood Diseases Institute, Cincinnati Children’s
Hospital Medical Center and the University of Cincinnati College of Medicine,
Cincinnati, OH, USA
| | - B Mizukawa
- Cancer and Blood Diseases Institute, Cincinnati Children’s
Hospital Medical Center and the University of Cincinnati College of Medicine,
Cincinnati, OH, USA
| | - T Kitamura
- Division of Cellular Therapy, The Institute of Medical Science, The
University of Tokyo, Tokyo, Japan
| | - JS Palumbo
- Cancer and Blood Diseases Institute, Cincinnati Children’s
Hospital Medical Center and the University of Cincinnati College of Medicine,
Cincinnati, OH, USA
| | - JC Mulloy
- Cancer and Blood Diseases Institute, Cincinnati Children’s
Hospital Medical Center and the University of Cincinnati College of Medicine,
Cincinnati, OH, USA
| |
Collapse
|
22
|
Abstract
RUNX1 is a member of the core-binding factor family of transcription factors and is indispensable for the establishment of definitive hematopoiesis in vertebrates. RUNX1 is one of the most frequently mutated genes in a variety of hematological malignancies. Germ line mutations in RUNX1 cause familial platelet disorder with associated myeloid malignancies. Somatic mutations and chromosomal rearrangements involving RUNX1 are frequently observed in myelodysplastic syndrome and leukemias of myeloid and lymphoid lineages, that is, acute myeloid leukemia, acute lymphoblastic leukemia, and chronic myelomonocytic leukemia. More recent studies suggest that the wild-type RUNX1 is required for growth and survival of certain types of leukemia cells. The purpose of this review is to discuss the current status of our understanding about the role of RUNX1 in hematological malignancies.
Collapse
|
23
|
Stahl M, Kim TK, Zeidan AM. Update on acute myeloid leukemia stem cells: New discoveries and therapeutic opportunities. World J Stem Cells 2016; 8:316-331. [PMID: 27822339 PMCID: PMC5080639 DOI: 10.4252/wjsc.v8.i10.316] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/11/2016] [Accepted: 08/29/2016] [Indexed: 02/06/2023] Open
Abstract
The existence of cancer stem cells has been well established in acute myeloid leukemia. Initial proof of the existence of leukemia stem cells (LSCs) was accomplished by functional studies in xenograft models making use of the key features shared with normal hematopoietic stem cells (HSCs) such as the capacity of self-renewal and the ability to initiate and sustain growth of progenitors in vivo. Significant progress has also been made in identifying the phenotype and signaling pathways specific for LSCs. Therapeutically, a multitude of drugs targeting LSCs are in different phases of preclinical and clinical development. This review focuses on recent discoveries which have advanced our understanding of LSC biology and provided rational targets for development of novel therapeutic agents. One of the major challenges is how to target the self-renewal pathways of LSCs without affecting normal HSCs significantly therefore providing an acceptable therapeutic window. Important issues pertinent to the successful design and conduct of clinical trials evaluating drugs targeting LSCs will be discussed as well.
Collapse
|
24
|
New insights into transcriptional and leukemogenic mechanisms of AML1-ETO and E2A fusion proteins. ACTA ACUST UNITED AC 2016; 11:285-304. [PMID: 28261265 DOI: 10.1007/s11515-016-1415-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Nearly 15% of acute myeloid leukemia (AML) cases are caused by aberrant expression of AML1-ETO, a fusion protein generated by the t(8;21) chromosomal translocation. Since its discovery, AML1-ETO has served as a prototype to understand how leukemia fusion proteins deregulate transcription to promote leukemogenesis. Another leukemia fusion protein, E2A-Pbx1, generated by the t(1;19) translocation, is involved in acute lymphoblastic leukemias (ALLs). While AML1-ETO and E2A-Pbx1 are structurally unrelated fusion proteins, we have recently shown that a common axis, the ETO/E-protein interaction, is involved in the regulation of both fusion proteins, underscoring the importance of studying protein-protein interactions in elucidating the mechanisms of leukemia fusion proteins. OBJECTIVE In this review, we aim to summarize these new developments while also providing a historic overview of the related early studies. METHODS A total of 218 publications were reviewed in this article, a majority of which were published after 2004.We also downloaded 3D structures of AML1-ETO domains from Protein Data Bank and provided a systematic summary of their structures. RESULTS By reviewing the literature, we summarized early and recent findings on AML1-ETO, including its protein-protein interactions, transcriptional and leukemogenic mechanisms, as well as the recently reported involvement of ETO family corepressors in regulating the function of E2A-Pbx1. CONCLUSION While the recent development in genomic and structural studies has clearly demonstrated that the fusion proteins function by directly regulating transcription, a further understanding of the underlying mechanisms, including crosstalk with other transcription factors and cofactors, and the protein-protein interactions in the context of native proteins, may be necessary for the development of highly targeted drugs for leukemia therapy.
Collapse
|
25
|
MPL expression on AML blasts predicts peripheral blood neutropenia and thrombocytopenia. Blood 2016; 128:2253-2257. [PMID: 27574191 DOI: 10.1182/blood-2016-04-711986] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 08/19/2016] [Indexed: 11/20/2022] Open
Abstract
Although the molecular pathways that cause acute myeloid leukemia (AML) are increasingly well understood, the pathogenesis of peripheral blood cytopenia, a major cause of AML mortality, remains obscure. A prevailing assumption states that AML spatially displaces nonleukemic hematopoiesis from the bone marrow. However, examining an initial cohort of 223 AML patients, we found no correlation between bone marrow blast content and cytopenia, questioning the displacement theory. Measuring serum concentration of thrombopoietin (TPO), a key regulator of hematopoietic stem cells and megakaryocytes, revealed loss of physiologic negative correlation with platelet count in AML cases with blasts expressing MPL, the thrombopoietin (scavenging) receptor. Mechanistic studies demonstrated that MPLhi blasts could indeed clear TPO, likely therefore leading to insufficient cytokine levels for nonleukemic hematopoiesis. Microarray analysis in an independent multicenter study cohort of 437 AML cases validated MPL expression as a central predictor of thrombocytopenia and neutropenia in AML. Moreover, t(8;21) AML cases demonstrated the highest average MPL expression and lowest average platelet and absolute neutrophil counts among subgroups. Our work thus explains the pathophysiology of peripheral blood cytopenia in a relevant number of AML cases.
Collapse
|
26
|
Wang L, Cai W, Zhang W, Chen X, Dong W, Tang D, Zhang Y, Ji C, Zhang M. Inhibition of poly(ADP-ribose) polymerase 1 protects against acute myeloid leukemia by suppressing the myeloproliferative leukemia virus oncogene. Oncotarget 2016; 6:27490-504. [PMID: 26314963 PMCID: PMC4695004 DOI: 10.18632/oncotarget.4748] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 07/13/2015] [Indexed: 01/08/2023] Open
Abstract
An abnormal expression of poly(ADP-ribose) polymerase 1 (PARP-1) has been described in many tumors. PARP-1 promotes tumorigenesis and cancer progression by acting on different molecular pathways. PARP-1 inhibitors can be used with radiotherapy or chemotherapy to enhance the susceptibility of tumor cells to the treatment. However, the specific mechanism of PARP-1 in acute myeloid leukemia (AML) remains unknown. Our study showed that expression of PARP-1 was upregulated in AML patients. PARP-1 inhibition slowed AML cell proliferation, arrested the cell cycle, induced apoptosis in vitro and improved AML prognosis in vivo. Mechanistically, microarray assay of AML cells with loss of PARP-1 function revealed that the myeloproliferative leukemia virus oncogene (MPL) was significantly downregulated. In human AML samples, MPL expression was increased, and gain-of-function and loss-of-function analysis demonstrated that MPL promoted cell growth. Moreover, PARP-1 and MPL expression were positively correlated in AML samples, and their overexpression was associated with an unfavorable prognosis. Furthermore, PARP-1 and MPL consistently acted on Akt and ERK1/2 pathways, and the anti-proliferative and pro-apoptotic function observed with PARP-1 inhibition were reversed in part via MPL activation upon thrombopoietin stimulation or gene overexpression. These data highlight the important function of PARP-1 in the progression of AML, which suggest PARP-1 as a potential target for AML treatment.
Collapse
Affiliation(s)
- Lingbo Wang
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, China
| | - Weili Cai
- Department of Cardiology, The Third Hospital of Jinan, Jinan, China
| | - Wei Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, China
| | - Xueying Chen
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, China
| | - Wenqian Dong
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, China
| | - Dongqi Tang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, China
| | - Yun Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, China
| | - Chunyan Ji
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Mingxiang Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
27
|
Wang N, Guo D, Zhao YY, Dong CY, Liu XY, Yang BX, Wang SW, Wang L, Liu QG, Ren Q, Lin YM, Ma XT. TWIST-1 promotes cell growth, drug resistance and progenitor clonogenic capacities in myeloid leukemia and is a novel poor prognostic factor in acute myeloid leukemia. Oncotarget 2016; 6:20977-92. [PMID: 26023795 PMCID: PMC4673244 DOI: 10.18632/oncotarget.4007] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 05/08/2015] [Indexed: 12/18/2022] Open
Abstract
Alterations of TWIST-1 expression are often seen in solid tumors and contribute to tumorigenesis and cancer progression. However, studies concerning its pathogenic role in leukemia are scarce. Our study shows that TWIST-1 is overexpressed in bone marrow mononuclear cells of patients with acute myeloid leukemia (AML) and chronic myeloid leukemia (CML). Gain-of-function and loss-of-function analyses demonstrate that TWIST-1 promotes cell growth, colony formation and drug resistance of AML and CML cell lines. Furthermore, TWIST-1 is aberrantly highly expressed in CD34+CD38− leukemia stem cell candidates and its expression declines with differentiation. Down-modulation of TWIST-1 in myeloid leukemia CD34+ cells impairs their colony-forming capacity. Mechanistically, c-MPL, which is highly expressed in myeloid leukemia cells and associated with poor prognosis, is identified as a TWIST-1 coexpressed gene in myeloid leukemia patients and partially contributes to TWIST-1-mediated leukemogenic effects. Moreover, patients with higher TWIST-1 expression have shorter overall and event-free survival (OS and EFS) in AML. Multivariate analysis further demonstrates that TWIST-1 overexpression is a novel independent unfavourable predictor for both OS and EFS in AML. These data highlight TWIST-1 as a new candidate gene contributing to leukemogenesis of myeloid leukemia, and propose possible new avenues for improving risk and treatment stratification in AML.
Collapse
Affiliation(s)
- Nan Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, China
| | - Dan Guo
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, China
| | - Yang-Yang Zhao
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, China
| | - Cheng-Ya Dong
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, China
| | - Xiao-Yan Liu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, China
| | - Bin-Xia Yang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, China
| | - Shu-Wei Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, China
| | - Lin Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, China
| | - Qing-Guo Liu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, China
| | - Qian Ren
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, China
| | - Yong-Min Lin
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, China
| | - Xiao-Tong Ma
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, China
| |
Collapse
|
28
|
Tanaka T, Inamoto Y, Yamashita T, Fuji S, Okinaka K, Kurosawa S, Kim SW, Tanosaki R, Fukuda T. Eltrombopag for Treatment of Thrombocytopenia after Allogeneic Hematopoietic Cell Transplantation. Biol Blood Marrow Transplant 2016; 22:919-24. [DOI: 10.1016/j.bbmt.2016.01.018] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 01/11/2016] [Indexed: 11/25/2022]
|
29
|
Zhang B, Li L, Ho Y, Li M, Marcucci G, Tong W, Bhatia R. Heterogeneity of leukemia-initiating capacity of chronic myelogenous leukemia stem cells. J Clin Invest 2016; 126:975-91. [PMID: 26878174 DOI: 10.1172/jci79196] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 01/04/2016] [Indexed: 12/27/2022] Open
Abstract
Chronic myelogenous leukemia (CML) results from transformation of a long-term hematopoietic stem cell (LTHSC) by expression of the BCR-ABL fusion gene. However, BCR-ABL-expressing LTHSCs are heterogeneous in their capacity as leukemic stem cells (LSCs). Although discrepancies in proliferative, self-renewal, and differentiation properties of normal LTHSCs are being increasingly recognized, the mechanisms underlying heterogeneity of leukemic LTHSCs are poorly understood. Using a CML mouse model, we identified gene expression differences between leukemic and nonleukemic LTHSCs. Expression of the thrombopoietin (THPO) receptor MPL was elevated in leukemic LTHSC populations. Compared with LTHSCs with low MPL expression, LTHSCs with high MPL expression showed enhanced JAK/STAT signaling and proliferation in response to THPO in vitro and increased leukemogenic capacity in vivo. Although both G0 and S phase subpopulations were increased in LTHSCs with high MPL expression, LSC capacity was restricted to quiescent cells. Inhibition of MPL expression in CML LTHSCs reduced THPO-induced JAK/STAT signaling and leukemogenic potential. These same phenotypes were also present in LTHSCs from patients with CML, and patient LTHSCs with high MPL expression had reduced sensitivity to BCR-ABL tyrosine kinase inhibitor treatment but increased sensitivity to JAK inhibitors. Together, our studies identify MPL expression levels as a key determinant of heterogeneous leukemia-initiating capacity and drug sensitivity of CML LTHSCs and suggest that high MPL-expressing CML stem cells are potential targets for therapy.
Collapse
|
30
|
Goyama S, Schibler J, Gasilina A, Shrestha M, Lin S, Link KA, Chen J, Whitman SP, Bloomfield CD, Nicolet D, Assi SA, Ptasinska A, Heidenreich O, Bonifer C, Kitamura T, Nassar NN, Mulloy JC. UBASH3B/Sts-1-CBL axis regulates myeloid proliferation in human preleukemia induced by AML1-ETO. Leukemia 2015; 30:728-39. [PMID: 26449661 DOI: 10.1038/leu.2015.275] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 09/22/2015] [Accepted: 09/30/2015] [Indexed: 12/24/2022]
Abstract
The t(8;21) rearrangement, which creates the AML1-ETO fusion protein, represents the most common chromosomal translocation in acute myeloid leukemia (AML). Clinical data suggest that CBL mutations are a frequent event in t(8;21) AML, but the role of CBL in AML1-ETO-induced leukemia has not been investigated. In this study, we demonstrate that CBL mutations collaborate with AML1-ETO to expand human CD34+ cells both in vitro and in a xenograft model. CBL depletion by shRNA also promotes the growth of AML1-ETO cells, demonstrating the inhibitory function of endogenous CBL in t(8;21) AML. Mechanistically, loss of CBL function confers hyper-responsiveness to thrombopoietin and enhances STAT5/AKT/ERK/Src signaling in AML1-ETO cells. Interestingly, we found the protein tyrosine phosphatase UBASH3B/Sts-1, which is known to inhibit CBL function, is upregulated by AML1-ETO through transcriptional and miR-9-mediated regulation. UBASH3B/Sts-1 depletion induces an aberrant pattern of CBL phosphorylation and impairs proliferation in AML1-ETO cells. The growth inhibition caused by UBASH3B/Sts-1 depletion can be rescued by ectopic expression of CBL mutants, suggesting that UBASH3B/Sts-1 supports the growth of AML1-ETO cells partly through modulation of CBL function. Our study reveals a role of CBL in restricting myeloid proliferation of human AML1-ETO-induced leukemia, and identifies UBASH3B/Sts-1 as a potential target for pharmaceutical intervention.
Collapse
Affiliation(s)
- S Goyama
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - J Schibler
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - A Gasilina
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - M Shrestha
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - S Lin
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - K A Link
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - J Chen
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - S P Whitman
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - C D Bloomfield
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - D Nicolet
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.,Alliance for Clinical Trials in Oncology Statistics and Data Center, Mayo Clinic, Rochester, MN, USA
| | - S A Assi
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - A Ptasinska
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - O Heidenreich
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - C Bonifer
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - T Kitamura
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - N N Nassar
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - J C Mulloy
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
31
|
Mouse models for core binding factor leukemia. Leukemia 2015; 29:1970-80. [PMID: 26165235 DOI: 10.1038/leu.2015.181] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 06/03/2015] [Accepted: 06/18/2015] [Indexed: 02/07/2023]
Abstract
RUNX1 and CBFB are among the most frequently mutated genes in human leukemias. Genetic alterations such as chromosomal translocations, copy number variations and point mutations have been widely reported to result in the malfunction of RUNX transcription factors. Leukemias arising from such alterations in RUNX family genes are collectively termed core binding factor (CBF) leukemias. Although adult CBF leukemias generally are considered a favorable risk group as compared with other forms of acute myeloid leukemia, the 5-year survival rate remains low. An improved understanding of the molecular mechanism for CBF leukemia is imperative to uncover novel treatment options. Over the years, retroviral transduction-transplantation assays and transgenic, knockin and knockout mouse models alone or in combination with mutagenesis have been used to study the roles of RUNX alterations in leukemogenesis. Although successful in inducing leukemia, the existing assays and models possess many inherent limitations. A CBF leukemia model which induces leukemia with complete penetrance and short latency would be ideal as a platform for drug discovery. Here, we summarize the currently available mouse models which have been utilized to study CBF leukemias, discuss the advantages and limitations of individual experimental systems, and propose suggestions for improvements of mouse models.
Collapse
|
32
|
Xenograft models for normal and malignant stem cells. Blood 2015; 125:2630-40. [DOI: 10.1182/blood-2014-11-570218] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 03/04/2015] [Indexed: 12/18/2022] Open
Abstract
Abstract
The model systems available for studying human hematopoiesis, malignant hematopoiesis, and hematopoietic stem cell (HSC) function in vivo have improved dramatically over the last decade, primarily due to improvements in xenograft mouse strains. Several recent reviews have focused on the historic development of immunodeficient mice over the last 2 decades, as well as their use in understanding human HSC and leukemia stem cell (LSC) biology and function in the context of a humanized mouse. However, in the intervening time since these reviews, a number of new mouse models, technical approaches, and scientific advances have been made. In this review, we update the reader on the newest and best models and approaches available for studying human malignant and normal HSCs in immunodeficient mice, including newly developed mice for use in chemotherapy testing and improved techniques for humanizing mice without laborious purification of HSC. We also review some relevant scientific findings from xenograft studies and highlight the continued limitations that confront researchers working with human HSC and LSC in vivo.
Collapse
|
33
|
Thrombopoietin/MPL signaling confers growth and survival capacity to CD41-positive cells in a mouse model of Evi1 leukemia. Blood 2014; 124:3587-96. [PMID: 25298035 DOI: 10.1182/blood-2013-12-546275] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Ecotropic viral integration site 1 (Evi1) is a transcription factor that is highly expressed in hematopoietic stem cells and is crucial for their self-renewal capacity. Aberrant expression of Evi1 is observed in 5% to 10% of de novo acute myeloid leukemia (AML) patients and predicts poor prognosis, reflecting multiple leukemogenic properties of Evi1. Here, we show that thrombopoietin (THPO) signaling is implicated in growth and survival of Evi1-expressing cells using a mouse model of Evi1 leukemia. We first identified that the expression of megakaryocytic surface molecules such as ITGA2B (CD41) and the THPO receptor, MPL, positively correlates with EVI1 expression in AML patients. In agreement with this finding, a subpopulation of bone marrow and spleen cells derived from Evi1 leukemia mice expressed both CD41 and Mpl. CD41(+) Evi1 leukemia cells induced secondary leukemia more efficiently than CD41(-) cells in a serial bone marrow transplantation assay. Importantly, the CD41(+) cells predominantly expressing Mpl effectively proliferated and survived on OP9 stromal cells in the presence of THPO via upregulating BCL-xL expression, suggesting an essential role of the THPO/MPL/BCL-xL cascade in enhancing the progression of Evi1 leukemia. These observations provide a novel aspect of the diverse functions of Evi1 in leukemogenesis.
Collapse
|
34
|
Mughal TI, Girnius S, Rosen ST, Kumar S, Wiestner A, Abdel-Wahab O, Kiladjian JJ, Wilson WH, Van Etten RA. Emerging therapeutic paradigms to target the dysregulated Janus kinase/signal transducer and activator of transcription pathway in hematological malignancies. Leuk Lymphoma 2014; 55:1968-79. [PMID: 24206094 DOI: 10.3109/10428194.2013.863307] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Over the past decade, there has been increasing biochemical evidence that the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway is aberrantly activated in malignant cells from patients with a wide spectrum of cancers of the blood and immune systems. The emerging availability of small molecule inhibitors of JAK and other signaling molecules in the JAK/STAT pathway has allowed preclinical studies validating an important role of this pathway in the pathogenesis of many hematologic malignancies, and provided motivation for new strategies for treatment of these diseases. Here, a round-table panel of experts review the current preclinical and clinical landscape of the JAK/STAT pathway in acute lymphoid and myeloid leukemias, lymphomas and myeloma, and chronic myeloid neoplasms.
Collapse
|
35
|
Goyama S, Schibler J, Cunningham L, Zhang Y, Rao Y, Nishimoto N, Nakagawa M, Olsson A, Wunderlich M, Link KA, Mizukawa B, Grimes HL, Kurokawa M, Liu PP, Huang G, Mulloy JC. Transcription factor RUNX1 promotes survival of acute myeloid leukemia cells. J Clin Invest 2013; 123:3876-88. [PMID: 23979164 DOI: 10.1172/jci68557] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Accepted: 06/20/2013] [Indexed: 12/12/2022] Open
Abstract
RUNX1 is generally considered a tumor suppressor in myeloid neoplasms. Inactivating RUNX1 mutations have frequently been found in patients with myelodysplastic syndrome (MDS) and cytogenetically normal acute myeloid leukemia (AML). However, no somatic RUNX1 alteration was found in AMLs with leukemogenic fusion proteins, such as core-binding factor (CBF) leukemia and MLL fusion leukemia, raising the possibility that RUNX1 could actually promote the growth of these leukemia cells. Using normal human cord blood cells and those expressing leukemogenic fusion proteins, we discovered a dual role of RUNX1 in myeloid leukemogenesis. RUNX1 overexpression inhibited the growth of normal cord blood cells by inducing myeloid differentiation, whereas a certain level of RUNX1 activity was required for the growth of AML1-ETO and MLL-AF9 cells. Using a mouse genetic model, we also showed that the combined loss of Runx1/Cbfb inhibited leukemia development induced by MLL-AF9. RUNX2 could compensate for the loss of RUNX1. The survival effect of RUNX1 was mediated by BCL2 in MLL fusion leukemia. Our study unveiled an unexpected prosurvival role for RUNX1 in myeloid leukemogenesis. Inhibiting RUNX1 activity rather than enhancing it could be a promising therapeutic strategy for AMLs with leukemogenic fusion proteins.
Collapse
Affiliation(s)
- Susumu Goyama
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
JAK inhibitors suppress t(8;21) fusion protein-induced leukemia. Leukemia 2013; 27:2272-9. [PMID: 23812420 PMCID: PMC3987672 DOI: 10.1038/leu.2013.197] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 06/14/2013] [Accepted: 06/18/2013] [Indexed: 11/19/2022]
Abstract
Oncogenic mutations in components of the JAK/STAT pathway, including those in cytokine receptors and JAKs, lead to increased activity of downstream signaling and are frequently found in leukemia and other hematological disorders. Thus, small-molecule inhibitors of this pathway have been the focus of targeted therapy in these hematological diseases. We previously showed that t(8;21) fusion protein AML1-ETO and its alternatively spliced variant AML1-ETO9a (AE9a) enhance the JAK/STAT pathway via down-regulation of CD45, a negative regulator of this pathway. To investigate the therapeutic potential of targeting JAK/STAT in t(8;21) leukemia, we examined the effects of a JAK2-selective inhibitor TG101209 and a JAK1/2-selective inhibitor INCB18424 on t(8;21) leukemia cells. TG101209 and INCB18424 inhibited proliferation and promoted apoptosis of these cells. Furthermore, TG101209 treatment in AE9a leukemia mice reduced tumor burden and significantly prolonged survival. TG101209 also significantly impaired the leukemia-initiating potential of AE9a leukemia cells in secondary recipient mice. These results demonstrate the potential therapeutic efficacy of JAK inhibitors in treating t(8;21) AML.
Collapse
|
37
|
AML1-ETO mediates hematopoietic self-renewal and leukemogenesis through a COX/β-catenin signaling pathway. Blood 2013; 121:4906-16. [PMID: 23645839 DOI: 10.1182/blood-2012-08-447763] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Developing novel therapies that suppress self-renewal of leukemia stem cells may reduce the likelihood of relapses and extend long-term survival of patients with acute myelogenous leukemia (AML). AML1-ETO (AE) is an oncogene that plays an important role in inducing self-renewal of hematopoietic stem/progenitor cells (HSPCs), leading to the development of leukemia stem cells. Previously, using a zebrafish model of AE and a whole-organism chemical suppressor screen, we have discovered that AE induces specific hematopoietic phenotypes in embryonic zebrafish through a cyclooxygenase (COX)-2 and β-catenin-dependent pathway. Here, we show that AE also induces expression of the Cox-2 gene and activates β-catenin in mouse bone marrow cells. Inhibition of COX suppresses β-catenin activation and serial replating of AE(+) mouse HSPCs. Genetic knockdown of β-catenin also abrogates the clonogenic growth of AE(+) mouse HSPCs and human leukemia cells. In addition, treatment with nimesulide, a COX-2 selective inhibitor, dramatically suppresses xenograft tumor formation and inhibits in vivo progression of human leukemia cells. In summary, our data indicate an important role of a COX/β-catenin-dependent signaling pathway in tumor initiation, growth, and self-renewal, and in providing the rationale for testing potential benefits from common COX inhibitors as a part of AML treatments.
Collapse
|
38
|
Lineage-inappropriate PAX5 expression in t(8;21) acute myeloid leukemia requires signaling-mediated abrogation of polycomb repression. Blood 2013; 122:759-69. [PMID: 23616623 DOI: 10.1182/blood-2013-02-482497] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The activation of B-cell-specific genes, such as CD19 and PAX5, is a hallmark of t(8;21) acute myeloid leukemia (AML) which expresses the translocation product RUNX1/ETO. PAX5 is an important regulator of B-lymphoid development and blocks myeloid differentiation when ectopically expressed. To understand the molecular mechanism of PAX5 deregulation, we examined its chromatin structure and regulation in t(8;21) AML cells, non-t(8;21) myeloid precursor control cells, and pre-B cells. In non-t(8;21) myeloid precursors, PAX5 is poised for transcription, but is repressed by polycomb complexes. In t(8;21) AML, PAX5 is not directly activated by RUNX1/ETO, but expression requires constitutive mitogen-activated protein (MAP) kinase signaling. Using a model of t(8;21) carrying an activating KIT mutation, we demonstrate that deregulated MAP kinase signaling in t(8;21) AML abrogates the association of polycomb complexes to PAX5 and leads to aberrant gene activation. Our findings therefore suggest a novel role of activating tyrosine kinase mutations in lineage-inappropriate gene expression in AML.
Collapse
|
39
|
Lee HJ, Daver N, Kantarjian HM, Verstovsek S, Ravandi F. The role of JAK pathway dysregulation in the pathogenesis and treatment of acute myeloid leukemia. Clin Cancer Res 2013; 19:327-35. [PMID: 23209034 DOI: 10.1158/1078-0432.ccr-12-2087] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The discovery of the Janus kinase 2 (JAK2) V617F mutation has improved our understanding of the pathophysiology of myeloproliferative neoplasms such as polycythemia vera, essential thrombocythemia, and primary myelofibrosis. Before discovery of the JAK2 V617F mutation, there were no specific targeted therapies for patients with myeloproliferative neoplasms. More recently, several small-molecule inhibitors have been developed that have shown therapeutic potential in the clinical setting. There is evidence that the JAK2 pathway is dysregulated in some acute myeloid leukemias and may also represent a novel therapeutic target in this disease. In this review, we describe the preclinical, clinical, and pathophysiologic evidence for using JAK inhibitors in the treatment of acute myeloid leukemias.
Collapse
Affiliation(s)
- Hun Ju Lee
- Department of Lymphoma, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
40
|
Abstract
In this issue of Blood, Chou et al1 and Pulikkan et al2 reveal that the (8;21)(q22;q22) translocation product AML1-ETO (RUNX1-RUNX1T1) leads to enhanced JAK/STAT signaling downstream of myeloproliferative leukemia (MPL) virus, which in turn contributes to increased survival of tumor cells. Hijacking of the JAK/STAT pathway through up-regulation of wild-type MPL is a new paradigm for hematologic malignancies.
Collapse
|
41
|
Hatlen MA, Wang L, Nimer SD. AML1-ETO driven acute leukemia: insights into pathogenesis and potential therapeutic approaches. Front Med 2012; 6:248-62. [PMID: 22875638 DOI: 10.1007/s11684-012-0206-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 04/16/2012] [Indexed: 11/30/2022]
Abstract
The AML1-ETO fusion transcription factor is generated by the t(8;21) translocation, which is present in approximately 4%-12% of adult and 12%-30% of pediatric acute myeloid leukemia (AML) patients. Both human and mouse models of AML have demonstrated that AML1-ETO is insufficient for leukemogenesis in the absence of secondary events. In this review, we discuss the pathogenetic insights that have been gained from identifying the various events that can cooperate with AML1-ETO to induce AML in vivo. We also discuss potential therapeutic strategies for t(8;21) positive AML that involve targeting the fusion protein itself, the proteins that bind to it, or the genes that it regulates. Recently published studies suggest that a targeted therapy for t(8;21) positive AML is feasible and may be coming sometime soon.
Collapse
Affiliation(s)
- Megan A Hatlen
- Molecular Pharmacology and Chemistry Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | | | |
Collapse
|