1
|
Kim MS, Lee R, Lee DH, Song H, Ha T, Kim JK, Kang BY, Agger K, Helin K, Shin D, Kang Y, Park C. ETV2/ER71 regulates hematovascular lineage generation and vascularization through an H3K9 demethylase, KDM4A. iScience 2025; 28:111538. [PMID: 39811655 PMCID: PMC11732216 DOI: 10.1016/j.isci.2024.111538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 12/15/2023] [Accepted: 12/03/2024] [Indexed: 01/16/2025] Open
Abstract
ETV2/ER71, an ETS (E-twenty six) transcription factor, is critical for hematopoiesis and vascular development. However, research about the molecular mechanisms behind ETV2-mediated gene transcription is limited. Herein, we demonstrate that ETV2 and KDM4A, an H3K9 demethylase, regulate hematopoietic and endothelial genes. Etv2 -/- mouse embryonic stem cells (mESCs), which fail to generate hematopoietic and endothelial cells, exhibit enhanced H3K9me3 levels in hematopoietic and endothelial genes. ETV2 interacts with KDM4A, and the ETV2-mediated transcriptional activation of hematopoietic and endothelial genes depends on KDM4A histone demethylase activity. The ETV2 and KDM4A complex binds to the transcription regulatory regions of genes directly regulated by ETV2. Mice lacking Kdm4a and Etv2 in endothelial cells (Cdh5Cre:Kdm:Etv2 f/f mice) display a more severe perfusion recovery and neovascularization defect, compared with Cdh5Cre:Kdm4a f/f mice, Cdh5Cre:Etv2 f/f mice, and controls. Collectively, we demonstrate that ETV2 interacts with KDM4A, and that this interaction is critical for hematovascular lineage generation and vascular regeneration.
Collapse
Affiliation(s)
- Min Seong Kim
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Department of Molecular and Cellular Physiology, Louisiana State University Health Science Center, Shreveport, LA, USA
| | - Raham Lee
- Department of Molecular and Cellular Physiology, Louisiana State University Health Science Center, Shreveport, LA, USA
| | - Dong Hun Lee
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biological Sciences, Chonnam National University, Gwangju, Republic of Korea
| | - Heesang Song
- Department of Biochemistry and Molecular Biology, Chosun University School of Medicine, Gwangju, Republic of Korea
| | - Taekyung Ha
- Department of Molecular and Cellular Physiology, Louisiana State University Health Science Center, Shreveport, LA, USA
| | - Joo Kyung Kim
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Bum-Yong Kang
- Department of Medicine, Emory University School of Medicine, and Atlanta VA HCS, Atlanta, GA, USA
| | - Karl Agger
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark
| | - Kristian Helin
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark
- Cell Biology Program and Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Donghyun Shin
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, Republic of Korea
| | - Yunhee Kang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Changwon Park
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Department of Molecular and Cellular Physiology, Louisiana State University Health Science Center, Shreveport, LA, USA
| |
Collapse
|
2
|
Petzold T, Gerhardt H. In preprints: keeping endothelial cell specification and vascular development in check. Development 2024; 151:dev204338. [PMID: 39287130 DOI: 10.1242/dev.204338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Affiliation(s)
- Tim Petzold
- Integrative Vascular Biology Laboratory, Max Delbrück Center (MDC) for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
- DZHK (German Center for Cardiovascular Research), 10785 Berlin, Germany
| | - Holger Gerhardt
- Integrative Vascular Biology Laboratory, Max Delbrück Center (MDC) for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
- DZHK (German Center for Cardiovascular Research), 10785 Berlin, Germany
- Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
- Berlin Institute of Health (BIH), 10178 Berlin, Germany
| |
Collapse
|
3
|
Chen D, Fan X, Wang K, Gong L, Melero-Martin JM, Pu WT. Pioneer factor ETV2 safeguards endothelial cell specification by recruiting the repressor REST to restrict alternative lineage commitment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.595971. [PMID: 38853821 PMCID: PMC11160620 DOI: 10.1101/2024.05.28.595971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Mechanisms of cell fate specification remain a central question for developmental biology and regenerative medicine. The pioneer factor ETV2 is a master regulator for the endothelial cell (EC) lineage specification. Here, we studied mechanisms of ETV2-driven fate specification using a highly efficient system in which ETV2 directs human induced pluripotent stem cell-derived mesodermal progenitors to form ECs over two days. By applying CUT&RUN, single-cell RNA-sequencing (scRNA-seq) and single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq) analyses, we characterized the transcriptomic profiles, chromatin landscapes, dynamic cis-regulatory elements (CREs), and molecular features of EC cell differentiation mediated by ETV2. This defined the scope of ETV2 pioneering activity and identified its direct downstream target genes. Induced ETV2 expression both directed specification of endothelial progenitors and suppressed acquisition of alternative fates. Functional screening and candidate validation revealed cofactors essential for efficient EC specification, including the transcriptional activator GABPA. Surprisingly, the transcriptional repressor REST was also necessary for efficient EC specification. ETV2 recruited REST to occupy and repress non-EC lineage genes. Collectively, our study provides an unparalleled molecular analysis of EC specification at single-cell resolution and identifies the important role of pioneer factors to recruit repressors that suppress commitment to alternative lineages.
Collapse
|
4
|
Ren Y, Wan R, Zhao G, Kuroiwa T, Moran SL, Gingery A, Zhao C. Gene expression of Postn and FGF7 in canine chordae tendineae and their effects on flexor tenocyte biology. J Orthop Res 2024; 42:961-972. [PMID: 37990927 DOI: 10.1002/jor.25745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 11/23/2023]
Abstract
Chordae tendineae, referred to as heart tendinous cords, act as tendons connecting the papillary muscles to the valves in the heart. Their role is analogous to tendons in the musculoskeletal system. Despite being exposed to millions of cyclic tensile stretches over a human's lifetime, chordae tendineae rarely suffer from overuse injuries. On the other hand, musculoskeletal tendinopathy is very common and remains challenging in clinical treatment. The objective of this study was to investigate the mechanism behind the remarkable durability and resistance to overuse injuries of chordae tendineae, as well as to explore their effects on flexor tenocyte biology. The messenger RNA expression profiles of chordae tendineae were analyzed using RNA sequencing and verified by quantitative reverse transcription polymerase chain reaction and immunohistochemistry. Interestingly, we found that periostin (Postn) and fibroblast growth factor 7 (FGF7) were expressed at significantly higher levels in chordae tendineae, compared to flexor tendons. We further treated flexor tenocytes in vitro with periostin and FGF7 to examine their effects on the proliferation, migration, apoptosis, and tendon-related gene expression of flexor tenocytes. The results displayed enhanced cell proliferation ability at an early stage and an antiapoptotic effect on tenocytes, while treated with periostin and/or FGF7 proteins. Furthermore, there was a trend of promoted tenocyte migration capability. These findings indicated that Postn and FGF7 may represent novel cytokines to target flexor tendon healing. Clinical significance: The preliminary discovery leads to a novel idea for treating tendinopathy in the musculoskeletal system using specific molecules identified from chordae tendineae.
Collapse
Affiliation(s)
- Ye Ren
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Rou Wan
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Gongyin Zhao
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
- Department of Orthopedic Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Tomoyuki Kuroiwa
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Steven L Moran
- Division of Plastic Surgery, Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Anne Gingery
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Chunfeng Zhao
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
5
|
Shang X, Jin Y, Xue Y, Pan X, Zhu H, Meng X, Cao Z, Rui Y. Overexpression of ETV2 in BMSCs promoted wound healing in cutaneous wound mice by triggering the differentiation of BMSCs into endothelial cells and modulating the transformation of M1 phenotype macrophages to M2 phenotype macrophages. Tissue Cell 2024; 87:102334. [PMID: 38430850 DOI: 10.1016/j.tice.2024.102334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 03/05/2024]
Abstract
This study aimed to investigate the effects of E26-transformation-specific variant-2 (ETV2) overexpression on wound healing in a cutaneous wound (CW) model and clarify associated mechanisms. pLVX-ETV2 lentivirus expressing ETV2 was constructed and infected into BMSCs to generate ETV2-overexpressed BMSCs (BMSCs+pLVX+ETV2). The RT-PCR assay was applied to amplify ETV2, VE-cadherin, vWF, ARG-1, IL-6, iNOS, TGF-β, IL-10, TNF-α. Western blot was used to determine expression of VE-cadherin and vWF. ETV2 induced differentiation of BMSCs into ECs by increasing CDH5/CD31, triggering tube-like structures, inducing Dil-Ac-LDL positive BMSCs. ETV2 overexpression increased the gene transcription and expression of VE-cadherin and vWF (P<0.01). Transcription of M1 phenotype specific iNOS gene was lower and transcription of M2 phenotype specific ARG-1 gene was higher in the RAW264.7+BMSCs+ETV2 group compared to the RAW264.7+BMSCs+pLVX group (P<0.01). ETV2 overexpression (RAW264.7+BMSCs+ETV2) downregulated IL-6 and TNF-α, and upregulated IL-10 and TGF-β gene transcription compared to RAW264.7+BMSCs+pLVX group (P<0.01). ETV2-overexpressed BMSCs promoted wound healing in CW mice and triggered the migration of BMSCs to the wound region and macrophage activation. ETV2-overexpressed BMSCs promoted collagen fibers and blood vessel formation in the wound region of CW mice. In conclusion, this study revealed a novel biofunction of ETV2 molecule in the wound healing process. ETV2 overexpression in BMSCs promoted wound healing in CW mice by triggering BMSCs differentiation into endothelial cells and modulating the transformation of M1 pro-inflammatory and M2 anti-inflammatory macrophages in vitro and in vivo.
Collapse
Affiliation(s)
- Xiuchao Shang
- Medical College, Soochow University, Suzhou. China; The First People's Hospital of Lianyungang, Lianyungang, China
| | - Yesheng Jin
- Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, China
| | - Yuan Xue
- Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, China
| | - Xiaoyun Pan
- Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, China
| | - Haiquan Zhu
- The First People's Hospital of Lianyungang, Lianyungang, China
| | - Xiangsheng Meng
- The First People's Hospital of Lianyungang, Lianyungang, China
| | - Zhihai Cao
- Medical College, Soochow University, Suzhou. China
| | - Yongjun Rui
- Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, China.
| |
Collapse
|
6
|
Cho S, Xia I, Lee S, Park C, Yoon YS. Generation of Directly Reprogrammed Human Endothelial Cells. Methods Mol Biol 2024; 2835:155-164. [PMID: 39105914 DOI: 10.1007/978-1-0716-3995-5_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Direct reprogramming provides a novel breakthrough for generating functional endothelial cells (ECs) without the need for intermediate stem or progenitor states, offering a promising resource for cardiovascular research and treatment. ETV2 is a key transcription factor that has been identified as a pioneering factor for specifying endothelial lineage. Achieving precise ETV2 induction is essential for effective endothelial reprogramming, and maintaining the reprogrammed cellular phenotype relies on a specific combination of growth factors and small molecules. Thus, we hereby provide a straightforward and comprehensive protocol for generating two distinct types of reprogrammed ECs (rECs) from human dermal fibroblasts (HDFs). Early rECs demonstrate a robust neovascularization property but lack the mature EC phenotype, while late rECs exhibit phenotypical similarity to human postnatal ECs and have a neovascularization capacity similar to early rECs. Both cell types can be derived from human somatic source cells, making them suitable for personalized disease investigations, drug discovery, and disease therapy.
Collapse
Affiliation(s)
- Seonggeon Cho
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Iris Xia
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Sangho Lee
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Changwon Park
- Louisiana State University Health Sciences Center, Department of Molecular & Cellular Physiology, Shreveport, LA, USA
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Young-Sup Yoon
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA.
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
7
|
Konishi H, Rahmawati FN, Okamoto N, Akuta K, Inukai K, Jia W, Muramatsu F, Takakura N. Discovery of Transcription Factors Involved in the Maintenance of Resident Vascular Endothelial Stem Cell Properties. Mol Cell Biol 2024; 44:17-26. [PMID: 38247234 PMCID: PMC10829836 DOI: 10.1080/10985549.2023.2297997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 12/08/2023] [Indexed: 01/23/2024] Open
Abstract
A resident vascular endothelial stem cell (VESC) population expressing CD157 has been identified recently in mice. Herein, we identified transcription factors (TFs) regulating CD157 expression in endothelial cells (ECs) that were associated with drug resistance, angiogenesis, and EC proliferation. In the first screening, we detected 20 candidate TFs through the CD157 promoter and gene expression analyses. We found that 10 of the 20 TFs induced CD157 expression in ECs. We previously reported that 70% of CD157 VESCs were side population (SP) ECs that abundantly expressed ATP-binding cassette (ABC) transporters. Here, we found that the 10 TFs increased the expression of several ABC transporters in ECs and increased the proportion of SP ECs. Of these 10 TFs, we found that six (Atf3, Bhlhe40, Egr1, Egr2, Elf3, and Klf4) were involved in the manifestation of the SP phenotype. Furthermore, the six TFs enhanced tube formation and proliferation in ECs. Single-cell RNA sequence data in liver ECs suggested that Atf3 and Klf4 contributed to the production of CD157+ VESCs in the postnatal period. We concluded that Klf4 might be important for the development and maintenance of liver VESCs. Our work suggests that a TF network is involved in the differentiation hierarchy of VESCs.
Collapse
Affiliation(s)
- Hirotaka Konishi
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Fitriana N. Rahmawati
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Naoki Okamoto
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Keigo Akuta
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Koichi Inukai
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Weizhen Jia
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Fumitaka Muramatsu
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Nobuyuki Takakura
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
- Laboratory of Signal Transduction, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Japan
- Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Japan
| |
Collapse
|
8
|
Cho S, Aakash P, Lee S, Yoon YS. Endothelial cell direct reprogramming: Past, present, and future. J Mol Cell Cardiol 2023; 180:22-32. [PMID: 37080451 PMCID: PMC10330356 DOI: 10.1016/j.yjmcc.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/04/2023] [Accepted: 04/17/2023] [Indexed: 04/22/2023]
Abstract
Ischemic cardiovascular disease still remains as a leading cause of morbidity and mortality despite various medical, surgical, and interventional therapy. As such, cell therapy has emerged as an attractive option because it tackles underlying problem of the diseases by inducing neovascularization in ischemic tissue. After overall failure of adult stem or progenitor cells, studies attempted to generate endothelial cells (ECs) from pluripotent stem cells (PSCs). While endothelial cells (ECs) differentiated from PSCs successfully induced vascular regeneration, differentiating volatility and tumorigenic potential is a concern for their clinical applications. Alternatively, direct reprogramming strategies employ lineage-specific factors to change cell fate without achieving pluripotency. ECs have been successfully reprogrammed via ectopic expression of transcription factors (TFs) from endothelial lineage. The reprogrammed ECs induced neovascularization in vitro and in vivo and thus demonstrated their therapeutic value in animal models of vascular insufficiency. Methods of delivering reprogramming factors include lentiviral or retroviral vectors and more clinically relevant, non-integrative adenoviral and episomal vectors. Most studies made use of fibroblast as a source cell for reprogramming, but reprogrammability of other clinically relevant source cell types has to be evaluated. Specific mechanisms and small molecules that are involved in the aforementioned processes tackles challenges associated with direct reprogramming efficiency and maintenance of reprogrammed EC characteristics. After all, this review provides summary of past and contemporary methods of direct endothelial reprogramming and discusses the future direction to overcome these challenges to acquire clinically applicable reprogrammed ECs.
Collapse
Affiliation(s)
- Seonggeon Cho
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Parthasarathy Aakash
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Sangho Lee
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA.
| | - Young-Sup Yoon
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA; Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Das S, Gupta V, Bjorge J, Shi X, Gong W, Garry MG, Garry DJ. ETV2 and VEZF1 interaction and regulation of the hematoendothelial lineage during embryogenesis. Front Cell Dev Biol 2023; 11:1109648. [PMID: 36923254 PMCID: PMC10009235 DOI: 10.3389/fcell.2023.1109648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/13/2023] [Indexed: 03/02/2023] Open
Abstract
Ets variant 2 (Etv2), a member of the Ets factor family, has an essential role in the formation of endothelial and hematopoietic cell lineages during embryonic development. The functional role of ETS transcription factors is, in part, dependent on the interacting proteins. There are relatively few studies exploring the coordinated interplay between ETV2 and its interacting proteins that regulate mesodermal lineage determination. In order to identify novel ETV2 interacting partners, a yeast two-hybrid analysis was performed and the C2H2 zinc finger transcription factor VEZF1 (vascular endothelial zinc finger 1) was identified as a binding factor, which was specifically expressed within the endothelium during vascular development. To confirm this interaction, co-immunoprecipitation and GST pull down assays demonstrated the direct interaction between ETV2 and VEZF1. During embryoid body differentiation, Etv2 achieved its peak expression at day 3.0 followed by rapid downregulation, on the other hand Vezf1 expression increased through day 6 of EB differentiation. We have previously shown that ETV2 potently activated Flt1 gene transcription. Using a Flt1 promoter-luciferase reporter assay, we demonstrated that VEZF1 co-activated the Flt1 promoter. Electrophoretic mobility shift assay and Chromatin immunoprecipitation established VEZF1 binding to the Flt1 promoter. Vezf1 knockout embryonic stem cells had downregulation of hematoendothelial marker genes when undergoing embryoid body mediated mesodermal differentiation whereas overexpression of VEZF1 induced the expression of hematoendothelial genes during differentiation. These current studies provide insight into the co-regulation of the hemato-endothelial lineage development via a co-operative interaction between ETV2 and VEZF1.
Collapse
Affiliation(s)
- Satyabrata Das
- Department of Medicine, Cardiovascular Division, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, United States
| | - Vinayak Gupta
- Department of Medicine, Cardiovascular Division, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, United States
| | - Johannes Bjorge
- Department of Medicine, Cardiovascular Division, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, United States
| | - Xiaozhong Shi
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, JX, China
| | - Wuming Gong
- Department of Medicine, Cardiovascular Division, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, United States
| | - Mary G. Garry
- Department of Medicine, Cardiovascular Division, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, United States
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
- Paul and Sheila Wellstone Muscular Dystrophy Center, University of Minnesota, Minneapolis, MN, United States
| | - Daniel J. Garry
- Department of Medicine, Cardiovascular Division, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, United States
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
- Paul and Sheila Wellstone Muscular Dystrophy Center, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
10
|
Ho VW, Grainger DE, Chagraoui H, Porcher C. Specification of the haematopoietic stem cell lineage: From blood-fated mesodermal angioblasts to haemogenic endothelium. Semin Cell Dev Biol 2022; 127:59-67. [PMID: 35125239 DOI: 10.1016/j.semcdb.2022.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 11/19/2022]
Abstract
Haematopoietic stem and progenitor cells emerge from specialized haemogenic endothelial cells in select vascular beds during embryonic development. Specification and commitment to the blood lineage, however, occur before endothelial cells are endowed with haemogenic competence, at the time of mesoderm patterning and production of endothelial cell progenitors (angioblasts). Whilst early blood cell fate specification has long been recognized, very little is known about the mechanisms that induce endothelial cell diversification and progressive acquisition of a blood identity by a subset of these cells. Here, we review the endothelial origin of the haematopoietic system and the complex developmental journey of blood-fated angioblasts. We discuss how recent technological advances will be instrumental to examine the diversity of the embryonic anatomical niches, signaling pathways and downstream epigenetic and transcriptional processes controlling endothelial cell heterogeneity and blood cell fate specification. Ultimately, this will give essential insights into the ontogeny of the cells giving rise to haematopoietic stem cells, that may aid in the development of novel strategies for their in vitro production for clinical purposes.
Collapse
Affiliation(s)
- Vivien W Ho
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - David E Grainger
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Hedia Chagraoui
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Catherine Porcher
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK.
| |
Collapse
|
11
|
Differential Etv2 threshold requirement for endothelial and erythropoietic development. Cell Rep 2022; 39:110881. [PMID: 35649376 PMCID: PMC9203129 DOI: 10.1016/j.celrep.2022.110881] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 02/23/2022] [Accepted: 05/06/2022] [Indexed: 11/21/2022] Open
Abstract
Endothelial and erythropoietic lineages arise from a common developmental progenitor. Etv2 is a master transcriptional regulator required for the development of both lineages. However, the mechanisms through which Etv2 initiates the gene-regulatory networks (GRNs) for endothelial and erythropoietic specification and how the two GRNs diverge downstream of Etv2 remain incompletely understood. Here, by analyzing a hypomorphic Etv2 mutant, we demonstrate different threshold requirements for initiation of the downstream GRNs for endothelial and erythropoietic development. We show that Etv2 functions directly in a coherent feedforward transcriptional network for vascular endothelial development, and a low level of Etv2 expression is sufficient to induce and sustain the endothelial GRN. In contrast, Etv2 induces the erythropoietic GRN indirectly via activation of Tal1, which requires a significantly higher threshold of Etv2 to initiate and sustain erythropoietic development. These results provide important mechanistic insight into the divergence of the endothelial and erythropoietic lineages.
Collapse
|
12
|
Zhang H, Yamaguchi T, Kokubu Y, Kawabata K. Transient ETV2 Expression Promotes the Generation of Mature Endothelial Cells from Human Pluripotent Stem Cells. Biol Pharm Bull 2022; 45:483-490. [DOI: 10.1248/bpb.b21-00929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Hongyan Zhang
- Laboratory of Biomedical Innovation, Graduate School of Pharmaceutical Sciences, Osaka University
| | - Tomoko Yamaguchi
- Laboratory of Stem Cell Regulation, National Institutes of Biomedical Innovation, Health, and Nutrition
| | - Yasuhiro Kokubu
- Laboratory of Stem Cell Regulation, National Institutes of Biomedical Innovation, Health, and Nutrition
| | - Kenji Kawabata
- Laboratory of Stem Cell Regulation, National Institutes of Biomedical Innovation, Health, and Nutrition
| |
Collapse
|
13
|
Biallelic variants in ETV2 in a family with congenital heart defects, vertebral abnormalities and preaxial polydactyly. Eur J Med Genet 2021; 64:104124. [PMID: 33359164 DOI: 10.1016/j.ejmg.2020.104124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/13/2020] [Accepted: 12/17/2020] [Indexed: 12/30/2022]
Abstract
The combination of congenital heart defects and vertebral anomalies with or without additional abnormalities has been reported in many genetic disorders. We describe a family in which four consecutive pregnancies were characterized by the combination of fetal congenital heart malformations and vertebral anomalies. In addition, preaxial polydactyly was detected in one of the fetuses. Reanalysis of the non-diagnostic clinical exome data revealed compound heterozygous variants c.350del, p.(Gly117AlafsTer90) and c.757G > T, p.(Asp253Tyr) in ETV2 which have previously not been known to be associated with a phenotype in humans. In mice, Etv2 encodes an obligatory transcription factor involved in the generation of hematopoietic and endothelial cells. Its homozygous disruption results in embryonic lethality due to severe blood and vessel defects. The Etv2 promoter may be bound by Nkx2-5, a key transcription factor in heart development. Pathogenic variants in the NKx2-5 homolog in humans (NKX2-5) are related to congenital heart defects. The identification of additional fetuses or live-born individuals with biallelic pathogenic variants in ETV2 will shed further light on this presumably novel gene-phenotype association and on the full phenotypic spectrum.
Collapse
|
14
|
Fukushima H, Yoshioka M, Kawatou M, López-Dávila V, Takeda M, Kanda Y, Sekino Y, Yoshida Y, Yamashita JK. Specific induction and long-term maintenance of high purity ventricular cardiomyocytes from human induced pluripotent stem cells. PLoS One 2020; 15:e0241287. [PMID: 33137106 PMCID: PMC7605685 DOI: 10.1371/journal.pone.0241287] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 10/13/2020] [Indexed: 12/28/2022] Open
Abstract
Currently, cardiomyocyte (CM) differentiation methods require a purification step after CM induction to ensure the high purity of the cell population. Here we show an improved human CM differentiation protocol with which high-purity ventricular-type CMs can be obtained and maintained without any CM purification process. We induced and collected a mesodermal cell population (platelet-derived growth factor receptor-α (PDGFRα)-positive cells) that can respond to CM differentiation cues, and then stimulated CM differentiation by means of Wnt inhibition. This method reproducibly generated CMs with purities above 95% in several human pluripotent stem cell lines. Furthermore, these CM populations were maintained in culture at such high purity without any further CM purification step for over 200 days. The majority of these CMs (>95%) exhibited a ventricular-like phenotype with a tendency to structural and electrophysiological maturation, including T-tubule-like structure formation and the ability to respond to QT prolongation drugs. This is a simple and valuable method to stably generate CM populations suitable for cardiac toxicology testing, disease modeling and regenerative medicine.
Collapse
Affiliation(s)
- Hiroyuki Fukushima
- Department of Cell Growth and Differentiation, Laboratory of Stem Cell Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Miki Yoshioka
- Department of Cell Growth and Differentiation, Laboratory of Stem Cell Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Masahide Kawatou
- Department of Cell Growth and Differentiation, Laboratory of Stem Cell Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Department of Cardiovascular Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Institute for Advancement of Clinical and Translational Science (iACT), Kyoto University Hospital, Kyoto, Japan
| | - Víctor López-Dávila
- Department of Cell Growth and Differentiation, Laboratory of Stem Cell Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Masafumi Takeda
- Department of Cell Growth and Differentiation, Laboratory of Stem Cell Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Institute for Advancement of Clinical and Translational Science (iACT), Kyoto University Hospital, Kyoto, Japan
| | - Yasunari Kanda
- Division of Pharmacology, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Yuko Sekino
- Division of Pharmacology, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Yoshinori Yoshida
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Jun K. Yamashita
- Department of Cell Growth and Differentiation, Laboratory of Stem Cell Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- * E-mail:
| |
Collapse
|
15
|
Zhao H, Choi K. Single cell transcriptome dynamics from pluripotency to FLK1 + mesoderm. Development 2019; 146:dev.182097. [PMID: 31740535 DOI: 10.1242/dev.182097] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 11/11/2019] [Indexed: 12/23/2022]
Abstract
Hemangiogenic progenitors generating blood and endothelial cells are specified from FLK1-expressing (FLK1+) mesoderm by the transcription factor ETV2. FLK1+ mesoderm also contributes to smooth muscle and cardiomyocytes. However, the developmental process of FLK1+ mesoderm generation and its allocation to various cell fates remain obscure. Recent single cell RNA-sequencing studies of early embryos or in vitro-differentiated human embryonic stem (ES) cells have provided unprecedented information on the spatiotemporal resolution of cells in embryogenesis. These snapshots, however, lack information on continuous dynamic developmental processes. Here, we performed single cell RNA sequencing of in vitro-differentiated mouse ES cells to capture the continuous developmental process leading to hemangiogenesis. We found that hemangiogenic progenitors from ES cells develop through intermediate gastrulation stages, which are gradually specified by 'relay'-like highly overlapping transcription factor modules. Moreover, the transcriptional program of the Flk1+ mesoderm was maintained in the smooth muscle lineage, suggesting that smooth muscle is the default fate of Flk1+ mesoderm. We also identified the SRC kinase contributing to ETV2-mediated activation of the hemangiogenic program. This continuous transcriptome map will facilitate both basic and applied studies of mesoderm development.
Collapse
Affiliation(s)
- Haiyong Zhao
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Kyunghee Choi
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| |
Collapse
|
16
|
Menegatti S, de Kruijf M, Garcia‐Alegria E, Lacaud G, Kouskoff V. Transcriptional control of blood cell emergence. FEBS Lett 2019; 593:3304-3315. [PMID: 31432499 PMCID: PMC6916194 DOI: 10.1002/1873-3468.13585] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/09/2019] [Accepted: 08/14/2019] [Indexed: 01/06/2023]
Abstract
The haematopoietic system is established during embryonic life through a series of developmental steps that culminates with the generation of haematopoietic stem cells. Characterisation of the transcriptional network that regulates blood cell emergence has led to the identification of transcription factors essential for this process. Among the many factors wired within this complex regulatory network, ETV2, SCL and RUNX1 are the central components. All three factors are absolutely required for blood cell generation, each one controlling a precise step of specification from the mesoderm germ layer to fully functional blood progenitors. Insight into the transcriptional control of blood cell emergence has been used for devising protocols to generate blood cells de novo, either through reprogramming of somatic cells or through forward programming of pluripotent stem cells. Interestingly, the physiological process of blood cell generation and its laboratory-engineered counterpart have very little in common.
Collapse
Affiliation(s)
- Sara Menegatti
- Developmental Haematopoiesis GroupFaculty of Biology, Medicine and Healththe University of ManchesterUK
| | - Marcel de Kruijf
- Developmental Haematopoiesis GroupFaculty of Biology, Medicine and Healththe University of ManchesterUK
| | - Eva Garcia‐Alegria
- Developmental Haematopoiesis GroupFaculty of Biology, Medicine and Healththe University of ManchesterUK
| | - Georges Lacaud
- Cancer Research UK Stem Cell Biology GroupCancer Research UK Manchester InstituteThe University of ManchesterMacclesfieldUK
| | - Valerie Kouskoff
- Developmental Haematopoiesis GroupFaculty of Biology, Medicine and Healththe University of ManchesterUK
| |
Collapse
|
17
|
Chestnut B, Sumanas S. Zebrafish etv2 knock-in line labels vascular endothelial and blood progenitor cells. Dev Dyn 2019; 249:245-261. [PMID: 31705559 DOI: 10.1002/dvdy.130] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 10/22/2019] [Accepted: 11/02/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND ETS transcription factor Etv2/Etsrp is one of the earliest markers for vascular and hematopoietic progenitors and functions as a key regulator of hematovascular development in multiple vertebrates, including zebrafish. Therefore, transgenic etv2 reporter lines provide a valuable tool to study vasculogenesis and hematopoiesis. However, previously generated zebrafish reporter lines do not fully recapitulate the endogenous pattern of etv2 expression. RESULTS Here we used CRISPR/Cas9-mediated homology-independent DNA repair approach to knock-in a Gal4 transcriptional activator into the zebrafish etv2 genomic locus, thus generating etv2 ci32Gt gene trap line. etv2 ci32Gt ; UAS:GFP embryos show GFP expression in vascular endothelial, myeloid and red blood cells. Because gal4 insertion interrupts the etv2 locus, homozygous etv2 ci32Gt embryos display defects in vasculogenesis and myelopoiesis, and enable visualizing etv2-deficient hematovascular progenitors in live embryos. Furthermore, we performed differential transcriptome analysis of sorted GFP-positive cells from heterozygous and homozygous etv2 ci32Gt embryos. Approximately 500 downregulated genes were identified in etv2 ci32Gt homozygous embryos, which include multiple genes expressed in vascular endothelial and myeloid cells. CONCLUSIONS The etv2 ci32Gt gene trap line and the data sets of misregulated genes will be valuable resources to study hematopoietic and vascular development.
Collapse
Affiliation(s)
- Brendan Chestnut
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Saulius Sumanas
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
18
|
Kim JY, Lee DH, Kim JK, Choi HS, Dwivedi B, Rupji M, Kowalski J, Green SJ, Song H, Park WJ, Chang JY, Kim TM, Park C. ETV2/ER71 regulates the generation of FLK1 + cells from mouse embryonic stem cells through miR-126-MAPK signaling. Stem Cell Res Ther 2019; 10:328. [PMID: 31744543 PMCID: PMC6862833 DOI: 10.1186/s13287-019-1466-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/28/2019] [Accepted: 10/22/2019] [Indexed: 11/10/2022] Open
Abstract
Previous studies including ours have demonstrated a critical function of the transcription factor ETV2 (ets variant 2; also known as ER71) in determining the fate of cardiovascular lineage development. However, the underlying mechanisms of ETV2 function remain largely unknown. In this study, we demonstrated the novel function of the miR (micro RNA)-126-MAPK (mitogen-activated protein kinase) pathway in ETV2-mediated FLK1 (fetal liver kinase 1; also known as VEGFR2)+ cell generation from the mouse embryonic stem cells (mESCs). By performing a series of experiments including miRNA sequencing and ChIP (chromatin immunoprecipitation)-PCR, we found that miR-126 is directly induced by ETV2. Further, we identified that miR-126 can positively regulate the generation of FLK1+ cells by activating the MAPK pathway through targeting SPRED1 (sprouty-related EVH1 domain containing 1). Further, we showed evidence that JUN/FOS activate the enhancer region of FLK1 through AP1 (activator protein 1) binding sequences. Our findings provide insight into the novel molecular mechanisms of ETV2 function in regulating cardiovascular lineage development from mESCs.
Collapse
Affiliation(s)
- Ju Young Kim
- Department of Pediatrics, Emory University School of Medicine, 2015 Uppergate Dr. Atlanta, Atlanta, GA, 30322, USA.,Children's Heart Research & Outcomes (HeRO) Center, Children's Healthcare of Atlanta & Emory University, Atlanta, GA, USA.,Molecular and Systems Pharmacology Program, Emory University, Atlanta, GA, USA
| | - Dong Hun Lee
- Department of Pediatrics, Emory University School of Medicine, 2015 Uppergate Dr. Atlanta, Atlanta, GA, 30322, USA.,Children's Heart Research & Outcomes (HeRO) Center, Children's Healthcare of Atlanta & Emory University, Atlanta, GA, USA
| | - Joo Kyung Kim
- Department of Pediatrics, Emory University School of Medicine, 2015 Uppergate Dr. Atlanta, Atlanta, GA, 30322, USA.,Children's Heart Research & Outcomes (HeRO) Center, Children's Healthcare of Atlanta & Emory University, Atlanta, GA, USA
| | - Hong Seo Choi
- Department of Pediatrics, Emory University School of Medicine, 2015 Uppergate Dr. Atlanta, Atlanta, GA, 30322, USA
| | - Bhakti Dwivedi
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Manali Rupji
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Jeanne Kowalski
- Winship Cancer Institute, Emory University, Atlanta, GA, USA.,Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA, USA.,Present Address: Department of Oncology, University of Texas at Austin, Austin, TX, 78712, USA
| | - Stefan J Green
- Sequencing Core, Research Resources Center, University of Illinois at Chicago, Chicago, IL, USA
| | - Heesang Song
- Department of Pediatrics, Emory University School of Medicine, 2015 Uppergate Dr. Atlanta, Atlanta, GA, 30322, USA.,Department of Biochemistry and Molecular Biology, Chosun University School of Medicine, Gwangju, IL, Republic of Korea
| | - Won Jong Park
- Department of Pediatrics, Emory University School of Medicine, 2015 Uppergate Dr. Atlanta, Atlanta, GA, 30322, USA
| | - Ji Young Chang
- Department of Pediatrics, Emory University School of Medicine, 2015 Uppergate Dr. Atlanta, Atlanta, GA, 30322, USA
| | - Tae Min Kim
- Graduate School of International Agricultural Technology and Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang, Gangwon-do, Republic of Korea
| | - Changwon Park
- Department of Pediatrics, Emory University School of Medicine, 2015 Uppergate Dr. Atlanta, Atlanta, GA, 30322, USA. .,Children's Heart Research & Outcomes (HeRO) Center, Children's Healthcare of Atlanta & Emory University, Atlanta, GA, USA. .,Molecular and Systems Pharmacology Program, Emory University, Atlanta, GA, USA. .,Biochemistry, Cell Biology and Developmental Biology Program, Emory University, Atlanta, GA, USA.
| |
Collapse
|
19
|
Castaño J, Aranda S, Bueno C, Calero-Nieto FJ, Mejia-Ramirez E, Mosquera JL, Blanco E, Wang X, Prieto C, Zabaleta L, Mereu E, Rovira M, Jiménez-Delgado S, Matson DR, Heyn H, Bresnick EH, Göttgens B, Di Croce L, Menendez P, Raya A, Giorgetti A. GATA2 Promotes Hematopoietic Development and Represses Cardiac Differentiation of Human Mesoderm. Stem Cell Reports 2019; 13:515-529. [PMID: 31402335 PMCID: PMC6742600 DOI: 10.1016/j.stemcr.2019.07.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 02/02/2023] Open
Abstract
In vertebrates, GATA2 is a master regulator of hematopoiesis and is expressed throughout embryo development and in adult life. Although the essential role of GATA2 in mouse hematopoiesis is well established, its involvement during early human hematopoietic development is not clear. By combining time-controlled overexpression of GATA2 with genetic knockout experiments, we found that GATA2, at the mesoderm specification stage, promotes the generation of hemogenic endothelial progenitors and their further differentiation to hematopoietic progenitor cells, and negatively regulates cardiac differentiation. Surprisingly, genome-wide transcriptional and chromatin immunoprecipitation analysis showed that GATA2 bound to regulatory regions, and repressed the expression of cardiac development-related genes. Moreover, genes important for hematopoietic differentiation were upregulated by GATA2 in a mostly indirect manner. Collectively, our data reveal a hitherto unrecognized role of GATA2 as a repressor of cardiac fates, and highlight the importance of coordinating the specification and repression of alternative cell fates.
Collapse
Affiliation(s)
- Julio Castaño
- Center of Regenerative Medicine in Barcelona (CMRB), Hospital Duran i Reynals, Gran Via de L'Hospitalet, 199-203, Hospitalet de Llobregat, Barcelona 08908, Spain; Center for Networked Biomedical Research on Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - Sergi Aranda
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Clara Bueno
- Josep Carreras Leukemia Research Institute and Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona 08036, Spain
| | - Fernando J Calero-Nieto
- Department of Hematology, Wellcome and MRC Cambridge Stem Cell Institute and Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Eva Mejia-Ramirez
- Center of Regenerative Medicine in Barcelona (CMRB), Hospital Duran i Reynals, Gran Via de L'Hospitalet, 199-203, Hospitalet de Llobregat, Barcelona 08908, Spain
| | - Jose Luis Mosquera
- Bioinformatics Unit, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, 08908 Spain
| | - Enrique Blanco
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Xiaonan Wang
- Department of Hematology, Wellcome and MRC Cambridge Stem Cell Institute and Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Cristina Prieto
- Josep Carreras Leukemia Research Institute and Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona 08036, Spain
| | - Lorea Zabaleta
- Laboratory of Hematological Diseases, Fundación Inbiomed, San Sebastian, 20009, Spain
| | - Elisabetta Mereu
- CNAG-CRG, Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Meritxell Rovira
- Center of Regenerative Medicine in Barcelona (CMRB), Hospital Duran i Reynals, Gran Via de L'Hospitalet, 199-203, Hospitalet de Llobregat, Barcelona 08908, Spain
| | - Senda Jiménez-Delgado
- Center of Regenerative Medicine in Barcelona (CMRB), Hospital Duran i Reynals, Gran Via de L'Hospitalet, 199-203, Hospitalet de Llobregat, Barcelona 08908, Spain
| | - Daniel R Matson
- Department of Cell and Regenerative Biology, UW-Madison Blood Research Program, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Holger Heyn
- CNAG-CRG, Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain
| | - Emery H Bresnick
- Department of Cell and Regenerative Biology, UW-Madison Blood Research Program, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Berthold Göttgens
- Josep Carreras Leukemia Research Institute and Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona 08036, Spain
| | - Luciano Di Croce
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Universitat Pompeu Fabra, Barcelona 08003, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain
| | - Pablo Menendez
- Josep Carreras Leukemia Research Institute and Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona 08036, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain; Centro de Investigación Biomedica en Red en Cancer (CIBERONIC) ISCIII, Barcelona, Spain
| | - Angel Raya
- Center of Regenerative Medicine in Barcelona (CMRB), Hospital Duran i Reynals, Gran Via de L'Hospitalet, 199-203, Hospitalet de Llobregat, Barcelona 08908, Spain; Center for Networked Biomedical Research on Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Madrid 28029, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain
| | - Alessandra Giorgetti
- Center of Regenerative Medicine in Barcelona (CMRB), Hospital Duran i Reynals, Gran Via de L'Hospitalet, 199-203, Hospitalet de Llobregat, Barcelona 08908, Spain.
| |
Collapse
|
20
|
Lee DH, Kim TM, Kim JK, Park C. ETV2/ER71 Transcription Factor as a Therapeutic Vehicle for Cardiovascular Disease. Theranostics 2019; 9:5694-5705. [PMID: 31534512 PMCID: PMC6735401 DOI: 10.7150/thno.35300] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 06/26/2019] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases have long been the leading cause of mortality and morbidity in the United States as well as worldwide. Despite numerous efforts over the past few decades, the number of the patients with cardiovascular disease still remains high, thereby necessitating the development of novel therapeutic strategies equipped with a better understanding of the biology of the cardiovascular system. Recently, the ETS transcription factor, ETV2 (also known as ER71), has been recognized as a master regulator of the development of the cardiovascular system and plays an important role in pathophysiological angiogenesis and the endothelial cell reprogramming. Here, we discuss the detailed mechanisms underlying ETV2/ER71-regulated cardiovascular lineage development. In addition, recent reports on the novel functions of ETV2/ER71 in neovascularization and direct cell reprogramming are discussed with a focus on its therapeutic potential for cardiovascular diseases.
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW Recent studies have established that haematopoietic stem cells (HSCs) remain quiescent in homeostatic conditions, and minimally contribute to haematopoietic homeostasis. However, they undergo extensive cell cycle and expansion upon bone marrow transplantation or haematopoietic injury to reestablish the haematopoietic system. Molecular basis for the HSC activation and expansion is not completely understood. Here, we review the recent study elucidating the role of the developmentally critical Ets transcription factor Etv2 in reestablishing haematopoietic system upon injury through promoting HSC regeneration. RECENT FINDINGS We recently demonstrated that the ETS transcription factor Etv2, a critical factor for haematopoietic and vascular development, is also required for haematopoietic regeneration. Etv2, which is silent in homeostatic HSCs, was transiently activated in regenerating HSPCs and was required for the HSC expansion and regeneration following bone marrow transplantation or haematopoietic injury. As such, while Etv2 is dispensable for maintaining HSCs in steady states, it is required for emergency haematopoiesis. SUMMARY Etv2 has been identified as a novel regulator of haematopoietic regeneration. Comprehensive understanding of the upstream regulators and downstream effectors of Etv2 in haematopoietic regeneration would be critical for fundamental understanding of haematopoietic stem cell biology, and the findings will be broadly applicable to clinical practice involving haematopoietic regenerative medicine; bone marrow transplantation, gene therapy and in-vitro HSC expansion.
Collapse
|
22
|
In vivo transduction of ETV2 improves cardiac function and induces vascular regeneration following myocardial infarction. Exp Mol Med 2019; 51:1-14. [PMID: 30755583 PMCID: PMC6372609 DOI: 10.1038/s12276-019-0206-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/27/2018] [Accepted: 10/02/2018] [Indexed: 01/16/2023] Open
Abstract
Vascular regeneration in ischemic hearts has been considered a target for new therapeutic strategies. It has been reported that ETV2 is essential for vascular development, injury-induced neovascularization and direct cell reprogramming of non-endothelial cells into endothelial cells. Thus, the objective of this study was to explore the therapeutic potential of ETV2 in murine models of myocardial infarction in vivo. Direct myocardial delivery of lentiviral ETV2 into rodents undergoing myocardial infarction dramatically upregulated the expression of markers for angiogenesis as well as anti-fibrosis and anti-inflammatory factors in vivo. Consistent with these findings, echocardiography showed significantly improved cardiac function in hearts with induced myocardial infarction upon ETV2 injection compared to that in the control virus-injected group as determined by enhanced ejection fraction and fractional shortening. In addition, ETV2-injected hearts were protected against massive fibrosis with a remarkable increase in capillary density. Interestingly, major fractions of capillaries were stained positive for ETV2. In addition, ECs infected with ETV2 showed enhanced proliferation, suggesting a direct role of ETV2 in vascular regeneration in diseased hearts. Furthermore, culture media from ETV2-overexpressing cardiac fibroblasts promoted endothelial cell migration based on scratch assay. Importantly, intramyocardial injection of the adeno-associated virus form of ETV2 into rat hearts with induced myocardial infarction designed for clinical applicability consistently resulted in significant augmentation of cardiac function. We provide compelling evidence that ETV2 has a robust effect on vascular regeneration and enhanced cardiac repair after myocardial infarction, highlighting a potential therapeutic function of ETV2 as an efficient means to treat failing hearts. A gene therapy strategy that stimulates cardiovascular repair could improve recovery for heart attack patients. Heart attacks inflict severe damage on the heart and blood vessels, tissues with limited capacity for self-repair. Researchers led by Kiwon Ban of the City University of Hong Kong and Hun-Jun Park of the Catholic University of Korea, Seoul, have now demonstrated that a gene responsible for cardiovascular development can also efficiently stimulate heart repair. They used viruses to deliver the gene into a mouse model of heart attack, and showed that treated heart tissues exhibited strong recovery relative to untreated controls. The treatment reduced scar tissue formation and promoted proliferation of the cells lining blood vessels and blood vessel formation, measurably improving heart function. This approach could lay the groundwork for treating a common potentially fatal event.
Collapse
|
23
|
Koyano-Nakagawa N, Garry DJ. Etv2 as an essential regulator of mesodermal lineage development. Cardiovasc Res 2018; 113:1294-1306. [PMID: 28859300 DOI: 10.1093/cvr/cvx133] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/24/2017] [Indexed: 11/14/2022] Open
Abstract
The 'master regulatory factors' that position at the top of the genetic hierarchy of lineage determination have been a focus of intense interest, and have been investigated in various systems. Etv2/Etsrp71/ER71 is such a factor that is both necessary and sufficient for the development of haematopoietic and endothelial lineages. As such, genetic ablation of Etv2 leads to complete loss of blood and vessels, and overexpression can convert non-endothelial cells to the endothelial lineage. Understanding such master regulatory role of a lineage is not only a fundamental quest in developmental biology, but also holds immense possibilities in regenerative medicine. To harness its activity and utility for therapeutic interventions, it is essential to understand the regulatory mechanisms, molecular function, and networks that surround Etv2. In this review, we provide a comprehensive overview of Etv2 biology focused on mouse and human systems.
Collapse
Affiliation(s)
- Naoko Koyano-Nakagawa
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, 2231 6th st. SE, Minneapolis, MN 55455, USA
| | - Daniel J Garry
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, 2231 6th st. SE, Minneapolis, MN 55455, USA
| |
Collapse
|
24
|
Wang YJ, Huang J, Liu W, Kou X, Tang H, Wang H, Yu X, Gao S, Ouyang K, Yang HT. IP3R-mediated Ca2+ signals govern hematopoietic and cardiac divergence of Flk1+ cells via the calcineurin-NFATc3-Etv2 pathway. J Mol Cell Biol 2018; 9:274-288. [PMID: 28419336 DOI: 10.1093/jmcb/mjx014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 04/10/2017] [Indexed: 12/30/2022] Open
Abstract
Ca2+ signals participate in various cellular processes with spatial and temporal dynamics, among which, inositol 1,4,5-trisphosphate receptors (IP3Rs)-mediated Ca2+ signals are essential for early development. However, the underlying mechanisms of IP3R-regulated cell fate decision remain largely unknown. Here we report that IP3Rs are required for the hematopoietic and cardiac fate divergence of mouse embryonic stem cells (mESCs). Deletion of IP3Rs (IP3R-tKO) reduced Flk1+/PDGFRα- hematopoietic mesoderm, c-Kit+/CD41+ hematopoietic progenitor cell population, and the colony-forming unit activity, but increased cardiac progenitor markers as well as cardiomyocytes. Concomitantly, the expression of a key regulator of hematopoiesis, Etv2, was reduced in IP3R-tKO cells, which could be rescued by the activation of Ca2+ signals and calcineurin or overexpression of constitutively active form of NFATc3. Furthermore, IP3R-tKO impaired specific targeting of Etv2 by NFATc3 via its evolutionarily conserved cis-element in differentiating ESCs. Importantly, the activation of Ca2+-calcineurin-NFAT pathway reversed the phenotype of IP3R-tKO cells. These findings reveal an unrecognized governing role of IP3Rs in hematopoietic and cardiac fate commitment via IP3Rs-Ca2+-calcineurin-NFATc3-Etv2 pathway.
Collapse
Affiliation(s)
- Yi-Jie Wang
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai 200031, China
| | - Jijun Huang
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai 200031, China
| | - Wenqiang Liu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Xiaochen Kou
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Huayuan Tang
- Drug Discovery Center, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Hong Wang
- Drug Discovery Center, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Xiujian Yu
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai 200031, China
| | - Shaorong Gao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Kunfu Ouyang
- Drug Discovery Center, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Huang-Tian Yang
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai 200031, China.,Second Affiliated Hospital, Zhejiang University, Hangzhou 310009, China
| |
Collapse
|
25
|
Klein D. iPSCs-based generation of vascular cells: reprogramming approaches and applications. Cell Mol Life Sci 2018; 75:1411-1433. [PMID: 29243171 PMCID: PMC5852192 DOI: 10.1007/s00018-017-2730-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 12/08/2017] [Accepted: 12/11/2017] [Indexed: 12/15/2022]
Abstract
Recent advances in the field of induced pluripotent stem cells (iPSCs) research have opened a new avenue for stem cell-based generation of vascular cells. Based on their growth and differentiation potential, human iPSCs constitute a well-characterized, generally unlimited cell source for the mass generation of lineage- and patient-specific vascular cells without any ethical concerns. Human iPSCs-derived vascular cells are perfectly suited for vascular disease modeling studies because patient-derived iPSCs possess the disease-causing mutation, which might be decisive for full expression of the disease phenotype. The application of vascular cells for autologous cell replacement therapy or vascular engineering derived from immune-compatible iPSCs possesses huge clinical potential, but the large-scale production of vascular-specific lineages for regenerative cell therapies depends on well-defined, highly reproducible culture and differentiation conditions. This review will focus on the different strategies to derive vascular cells from human iPSCs and their applications in regenerative therapy, disease modeling and drug discovery approaches.
Collapse
Affiliation(s)
- Diana Klein
- Institute for Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Virchowstr. 173, 45122, Essen, Germany.
| |
Collapse
|
26
|
Teichweyde N, Kasperidus L, Carotta S, Kouskoff V, Lacaud G, Horn PA, Heinrichs S, Klump H. HOXB4 Promotes Hemogenic Endothelium Formation without Perturbing Endothelial Cell Development. Stem Cell Reports 2018; 10:875-889. [PMID: 29456178 PMCID: PMC5919293 DOI: 10.1016/j.stemcr.2018.01.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 01/15/2018] [Accepted: 01/16/2018] [Indexed: 12/25/2022] Open
Abstract
Generation of hematopoietic stem cells (HSCs) from pluripotent stem cells, in vitro, holds great promise for regenerative therapies. Primarily, this has been achieved in mouse cells by overexpression of the homeotic selector protein HOXB4. The exact cellular stage at which HOXB4 promotes hematopoietic development, in vitro, is not yet known. However, its identification is a prerequisite to unambiguously identify the molecular circuits controlling hematopoiesis, since the activity of HOX proteins is highly cell and context dependent. To identify that stage, we retrovirally expressed HOXB4 in differentiating mouse embryonic stem cells (ESCs). Through the use of Runx1(-/-) ESCs containing a doxycycline-inducible Runx1 coding sequence, we uncovered that HOXB4 promoted the formation of hemogenic endothelium cells without altering endothelial cell development. Whole-transcriptome analysis revealed that its expression mediated the upregulation of transcription of core transcription factors necessary for hematopoiesis, culminating in the formation of blood progenitors upon initiation of Runx1 expression.
Collapse
Affiliation(s)
- Nadine Teichweyde
- Institute for Transfusion Medicine, University Hospital Essen, Virchowstraße 179, 45147 Essen, Germany
| | - Lara Kasperidus
- Institute for Transfusion Medicine, University Hospital Essen, Virchowstraße 179, 45147 Essen, Germany; Department of Bone Marrow Transplantation, University Hospital Essen, Hufelandstraße 55, 45147 Essen, Germany
| | - Sebastian Carotta
- Cancer Cell Signaling, Boehringer Ingelheim RCV, Dr Boehringer-Gasse, 1120 Vienna, Austria
| | - Valerie Kouskoff
- Cancer Research UK Stem Cell Haematopoiesis Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Georges Lacaud
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Peter A Horn
- Institute for Transfusion Medicine, University Hospital Essen, Virchowstraße 179, 45147 Essen, Germany
| | - Stefan Heinrichs
- Institute for Transfusion Medicine, University Hospital Essen, Virchowstraße 179, 45147 Essen, Germany
| | - Hannes Klump
- Institute for Transfusion Medicine, University Hospital Essen, Virchowstraße 179, 45147 Essen, Germany.
| |
Collapse
|
27
|
Zhao H, Choi K. A CRISPR screen identifies genes controlling Etv2 threshold expression in murine hemangiogenic fate commitment. Nat Commun 2017; 8:541. [PMID: 28912455 PMCID: PMC5599515 DOI: 10.1038/s41467-017-00667-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 07/17/2017] [Indexed: 01/08/2023] Open
Abstract
The ETS transcription factor Etv2 is necessary and sufficient for the generation of hematopoietic and endothelial cells. However, upstream regulators of Etv2 in hemangiogenesis, generation of hematopoietic and endothelial cells, have not been clearly addressed. Here we track the developmental route of hemangiogenic progenitors from mouse embryonic stem cells, perform genome-wide CRISPR screening, and transcriptome analysis of en route cell populations by utilizing Brachyury, Etv2, or Scl reporter embryonic stem cell lines to further understand the mechanisms that control hemangiogenesis. We identify the forkhead transcription factor Foxh1, in part through Eomes, to be critical for the formation of FLK1+ mesoderm, from which the hemangiogenic fate is specified. Importantly, hemangiogenic fate is specified not simply by the onset of Etv2 expression, but by a threshold-dependent mechanism, in which VEGF-FLK1 signaling plays an instructive role by promoting Etv2 threshold expression. These studies reveal comprehensive cellular and molecular pathways governing the hemangiogenic cell lineage development. How haematopoietic and endothelial cell lineages are specified is unclear. Here, the authors identify the forkhead transcription factor Foxh1 as regulating FLK1+ mesoderm formation in mouse embryonic stem cells, which in turn specifies hemangiogenic fate via Etv2.
Collapse
Affiliation(s)
- Haiyong Zhao
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Kyunghee Choi
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA. .,Developmental, Regenerative, and Stem Cell Biology Program, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
28
|
Xu CX, Lee TJ, Sakurai N, Krchma K, Liu F, Li D, Wang T, Choi K. ETV2/ER71 regulates hematopoietic regeneration by promoting hematopoietic stem cell proliferation. J Exp Med 2017; 214:1643-1653. [PMID: 28461595 PMCID: PMC5460995 DOI: 10.1084/jem.20160923] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 02/13/2017] [Accepted: 03/20/2017] [Indexed: 01/28/2023] Open
Abstract
Xu et al. show that Etv2 is required for hematopoietic stem and progenitor cell (HSPC) proliferation and expansion after bone marrow transplantation and hematopoietic injury. c-Kit functions downstream of Etv2 in mediating HSPC proliferation and expansion. Recent studies have established that hematopoietic stem cells (HSCs) are quiescent in homeostatic conditions but undergo extensive cell cycle and expansion upon bone marrow (BM) transplantation or hematopoietic injury. The molecular basis for HSC activation and expansion is not completely understood. In this study, we found that key developmentally critical genes controlling hematopoietic stem and progenitor cell (HSPC) generation were up-regulated in HSPCs upon hematopoietic injury. In particular, we found that the ETS transcription factor Ets variant 2 (Etv2; also known as Er71) was up-regulated by reactive oxygen species in HSPCs and was necessary in a cell-autonomous manner for HSPC expansion and regeneration after BM transplantation and hematopoietic injury. We found c-Kit to be downstream of ETV2. As such, lentiviral c-Kit expression rescued Etv2-deficient HSPC proliferation defects in vitro and in short-term BM transplantation in vivo. These findings demonstrate that Etv2 is an important regulator of hematopoietic regeneration.
Collapse
Affiliation(s)
- Can-Xin Xu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110.,The People's Hospital of Hunan Province and Hunan Normal University Institute for Clinical and Translational Science, Changsha, Hunan 410006, China
| | - Tae-Jin Lee
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Nagisa Sakurai
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Karen Krchma
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Fang Liu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Daofeng Li
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110
| | - Ting Wang
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110
| | - Kyunghee Choi
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110 .,Developmental, Regenerative, and Stem Cell Biology Program, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
29
|
SCL/TAL1: a multifaceted regulator from blood development to disease. Blood 2017; 129:2051-2060. [DOI: 10.1182/blood-2016-12-754051] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 01/17/2017] [Indexed: 12/12/2022] Open
Abstract
Abstract
SCL/TAL1 (stem cell leukemia/T-cell acute lymphoblastic leukemia [T-ALL] 1) is an essential transcription factor in normal and malignant hematopoiesis. It is required for specification of the blood program during development, adult hematopoietic stem cell survival and quiescence, and terminal maturation of select blood lineages. Following ectopic expression, SCL contributes to oncogenesis in T-ALL. Remarkably, SCL’s activities are all mediated through nucleation of a core quaternary protein complex (SCL:E-protein:LMO1/2 [LIM domain only 1 or 2]:LDB1 [LIM domain-binding protein 1]) and dynamic recruitment of conserved combinatorial associations of additional regulators in a lineage- and stage-specific context. The finely tuned control of SCL’s regulatory functions (lineage priming, activation, and repression of gene expression programs) provides insight into fundamental developmental and transcriptional mechanisms, and highlights mechanistic parallels between normal and oncogenic processes. Importantly, recent discoveries are paving the way to the development of innovative therapeutic opportunities in SCL+ T-ALL.
Collapse
|
30
|
Zhao H, Xu C, Lee TJ, Liu F, Choi K. ETS transcription factor ETV2/ER71/Etsrp in hematopoietic and vascular development, injury, and regeneration. Dev Dyn 2017; 246:318-327. [DOI: 10.1002/dvdy.24483] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/13/2016] [Accepted: 12/13/2016] [Indexed: 12/17/2022] Open
Affiliation(s)
- Haiyong Zhao
- Department of Pathology and Immunology; Washington University School of Medicine; St. Louis Missouri
| | - Canxin Xu
- Department of Pathology and Immunology; Washington University School of Medicine; St. Louis Missouri
| | - Tae-Jin Lee
- Department of Pathology and Immunology; Washington University School of Medicine; St. Louis Missouri
| | - Fang Liu
- Department of Pathology and Immunology; Washington University School of Medicine; St. Louis Missouri
| | - Kyunghee Choi
- Department of Pathology and Immunology; Washington University School of Medicine; St. Louis Missouri
- Developmental; Regenerative, and Stem Cell Biology Program, Washington University School of Medicine; St. Louis Missouri
| |
Collapse
|
31
|
Mandal A, Holowiecki A, Song YC, Waxman JS. Wnt signaling balances specification of the cardiac and pharyngeal muscle fields. Mech Dev 2017; 143:32-41. [PMID: 28087459 DOI: 10.1016/j.mod.2017.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 12/28/2016] [Accepted: 01/10/2017] [Indexed: 01/01/2023]
Abstract
Canonical Wnt/β-catenin (Wnt) signaling plays multiple conserved roles during fate specification of cardiac progenitors in developing vertebrate embryos. Although lineage analysis in ascidians and mice has indicated there is a close relationship between the cardiac second heart field (SHF) and pharyngeal muscle (PM) progenitors, the signals underlying directional fate decisions of the cells within the cardio-pharyngeal muscle field in vertebrates are not yet understood. Here, we examined the temporal requirements of Wnt signaling in cardiac and PM development. In contrast to a previous report in chicken embryos that suggested Wnt inhibits PM development during somitogenesis, we find that in zebrafish embryos Wnt signaling is sufficient to repress PM development during anterior-posterior patterning. Importantly, the temporal sensitivity of dorso-anterior PMs to increased Wnt signaling largely overlaps with when Wnt signaling promotes specification of the adjacent cardiac progenitors. Furthermore, we find that excess early Wnt signaling can cell autonomously promote expansion of the first heart field (FHF) progenitors at the expense of PM and SHF within the anterior lateral plate mesoderm (ALPM). Our study provides insight into an antagonistic developmental mechanism that balances the sizes of the adjacent cardiac and PM progenitor fields in early vertebrate embryos.
Collapse
Affiliation(s)
- Amrita Mandal
- Heart Institute, Molecular Cardiovascular Biology Division, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45208, USA
| | - Andrew Holowiecki
- Heart Institute, Molecular Cardiovascular Biology Division, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Yuntao Charlie Song
- Heart Institute, Molecular Cardiovascular Biology Division, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45208, USA
| | - Joshua S Waxman
- Heart Institute, Molecular Cardiovascular Biology Division, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
32
|
Lee S, Park C, Han JW, Kim JY, Cho K, Kim EJ, Kim S, Lee SJ, Oh SY, Tanaka Y, Park IH, An HJ, Shin CM, Sharma S, Yoon YS. Direct Reprogramming of Human Dermal Fibroblasts Into Endothelial Cells Using ER71/ETV2. Circ Res 2016; 120:848-861. [PMID: 28003219 DOI: 10.1161/circresaha.116.309833] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 12/15/2016] [Accepted: 12/21/2016] [Indexed: 12/14/2022]
Abstract
RATIONALE Direct conversion or reprogramming of human postnatal cells into endothelial cells (ECs), bypassing stem or progenitor cell status, is crucial for regenerative medicine, cell therapy, and pathophysiological investigation but has remained largely unexplored. OBJECTIVE We sought to directly reprogram human postnatal dermal fibroblasts to ECs with vasculogenic and endothelial transcription factors and determine their vascularizing and therapeutic potential. METHODS AND RESULTS We utilized various combinations of 7 EC transcription factors to transduce human postnatal dermal fibroblasts and found that ER71/ETV2 (ETS variant 2) alone best induced endothelial features. KDR+ (kinase insert domain receptor) cells sorted at day 7 from ER71/ETV2-transduced human postnatal dermal fibroblasts showed less mature but enriched endothelial characteristics and thus were referred to as early reprogrammed ECs (rECs), and did not undergo maturation by further culture. After a period of several weeks' transgene-free culture followed by transient reinduction of ER71/ETV2, early rECs matured during 3 months of culture and showed reduced ETV2 expression, reaching a mature phenotype similar to postnatal human ECs. These were termed late rECs. While early rECs exhibited an immature phenotype, their implantation into ischemic hindlimbs induced enhanced recovery from ischemia. These 2 rECs showed clear capacity for contributing to new vessel formation through direct vascular incorporation in vivo. Paracrine or proangiogenic effects of implanted early rECs played a significant role in repairing hindlimb ischemia. CONCLUSIONS This study for the first time demonstrates that ER71/ETV2 alone can directly reprogram human postnatal cells to functional, mature ECs after an intervening transgene-free period. These rECs could be valuable for cell therapy, personalized disease investigation, and exploration of the reprogramming process.
Collapse
Affiliation(s)
- Sangho Lee
- From the Department of Pharmacology, College of Medicine, University of Illinois at Chicago (C.P., E.J.K.); Department of Pediatrics, Children's Heart Research and Outcomes Center, Emory University School of Medicine, Atlanta, GA (C.P., J.Y.K., S.Y.O.); Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA (S.L., J.W.H., K.C., S.K., H.J.A., C.M.S., S.S., Y.-s.Y.); Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT (Y.T., I.-H.P.); and Division of Cardiology, Department of Medicine, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea (S.-J.L., Y.-s.Y.)
| | - Changwon Park
- From the Department of Pharmacology, College of Medicine, University of Illinois at Chicago (C.P., E.J.K.); Department of Pediatrics, Children's Heart Research and Outcomes Center, Emory University School of Medicine, Atlanta, GA (C.P., J.Y.K., S.Y.O.); Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA (S.L., J.W.H., K.C., S.K., H.J.A., C.M.S., S.S., Y.-s.Y.); Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT (Y.T., I.-H.P.); and Division of Cardiology, Department of Medicine, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea (S.-J.L., Y.-s.Y.)
| | - Ji Woong Han
- From the Department of Pharmacology, College of Medicine, University of Illinois at Chicago (C.P., E.J.K.); Department of Pediatrics, Children's Heart Research and Outcomes Center, Emory University School of Medicine, Atlanta, GA (C.P., J.Y.K., S.Y.O.); Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA (S.L., J.W.H., K.C., S.K., H.J.A., C.M.S., S.S., Y.-s.Y.); Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT (Y.T., I.-H.P.); and Division of Cardiology, Department of Medicine, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea (S.-J.L., Y.-s.Y.)
| | - Ju Young Kim
- From the Department of Pharmacology, College of Medicine, University of Illinois at Chicago (C.P., E.J.K.); Department of Pediatrics, Children's Heart Research and Outcomes Center, Emory University School of Medicine, Atlanta, GA (C.P., J.Y.K., S.Y.O.); Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA (S.L., J.W.H., K.C., S.K., H.J.A., C.M.S., S.S., Y.-s.Y.); Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT (Y.T., I.-H.P.); and Division of Cardiology, Department of Medicine, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea (S.-J.L., Y.-s.Y.)
| | - Kyuwon Cho
- From the Department of Pharmacology, College of Medicine, University of Illinois at Chicago (C.P., E.J.K.); Department of Pediatrics, Children's Heart Research and Outcomes Center, Emory University School of Medicine, Atlanta, GA (C.P., J.Y.K., S.Y.O.); Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA (S.L., J.W.H., K.C., S.K., H.J.A., C.M.S., S.S., Y.-s.Y.); Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT (Y.T., I.-H.P.); and Division of Cardiology, Department of Medicine, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea (S.-J.L., Y.-s.Y.)
| | - Eun Jae Kim
- From the Department of Pharmacology, College of Medicine, University of Illinois at Chicago (C.P., E.J.K.); Department of Pediatrics, Children's Heart Research and Outcomes Center, Emory University School of Medicine, Atlanta, GA (C.P., J.Y.K., S.Y.O.); Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA (S.L., J.W.H., K.C., S.K., H.J.A., C.M.S., S.S., Y.-s.Y.); Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT (Y.T., I.-H.P.); and Division of Cardiology, Department of Medicine, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea (S.-J.L., Y.-s.Y.)
| | - Sangsung Kim
- From the Department of Pharmacology, College of Medicine, University of Illinois at Chicago (C.P., E.J.K.); Department of Pediatrics, Children's Heart Research and Outcomes Center, Emory University School of Medicine, Atlanta, GA (C.P., J.Y.K., S.Y.O.); Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA (S.L., J.W.H., K.C., S.K., H.J.A., C.M.S., S.S., Y.-s.Y.); Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT (Y.T., I.-H.P.); and Division of Cardiology, Department of Medicine, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea (S.-J.L., Y.-s.Y.)
| | - Shin-Jeong Lee
- From the Department of Pharmacology, College of Medicine, University of Illinois at Chicago (C.P., E.J.K.); Department of Pediatrics, Children's Heart Research and Outcomes Center, Emory University School of Medicine, Atlanta, GA (C.P., J.Y.K., S.Y.O.); Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA (S.L., J.W.H., K.C., S.K., H.J.A., C.M.S., S.S., Y.-s.Y.); Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT (Y.T., I.-H.P.); and Division of Cardiology, Department of Medicine, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea (S.-J.L., Y.-s.Y.)
| | - Se Yeong Oh
- From the Department of Pharmacology, College of Medicine, University of Illinois at Chicago (C.P., E.J.K.); Department of Pediatrics, Children's Heart Research and Outcomes Center, Emory University School of Medicine, Atlanta, GA (C.P., J.Y.K., S.Y.O.); Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA (S.L., J.W.H., K.C., S.K., H.J.A., C.M.S., S.S., Y.-s.Y.); Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT (Y.T., I.-H.P.); and Division of Cardiology, Department of Medicine, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea (S.-J.L., Y.-s.Y.)
| | - Yoshiaki Tanaka
- From the Department of Pharmacology, College of Medicine, University of Illinois at Chicago (C.P., E.J.K.); Department of Pediatrics, Children's Heart Research and Outcomes Center, Emory University School of Medicine, Atlanta, GA (C.P., J.Y.K., S.Y.O.); Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA (S.L., J.W.H., K.C., S.K., H.J.A., C.M.S., S.S., Y.-s.Y.); Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT (Y.T., I.-H.P.); and Division of Cardiology, Department of Medicine, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea (S.-J.L., Y.-s.Y.)
| | - In-Hyun Park
- From the Department of Pharmacology, College of Medicine, University of Illinois at Chicago (C.P., E.J.K.); Department of Pediatrics, Children's Heart Research and Outcomes Center, Emory University School of Medicine, Atlanta, GA (C.P., J.Y.K., S.Y.O.); Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA (S.L., J.W.H., K.C., S.K., H.J.A., C.M.S., S.S., Y.-s.Y.); Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT (Y.T., I.-H.P.); and Division of Cardiology, Department of Medicine, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea (S.-J.L., Y.-s.Y.)
| | - Hyo Jae An
- From the Department of Pharmacology, College of Medicine, University of Illinois at Chicago (C.P., E.J.K.); Department of Pediatrics, Children's Heart Research and Outcomes Center, Emory University School of Medicine, Atlanta, GA (C.P., J.Y.K., S.Y.O.); Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA (S.L., J.W.H., K.C., S.K., H.J.A., C.M.S., S.S., Y.-s.Y.); Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT (Y.T., I.-H.P.); and Division of Cardiology, Department of Medicine, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea (S.-J.L., Y.-s.Y.)
| | - Claire Min Shin
- From the Department of Pharmacology, College of Medicine, University of Illinois at Chicago (C.P., E.J.K.); Department of Pediatrics, Children's Heart Research and Outcomes Center, Emory University School of Medicine, Atlanta, GA (C.P., J.Y.K., S.Y.O.); Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA (S.L., J.W.H., K.C., S.K., H.J.A., C.M.S., S.S., Y.-s.Y.); Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT (Y.T., I.-H.P.); and Division of Cardiology, Department of Medicine, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea (S.-J.L., Y.-s.Y.)
| | - Shraya Sharma
- From the Department of Pharmacology, College of Medicine, University of Illinois at Chicago (C.P., E.J.K.); Department of Pediatrics, Children's Heart Research and Outcomes Center, Emory University School of Medicine, Atlanta, GA (C.P., J.Y.K., S.Y.O.); Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA (S.L., J.W.H., K.C., S.K., H.J.A., C.M.S., S.S., Y.-s.Y.); Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT (Y.T., I.-H.P.); and Division of Cardiology, Department of Medicine, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea (S.-J.L., Y.-s.Y.)
| | - Young-Sup Yoon
- From the Department of Pharmacology, College of Medicine, University of Illinois at Chicago (C.P., E.J.K.); Department of Pediatrics, Children's Heart Research and Outcomes Center, Emory University School of Medicine, Atlanta, GA (C.P., J.Y.K., S.Y.O.); Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA (S.L., J.W.H., K.C., S.K., H.J.A., C.M.S., S.S., Y.-s.Y.); Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT (Y.T., I.-H.P.); and Division of Cardiology, Department of Medicine, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea (S.-J.L., Y.-s.Y.)
| |
Collapse
|
33
|
Thambyrajah R, Patel R, Mazan M, Lie-a-Ling M, Lilly A, Eliades A, Menegatti S, Garcia-Alegria E, Florkowska M, Batta K, Kouskoff V, Lacaud G. New insights into the regulation by RUNX1 and GFI1(s) proteins of the endothelial to hematopoietic transition generating primordial hematopoietic cells. Cell Cycle 2016; 15:2108-2114. [PMID: 27399214 PMCID: PMC4993433 DOI: 10.1080/15384101.2016.1203491] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/07/2016] [Accepted: 06/09/2016] [Indexed: 10/26/2022] Open
Abstract
The first hematopoietic cells are generated very early in ontogeny to support the growth of the embryo and to provide the foundation to the adult hematopoietic system. There is a considerable therapeutic interest in understanding how these first blood cells are generated in order to try to reproduce this process in vitro. This would allow generating blood products, or hematopoietic cell populations from embryonic stem (ES) cells, induced pluripotent stem cells or through directed reprogramming. Recent studies have clearly established that the first hematopoietic cells originate from a hemogenic endothelium (HE) through an endothelial to hematopoietic transition (EHT). The molecular mechanisms underlining this transition remain largely unknown with the exception that the transcription factor RUNX1 is critical for this process. In this Extra Views report, we discuss our recent studies demonstrating that the transcriptional repressors GFI1 and GFI1B have a critical role in the EHT. We established that these RUNX1 transcriptional targets are actively implicated in the downregulation of the endothelial program and the loss of endothelial identity during the formation of the first blood cells. In addition, our results suggest that GFI1 expression provides an ideal novel marker to identify, isolate and study the HE cell population.
Collapse
Affiliation(s)
- Roshana Thambyrajah
- CRUK Stem Cell Biology, Cancer Research UK Manchester Institute, Manchester, UK
| | - Rahima Patel
- CRUK Stem Cell Biology, Cancer Research UK Manchester Institute, Manchester, UK
| | - Milena Mazan
- CRUK Stem Cell Biology, Cancer Research UK Manchester Institute, Manchester, UK
| | - Michael Lie-a-Ling
- CRUK Stem Cell Biology, Cancer Research UK Manchester Institute, Manchester, UK
| | - Andrew Lilly
- CRUK Stem Cell Haematopoiesis, Cancer Research UK Manchester Institute, Manchester, UK
| | - Alexia Eliades
- CRUK Stem Cell Haematopoiesis, Cancer Research UK Manchester Institute, Manchester, UK
| | - Sara Menegatti
- CRUK Stem Cell Haematopoiesis, Cancer Research UK Manchester Institute, Manchester, UK
| | - Eva Garcia-Alegria
- CRUK Stem Cell Haematopoiesis, Cancer Research UK Manchester Institute, Manchester, UK
| | | | - Kiran Batta
- CRUK Stem Cell Biology, Cancer Research UK Manchester Institute, Manchester, UK
| | - Valerie Kouskoff
- CRUK Stem Cell Haematopoiesis, Cancer Research UK Manchester Institute, Manchester, UK
| | - Georges Lacaud
- CRUK Stem Cell Biology, Cancer Research UK Manchester Institute, Manchester, UK
| |
Collapse
|
34
|
Toya SP, Wary KK, Mittal M, Li F, Toth PT, Park C, Rehman J, Malik AB. Integrin α6β1 Expressed in ESCs Instructs the Differentiation to Endothelial Cells. Stem Cells 2016; 33:1719-29. [PMID: 25693840 DOI: 10.1002/stem.1974] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/25/2014] [Accepted: 01/14/2015] [Indexed: 12/19/2022]
Abstract
Adhesion of embryonic stem cells (ESCs) to the extracellular matrix may influence differentiation potential and cell fate decisions. Here, we investigated the inductive role of binding of integrin α6β1 expressed in mouse (m)ESCs to laminin-1 (LN1) in mediating the differentiation of ESCs to endothelial cells (ECs). We observed that α6β1 binding to LN1 was required for differentiation to ECs. α6β1 functioned by recruiting the adaptor tetraspanin protein CD151, which activated FAK and Akt signaling and mediated the EC lineage-specifying transcription factor Er71. In contrast, association of the ESC-expressed α3β1, another highly expressed LN1 binding integrin, with CD151, prevented α6β1-mediated differentiation. CD151 thus functioned as a bifurcation router to direct ESCs toward ECs when α6β1 associated with CD151, or prevented transition to ECs when α3β1 associated with CD151. These observations were recapitulated in mice in which α6 integrin or CD151 knockdown reduced the expression of Er71-regulated angiogenesis genes and development of blood vessels. Thus, interaction of α6β1 in ESCs with LN1 activates α6β1/CD151 signaling which programs ESCs toward the EC lineage fate.
Collapse
Affiliation(s)
- Sophie P Toya
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois, USA.,Department of Medicine, University of Illinois College of Medicine, Chicago, Illinois, USA.,The Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Kishore K Wary
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois, USA.,The Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Manish Mittal
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois, USA.,The Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Fei Li
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois, USA.,The Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Peter T Toth
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Changwon Park
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois, USA.,The Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Jalees Rehman
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois, USA.,Department of Medicine, University of Illinois College of Medicine, Chicago, Illinois, USA.,The Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Asrar B Malik
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois, USA.,The Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, Illinois, USA
| |
Collapse
|
35
|
Sumanas S, Choi K. ETS Transcription Factor ETV2/ER71/Etsrp in Hematopoietic and Vascular Development. Curr Top Dev Biol 2016; 118:77-111. [PMID: 27137655 DOI: 10.1016/bs.ctdb.2016.01.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Effective establishment of the hematopoietic and vascular systems is prerequisite for successful embryogenesis. The ETS transcription factor Etv2 has proven to be essential for hematopoietic and vascular development. Etv2 expression marks the onset of the hematopoietic and vascular development and its deficiency leads to an absolute block in hematopoietic and vascular development. Etv2 is transiently expressed during development and is mainly expressed in testis in adults. Consistent with its expression pattern, Etv2 is transiently required for the generation of the optimal levels of the hemangiogenic cell population. Deletion of this gene after the hemangiogenic progenitor formation leads to normal hematopoietic and vascular development. Mechanistically, ETV2 induces the hemangiogenic program by activating blood and endothelial cell lineage specifying genes and enhancing VEGF signaling. Moreover, ETV2 establishes an ETS hierarchy by directly activating other Ets genes, which in the face of transient Etv2 expression, presumably maintain blood and endothelial cell program initiated by ETV2 through an ETS switching mechanism. Current studies suggest that the hemangiogenic progenitor population is exclusively sensitive to ETV2-dependent FLK1 signaling. Any perturbation in the ETV2, VEGF, and FLK1 balance causing insufficient hemangiogenic progenitor cell generation would lead to defects in hematopoietic and endothelial cell development.
Collapse
Affiliation(s)
- S Sumanas
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - K Choi
- Washington University, School of Medicine, St. Louis, MO, United States.
| |
Collapse
|
36
|
Orlova VV, Chuva de Sousa Lopes S, Valdimarsdottir G. BMP-SMAD signaling: From pluripotent stem cells to cardiovascular commitment. Cytokine Growth Factor Rev 2016; 27:55-63. [DOI: 10.1016/j.cytogfr.2015.11.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 11/13/2015] [Indexed: 02/07/2023]
|
37
|
Abstract
PURPOSE OF REVIEW Methods to isolate endothelial cells from murine and human pluripotent stem cells continue to evolve and increasingly diverse endothelial cell populations have been generated. This review provides an update of key articles published within the past year that report on some of those advances. RECENT FINDINGS Cooperative interactions among microRNA (miRNA), transcription factors and some downstream interacting proteins have been reported to enhance endothelial specification from embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). Endothelial cell differentiation can also be modulated by various growth factor additions, Notch pathway activation or inhibition, and modulation of the microenvironment of the differentiating ESC and iPSC. Functionality of the derived endothelium has been demonstrated by a variety of in-vitro and in-vivo assays. Finally, two recent reports have identified endothelial progenitor populations with robust proliferative potential. SUMMARY Progress in differentiating endothelial cells from ESC and iPSC has been made. The recent report of formation of endothelial colony forming cells from human ESC and iPSC provides a protocol that can generate clinically relevant numbers of cells for human cell therapy.
Collapse
|
38
|
Wong WT, Cooke JP. Therapeutic transdifferentiation of human fibroblasts into endothelial cells using forced expression of lineage-specific transcription factors. J Tissue Eng 2016; 7:2041731416628329. [PMID: 27081470 PMCID: PMC4820020 DOI: 10.1177/2041731416628329] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 12/31/2015] [Indexed: 12/14/2022] Open
Abstract
Transdifferentiation is the direct conversion from one somatic cell type into another desired somatic cell type. This reprogramming method offers an attractive approach for regenerative medicine. Here, we demonstrate that neonatal fibroblasts can be transdifferentiated into endothelial cells using only four endothelial transcription factors, namely, ETV2, FLI1, GATA2, and KLF4. We observed a significant up-regulation of endothelial genes including KDR, CD31, CD144, and vWF in human neonatal foreskin (BJ) fibroblasts infected with the lentiviral construct encoding the open reading frame of the four transcription factors. We observed morphological changes in BJ fibroblasts from the fibroblastic spindle shape into a more endothelial-like cobblestone structures. Fluorescence-activated cell sorting analysis revealed that ~16% of the infected cells with the lentiviral constructs encoding 4F expressed CD31. The sorted cells were allowed to expand for 2 weeks and these cells were immunostained and found to express endothelial markers CD31. The induced endothelial cells also incorporated fluorescence-labeled acetylated low-density lipoprotein and efficiently formed capillary-like networks when seeded on Matrigel. These results suggested that the induced endothelial cells were functional in vitro. Taken together, we successfully demonstrated the direct conversion of human neonatal fibroblasts into endothelial cells by transduction of lentiviral constructs encoding endothelial lineage-specific transcription factors ETV2, FLI1, GATA2, and KLF4. The directed differentiation of fibroblasts into endothelial cells may have significant utility in diseases characterized by fibrosis and loss of microvasculature.
Collapse
Affiliation(s)
- Wing Tak Wong
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
| | - John P Cooke
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
| |
Collapse
|
39
|
HoxBlinc RNA Recruits Set1/MLL Complexes to Activate Hox Gene Expression Patterns and Mesoderm Lineage Development. Cell Rep 2015; 14:103-114. [PMID: 26725110 DOI: 10.1016/j.celrep.2015.12.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 08/26/2015] [Accepted: 11/22/2015] [Indexed: 12/15/2022] Open
Abstract
Trithorax proteins and long-intergenic noncoding RNAs are critical regulators of embryonic stem cell pluripotency; however, how they cooperatively regulate germ layer mesoderm specification remains elusive. We report here that HoxBlinc RNA first specifies Flk1(+) mesoderm and then promotes hematopoietic differentiation through regulation of hoxb pathways. HoxBlinc binds to the hoxb genes, recruits Setd1a/MLL1 complexes, and mediates long-range chromatin interactions to activate transcription of the hoxb genes. Depletion of HoxBlinc by shRNA-mediated knockdown or CRISPR-Cas9-mediated genetic deletion inhibits expression of hoxb genes and other factors regulating cardiac/hematopoietic differentiation. Reduced hoxb expression is accompanied by decreased recruitment of Set1/MLL1 and H3K4me3 modification, as well as by reduced chromatin loop formation. Re-expression of hoxb2-b4 genes in HoxBlinc-depleted embryoid bodies rescues Flk1(+) precursors that undergo hematopoietic differentiation. Thus, HoxBlinc plays an important role in controlling hoxb transcription networks that mediate specification of mesoderm-derived Flk1(+) precursors and differentiation of Flk1(+) cells into hematopoietic lineages.
Collapse
|
40
|
Oh SY, Kim JY, Park C. The ETS Factor, ETV2: a Master Regulator for Vascular Endothelial Cell Development. Mol Cells 2015; 38:1029-36. [PMID: 26694034 PMCID: PMC4696993 DOI: 10.14348/molcells.2015.0331] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 12/10/2015] [Indexed: 01/15/2023] Open
Abstract
Appropriate vessel development and its coordinated function is essential for proper embryogenesis and homeostasis in the adult. Defects in vessels cause birth defects and are an important etiology of diseases such as cardiovascular disease, tumor and diabetes retinopathy. The accumulative data indicate that ETV2, an ETS transcription factor, performs a potent and indispensable function in mediating vessel development. This review discusses the recent progress of the study of ETV2 with special focus on its regulatory mechanisms and cell fate determining role in developing mouse embryos as well as somatic cells.
Collapse
Affiliation(s)
- Se-Yeong Oh
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA,
USA
- Children’s Heart Research and Outcomes Center, Emory University School of Medicine, Atlanta, GA,
USA
| | - Ju Young Kim
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA,
USA
- Children’s Heart Research and Outcomes Center, Emory University School of Medicine, Atlanta, GA,
USA
- Molecular and Systems Pharmacology Program, Emory University School of Medicine, Atlanta, GA,
USA
| | - Changwon Park
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA,
USA
- Children’s Heart Research and Outcomes Center, Emory University School of Medicine, Atlanta, GA,
USA
- Molecular and Systems Pharmacology Program, Emory University School of Medicine, Atlanta, GA,
USA
- Biochemistry, Cell Biology and Developmental Biology Program, Emory University School of Medicine, Atlanta, GA,
USA
| |
Collapse
|
41
|
Sharifpanah F, De Silva S, Bekhite MM, Hurtado-Oliveros J, Preissner KT, Wartenberg M, Sauer H. Stimulation of vasculogenesis and leukopoiesis of embryonic stem cells by extracellular transfer RNA and ribosomal RNA. Free Radic Biol Med 2015; 89:1203-17. [PMID: 26524400 DOI: 10.1016/j.freeradbiomed.2015.10.423] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 10/27/2015] [Accepted: 10/28/2015] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Cell injury releases nucleic acids supporting inflammation and stem cell activation. Here, the impact of extracellular ribonucleic acid, especially transfer RNA (ex-tRNA), on vasculogenesis and leukopoiesis of mouse embryonic stem (ES) cells was investigated. APPROACH AND RESULTS ex-tRNA, whole cell RNA and ribosomal RNA (ex-rRNA) but not DNA increased CD31-positive vascular structures in embryoid bodies. Ex-tRNA and ex-rRNA increased numbers of VEGFR2(+), CD31(+) and VE-cadherin(+) vascular cells as well as CD18(+), CD45(+) and CD68(+) cells, indicating leukocyte/macrophage differentiation. This was paralleled by mRNA and protein expression of hypoxia-inducible factor-1α (HIF-1α), vascular endothelial growth factor-165 (VEGF165) and neuropilin 1 (NRP1), phosphorylation of phosphatidyl inositol 3-kinase (PI3K) and VEGF receptor 2 (VEGFR2) as well as mRNA expression of α-smooth muscle actin (α-SMA). ex-tRNA was taken up by endosomes, increased expression of the pro-angiogenic semaphorin B4 receptor plexin B1 as well as the ephrin-type B receptor 4 (EphB4) and ephrinB2 ligand and enhanced cell migration, which was inhibited by the VEGFR2 antagonist SU5614 and the PI3K inhibitor LY294002. This likewise abolished the effects of ex-tRNA on vasculogenesis and leukopoiesis of ES cells. Ex-tRNA increased NOX1, NOX2, NOX4 and DUOX2 mRNA and boosted the generation of superoxide and hydrogen peroxide which was inhibited by radical scavengers, the NADPH oxidase inhibitors apocynin, VAS2870, ML171, and plumbagin as well as shRNA silencing of NOX1 and NOX4. CONCLUSIONS Our findings indicate that ex-tRNA treatment induces vasculogenesis and leukopoiesis of ES cells via superoxide/hydrogen peroxide generated by NADPH oxidase and activation of VEGFR2 and PI3K.
Collapse
Affiliation(s)
- Fatemeh Sharifpanah
- Department of Physiology, Medical School, Justus Liebig University, Giessen, Germany
| | - Sepali De Silva
- Department of Physiology, Medical School, Justus Liebig University, Giessen, Germany
| | - Mohamed M Bekhite
- Clinic of Internal Medicine I, Cardiology Division, Friedrich Schiller University, Jena, Germany; Department of Zoology, Faculty of Science, Tanta University, Tanta, Egypt
| | | | - Klaus T Preissner
- Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Maria Wartenberg
- Clinic of Internal Medicine I, Cardiology Division, Friedrich Schiller University, Jena, Germany
| | - Heinrich Sauer
- Department of Physiology, Medical School, Justus Liebig University, Giessen, Germany.
| |
Collapse
|
42
|
Park C, Lee TJ, Bhang SH, Liu F, Nakamura R, Oladipupo SS, Pitha-Rowe I, Capoccia B, Choi HS, Kim TM, Urao N, Ushio-Fukai M, Lee DJ, Miyoshi H, Kim BS, Lim DS, Apte RS, Ornitz DM, Choi K. Injury-Mediated Vascular Regeneration Requires Endothelial ER71/ETV2. Arterioscler Thromb Vasc Biol 2015; 36:86-96. [PMID: 26586661 DOI: 10.1161/atvbaha.115.306430] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 11/07/2015] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Comprehensive understanding of the mechanisms regulating angiogenesis might provide new strategies for angiogenic therapies for treating diverse physiological and pathological ischemic conditions. The E-twenty six (ETS) factor Ets variant 2 (ETV2; aka Ets-related protein 71) is essential for the formation of hematopoietic and vascular systems. Despite its indispensable function in vessel development, ETV2 role in adult angiogenesis has not yet been addressed. We have therefore investigated the role of ETV2 in vascular regeneration. APPROACH AND RESULTS We used endothelial Etv2 conditional knockout mice and ischemic injury models to assess the role of ETV2 in vascular regeneration. Although Etv2 expression was not detectable under steady-state conditions, its expression was readily observed in endothelial cells after injury. Mice lacking endothelial Etv2 displayed impaired neovascularization in response to eye injury, wounding, or hindlimb ischemic injury. Lentiviral Etv2 expression in ischemic hindlimbs led to improved recovery of blood perfusion with enhanced vessel formation. After injury, fetal liver kinase 1 (Flk1), aka VEGFR2, expression and neovascularization were significantly upregulated by Etv2, whereas Flk1 expression and vascular endothelial growth factor response were significantly blunted in Etv2-deficient endothelial cells. Conversely, enforced Etv2 expression enhanced vascular endothelial growth factor-mediated endothelial sprouting from embryoid bodies. Lentiviral Flk1 expression rescued angiogenesis defects in endothelial Etv2 conditional knockout mice after hindlimb ischemic injury. Furthermore, Etv2(+/-); Flk1(+/-) double heterozygous mice displayed a more severe hindlimb ischemic injury response compared with Etv2(+/-) or Flk1(+/-) heterozygous mice, revealing an epistatic interaction between ETV2 and FLK1 in vascular regeneration. CONCLUSIONS Our study demonstrates a novel obligatory role for the ETV2 in postnatal vascular repair and regeneration.
Collapse
Affiliation(s)
- Changwon Park
- Department of Pediatrics (C.P., H.S.C.), Children's Heart Research and Outcomes Center (C.P.), Molecular and Systems Pharmacology Program (C.P.), Emory University School of Medicine, Atlanta; Department of Pharmacology, College of Medicine, University of Illinois at Chicago, IL (T.M.K., N.U., M.U-F.); School of Chemical Engineering, Sungkyunkwan University, Korea (S.H.B.); School of Chemical and Biological Engineering, Seoul National University, Seoul, Korea (B-S.K.); Korea Advanced Institute of Science and Technology, Korea (D.J.L., D-S.L.); RIKEN BioResource Center, Japan (H.M.); the Departments of Pathology and Immunology (T-J.L., F.L., K.C.), Ophthalmology and Visual Sciences (R.N., I.P-R., R.S.A.), Developmental Biology (S.S.O., D.M.O.), Biochemistry and Molecular Biophysics (B. C.), Developmental, Regenerative, and Stem cell Biology Program (D.M.O., R.S.A., K.C.), Washington University School of Medicine, MO
| | - Tae-Jin Lee
- Department of Pediatrics (C.P., H.S.C.), Children's Heart Research and Outcomes Center (C.P.), Molecular and Systems Pharmacology Program (C.P.), Emory University School of Medicine, Atlanta; Department of Pharmacology, College of Medicine, University of Illinois at Chicago, IL (T.M.K., N.U., M.U-F.); School of Chemical Engineering, Sungkyunkwan University, Korea (S.H.B.); School of Chemical and Biological Engineering, Seoul National University, Seoul, Korea (B-S.K.); Korea Advanced Institute of Science and Technology, Korea (D.J.L., D-S.L.); RIKEN BioResource Center, Japan (H.M.); the Departments of Pathology and Immunology (T-J.L., F.L., K.C.), Ophthalmology and Visual Sciences (R.N., I.P-R., R.S.A.), Developmental Biology (S.S.O., D.M.O.), Biochemistry and Molecular Biophysics (B. C.), Developmental, Regenerative, and Stem cell Biology Program (D.M.O., R.S.A., K.C.), Washington University School of Medicine, MO
| | - Suk Ho Bhang
- Department of Pediatrics (C.P., H.S.C.), Children's Heart Research and Outcomes Center (C.P.), Molecular and Systems Pharmacology Program (C.P.), Emory University School of Medicine, Atlanta; Department of Pharmacology, College of Medicine, University of Illinois at Chicago, IL (T.M.K., N.U., M.U-F.); School of Chemical Engineering, Sungkyunkwan University, Korea (S.H.B.); School of Chemical and Biological Engineering, Seoul National University, Seoul, Korea (B-S.K.); Korea Advanced Institute of Science and Technology, Korea (D.J.L., D-S.L.); RIKEN BioResource Center, Japan (H.M.); the Departments of Pathology and Immunology (T-J.L., F.L., K.C.), Ophthalmology and Visual Sciences (R.N., I.P-R., R.S.A.), Developmental Biology (S.S.O., D.M.O.), Biochemistry and Molecular Biophysics (B. C.), Developmental, Regenerative, and Stem cell Biology Program (D.M.O., R.S.A., K.C.), Washington University School of Medicine, MO
| | - Fang Liu
- Department of Pediatrics (C.P., H.S.C.), Children's Heart Research and Outcomes Center (C.P.), Molecular and Systems Pharmacology Program (C.P.), Emory University School of Medicine, Atlanta; Department of Pharmacology, College of Medicine, University of Illinois at Chicago, IL (T.M.K., N.U., M.U-F.); School of Chemical Engineering, Sungkyunkwan University, Korea (S.H.B.); School of Chemical and Biological Engineering, Seoul National University, Seoul, Korea (B-S.K.); Korea Advanced Institute of Science and Technology, Korea (D.J.L., D-S.L.); RIKEN BioResource Center, Japan (H.M.); the Departments of Pathology and Immunology (T-J.L., F.L., K.C.), Ophthalmology and Visual Sciences (R.N., I.P-R., R.S.A.), Developmental Biology (S.S.O., D.M.O.), Biochemistry and Molecular Biophysics (B. C.), Developmental, Regenerative, and Stem cell Biology Program (D.M.O., R.S.A., K.C.), Washington University School of Medicine, MO
| | - Rei Nakamura
- Department of Pediatrics (C.P., H.S.C.), Children's Heart Research and Outcomes Center (C.P.), Molecular and Systems Pharmacology Program (C.P.), Emory University School of Medicine, Atlanta; Department of Pharmacology, College of Medicine, University of Illinois at Chicago, IL (T.M.K., N.U., M.U-F.); School of Chemical Engineering, Sungkyunkwan University, Korea (S.H.B.); School of Chemical and Biological Engineering, Seoul National University, Seoul, Korea (B-S.K.); Korea Advanced Institute of Science and Technology, Korea (D.J.L., D-S.L.); RIKEN BioResource Center, Japan (H.M.); the Departments of Pathology and Immunology (T-J.L., F.L., K.C.), Ophthalmology and Visual Sciences (R.N., I.P-R., R.S.A.), Developmental Biology (S.S.O., D.M.O.), Biochemistry and Molecular Biophysics (B. C.), Developmental, Regenerative, and Stem cell Biology Program (D.M.O., R.S.A., K.C.), Washington University School of Medicine, MO
| | - Sunday S Oladipupo
- Department of Pediatrics (C.P., H.S.C.), Children's Heart Research and Outcomes Center (C.P.), Molecular and Systems Pharmacology Program (C.P.), Emory University School of Medicine, Atlanta; Department of Pharmacology, College of Medicine, University of Illinois at Chicago, IL (T.M.K., N.U., M.U-F.); School of Chemical Engineering, Sungkyunkwan University, Korea (S.H.B.); School of Chemical and Biological Engineering, Seoul National University, Seoul, Korea (B-S.K.); Korea Advanced Institute of Science and Technology, Korea (D.J.L., D-S.L.); RIKEN BioResource Center, Japan (H.M.); the Departments of Pathology and Immunology (T-J.L., F.L., K.C.), Ophthalmology and Visual Sciences (R.N., I.P-R., R.S.A.), Developmental Biology (S.S.O., D.M.O.), Biochemistry and Molecular Biophysics (B. C.), Developmental, Regenerative, and Stem cell Biology Program (D.M.O., R.S.A., K.C.), Washington University School of Medicine, MO
| | - Ian Pitha-Rowe
- Department of Pediatrics (C.P., H.S.C.), Children's Heart Research and Outcomes Center (C.P.), Molecular and Systems Pharmacology Program (C.P.), Emory University School of Medicine, Atlanta; Department of Pharmacology, College of Medicine, University of Illinois at Chicago, IL (T.M.K., N.U., M.U-F.); School of Chemical Engineering, Sungkyunkwan University, Korea (S.H.B.); School of Chemical and Biological Engineering, Seoul National University, Seoul, Korea (B-S.K.); Korea Advanced Institute of Science and Technology, Korea (D.J.L., D-S.L.); RIKEN BioResource Center, Japan (H.M.); the Departments of Pathology and Immunology (T-J.L., F.L., K.C.), Ophthalmology and Visual Sciences (R.N., I.P-R., R.S.A.), Developmental Biology (S.S.O., D.M.O.), Biochemistry and Molecular Biophysics (B. C.), Developmental, Regenerative, and Stem cell Biology Program (D.M.O., R.S.A., K.C.), Washington University School of Medicine, MO
| | - Benjamin Capoccia
- Department of Pediatrics (C.P., H.S.C.), Children's Heart Research and Outcomes Center (C.P.), Molecular and Systems Pharmacology Program (C.P.), Emory University School of Medicine, Atlanta; Department of Pharmacology, College of Medicine, University of Illinois at Chicago, IL (T.M.K., N.U., M.U-F.); School of Chemical Engineering, Sungkyunkwan University, Korea (S.H.B.); School of Chemical and Biological Engineering, Seoul National University, Seoul, Korea (B-S.K.); Korea Advanced Institute of Science and Technology, Korea (D.J.L., D-S.L.); RIKEN BioResource Center, Japan (H.M.); the Departments of Pathology and Immunology (T-J.L., F.L., K.C.), Ophthalmology and Visual Sciences (R.N., I.P-R., R.S.A.), Developmental Biology (S.S.O., D.M.O.), Biochemistry and Molecular Biophysics (B. C.), Developmental, Regenerative, and Stem cell Biology Program (D.M.O., R.S.A., K.C.), Washington University School of Medicine, MO
| | - Hong Seo Choi
- Department of Pediatrics (C.P., H.S.C.), Children's Heart Research and Outcomes Center (C.P.), Molecular and Systems Pharmacology Program (C.P.), Emory University School of Medicine, Atlanta; Department of Pharmacology, College of Medicine, University of Illinois at Chicago, IL (T.M.K., N.U., M.U-F.); School of Chemical Engineering, Sungkyunkwan University, Korea (S.H.B.); School of Chemical and Biological Engineering, Seoul National University, Seoul, Korea (B-S.K.); Korea Advanced Institute of Science and Technology, Korea (D.J.L., D-S.L.); RIKEN BioResource Center, Japan (H.M.); the Departments of Pathology and Immunology (T-J.L., F.L., K.C.), Ophthalmology and Visual Sciences (R.N., I.P-R., R.S.A.), Developmental Biology (S.S.O., D.M.O.), Biochemistry and Molecular Biophysics (B. C.), Developmental, Regenerative, and Stem cell Biology Program (D.M.O., R.S.A., K.C.), Washington University School of Medicine, MO
| | - Tae Min Kim
- Department of Pediatrics (C.P., H.S.C.), Children's Heart Research and Outcomes Center (C.P.), Molecular and Systems Pharmacology Program (C.P.), Emory University School of Medicine, Atlanta; Department of Pharmacology, College of Medicine, University of Illinois at Chicago, IL (T.M.K., N.U., M.U-F.); School of Chemical Engineering, Sungkyunkwan University, Korea (S.H.B.); School of Chemical and Biological Engineering, Seoul National University, Seoul, Korea (B-S.K.); Korea Advanced Institute of Science and Technology, Korea (D.J.L., D-S.L.); RIKEN BioResource Center, Japan (H.M.); the Departments of Pathology and Immunology (T-J.L., F.L., K.C.), Ophthalmology and Visual Sciences (R.N., I.P-R., R.S.A.), Developmental Biology (S.S.O., D.M.O.), Biochemistry and Molecular Biophysics (B. C.), Developmental, Regenerative, and Stem cell Biology Program (D.M.O., R.S.A., K.C.), Washington University School of Medicine, MO
| | - Norifumi Urao
- Department of Pediatrics (C.P., H.S.C.), Children's Heart Research and Outcomes Center (C.P.), Molecular and Systems Pharmacology Program (C.P.), Emory University School of Medicine, Atlanta; Department of Pharmacology, College of Medicine, University of Illinois at Chicago, IL (T.M.K., N.U., M.U-F.); School of Chemical Engineering, Sungkyunkwan University, Korea (S.H.B.); School of Chemical and Biological Engineering, Seoul National University, Seoul, Korea (B-S.K.); Korea Advanced Institute of Science and Technology, Korea (D.J.L., D-S.L.); RIKEN BioResource Center, Japan (H.M.); the Departments of Pathology and Immunology (T-J.L., F.L., K.C.), Ophthalmology and Visual Sciences (R.N., I.P-R., R.S.A.), Developmental Biology (S.S.O., D.M.O.), Biochemistry and Molecular Biophysics (B. C.), Developmental, Regenerative, and Stem cell Biology Program (D.M.O., R.S.A., K.C.), Washington University School of Medicine, MO
| | - Masuko Ushio-Fukai
- Department of Pediatrics (C.P., H.S.C.), Children's Heart Research and Outcomes Center (C.P.), Molecular and Systems Pharmacology Program (C.P.), Emory University School of Medicine, Atlanta; Department of Pharmacology, College of Medicine, University of Illinois at Chicago, IL (T.M.K., N.U., M.U-F.); School of Chemical Engineering, Sungkyunkwan University, Korea (S.H.B.); School of Chemical and Biological Engineering, Seoul National University, Seoul, Korea (B-S.K.); Korea Advanced Institute of Science and Technology, Korea (D.J.L., D-S.L.); RIKEN BioResource Center, Japan (H.M.); the Departments of Pathology and Immunology (T-J.L., F.L., K.C.), Ophthalmology and Visual Sciences (R.N., I.P-R., R.S.A.), Developmental Biology (S.S.O., D.M.O.), Biochemistry and Molecular Biophysics (B. C.), Developmental, Regenerative, and Stem cell Biology Program (D.M.O., R.S.A., K.C.), Washington University School of Medicine, MO
| | - Dong Jun Lee
- Department of Pediatrics (C.P., H.S.C.), Children's Heart Research and Outcomes Center (C.P.), Molecular and Systems Pharmacology Program (C.P.), Emory University School of Medicine, Atlanta; Department of Pharmacology, College of Medicine, University of Illinois at Chicago, IL (T.M.K., N.U., M.U-F.); School of Chemical Engineering, Sungkyunkwan University, Korea (S.H.B.); School of Chemical and Biological Engineering, Seoul National University, Seoul, Korea (B-S.K.); Korea Advanced Institute of Science and Technology, Korea (D.J.L., D-S.L.); RIKEN BioResource Center, Japan (H.M.); the Departments of Pathology and Immunology (T-J.L., F.L., K.C.), Ophthalmology and Visual Sciences (R.N., I.P-R., R.S.A.), Developmental Biology (S.S.O., D.M.O.), Biochemistry and Molecular Biophysics (B. C.), Developmental, Regenerative, and Stem cell Biology Program (D.M.O., R.S.A., K.C.), Washington University School of Medicine, MO
| | - Hiroyuki Miyoshi
- Department of Pediatrics (C.P., H.S.C.), Children's Heart Research and Outcomes Center (C.P.), Molecular and Systems Pharmacology Program (C.P.), Emory University School of Medicine, Atlanta; Department of Pharmacology, College of Medicine, University of Illinois at Chicago, IL (T.M.K., N.U., M.U-F.); School of Chemical Engineering, Sungkyunkwan University, Korea (S.H.B.); School of Chemical and Biological Engineering, Seoul National University, Seoul, Korea (B-S.K.); Korea Advanced Institute of Science and Technology, Korea (D.J.L., D-S.L.); RIKEN BioResource Center, Japan (H.M.); the Departments of Pathology and Immunology (T-J.L., F.L., K.C.), Ophthalmology and Visual Sciences (R.N., I.P-R., R.S.A.), Developmental Biology (S.S.O., D.M.O.), Biochemistry and Molecular Biophysics (B. C.), Developmental, Regenerative, and Stem cell Biology Program (D.M.O., R.S.A., K.C.), Washington University School of Medicine, MO
| | - Byung-Soo Kim
- Department of Pediatrics (C.P., H.S.C.), Children's Heart Research and Outcomes Center (C.P.), Molecular and Systems Pharmacology Program (C.P.), Emory University School of Medicine, Atlanta; Department of Pharmacology, College of Medicine, University of Illinois at Chicago, IL (T.M.K., N.U., M.U-F.); School of Chemical Engineering, Sungkyunkwan University, Korea (S.H.B.); School of Chemical and Biological Engineering, Seoul National University, Seoul, Korea (B-S.K.); Korea Advanced Institute of Science and Technology, Korea (D.J.L., D-S.L.); RIKEN BioResource Center, Japan (H.M.); the Departments of Pathology and Immunology (T-J.L., F.L., K.C.), Ophthalmology and Visual Sciences (R.N., I.P-R., R.S.A.), Developmental Biology (S.S.O., D.M.O.), Biochemistry and Molecular Biophysics (B. C.), Developmental, Regenerative, and Stem cell Biology Program (D.M.O., R.S.A., K.C.), Washington University School of Medicine, MO
| | - Dae-Sik Lim
- Department of Pediatrics (C.P., H.S.C.), Children's Heart Research and Outcomes Center (C.P.), Molecular and Systems Pharmacology Program (C.P.), Emory University School of Medicine, Atlanta; Department of Pharmacology, College of Medicine, University of Illinois at Chicago, IL (T.M.K., N.U., M.U-F.); School of Chemical Engineering, Sungkyunkwan University, Korea (S.H.B.); School of Chemical and Biological Engineering, Seoul National University, Seoul, Korea (B-S.K.); Korea Advanced Institute of Science and Technology, Korea (D.J.L., D-S.L.); RIKEN BioResource Center, Japan (H.M.); the Departments of Pathology and Immunology (T-J.L., F.L., K.C.), Ophthalmology and Visual Sciences (R.N., I.P-R., R.S.A.), Developmental Biology (S.S.O., D.M.O.), Biochemistry and Molecular Biophysics (B. C.), Developmental, Regenerative, and Stem cell Biology Program (D.M.O., R.S.A., K.C.), Washington University School of Medicine, MO
| | - Rajendra S Apte
- Department of Pediatrics (C.P., H.S.C.), Children's Heart Research and Outcomes Center (C.P.), Molecular and Systems Pharmacology Program (C.P.), Emory University School of Medicine, Atlanta; Department of Pharmacology, College of Medicine, University of Illinois at Chicago, IL (T.M.K., N.U., M.U-F.); School of Chemical Engineering, Sungkyunkwan University, Korea (S.H.B.); School of Chemical and Biological Engineering, Seoul National University, Seoul, Korea (B-S.K.); Korea Advanced Institute of Science and Technology, Korea (D.J.L., D-S.L.); RIKEN BioResource Center, Japan (H.M.); the Departments of Pathology and Immunology (T-J.L., F.L., K.C.), Ophthalmology and Visual Sciences (R.N., I.P-R., R.S.A.), Developmental Biology (S.S.O., D.M.O.), Biochemistry and Molecular Biophysics (B. C.), Developmental, Regenerative, and Stem cell Biology Program (D.M.O., R.S.A., K.C.), Washington University School of Medicine, MO
| | - David M Ornitz
- Department of Pediatrics (C.P., H.S.C.), Children's Heart Research and Outcomes Center (C.P.), Molecular and Systems Pharmacology Program (C.P.), Emory University School of Medicine, Atlanta; Department of Pharmacology, College of Medicine, University of Illinois at Chicago, IL (T.M.K., N.U., M.U-F.); School of Chemical Engineering, Sungkyunkwan University, Korea (S.H.B.); School of Chemical and Biological Engineering, Seoul National University, Seoul, Korea (B-S.K.); Korea Advanced Institute of Science and Technology, Korea (D.J.L., D-S.L.); RIKEN BioResource Center, Japan (H.M.); the Departments of Pathology and Immunology (T-J.L., F.L., K.C.), Ophthalmology and Visual Sciences (R.N., I.P-R., R.S.A.), Developmental Biology (S.S.O., D.M.O.), Biochemistry and Molecular Biophysics (B. C.), Developmental, Regenerative, and Stem cell Biology Program (D.M.O., R.S.A., K.C.), Washington University School of Medicine, MO
| | - Kyunghee Choi
- Department of Pediatrics (C.P., H.S.C.), Children's Heart Research and Outcomes Center (C.P.), Molecular and Systems Pharmacology Program (C.P.), Emory University School of Medicine, Atlanta; Department of Pharmacology, College of Medicine, University of Illinois at Chicago, IL (T.M.K., N.U., M.U-F.); School of Chemical Engineering, Sungkyunkwan University, Korea (S.H.B.); School of Chemical and Biological Engineering, Seoul National University, Seoul, Korea (B-S.K.); Korea Advanced Institute of Science and Technology, Korea (D.J.L., D-S.L.); RIKEN BioResource Center, Japan (H.M.); the Departments of Pathology and Immunology (T-J.L., F.L., K.C.), Ophthalmology and Visual Sciences (R.N., I.P-R., R.S.A.), Developmental Biology (S.S.O., D.M.O.), Biochemistry and Molecular Biophysics (B. C.), Developmental, Regenerative, and Stem cell Biology Program (D.M.O., R.S.A., K.C.), Washington University School of Medicine, MO
| |
Collapse
|
43
|
Choi SC, Choi JH, Cui LH, Seo HR, Kim JH, Park CY, Joo HJ, Park JH, Hong SJ, Yu CW, Lim DS. Mixl1 and Flk1 Are Key Players of Wnt/TGF-β Signaling During DMSO-Induced Mesodermal Specification in P19 cells. J Cell Physiol 2015; 230:1807-21. [PMID: 25521758 DOI: 10.1002/jcp.24892] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 12/09/2014] [Indexed: 01/03/2023]
Abstract
Dimethyl sulfoxide (DMSO) is widely used to induce multilineage differentiation of embryonic and adult progenitor cells. To date, little is known about the mechanisms underlying DMSO-induced mesodermal specification. In this study, we investigated the signaling pathways and lineage-determining genes involved in DMSO-induced mesodermal specification in P19 cells. Wnt/β-catenin and TGF-β superfamily signaling pathways such as BMP, TGF-β and GDF1 signaling were significantly activated during DMSO-induced mesodermal specification. In contrast, Nodal/Cripto signaling pathway molecules, required for endoderm specification, were severely downregulated. DMSO significantly upregulated the expression of cardiac mesoderm markers but inhibited the expression of endodermal and hematopoietic lineage markers. Among the DMSO-activated cell lineage markers, the expression of Mixl1 and Flk1 was dramatically upregulated at both the transcript and protein levels, and the populations of Mixl1+, Flk1+ and Mixl1+/Flk1+ cells also increased significantly. DMSO modulated cell cycle molecules and induced cell apoptosis, resulting in significant cell death during EB formation of P19 cells. An inhibitor of Flk1, SU5416 significantly blocked expressions of TGF-β superfamily members, mesodermal cell lineage markers and cell cycle molecules but it did not affect Wnt molecules. These results demonstrate that Mixl1 and Flk1 play roles as key downstream or interacting effectors of Wnt/TGF-β signaling pathway during DMSO-induced mesodermal specification in P19 cells.
Collapse
Affiliation(s)
- Seung-Cheol Choi
- Department of Cardiology, Cardiovascular Center, Korea University Anam Hospital, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Liu F, Li D, Yu YYL, Kang I, Cha MJ, Kim JY, Park C, Watson DK, Wang T, Choi K. Induction of hematopoietic and endothelial cell program orchestrated by ETS transcription factor ER71/ETV2. EMBO Rep 2015; 16:654-69. [PMID: 25802403 DOI: 10.15252/embr.201439939] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 02/26/2015] [Indexed: 11/09/2022] Open
Abstract
The ETS factor ETV2 (aka ER71) is essential for the generation of the blood and vascular system, as ETV2 deficiency leads to a complete block in blood and endothelial cell formation and embryonic lethality in the mouse. However, the ETV2-mediated gene regulatory network and signaling governing hematopoietic and endothelial cell development are poorly understood. Here, we map ETV2 global binding sites and carry out in vitro differentiation of embryonic stem cells, and germ line and conditional knockout mouse studies to uncover mechanisms involved in the hemangiogenic fate commitment from mesoderm. We show that ETV2 binds to enhancers that specify hematopoietic and endothelial cell lineages. We find that the hemangiogenic progenitor population in the developing embryo can be identified as FLK1(high)PDGFRα(-). Notably, these hemangiogenic progenitors are exclusively sensitive to ETV2-dependent FLK1 signaling. Importantly, ETV2 turns on other Ets genes, thereby establishing an ETS hierarchy. Consequently, the hematopoietic and endothelial cell program initiated by ETV2 is maintained partly by other ETS factors through an ETS switching mechanism. These findings highlight the critical role that transient ETV2 expression plays in the regulation of hematopoietic and endothelial cell lineage specification and stability.
Collapse
Affiliation(s)
- Fang Liu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Daofeng Li
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Yik Yeung Lawrence Yu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Inyoung Kang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Min-Ji Cha
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ju Young Kim
- Department of Pediatrics, Children's Heart Research and Outcomes Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Changwon Park
- Department of Pediatrics, Children's Heart Research and Outcomes Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Dennis K Watson
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Ting Wang
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kyunghee Choi
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA Developmental, Regenerative, and Stem Cell Biology Program, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
45
|
Tashiro K, Hirata N, Okada A, Yamaguchi T, Takayama K, Mizuguchi H, Kawabata K. Expression of coxsackievirus and adenovirus receptor separates hematopoietic and cardiac progenitor cells in fetal liver kinase 1-expressing mesoderm. Stem Cells Transl Med 2015; 4:424-36. [PMID: 25762001 DOI: 10.5966/sctm.2014-0173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 01/28/2015] [Indexed: 11/16/2022] Open
Abstract
In developing embryos or in vitro differentiation cultures using pluripotent stem cells (PSCs), such as embryonic stem cells and induced pluripotent stem cells, fetal liver kinase 1 (Flk1)-expressing mesodermal cells are thought to be a heterogeneous population that includes hematopoietic progenitors, endothelial progenitors, and cardiac progenitors. However, information on cell surface markers for separating these progenitors in Flk1⁺ cells is currently limited. In the present study, we show that distinct types of progenitor cells in Flk1⁺ cells could be separated according to the expression of coxsackievirus and adenovirus receptor (CAR, also known as CXADR), a tight junction component molecule. We found that mouse and human PSC- and mouse embryo-derived Flk1⁺ cells could be subdivided into Flk1⁺CAR⁺ cells and Flk1⁺CAR⁻ cells. The progenitor cells with cardiac potential were almost entirely restricted to Flk1⁺CAR⁺ cells, and Flk1⁺CAR⁻ cells efficiently differentiated into hematopoietic cells. Endothelial differentiation potential was observed in both populations. Furthermore, from the expression of CAR, Flk1, and platelet-derived growth factor receptor-α (PDGFRα), Flk1⁺ cells could be separated into three populations (Flk1⁺PDGFRα⁻ CAR⁻ cells, Flk1⁺PDGFRα⁻CAR⁺ cells, and Flk1⁺PDGFRα⁺CAR⁺ cells). Flk1⁺PDGFRα⁺ cells and Flk1⁺PDGFRα⁻ cells have been reported as cardiac and hematopoietic progenitor cells, respectively. We identified a novel population (Flk1⁺PDGFRα⁻ CAR⁺ cells) with the potential to differentiate into not only hematopoietic cells and endothelial cells but also cardiomyocytes. Our findings indicate that CAR would be a novel and prominent marker for separating PSC- and embryo-derived Flk1⁺ mesodermal cells with distinct differentiation potentials.
Collapse
Affiliation(s)
- Katsuhisa Tashiro
- Laboratory of Stem Cell Regulation and Laboratory of Hepatocyte Regulation, National Institute of Biomedical Innovation, Osaka, Japan; Laboratory of Biochemistry and Molecular Biology, iPS Cell-Based Research Project on Hepatic Toxicity and Metabolism, and Laboratory of Biomedical Innovation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan; The Center for Advanced Medical Engineering and Informatics, Osaka University, Osaka, Japan
| | - Nobue Hirata
- Laboratory of Stem Cell Regulation and Laboratory of Hepatocyte Regulation, National Institute of Biomedical Innovation, Osaka, Japan; Laboratory of Biochemistry and Molecular Biology, iPS Cell-Based Research Project on Hepatic Toxicity and Metabolism, and Laboratory of Biomedical Innovation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan; The Center for Advanced Medical Engineering and Informatics, Osaka University, Osaka, Japan
| | - Atsumasa Okada
- Laboratory of Stem Cell Regulation and Laboratory of Hepatocyte Regulation, National Institute of Biomedical Innovation, Osaka, Japan; Laboratory of Biochemistry and Molecular Biology, iPS Cell-Based Research Project on Hepatic Toxicity and Metabolism, and Laboratory of Biomedical Innovation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan; The Center for Advanced Medical Engineering and Informatics, Osaka University, Osaka, Japan
| | - Tomoko Yamaguchi
- Laboratory of Stem Cell Regulation and Laboratory of Hepatocyte Regulation, National Institute of Biomedical Innovation, Osaka, Japan; Laboratory of Biochemistry and Molecular Biology, iPS Cell-Based Research Project on Hepatic Toxicity and Metabolism, and Laboratory of Biomedical Innovation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan; The Center for Advanced Medical Engineering and Informatics, Osaka University, Osaka, Japan
| | - Kazuo Takayama
- Laboratory of Stem Cell Regulation and Laboratory of Hepatocyte Regulation, National Institute of Biomedical Innovation, Osaka, Japan; Laboratory of Biochemistry and Molecular Biology, iPS Cell-Based Research Project on Hepatic Toxicity and Metabolism, and Laboratory of Biomedical Innovation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan; The Center for Advanced Medical Engineering and Informatics, Osaka University, Osaka, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Stem Cell Regulation and Laboratory of Hepatocyte Regulation, National Institute of Biomedical Innovation, Osaka, Japan; Laboratory of Biochemistry and Molecular Biology, iPS Cell-Based Research Project on Hepatic Toxicity and Metabolism, and Laboratory of Biomedical Innovation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan; The Center for Advanced Medical Engineering and Informatics, Osaka University, Osaka, Japan
| | - Kenji Kawabata
- Laboratory of Stem Cell Regulation and Laboratory of Hepatocyte Regulation, National Institute of Biomedical Innovation, Osaka, Japan; Laboratory of Biochemistry and Molecular Biology, iPS Cell-Based Research Project on Hepatic Toxicity and Metabolism, and Laboratory of Biomedical Innovation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan; The Center for Advanced Medical Engineering and Informatics, Osaka University, Osaka, Japan
| |
Collapse
|
46
|
Shi X, Zirbes KM, Rasmussen TL, Ferdous A, Garry MG, Koyano-Nakagawa N, Garry DJ. The transcription factor Mesp1 interacts with cAMP-responsive element binding protein 1 (Creb1) and coactivates Ets variant 2 (Etv2) gene expression. J Biol Chem 2015; 290:9614-25. [PMID: 25694434 DOI: 10.1074/jbc.m114.614628] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Indexed: 12/31/2022] Open
Abstract
Mesoderm posterior 1 (Mesp1) is well recognized for its role in cardiac development, although it is expressed broadly in mesodermal lineages. We have previously demonstrated important roles for Mesp1 and Ets variant 2 (Etv2) during lineage specification, but their relationship has not been defined. This study reveals that Mesp1 binds to the proximal promoter and transactivates Etv2 gene expression via the CRE motif. We also demonstrate the protein-protein interaction between Mesp1 and cAMP-responsive element binding protein 1 (Creb1) in vitro and in vivo. Utilizing transgenesis, lineage tracing, flow cytometry, and immunostaining technologies, we define the lineage relationship between Mesp1- and Etv2-expressing cell populations. We observe that the majority of Etv2-EYFP(+) cells are derived from Mesp1-Cre(+) cells in both the embryo and yolk sac. Furthermore, we observe that the conditional deletion of Etv2, using a Mesp1-Cre transgenic strategy, results in vascular and hematopoietic defects similar to those observed in the global deletion of Etv2 and that it has embryonic lethality by embryonic day 9.5. In summary, our study supports the hypothesis that Mesp1 is a direct upstream transactivator of Etv2 during embryogenesis and that Creb1 is an important cofactor of Mesp1 in the transcriptional regulation of Etv2 gene expression.
Collapse
Affiliation(s)
- Xiaozhong Shi
- From the Lillehei Heart Institute, Medical School, University of Minnesota, Minneapolis, Minnesota 55455 and
| | - Katie M Zirbes
- From the Lillehei Heart Institute, Medical School, University of Minnesota, Minneapolis, Minnesota 55455 and
| | - Tara L Rasmussen
- From the Lillehei Heart Institute, Medical School, University of Minnesota, Minneapolis, Minnesota 55455 and
| | - Anwarul Ferdous
- the Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Mary G Garry
- From the Lillehei Heart Institute, Medical School, University of Minnesota, Minneapolis, Minnesota 55455 and
| | - Naoko Koyano-Nakagawa
- From the Lillehei Heart Institute, Medical School, University of Minnesota, Minneapolis, Minnesota 55455 and
| | - Daniel J Garry
- From the Lillehei Heart Institute, Medical School, University of Minnesota, Minneapolis, Minnesota 55455 and
| |
Collapse
|
47
|
Choi SC, Lee H, Choi JH, Kim JH, Park CY, Joo HJ, Park JH, Hong SJ, Yu CW, Lim DS. Cyclosporin A induces cardiac differentiation but inhibits hemato-endothelial differentiation of P19 cells. PLoS One 2015; 10:e0117410. [PMID: 25629977 PMCID: PMC4309530 DOI: 10.1371/journal.pone.0117410] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 12/22/2014] [Indexed: 01/11/2023] Open
Abstract
Little is known about the mechanisms underlying the effects of Cyclosporin A (CsA) on the fate of stem cells, including cardiomyogenic differentiation. Therefore, we investigated the effects and the molecular mechanisms behind the actions of CsA on cell lineage determination of P19 cells. CsA induced cardiomyocyte-specific differentiation of P19 cells, with the highest efficiency at a concentration of 0.32 μM during embryoid body (EB) formation via activation of the Wnt signaling pathway molecules, Wnt3a, Wnt5a, and Wnt8a, and the cardiac mesoderm markers, Mixl1, Mesp1, and Mesp2. Interestingly, cotreatment of P19 cells with CsA plus dimethyl sulfoxide (DMSO) during EB formation significantly increases cardiac differentiation. In contrast, mRNA expression levels of hematopoietic and endothelial lineage markers, including Flk1 and Er71, were severely reduced in CsA-treated P19 cells. Furthermore, expression of Flk1 protein and the percentage of Flk1+ cells were severely reduced in 0.32 μM CsA-treated P19 cells compared to control cells. CsA significantly modulated mRNA expression levels of the cell cycle molecules, p53 and Cyclins D1, D2, and E2 in P19 cells during EB formation. Moreover, CsA significantly increased cell death and reduced cell number in P19 cells during EB formation. These results demonstrate that CsA induces cardiac differentiation but inhibits hemato-endothelial differentiation via activation of the Wnt signaling pathway, followed by modulation of cell lineage-determining genes in P19 cells during EB formation.
Collapse
Affiliation(s)
- Seung-Cheol Choi
- Department of Cardiology, Cardiovascular Center, Korea University Anam Hospital, Seoul, Korea
| | - Hyunjoo Lee
- Department of Cardiology, Cardiovascular Center, Korea University Anam Hospital, Seoul, Korea
| | - Ji-Hyun Choi
- Department of Cardiology, Cardiovascular Center, Korea University Anam Hospital, Seoul, Korea
| | - Jong-Ho Kim
- Department of Cardiology, Cardiovascular Center, Korea University Anam Hospital, Seoul, Korea
| | - Chi-Yeon Park
- Department of Cardiology, Cardiovascular Center, Korea University Anam Hospital, Seoul, Korea
| | - Hyung-Joon Joo
- Department of Cardiology, Cardiovascular Center, Korea University Anam Hospital, Seoul, Korea
| | - Jae-Hyoung Park
- Department of Cardiology, Cardiovascular Center, Korea University Anam Hospital, Seoul, Korea
| | - Soon-Jun Hong
- Department of Cardiology, Cardiovascular Center, Korea University Anam Hospital, Seoul, Korea
| | - Cheol-Woong Yu
- Department of Cardiology, Cardiovascular Center, Korea University Anam Hospital, Seoul, Korea
| | - Do-Sun Lim
- Department of Cardiology, Cardiovascular Center, Korea University Anam Hospital, Seoul, Korea
| |
Collapse
|
48
|
Org T, Duan D, Ferrari R, Montel-Hagen A, Van Handel B, Kerényi MA, Sasidharan R, Rubbi L, Fujiwara Y, Pellegrini M, Orkin SH, Kurdistani SK, Mikkola HK. Scl binds to primed enhancers in mesoderm to regulate hematopoietic and cardiac fate divergence. EMBO J 2015; 34:759-77. [PMID: 25564442 PMCID: PMC4369313 DOI: 10.15252/embj.201490542] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Scl/Tal1 confers hemogenic competence and prevents ectopic cardiomyogenesis in embryonic endothelium by unknown mechanisms. We discovered that Scl binds to hematopoietic and cardiac enhancers that become epigenetically primed in multipotent cardiovascular mesoderm, to regulate the divergence of hematopoietic and cardiac lineages. Scl does not act as a pioneer factor but rather exploits a pre-established epigenetic landscape. As the blood lineage emerges, Scl binding and active epigenetic modifications are sustained in hematopoietic enhancers, whereas cardiac enhancers are decommissioned by removal of active epigenetic marks. Our data suggest that, rather than recruiting corepressors to enhancers, Scl prevents ectopic cardiogenesis by occupying enhancers that cardiac factors, such as Gata4 and Hand1, use for gene activation. Although hematopoietic Gata factors bind with Scl to both activated and repressed genes, they are dispensable for cardiac repression, but necessary for activating genes that enable hematopoietic stem/progenitor cell development. These results suggest that a unique subset of enhancers in lineage-specific genes that are accessible for regulators of opposing fates during the time of the fate decision provide a platform where the divergence of mutually exclusive fates is orchestrated.
Collapse
Affiliation(s)
- Tõnis Org
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | - Dan Duan
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | - Roberto Ferrari
- Department of Biological Chemistry, University of California, Los Angeles, CA, USA Eli and Edythe Broad Stem Cell Research Center, University of California, Los Angeles, CA, USA
| | - Amelie Montel-Hagen
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | - Ben Van Handel
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | - Marc A Kerényi
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Division of Hematology/Oncology, Children's Hospital Boston, Howard Hughes Medical Institute Harvard Stem Cell Institute Harvard Medical School, Boston, MA, USA
| | - Rajkumar Sasidharan
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | - Liudmilla Rubbi
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | - Yuko Fujiwara
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Division of Hematology/Oncology, Children's Hospital Boston, Howard Hughes Medical Institute Harvard Stem Cell Institute Harvard Medical School, Boston, MA, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | - Stuart H Orkin
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Division of Hematology/Oncology, Children's Hospital Boston, Howard Hughes Medical Institute Harvard Stem Cell Institute Harvard Medical School, Boston, MA, USA
| | - Siavash K Kurdistani
- Department of Biological Chemistry, University of California, Los Angeles, CA, USA Eli and Edythe Broad Stem Cell Research Center, University of California, Los Angeles, CA, USA
| | - Hanna Ka Mikkola
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA Eli and Edythe Broad Stem Cell Research Center, University of California, Los Angeles, CA, USA
| |
Collapse
|
49
|
OVOL2 is a critical regulator of ER71/ETV2 in generating FLK1+, hematopoietic, and endothelial cells from embryonic stem cells. Blood 2014; 124:2948-52. [PMID: 25267199 DOI: 10.1182/blood-2014-03-556332] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In this study, we report that OVOL2, a C2H2 zinc finger protein, is a novel binding protein of ER71, which is a critical transcription factor for blood and vessel development. OVOL2 directly interacted with ER71, but not with ETS1 or ETS2, in the nucleus. ER71-mediated activation of the Flk1 promoter was further enhanced by OVOL2, although OVOL2 alone failed to activate it. Consistently, coexpression of ER71 and OVOL2 in differentiating embryonic stem cells led to a significant augmentation of FLK1(+), endothelial, and hematopoietic cells. Such cooperative effects were impaired by the short hairpin RNA-mediated inhibition of Ovol2. Collectively, we show that ER71 directly interacts with OVOL2 and that such interaction is critical for FLK1(+) cell generation and their differentiation into downstream cell lineages.
Collapse
|
50
|
An updated view on the differentiation of stem cells into endothelial cells. SCIENCE CHINA-LIFE SCIENCES 2014; 57:763-73. [DOI: 10.1007/s11427-014-4712-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 06/16/2014] [Indexed: 12/16/2022]
|