1
|
Yang Y, Liu S, Xiao X. TOP2A Promotes Proliferation, Migration, and Inflammatory Response in M5-Treated Keratinocytes by Binding CTBP1 to Activate Wnt/β-Catenin Signaling. Cell Biochem Biophys 2024:10.1007/s12013-024-01620-2. [PMID: 39565516 DOI: 10.1007/s12013-024-01620-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2024] [Indexed: 11/21/2024]
Abstract
Psoriasis is a chronic cutaneous disease, affecting a significant portion of the global population. Topoisomerase II alpha (TOP2A) is upregulated in psoriasis samples, but the precise molecular mechanism remains unclear. We aimed to clarify the biological contribution of TOP2A in psoriasis progression. An in vitro psoriasis model was established on M5-induced keratinocytes (HaCaT cells) to simulate the psoriasis-like alterations. Following TOP2A knockdown without or with c terminal binding protein 1 (CTBP1) overexpression, CCK-8 and EDU staining were employed to analyze the viability and proliferation of HaCaT cells under M5 conditions. The capacities of HaCaT cell migration and invasion were examined with wound healing- and transwell assays. RT-qPCR and immunoblotting were adopted for evaluation of the inflammation and differentiation of M5-stimualted HaCaT cells. Additionally, the binding between TOP2A and CTBP1 was predicated using bioinformatics tools and detected by Co-IP. Finally, the expression of proteins in Wnt/β-catenin signaling was analyzed with the application of immunoblotting. Results suggested that TOP2A was upregulated in psoriasis skin lesions and M5-induced HaCaT cells. Interference with TOP2A attenuated the proliferation, migration, invasion, and inflammatory response in M5-treated HaCaT cells. In particular, TOP2A bound to CTBP1 and upregulated CTBP1 expression in HaCaT cells. Remarkably, CTBP1 upregulation blocked the impacts of TOP2A depletion on the biological behaviors of M5-treated HaCaT cells. Besides, TOP2A deficiency upregulated DKK1 expression as well as downregulated Wnt1, β-catenin, and c-Myc expression in HaCaT cells exposed to M5, which was restored by further CTBP1 overexpression. In summary, TOP2A binds CTBP1 to activate Wnt/β-catenin signaling, thereby promoting the progression of psoriasis.
Collapse
Affiliation(s)
- Yuanwen Yang
- Department of Dermatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, Shanxi, China
| | - Shumei Liu
- Medical Cosmetology Department, Shenzhen Jiarong Comprehensive Outpatient Department, Shenzhen, Guangdong, China
| | - Xia Xiao
- Medical Record Room of Shanxi Traditional Chinese Medicine Hospital, Taiyuan, Shanxi, China.
| |
Collapse
|
2
|
Ritter J, Lisec K, Klinner M, Heinrich M, von Schweinitz D, Kappler R, Hubertus J. Genetic Disruption of Cilia-Associated Signaling Pathways in Patients with VACTERL Association. CHILDREN (BASEL, SWITZERLAND) 2023; 10:children10050882. [PMID: 37238430 DOI: 10.3390/children10050882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/05/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023]
Abstract
VACTERL association is a rare malformation complex consisting of vertebral defects, anorectal malformation, cardiovascular defects, tracheoesophageal fistulae with esophageal atresia, renal malformation, and limb anomalies. According to current knowledge, VACTERL is based on a multifactorial pathogenesis including genomic alterations. This study aimed to improve the understanding of the genetic mechanisms in the development of VACTERL by investigating the genetic background with a focus on signaling pathways and cilia function. The study was designed as genetic association study. For this, whole-exome sequencing with subsequent functional enrichment analyses was performed for 21 patients with VACTERL or a VACTERL-like phenotype. In addition, whole-exome sequencing was performed for three pairs of parents and Sanger-sequencing was performed for ten pairs of parents. Analysis of the WES-data revealed genetic alteration in the Shh- and Wnt-signaling pathways. Additional performed functional enrichment analysis identified an overrepresentation of the cilia, including 47 affected ciliary genes with clustering in the DNAH gene family and the IFT-complex. The examination of the parents showed that most of the genetic changes were inherited. In summary, this study indicates three genetically determined damage mechanisms for VACTERL with the potential to influence each other, namely Shh- and Wnt-signaling pathway disruption, structural cilia defects and disruption of the ciliary signal transduction.
Collapse
Affiliation(s)
- Jessica Ritter
- Department of Pediatric Surgery, Dr. von Hauner Children's Hospital, LMU Munich University, 80337 Munich, Germany
- Department of Diagnostic and Interventional Radiology, Klinikum Rechts der Isar, Technical University of Munich, Ismaninger Straße 22, 81675 Munich, Germany
| | - Kristina Lisec
- Department of Pediatric Surgery, Dr. von Hauner Children's Hospital, LMU Munich University, 80337 Munich, Germany
| | - Marina Klinner
- Department of Pediatric Surgery, Dr. von Hauner Children's Hospital, LMU Munich University, 80337 Munich, Germany
| | - Martina Heinrich
- Department of Pediatric Surgery, Dr. von Hauner Children's Hospital, LMU Munich University, 80337 Munich, Germany
| | - Dietrich von Schweinitz
- Department of Pediatric Surgery, Dr. von Hauner Children's Hospital, LMU Munich University, 80337 Munich, Germany
| | - Roland Kappler
- Department of Pediatric Surgery, Dr. von Hauner Children's Hospital, LMU Munich University, 80337 Munich, Germany
| | - Jochen Hubertus
- Department of Pediatric Surgery, Dr. von Hauner Children's Hospital, LMU Munich University, 80337 Munich, Germany
- Department of Pediatric Surgery, Marien Hospital Witten, Ruhr-University Bochum, 58452 Witten, Germany
| |
Collapse
|
3
|
Lin C, Wang Y, Dong Y, Lai S, Wang L, Weng S, Zhang X. N6-methyladenosine-mediated SH3BP5-AS1 upregulation promotes GEM chemoresistance in pancreatic cancer by activating the Wnt signaling pathway. Biol Direct 2022; 17:33. [PMID: 36397058 PMCID: PMC9673340 DOI: 10.1186/s13062-022-00347-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/08/2022] [Indexed: 11/18/2022] Open
Abstract
Background Pancreatic cancer (PC) is highly malignant. Chemotherapy is the main treatment strategy, especially for patients with advanced PC. However, chemoresistance has always been a frequently encountered bottleneck. Hence, there is an urgent need to enhance the sensitivity of PC to gemcitabine (GEM). Results We demonstrated that SH3BP5-AS1 was significantly upregulated in GEM-resistant PC and predicted a poorer prognosis. SH3BP5-AS1 stability was regulated by ALKBH5/IGF2BP1-mediated m6A modification. Loss of SH3BP5-AS1 reduced PC cell migration and invasion and enhanced the sensitivity of PC to GEM, as confirmed by gain- and loss-of-function assays in vitro and in vivo. Bioinformatics analysis revealed that SH3BP5-AS1 acted as a ceRNA against miR-139-5p and directly targeted CTBP1, affecting the biological behavior of PC cells. The mechanistic studies revealed that the upregulation of SH3BP5-AS1 increased CTBP1 expression by directly activating the Wnt signaling pathway, promoting GEM resistance. Conclusions This study revealed that SH3BP5-AS1 activated Wnt signaling pathway by sponging miR-139-5p, upregulating CTBP1 expression, and contributing to the sensitivity of PC cells to GEM. SH3BP5-AS1 might be a potential target for PC therapy. Supplementary Information The online version contains supplementary material available at 10.1186/s13062-022-00347-5.
Collapse
|
4
|
Zhang W, Kong L, Zhu H, Sun D, Han Q, Yan B, Cui Z, Zhang W, Zhang S, Kang X, Dai G, Qian N, Yan W. Retinoic Acid-Induced 2 (RAI2) Is a Novel Antagonist of Wnt/β-Catenin Signaling Pathway and Potential Biomarker of Chemosensitivity in Colorectal Cancer. Front Oncol 2022; 12:805290. [PMID: 35299743 PMCID: PMC8922473 DOI: 10.3389/fonc.2022.805290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 02/04/2022] [Indexed: 11/24/2022] Open
Abstract
Objective Aberrant activation of Wnt/β-catenin signaling contributes to the maintenance of cancer stem cells and chemoresistance in colorectal cancer (CRC). Retinoic acid-induced 2 (RAI2) was proved to be a tumor suppressor in CRC in our previous report. In this study, the role of RAI2 in Wnt/β-catenin signaling was further investigated. Methods As a transcriptional co-regulator, C-terminal Binding Protein 2 (CtBP2) was reported to be involved in Wnt signaling in multiple and complex ways. The correlation of RAI2 and CtBP2 in CRC was analyzed by TCGA dataset, and the interaction between RAI2 and CtBP2 was explored by co-immunoprecipitation (Co-IP) in CRC cells. The effect of RAI2 on the activity of Wnt signaling and the location of β-catenin was detected by Dual-Luciferase reporter assay and Immunofluorescence respectively. Western blotting analysis was performed to detect the expression of target genes involved in Wnt signaling. Sphere formation assay was employed to detect the effect of RAI2 on stem cell like properties. Cell viability assay was used to detect the chemosensitivity of cells before and after transfection of RAI2. Results The interaction between RAI2 and CtBP2 was confirmed by Co-IP in CRC cells. Besides, the negative correlation of RAI2 and CtBP2 in CRC was found by analyzing the TCGA dataset. Re-expression of RAI2 in human colon cancer cells (HCT116 and LoVo) suppressed the fluorescent activity of Wnt signaling, increased the phosphorylation and inhibited nuclear translocation of β-catenin, with down-regulation of target genes like c-Myc, CyclinD1, ASCL2, and LGR5. In contrast, the mutated RAI2, which can’t interact with CtBP2, has no above effects. We observed low expression of RAI2 in 33.89% (101/298) of CRC patients, which was significantly associated with reduced phosphorylation of β-catenin (r=0.8866, P<0.0001), poor 5-year relapse-free survival (RFS) (P = 0.0029) and overall survival (OS) (P = 0.0102). Restoration of RAI2 in HCT116 and LoVo cells inhibited stem cell-like properties of CRC cells and increased chemosensitivity of these cells to oxaliplatin and fluorouracil. Conclusion Low expression of RAI2 can serve as an independent poor prognostic marker. RAI2 inhibits Wnt signaling by interacting with or down-regulating CtBP2, resulting in repression of stem cell-like properties and increased chemosensitivity of CRC cells.
Collapse
Affiliation(s)
- Weitao Zhang
- Department of Oncology, The First Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China.,Cancer Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Lu Kong
- Department of Oncology, The First Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China.,Medical Department, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Hongbin Zhu
- Department of Gastroenterology and Hepatology, Chinese People's Liberation Army (PLA) NO.983 Hospital, Tianjin, China
| | - Decong Sun
- Department of Oncology, The First Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Quanli Han
- Department of Oncology, The First Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Bin Yan
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Zhi Cui
- Department of Oncology, The First Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Weiwei Zhang
- Department of Oncology, The First Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Shurong Zhang
- Cancer Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xindan Kang
- Department of Oncology, The First Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Guanghai Dai
- Department of Oncology, The First Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Niansong Qian
- Department of Oncology, The First Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Wenji Yan
- Department of Oncology, The First Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| |
Collapse
|
5
|
The Classification of VACTERL Association into 3 Groups According to the Limb Defect. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2021; 9:e3360. [PMID: 33680640 PMCID: PMC7929542 DOI: 10.1097/gox.0000000000003360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 11/17/2020] [Indexed: 11/26/2022]
Abstract
The VACTERL association (VA) is defined as the nonrandom co-occurrence of 6 anomalies: vertebral anomalies (V), Anal atresia (A), Cardiac defects (C), Tracheo-esophageal fistula (TE), Renal defects (R), and Limb anomalies (L). The current communication presents an argument that patients with VA should be classified into three district groups based on their limb defects: VACTERL1: patients with normal limbs; VACTERL2: patients with limb anomalies other than radial ray defects of the upper limbs; and VACTERL3: patients with radial ray defects of the upper limbs. The author will demonstrate that the rationale behind the L1-3 classification in patients in VA is based on the embryogenesis of the 6 affected anatomical areas in VA. The pathogenesis of VACTERL1 is secondary to perturbations of Sonic Hedgehog (SHH) interactions. SHH signaling is known to have a major role in the normal development of the vertebrae, ano-rectal area, heart, tracheo-esophageal area, and kidney. However, SHH is not involved in the development of the radial ray; hence, patients present with no limb defects. The pathogenesis of VACTERL2 is variable depending on the type of gene mutation. The pathogenesis of VACTERL3 is related to errors in a group of proteins (namely, the proteins of the TBX5-SALL4-SALL1 loop and the FGF8-FGF10 loop/ pathway). These proteins are essential for the normal development of the radial ray and they interact in the development of the other anatomical areas of VA including the heart and kidney. Hence, VACTERL3 patients present with radial ray deficiency.
Collapse
|
6
|
Mazon M, Julien J, Ung RV, Picard S, Hamoudi D, Tam R, Filiatrault J, Frenette J, Mac-Way F, Carreau M. Deletion of the Fanconi Anemia C Gene in Mice Leads to Skeletal Anomalies and Defective Bone Mineralization and Microarchitecture. J Bone Miner Res 2018; 33:2007-2020. [PMID: 29989666 DOI: 10.1002/jbmr.3546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 06/07/2018] [Accepted: 07/04/2018] [Indexed: 12/12/2022]
Abstract
Fanconi anemia (FA) is a rare genetic disorder associated with a progressive decline in hematopoietic stem cells leading to bone marrow failure. FA is also characterized by a variety of developmental defects including short stature and skeletal malformations. More than half of children affected with FA have radial-ray abnormalities, and many patients have early onset osteopenia/osteoporosis. Although many Fanconi anemia genes have been identified and a molecular pathway defined, the underlying mechanism leading to bone defects remains elusive. To understand the role of FA genes in skeletal development and bone microarchitecture, we evaluated bone physiology during embryogenesis and in adult FancA- and FancC-deficient mice. We found that both FancA-/- and FancC-/- embryos have abnormal skeletal development shown by skeletal malformations, growth delay, and reduced bone mineralization. FancC-/- adult mice present altered bone morphology and microarchitecture with a significant decrease in cortical bone mineral density in a sex-specific manner. Mechanical testing revealed that male but not female FancC-/- mice show reduced bone strength compared with their wild-type littermates. Ex vivo cultures showed that FancA-/- and FancC-/- bone marrow-derived mesenchymal stem cells (BM MSC) have impaired differentiation capabilities together with altered gene expression profiles. Our results suggest that defective bone physiology in FA occurs in utero and possibly results from altered BM MSC function. These results provide valuable insights into the mechanism involved in FA skeletal defects. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
| | | | | | | | | | - Rose Tam
- CHU de Québec Research Center, Québec, Canada
| | | | - Jérôme Frenette
- CHU de Québec Research Center, Québec, Canada.,Department of Readaptation, Faculty of Medicine, Université Laval, Québec, Canada
| | - Fabrice Mac-Way
- CHU de Québec Research Center, Québec, Canada.,Division of Nephrology, Faculty and Department of Medicine, Université Laval, Québec, Canada
| | - Madeleine Carreau
- CHU de Québec Research Center, Québec, Canada.,Department of Pediatrics, Faculty of Medicine, Université Laval, Québec, Canada
| |
Collapse
|
7
|
Mazon M, Larouche V, St-Louis M, Schindler D, Carreau M. Elevated blood levels of Dickkopf-1 are associated with acute infections. IMMUNITY INFLAMMATION AND DISEASE 2018; 6:428-434. [PMID: 30028084 PMCID: PMC6247238 DOI: 10.1002/iid3.232] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 07/03/2018] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Dickkopf-1 (DKK1) is a soluble protein and antagonist of the Wnt/β-catenin signaling pathway. DKK1 is found elevated in serum from patients affected with various types of cancers and in some instances, it is considered a diagnostic and prognostic biomarker. Elevated serum levels of DKK1 have also been detected in animal models of chronic inflammatory diseases. Previous work from our laboratory has demonstrated upregulation of DKK1 in cells and mouse models of the bone marrow failure (BMF) and cancer-prone disease Fanconi anemia (FA). The present study aimed to investigate whether DKK1 blood levels in patients are associated with FA or inflammatory responses to acute infections. METHODS Plasma samples were collected from 58 children admitted to the Centre Mère-Enfant Soleil du Centre Hospitalier de Québec-Université Laval with signs of acute infections. Blood plasma specimens were also collected from healthy blood donors at the Héma-Québec blood donor clinic. Plasmas from patients diagnosed with FA were also included in the study. DKK1 levels in blood plasmas were assessed by standard ELISA. RESULTS Patients with acute infections showed dramatically high levels of DKK1 (6072 ± 518 pg/ml) in their blood compared to healthy blood donors (1726 ± 95 pg/ml). No correlations were found between DKK1 levels and C reactive protein (CRP) concentration, platelet numbers, or white blood cell counts. Patients with FA showed higher DKK1 plasma levels (3419 ± 147.5 pg/ml) than healthy blood donors (1726 ± 95 pg/ml) but significantly lower than patients with acute infections. CONCLUSION These findings suggest that blood DKK1 is elevated in response to infections and perhaps to inflammatory responses.
Collapse
Affiliation(s)
- Melody Mazon
- Centre Hospitalier de Québec-Université Laval Research Center, Québec, G1V 4G2, Canada
| | - Valérie Larouche
- Centre Hospitalier de Québec-Université Laval Research Center, Québec, G1V 4G2, Canada.,Department of Pediatrics, Université Laval, Québec, G1V 0A6, Canada
| | | | - Detlev Schindler
- Department of Human Genetics, University of Wurzburg, Wurzburg 97070, Germany
| | - Madeleine Carreau
- Centre Hospitalier de Québec-Université Laval Research Center, Québec, G1V 4G2, Canada.,Department of Pediatrics, Université Laval, Québec, G1V 0A6, Canada
| |
Collapse
|
8
|
Kulanuwat S, Jungtrakoon P, Tangjittipokin W, Yenchitsomanus PT, Plengvidhya N. Fanconi anemia complementation group C protection against oxidative stress‑induced β‑cell apoptosis. Mol Med Rep 2018; 18:2485-2491. [PMID: 29901137 DOI: 10.3892/mmr.2018.9163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 04/25/2018] [Indexed: 11/05/2022] Open
Abstract
Diabetes mellitus (DM) and other glucose metabolism abnormalities are commonly observed in individuals with Fanconi anemia (FA). FA causes an impaired response to DNA damage due to genetic defects in a cluster of genes encoded proteins involved in DNA repair. However, the mechanism by which FA is associated with DM has not been clearly elucidated. Fanconi anemia complementation group C (FANCC) is a component of FA nuclear clusters. Evidence suggests that cytoplasmic FANCC has a role in protection against oxidative stress‑induced apoptosis. As oxidative stress‑mediated β‑cell dysfunction is one of the contributors to DM pathogenesis, the present study aimed to investigate the role of FANCC in pancreatic β‑cell response to oxidative stress. Small interfering RNA‑mediated FANCC suppression caused a loss of protection against oxidative stress‑induced apoptosis, and that overexpression of FANCC reduced this effect in the human 1.1B4 β‑cell line. These findings were confirmed by Annexin V‑FITC/PI staining, caspase 3/7 activity assay, and expression levels of anti‑apoptotic and pro‑apoptotic genes. Insulin and glucokinase mRNA expression were also decreased in FANCC‑depleted 1.1B4 cells. The present study demonstrated the role of FANCC in protection against oxidative stress‑induced β‑cell apoptosis and established another mechanism that associates FANCC deficiency with β‑cell dysfunction. The finding that FANCC overexpression reduced β‑cell apoptosis advances the potential for an alternative approach to the treatment of DM caused by FANCC defects.
Collapse
Affiliation(s)
- Sirikul Kulanuwat
- Siriraj Center of Research Excellence for Diabetes and Obesity, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Prapaporn Jungtrakoon
- Siriraj Center of Research Excellence for Diabetes and Obesity, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Watip Tangjittipokin
- Siriraj Center of Research Excellence for Diabetes and Obesity, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Pa-Thai Yenchitsomanus
- Siriraj Center of Research Excellence for Diabetes and Obesity, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Nattachet Plengvidhya
- Siriraj Center of Research Excellence for Diabetes and Obesity, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
9
|
Xu J, Li X, Cole A, Sherman Z, Du W. Reduced Cell Division Control Protein 42 Activity Compromises Hematopoiesis-Supportive Function of Fanconi Anemia Mesenchymal Stromal Cells. Stem Cells 2018; 36:785-795. [PMID: 29377497 PMCID: PMC5918239 DOI: 10.1002/stem.2789] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/20/2017] [Accepted: 01/12/2018] [Indexed: 01/06/2023]
Abstract
Hematopoietic stem cells preserve their ability to self-renew and differentiate to different lineages in the bone marrow (BM) niche, which is composed in large part by BM stromal cells. Studies have shown that altered signaling in the BM niche results in leukemia initiation or progression. Fanconi anemia (FA) is an inherited BM failure syndrome associated with extremely high risk of leukemic transformation. By using two FA mouse models, here we have investigated the hematopoiesis-supportive function of FA BM mesenchymal stroma cells (MSCs). We found that MSCs deficient for Fanca or Fancc gene are defective in proliferation and prone to undergo senescence in vitro. Mechanistically, we show that the activity of cell division control protein 42 (Cdc42), a Rho GTPase known to be a critical regulator for cytoskeleton organization, is significantly reduced in FA MSCs. Furthermore, we demonstrate that this reduction in Cdc42 activity plays a causal role in defective hematopoiesis-supportive function of the FA MSCs. The progenies of wild-type hematopoietic stem and progenitor cells cocultured on FA MSCs exhibit compromised self-renewal capacity both in vitro and in vivo. Genetic correction of FA deficiency restores Cdc42 activity and improves the hematopoiesis-supportive capacity of FA MSC. Finally, ectopic expression of a constitutively active Cdc42 mutant, Cdc42F28L, or pretreatment with Wnt5a, increases the active Cdc42 level and rescues the hematopoietic supportive defects of FA MSCs. Taken together, our results identify a novel link between Cdc42 activity and the hematopoiesis-supportive function of MSCs and suggest that a niche-specific increase of Cdc42 activity may be beneficial for FA therapy. Stem Cells 2018;36:785-795.
Collapse
Affiliation(s)
- Jian Xu
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26506
| | - Xue Li
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Allison Cole
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26506
| | - Zachary Sherman
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26506
| | - Wei Du
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26506
- West Virginia University Cancer Institute, Morgantown, WV 26506
| |
Collapse
|
10
|
Genomic analysis of synchronous intracranial meningiomas with different histological grades. J Neurooncol 2018; 138:41-48. [PMID: 29423538 DOI: 10.1007/s11060-018-2772-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 01/14/2018] [Indexed: 12/21/2022]
Abstract
Although meningioma is the most common primary tumor of the central nervous system, the mechanism of progression from benign to atypical or anaplastic grade remains elusive. The present case reports the genomic evaluation of two synchronous meningiomas with different histological grades (benign and atypical) in the same patient. Under the assumption that the atypical tumor may have progressed from the benign tumor, the clonal origin of the lesions was investigated to identify genomic events responsible for the oncogenic process of evolution to higher grades in meningioma. A 59 year-old female patient was diagnosed with two synchronous meningiomas with different histological grades, benign and atypical. Whole-exome sequencing (WES) and RNA sequencing (RNA-seq) analysis of both tumors were done. WES analysis showed that each meningioma harbored distinct mutation profiles, and RNA-seq analysis revealed distinct gene expression profiles between the two tumors. The only apparent common genetic abnormality found in both tumors was the loss of heterozygosity of chromosome 22, raising the possibility that this event is the initial step in tumor formation, after which distinct subsequent mutations lead to the evolvement of two separate tumors of different grades. The result provides additional evidence on previous reports suggesting separate, independent mechanism of progression into higher grades in meningioma.
Collapse
|
11
|
Kurre P. Hematopoietic development: a gap in our understanding of inherited bone marrow failure. Exp Hematol 2017; 59:1-8. [PMID: 29248612 DOI: 10.1016/j.exphem.2017.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/26/2017] [Accepted: 12/07/2017] [Indexed: 12/31/2022]
Abstract
Inherited bone marrow failure syndromes (IBMFS) represent a heterogeneous group of multisystem disorders that typically present with cytopenia in early childhood. Efforts to understand the underlying hematopoietic stem cell (HSC) losses have generally focused on postnatal hematopoiesis. However, reflecting the role of many of the involved genes in core cellular functions and the diverse nonhematologic abnormalities seen in patients at birth, studies have begun to explore IBMFS manifestations during fetal development. Here, I consider the current evidence for fetal deficits in the HSC pool and highlight emerging concepts regarding the origins and unique pathophysiology of hematopoietic failure in IBMFS.
Collapse
Affiliation(s)
- Peter Kurre
- Department of Pediatrics, Papé Family Pediatric Research Institute, Pediatric Blood & Cancer Biology Program, Oregon Health & Science University, Portland, Oregon.
| |
Collapse
|
12
|
Dcona MM, Morris BL, Ellis KC, Grossman SR. CtBP- an emerging oncogene and novel small molecule drug target: Advances in the understanding of its oncogenic action and identification of therapeutic inhibitors. Cancer Biol Ther 2017; 18:379-391. [PMID: 28532298 PMCID: PMC5536941 DOI: 10.1080/15384047.2017.1323586] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
C-terminal Binding Proteins (CtBP) 1 and 2 are oncogenic transcriptional co-regulators overexpressed in many cancer types, with their expression level correlating to worse prognostic outcomes and aggressive tumor features. CtBP negatively regulates the expression of many tumor suppressor genes, while coactivating genes that promote proliferation, epithelial-mesenchymal transition, and cancer stem cell self-renewal activity. In light of this evidence, the development of novel inhibitors that mitigate CtBP function may provide clinically actionable therapeutic tools. This review article focuses on the progress made in understanding CtBP structure, role in tumor progression, and discovery and development of CtBP inhibitors that target CtBP's dehydrogenase activity and other functions, with a focus on the theory and rationale behind the designs of current inhibitors. We provide insight into the future development and use of rational combination therapy that may further augment the efficacy of CtBP inhibitors, specifically addressing metastasis and cancer stem cell populations within tumors.
Collapse
Affiliation(s)
- M Michael Dcona
- a Department of Internal Medicine , Virginia Commonwealth University , Richmond , VA , USA
| | - Benjamin L Morris
- b Department of Human and Molecular Genetics , Virginia Commonwealth University , Richmond , VA , USA
| | - Keith C Ellis
- c Department of Medicinal Chemistry , Virginia Commonwealth University , Richmond , VA , USA.,d Institute for Structural Biology , Drug Discovery and Development, Virginia Commonwealth University , Richmond , VA , USA.,e VCU Massey Cancer Center , Virginia Commonwealth University , Richmond , VA , USA
| | - Steven R Grossman
- a Department of Internal Medicine , Virginia Commonwealth University , Richmond , VA , USA.,b Department of Human and Molecular Genetics , Virginia Commonwealth University , Richmond , VA , USA.,d Institute for Structural Biology , Drug Discovery and Development, Virginia Commonwealth University , Richmond , VA , USA.,e VCU Massey Cancer Center , Virginia Commonwealth University , Richmond , VA , USA
| |
Collapse
|
13
|
Mazon M, Masi D, Carreau M. Modulating Dickkopf-1: A Strategy to Monitor or Treat Cancer? Cancers (Basel) 2016; 8:cancers8070062. [PMID: 27367730 PMCID: PMC4963804 DOI: 10.3390/cancers8070062] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 06/19/2016] [Accepted: 06/23/2016] [Indexed: 12/17/2022] Open
Abstract
Dickkopf-1 (DKK1) is a secreted Wnt/β-catenin pathway antagonist involved in embryogenesis. It was first described 25 years ago for its function in head induction and limb morphogenesis. Since then, this protein has been widely studied in the context of active Wnt/β-catenin signalling during cellular differentiation and development. Dysregulation of DKK1 has been associated with bone pathologies and has now emerged as a potential biomarker of cancer progression and prognosis for several types of malignancies. Reducing the amount of circulating DKK1 may reveal a simple and efficient strategy to limit or reverse cancer growth. This review will provide an overview of the role of Dickkopf-1 in cancer and explore its potential use as a biomarker and therapeutic target.
Collapse
Affiliation(s)
- Mélody Mazon
- CHU de Québec Research Center, 2705 Boulevard Laurier, RC-9800, Québec, QC G1V 4G2, Canada.
| | - Delphine Masi
- CHU de Québec Research Center, 2705 Boulevard Laurier, RC-9800, Québec, QC G1V 4G2, Canada.
| | - Madeleine Carreau
- CHU de Québec Research Center, 2705 Boulevard Laurier, RC-9800, Québec, QC G1V 4G2, Canada.
- Department of Pediatrics, Université Laval, Québec, QC G1V 0A6, Canada.
| |
Collapse
|
14
|
Sertorio M, Amarachintha S, Wilson A, Pang Q. Loss of Fancc Impairs Antibody-Secreting Cell Differentiation in Mice through Deregulating the Wnt Signaling Pathway. THE JOURNAL OF IMMUNOLOGY 2016; 196:2986-94. [PMID: 26895835 DOI: 10.4049/jimmunol.1501056] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 01/20/2016] [Indexed: 11/19/2022]
Abstract
Fanconi anemia (FA) is characterized by a progressive bone marrow failure and an increased incidence of cancer. FA patients have high susceptibility to immune-related complications such as infection and posttransplant graft-versus-host disease. In this study, we investigated the effect of FA deficiency in B cell function using the Fancc mouse model. Fancc(-/-) B cells show a specific defect in IgG2a switch and impaired Ab-secreting cell (ASC) differentiation. Global transcriptome analysis of naive B cells by mRNA sequencing demonstrates that FA deficiency deregulates a network of genes involved in immune function. Significantly, many genes implicated in Wnt signaling were aberrantly expressed in Fancc(-/-) B cells. Consistently, Fancc(-/-) B cells accumulate high levels of β-catenin under both resting and stimulated conditions, suggesting hyperactive Wnt signaling. Using an in vivo Wnt GFP reporter assay, we verified the upregulation of Wnt signaling as a potential mechanism responsible for the impaired Fancc(-/-) B cell differentiation. Furthermore, we showed that Wnt signaling inhibits ASC differentiation possibly through repression of Blimp1 and that Fancc(-/-) B cells are hypersensitive to Wnt activation during ASC differentiation. Our findings identify Wnt signaling as a physiological regulator of ASC differentiation and establish a role for the Wnt pathway in normal B cell function and FA immune deficiency.
Collapse
Affiliation(s)
- Mathieu Sertorio
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Surya Amarachintha
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Andrew Wilson
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Qishen Pang
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| |
Collapse
|
15
|
Magron A, Elowe S, Carreau M. The Fanconi Anemia C Protein Binds to and Regulates Stathmin-1 Phosphorylation. PLoS One 2015; 10:e0140612. [PMID: 26466335 PMCID: PMC4605623 DOI: 10.1371/journal.pone.0140612] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 09/27/2015] [Indexed: 11/18/2022] Open
Abstract
The Fanconi anemia (FA) proteins are involved in a signaling network that assures the safeguard of chromosomes. To understand the function of FA proteins in cellular division events, we investigated the interaction between Stathmin-1 (STMN1) and the FA group C (FANCC) protein. STMN1 is a ubiquitous cytosolic protein that regulates microtubule dynamics. STMN1 activities are regulated through phosphorylation-dephosphorylation mechanisms that control assembly of the mitotic spindle, and dysregulation of STMN1 phosphorylation is associated with mitotic aberrancies leading to chromosome instability and cancer progression. Using different biochemical approaches, we showed that FANCC interacts and co-localizes with STMN1 at centrosomes during mitosis. We also showed that FANCC is required for STMN1 phosphorylation, as mutations in FANCC reduced serine 16- and 38-phosphorylated forms of STMN1. Phosphorylation of STMN1 at serine 16 is likely an event dependent on a functional FA pathway, as it is reduced in FANCA- and FANCD2-mutant cells. Furthermore, FA-mutant cells exhibited mitotic spindle anomalies such as supernumerary centrosomes and shorter mitotic spindles. These results suggest that FA proteins participate in the regulation of cellular division via the microtubule-associated protein STMN1.
Collapse
Affiliation(s)
- Audrey Magron
- CHU de Québec, CHUL Research Center, Québec, QC, Canada
| | - Sabine Elowe
- Department of Pediatrics, Université Laval, Québec, QC, Canada
- CHU de Québec, CHUL Research Center, Québec, QC, Canada
| | - Madeleine Carreau
- Department of Pediatrics, Université Laval, Québec, QC, Canada
- CHU de Québec, CHUL Research Center, Québec, QC, Canada
- * E-mail:
| |
Collapse
|
16
|
Garbati MR, Hays LE, Rathbun RK, Jillette N, Chin K, Al-Dhalimy M, Agarwal A, Newell AEH, Olson SB, Bagby GC. Cytokine overproduction and crosslinker hypersensitivity are unlinked in Fanconi anemia macrophages. J Leukoc Biol 2015; 99:455-65. [PMID: 26432900 DOI: 10.1189/jlb.3a0515-201r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 09/15/2015] [Indexed: 01/13/2023] Open
Abstract
The Fanconi anemia proteins participate in a canonical pathway that repairs cross-linking agent-induced DNA damage. Cells with inactivated Fanconi anemia genes are universally hypersensitive to such agents. Fanconi anemia-deficient hematopoietic stem cells are also hypersensitive to inflammatory cytokines, and, as importantly, Fanconi anemia macrophages overproduce such cytokines in response to TLR4 and TLR7/8 agonists. We questioned whether TLR-induced DNA damage is the primary cause of aberrantly regulated cytokine production in Fanconi anemia macrophages by quantifying TLR agonist-induced TNF-α production, DNA strand breaks, crosslinker-induced chromosomal breakage, and Fanconi anemia core complex function in Fanconi anemia complementation group C-deficient human and murine macrophages. Although both M1 and M2 polarized Fanconi anemia cells were predictably hypersensitive to mitomycin C, only M1 macrophages overproduced TNF-α in response to TLR-activating signals. DNA damaging agents alone did not induce TNF-α production in the absence of TLR agonists in wild-type or Fanconi anemia macrophages, and mitomycin C did not enhance TLR responses in either normal or Fanconi anemia cells. TLR4 and TLR7/8 activation induced cytokine overproduction in Fanconi anemia macrophages. Also, although TLR4 activation was associated with induced double strand breaks, TLR7/8 activation was not. That DNA strand breaks and chromosome breaks are neither necessary nor sufficient to account for the overproduction of inflammatory cytokines by Fanconi anemia cells suggests that noncanonical anti-inflammatory functions of Fanconi anemia complementation group C contribute to the aberrant macrophage phenotype and suggests that suppression of macrophage/TLR hyperreactivity might prevent cytokine-induced stem cell attrition in Fanconi anemia.
Collapse
Affiliation(s)
- Michael R Garbati
- *Northwest Veterans Affairs Cancer Research Center, Portland, Oregon, USA; Oregon Health & Science University, Portland, Oregon, USA; and Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Laura E Hays
- *Northwest Veterans Affairs Cancer Research Center, Portland, Oregon, USA; Oregon Health & Science University, Portland, Oregon, USA; and Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - R Keaney Rathbun
- *Northwest Veterans Affairs Cancer Research Center, Portland, Oregon, USA; Oregon Health & Science University, Portland, Oregon, USA; and Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Nathaniel Jillette
- *Northwest Veterans Affairs Cancer Research Center, Portland, Oregon, USA; Oregon Health & Science University, Portland, Oregon, USA; and Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Kathy Chin
- *Northwest Veterans Affairs Cancer Research Center, Portland, Oregon, USA; Oregon Health & Science University, Portland, Oregon, USA; and Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Muhsen Al-Dhalimy
- *Northwest Veterans Affairs Cancer Research Center, Portland, Oregon, USA; Oregon Health & Science University, Portland, Oregon, USA; and Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Anupriya Agarwal
- *Northwest Veterans Affairs Cancer Research Center, Portland, Oregon, USA; Oregon Health & Science University, Portland, Oregon, USA; and Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Amy E Hanlon Newell
- *Northwest Veterans Affairs Cancer Research Center, Portland, Oregon, USA; Oregon Health & Science University, Portland, Oregon, USA; and Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Susan B Olson
- *Northwest Veterans Affairs Cancer Research Center, Portland, Oregon, USA; Oregon Health & Science University, Portland, Oregon, USA; and Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Grover C Bagby
- *Northwest Veterans Affairs Cancer Research Center, Portland, Oregon, USA; Oregon Health & Science University, Portland, Oregon, USA; and Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
17
|
Osborn MJ, Gabriel R, Webber BR, DeFeo AP, McElroy AN, Jarjour J, Starker CG, Wagner JE, Joung JK, Voytas DF, von Kalle C, Schmidt M, Blazar BR, Tolar J. Fanconi anemia gene editing by the CRISPR/Cas9 system. Hum Gene Ther 2015; 26:114-26. [PMID: 25545896 PMCID: PMC4326027 DOI: 10.1089/hum.2014.111] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 12/03/2014] [Indexed: 01/31/2023] Open
Abstract
Genome engineering with designer nucleases is a rapidly progressing field, and the ability to correct human gene mutations in situ is highly desirable. We employed fibroblasts derived from a patient with Fanconi anemia as a model to test the ability of the clustered regularly interspaced short palindromic repeats/Cas9 nuclease system to mediate gene correction. We show that the Cas9 nuclease and nickase each resulted in gene correction, but the nickase, because of its ability to preferentially mediate homology-directed repair, resulted in a higher frequency of corrected clonal isolates. To assess the off-target effects, we used both a predictive software platform to identify intragenic sequences of homology as well as a genome-wide screen utilizing linear amplification-mediated PCR. We observed no off-target activity and show RNA-guided endonuclease candidate sites that do not possess low sequence complexity function in a highly specific manner. Collectively, we provide proof of principle for precision genome editing in Fanconi anemia, a DNA repair-deficient human disorder.
Collapse
Affiliation(s)
- Mark J. Osborn
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN 55455
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455
| | - Richard Gabriel
- Department of Translational Oncology, National Center for Tumor Diseases, Heidelberg 69120, Germany
- German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Beau R. Webber
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN 55455
| | - Anthony P. DeFeo
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN 55455
| | - Amber N. McElroy
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN 55455
| | | | - Colby G. Starker
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455
| | - John E. Wagner
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN 55455
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455
| | - J. Keith Joung
- Molecular Pathology Unit, Center for Computational & Integrative Biology, and Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA 02114
- Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115
| | - Daniel F. Voytas
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN 55455
| | - Christof von Kalle
- Department of Translational Oncology, National Center for Tumor Diseases, Heidelberg 69120, Germany
- German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Manfred Schmidt
- Department of Translational Oncology, National Center for Tumor Diseases, Heidelberg 69120, Germany
- German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Bruce R. Blazar
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN 55455
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455
| | - Jakub Tolar
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN 55455
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
18
|
Arai MA, Uemura K, Hamahiga N, Ishikawa N, Koyano T, Kowithayakorn T, Kaddar T, Carreau M, Ishibashi M. Naturally occurring FANCF–Hes1 complex inhibitors from Wrightia religiosa. MEDCHEMCOMM 2015. [DOI: 10.1039/c4md00495g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first naturally occurring inhibitors of FANCF–Hes1 complex were isolated by a newly constructed protein-based high-throughput screening assay.
Collapse
Affiliation(s)
- Midori A. Arai
- Graduate School of Pharmaceutical Sciences
- Chiba University
- Chuo-ku
- Japan
| | - Kenji Uemura
- Graduate School of Pharmaceutical Sciences
- Chiba University
- Chuo-ku
- Japan
| | - Nozomi Hamahiga
- Graduate School of Pharmaceutical Sciences
- Chiba University
- Chuo-ku
- Japan
| | - Naoki Ishikawa
- Graduate School of Pharmaceutical Sciences
- Chiba University
- Chuo-ku
- Japan
| | | | | | - Tagrid Kaddar
- Department of Pediatrics Université Laval
- Cité Universitaire, Québec, Canada, G1K 7P4
- and the Centre de Recherche du CHU de Québec-CHUL
- Québec
- Canada G1V 4G2
| | - Madeleine Carreau
- Department of Pediatrics Université Laval
- Cité Universitaire, Québec, Canada, G1K 7P4
- and the Centre de Recherche du CHU de Québec-CHUL
- Québec
- Canada G1V 4G2
| | - Masami Ishibashi
- Graduate School of Pharmaceutical Sciences
- Chiba University
- Chuo-ku
- Japan
| |
Collapse
|
19
|
Larin M, Gallo D, Tamblyn L, Yang J, Liao H, Sabat N, Brown GW, McPherson JP. Fanconi anemia signaling and Mus81 cooperate to safeguard development and crosslink repair. Nucleic Acids Res 2014; 42:9807-20. [PMID: 25056314 PMCID: PMC4150781 DOI: 10.1093/nar/gku676] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Individuals with Fanconi anemia (FA) are susceptible to bone marrow failure, congenital abnormalities, cancer predisposition and exhibit defective DNA crosslink repair. The relationship of this repair defect to disease traits remains unclear, given that crosslink sensitivity is recapitulated in FA mouse models without most of the other disease-related features. Mice deficient in Mus81 are also defective in crosslink repair, yet MUS81 mutations have not been linked to FA. Using mice deficient in both Mus81 and the FA pathway protein FancC, we show both proteins cooperate in parallel pathways, as concomitant loss of FancC and Mus81 triggered cell-type-specific proliferation arrest, apoptosis and DNA damage accumulation in utero. Mice deficient in both FancC and Mus81 that survived to birth exhibited growth defects and an increased incidence of congenital abnormalities. This cooperativity of FancC and Mus81 in developmental outcome was also mirrored in response to crosslink damage and chromosomal integrity. Thus, our findings reveal that both pathways safeguard against DNA damage from exceeding a critical threshold that triggers proliferation arrest and apoptosis, leading to compromised in utero development.
Collapse
Affiliation(s)
- Meghan Larin
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, M5S 1A8, Canada
| | - David Gallo
- Department of Biochemistry, Terrence Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, M5S 3E1, Canada
| | - Laura Tamblyn
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Jay Yang
- Department of Biochemistry, Terrence Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, M5S 3E1, Canada
| | - Hudson Liao
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Nestor Sabat
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Grant W Brown
- Department of Biochemistry, Terrence Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, M5S 3E1, Canada
| | - J Peter McPherson
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, M5S 1A8, Canada
| |
Collapse
|
20
|
Huang F, Ben Aissa M, Magron A, Huard CC, Godin C, Lévesque G, Carreau M. The Fanconi anemia group C protein interacts with uncoordinated 5A and delays apoptosis. PLoS One 2014; 9:e92811. [PMID: 24676280 PMCID: PMC3968024 DOI: 10.1371/journal.pone.0092811] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 02/25/2014] [Indexed: 11/19/2022] Open
Abstract
The Fanconi anemia group C protein (FANCC) is one of the several proteins that comprise the Fanconi anemia (FA) network involved in genomic surveillance. FANCC is mainly cytoplasmic and has many functions, including apoptosis suppression through caspase-mediated proteolytic processing. Here, we examined the role of FANCC proteolytic fragments by identifying their binding partners. We performed a yeast two-hybrid screen with caspase-mediated FANCC cleavage products and identified the dependence receptor uncoordinated-5A (UNC5A) protein. Here, we show that FANCC physically interacts with UNC5A, a pro-apoptotic dependence receptor. FANCC interaction occurs through the UNC5A intracellular domain, specifically via its death domain. FANCC modulates cell sensitivity to UNC5A-mediated apoptosis; we observed reduced UNC5A-mediated apoptosis in the presence of FANCC and increased apoptosis in FANCC-depleted cells. Our results show that FANCC interferes with UNC5A's functions in apoptosis and suggest that FANCC may participate in developmental processes through association with the dependence receptor UNC5A.
Collapse
Affiliation(s)
- FengFei Huang
- Department of Pediatrics, Centre Hospitalier Universitaire de Québec, Québec, Québec, Canada
| | - Manel Ben Aissa
- Department of Pediatrics, Centre Hospitalier Universitaire de Québec, Québec, Québec, Canada
| | - Audrey Magron
- Department of Pediatrics, Centre Hospitalier Universitaire de Québec, Québec, Québec, Canada
| | - Caroline C. Huard
- Department of Pediatrics, Centre Hospitalier Universitaire de Québec, Québec, Québec, Canada
| | - Chantal Godin
- Department of Psychiatry and Neurosciences, Université Laval, Cité Universitaire, Québec, Canada
| | - Georges Lévesque
- Department of Psychiatry and Neurosciences, Université Laval, Cité Universitaire, Québec, Canada
| | - Madeleine Carreau
- Department of Pediatrics, Centre Hospitalier Universitaire de Québec, Québec, Québec, Canada
- * E-mail:
| |
Collapse
|
21
|
The Fanconi anemia pathway has a dual function in Dickkopf-1 transcriptional repression. Proc Natl Acad Sci U S A 2014; 111:2152-7. [PMID: 24469828 DOI: 10.1073/pnas.1314226111] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fanconi anemia (FA) is an inherited bone marrow failure syndrome associated with a progressive decline in hematopoietic stem cells, developmental defects, and predisposition to cancer. These various phenotypic features imply a role of FA proteins in molecular events regulating cellular homeostasis. Interestingly, we previously found that the Fanconi C protein (FANCC) interacts with the C-terminal-binding protein-1 (CtBP1) involved in transcriptional regulation. Here we report that FANCC with CtBP1 forms a complex with β-catenin, and that β-catenin activation through glycogen synthase kinase 3β inhibition leads to FANCC nuclear accumulation and FA pathway activation, as measured by the Fanconi D2 protein (FANCD2) monoubiquitination. β-catenin and FANCC nuclear entry is defective in FA mutant cells and in cells depleted of the Fanconi A protein or FANCD2, suggesting that integrity of the FA pathway is required for FANCC nuclear activity. We also report that FANCC with CtBP1 acts as a negative regulator of Dickkopf-1 (DKK1) expression, and that a FA disease-causing mutation in FANCC abrogates this function. Our findings reveal that a defective FA pathway leads to up-regulation of DKK1, a molecule involved in hematopoietic malignancies.
Collapse
|