1
|
Minkov M, Kager L. Helmut Gadner: A Charismatic Leader, Visionary, and Pioneer in Pediatric Oncology. Cureus 2024; 16:e68610. [PMID: 39371893 PMCID: PMC11450674 DOI: 10.7759/cureus.68610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2024] [Indexed: 10/08/2024] Open
Abstract
Helmut Gadner, a world-famous pediatric hematologist-oncologist, dedicated his professional life to researching pediatric cancer and advancing care for affected children, adolescents, and their families. Starting his career in the team of Hansjörg Riehm, the father of the ever-most successful BFM (abbreviation of the city names of the founding institutions, Berlin-Frankfurt-Münster) treatment concept of pediatric leukemia, the young Dr. Gadner became a passionate soldier in the fight against pediatric cancer. From 1980 to 2010, he served as a medical director of St. Anna Children's Hospital in Vienna, Austria. Soon after taking this highly responsible position, he realized that improving patient care requires rigorous research from bench to bedside. In 1988, he and others founded St. Anna Children's Cancer Research Institute (St. Anna CCRI), a testament to his visionary spirit, which he headed until his retirement in 2012. His thoughtful leadership and vision were instrumental in establishing St. Anna Children's Hospital and St. Anna CCRI as a worldwide acclaimed center for researching, diagnosing, and treating children and adolescents with cancer within the environment of national and international collaborations and clinical trials. Dr. Gadner's enduring legacy, St. Anna CCRI, recently celebrated its 35th anniversary, operating 14 research groups actively engaged in global collaboration and a wide range of research fields, from basic molecular research to prospective international clinical trials. Helmut Gadner was chair of the Austrian National Working Group for Pediatric Hematology and Oncology (AGPHO) for many years. The outstanding survival of children with acute lymphoblastic leukemia in Austria, placing pediatric oncology in this small country at the top of Europe and the world, is the best evidence of his dedicated and perseverant leadership in this position. Dr. Gadner's lifetime achievements as a scientist, physician, mentor, and leader have received many national and international awards, and herein we try to provide a summary.
Collapse
Affiliation(s)
- Milen Minkov
- Studies and Statistics for Integrated Research and Projects (S2IRP), St. Anna Children's Cancer Research Institute (CCRI), Vienna, AUT
- Research Center for Childhealth, Growth, and Development, Sigmund Freud Private University, Vienna, AUT
- Department of Pediatrics and Adolescent Medicine , Division of Pediatric Oncology, Johannes Kepler University, Linz, AUT
| | - Leo Kager
- Department of Pediatric Hematology/Oncology, St. Anna Children's Cancer Research Institute (CCRI), Vienna, AUT
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, St. Anna Children's Hospital, Vienna, AUT
| |
Collapse
|
2
|
Sconocchia T, Foßelteder J, Sconocchia G, Reinisch A. Langerhans cell histiocytosis: current advances in molecular pathogenesis. Front Immunol 2023; 14:1275085. [PMID: 37965340 PMCID: PMC10642229 DOI: 10.3389/fimmu.2023.1275085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023] Open
Abstract
Langerhans cell histiocytosis (LCH) is a rare and clinically heterogeneous hematological disease characterized by the accumulation of mononuclear phagocytes in various tissues and organs. LCH is often characterized by activating mutations of the mitogen-activated protein kinase (MAPK) pathway with BRAFV600E being the most recurrent mutation. Although this discovery has greatly helped in understanding the disease and in developing better investigational tools, the process of malignant transformation and the cell of origin are still not fully understood. In this review, we focus on the newest updates regarding the molecular pathogenesis of LCH and novel suggested pathways with treatment potential.
Collapse
Affiliation(s)
- Tommaso Sconocchia
- Division of Hematology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Johannes Foßelteder
- Division of Hematology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Giuseppe Sconocchia
- Institute of Translational Pharmacology, National Research Council (CNR), Rome, Italy
| | - Andreas Reinisch
- Division of Hematology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Graz, Graz, Austria
| |
Collapse
|
3
|
Detection of Immune Microenvironment Changes and Immune-Related Regulators in Langerhans Cell Histiocytosis Bone Metastasis. BIOMED RESEARCH INTERNATIONAL 2023; 2023:1447435. [PMID: 36714021 PMCID: PMC9879691 DOI: 10.1155/2023/1447435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 12/18/2022] [Accepted: 01/03/2023] [Indexed: 01/21/2023]
Abstract
The inflammation/immune response pathway is considered a key contributor to the development of Langerhans cell histiocytosis (LCH) bone metastasis. However, the dynamic changes in the immune microenvironment of LCH bone metastasis and critical regulators are still unclear. Expression profiling by arrays of GSE16395, GSE35340, and GSE122476 was applied to detect the immune microenvironment changes in the development of LCH bone metastasis. The single-cell high-throughput sequencing of GSE133704, involved in LCH bone lesions, was analyzed. The online database Metascape and gene set variation analysis (GSVA) algorithms were used to detect the gene function of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). The protein-protein interaction (PPI) network of hub regulators was constructed by the STRING database. In these results, key immune cells, such as Tem cells, NK T cells, CD8(+) T cells, and Th1 cells, were identified in LCH bone metastasis. These genes, which include LAG3, TSPAN5, LPAR5, VEGFA, CXCL16, CD74, and MARCKS, may significantly correlate with the cellular infiltration of B cells, aDCs, pDCs, cytotoxic cells, T cells, CD8+ T cells, T helper cells, and Tcm cells. In conclusion, our study constructed an atlas of the immune microenvironment of LCH bone metastasis. Genes including LAG3, TSPAN5, LPAR5, VEGFA, CXCL16, CD74, and MARCKS may be involved in the development of LCH bone metastasis. The hub gene-immune cell interactive map may be a potential prognostic biomarker for the progression of LCH bone metastasis and synergetic targets for immunotherapy in LCH patients.
Collapse
|
4
|
Kvedaraite E, Milne P, Khalilnezhad A, Chevrier M, Sethi R, Lee HK, Hagey DW, von Bahr Greenwood T, Mouratidou N, Jädersten M, Lee NYS, Minnerup L, Yingrou T, Dutertre CA, Benac N, Hwang YY, Lum J, Loh AHP, Jansson J, Teng KWW, Khalilnezhad S, Weili X, Resteu A, Liang TH, Guan NL, Larbi A, Howland SW, Arnell H, Andaloussi SEL, Braier J, Rassidakis G, Galluzzo L, Dzionek A, Henter JI, Chen J, Collin M, Ginhoux F. Notch-dependent cooperativity between myeloid lineages promotes Langerhans cell histiocytosis pathology. Sci Immunol 2022; 7:eadd3330. [PMID: 36525505 PMCID: PMC7614120 DOI: 10.1126/sciimmunol.add3330] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Langerhans cell histiocytosis (LCH) is a potentially fatal neoplasm characterized by the aberrant differentiation of mononuclear phagocytes, driven by mitogen-activated protein kinase (MAPK) pathway activation. LCH cells may trigger destructive pathology yet remain in a precarious state finely balanced between apoptosis and survival, supported by a unique inflammatory milieu. The interactions that maintain this state are not well known and may offer targets for intervention. Here, we used single-cell RNA-seq and protein analysis to dissect LCH lesions, assessing LCH cell heterogeneity and comparing LCH cells with normal mononuclear phagocytes within lesions. We found LCH discriminatory signatures pointing to senescence and escape from tumor immune surveillance. We also uncovered two major lineages of LCH with DC2- and DC3/monocyte-like phenotypes and validated them in multiple pathological tissue sites by high-content imaging. Receptor-ligand analyses and lineage tracing in vitro revealed Notch-dependent cooperativity between DC2 and DC3/monocyte lineages during expression of the pathognomonic LCH program. Our results present a convergent dual origin model of LCH with MAPK pathway activation occurring before fate commitment to DC2 and DC3/monocyte lineages and Notch-dependent cooperativity between lineages driving the development of LCH cells.
Collapse
Affiliation(s)
- Egle Kvedaraite
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Pathology, Karolinska University Laboratory, Stockholm, Sweden
| | - Paul Milne
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, UK
- Northern Centre for Cancer Care, Newcastle-upon-Tyne Hospitals NHS Foundation Trust, Newcastle-upon-Tyne, UK
| | - Ahad Khalilnezhad
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore
| | - Marion Chevrier
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore
| | - Raman Sethi
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore
| | - Hong Kai Lee
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, UK
| | - Daniel W. Hagey
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Tatiana von Bahr Greenwood
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
- Pediatric Oncology, Astrid Lindgrens Children’s Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Natalia Mouratidou
- Pediatric Gastroenterology, Hepatology and Nutrition Unit, Astrid Lindgren Children’s Hospital, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Martin Jädersten
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Nicole Yee Shin Lee
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore
| | - Lara Minnerup
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Tan Yingrou
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore
- National Skin Center, National Healthcare Group, Singapore
| | - Charles-Antoine Dutertre
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore
- INSERM U1015, Gustave Roussy Cancer Campus, Villejuif, France
| | - Nathan Benac
- INSERM U1015, Gustave Roussy Cancer Campus, Villejuif, France
- Université de Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France
| | - You Yi Hwang
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore
| | - Josephine Lum
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore
| | - Amos Hong Pheng Loh
- VIVA-KKH Paediatric Brain and Solid Tumour Programme, KK Women’s and Children’s Hospital, Singapore
| | - Jessica Jansson
- Pediatric Gastroenterology, Hepatology and Nutrition Unit, Astrid Lindgren Children’s Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Karen Wei Weng Teng
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore
| | - Shabnam Khalilnezhad
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore
| | - Xu Weili
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore
| | - Anastasia Resteu
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, UK
- Northern Centre for Cancer Care, Newcastle-upon-Tyne Hospitals NHS Foundation Trust, Newcastle-upon-Tyne, UK
| | - Tey Hong Liang
- National Skin Centre, National Healthcare Group, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore
| | - Ng Lai Guan
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore
| | - Shanshan Wu Howland
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore
| | - Henrik Arnell
- Department of Clinical Pathology, Karolinska University Laboratory, Stockholm, Sweden
- Pediatric Gastroenterology, Hepatology and Nutrition Unit, Astrid Lindgren Children’s Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Samir EL Andaloussi
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jorge Braier
- Hospital Nacional de Pediatría Dr Prof JP Garrahan, Pathology Department, Buenos Aires, Argentina
| | - Georgios Rassidakis
- Department of Clinical Pathology, Karolinska University Laboratory, Stockholm, Sweden
| | - Laura Galluzzo
- Hospital Nacional de Pediatría Dr Prof JP Garrahan, Pathology Department, Buenos Aires, Argentina
| | | | - Jan-Inge Henter
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
- Pediatric Oncology, Astrid Lindgrens Children’s Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Jinmiao Chen
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, Department of Microbiology and Immunology, Narional Unietsoty of Sinapore (NUS)
| | - Matthew Collin
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, UK
- Northern Centre for Cancer Care, Newcastle-upon-Tyne Hospitals NHS Foundation Trust, Newcastle-upon-Tyne, UK
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore
- INSERM U1015, Gustave Roussy Cancer Campus, Villejuif, France
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| |
Collapse
|
5
|
Minichino D, Lv K, Chu N, Tong W, Behrens EM. BRAF-V600E utilizes posttranscriptional mechanisms to amplify LPS-induced TNFα production in dendritic cells in a mouse model of Langerhans cell histiocytosis. J Leukoc Biol 2022; 112:1089-1104. [PMID: 35648675 PMCID: PMC9939017 DOI: 10.1002/jlb.3a0122-075rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/25/2022] [Indexed: 12/24/2022] Open
Abstract
Langerhans cell histiocytosis (LCH) is an inflammatory disease characterized by abnormal dendritic cells (DCs) with hyperactive ERK signaling, called "LCH cells." Since DCs rely on ERK signaling to produce inflammatory molecules in response to pathogenic cues, we hypothesized that hyperactive ERK enhances DCs inflammatory responses. We specifically investigated TLR4-induced TNFα production in LCH cells by utilizing the BRAF-V600Efl/+ :CD11c-Cre mouse model of LCH, which hyperactivates ERK in DCs. We measured LPS-induced TNFα production both in vivo and in vitro using splenic CD11c+ cells and bone marrow-derived DCs with or without pharmacologic BRAFV600E inhibition. We observed a reversible increase in secreted TNFα and a partially reversible increase in TNFα protein per cell, despite a decrease in TLR4 signaling and Tnfa transcripts compared with controls. We examined ERK-driven, posttranscriptional mechanisms that contribute to TNFα production and secretion using biochemical and cellular assays. We identified a reversible increase in TACE activation, the enzyme required for TNFα secretion, and most strikingly, an increase in protein translation, including TNFα. Defining the translatome through polysome-bound RNA sequencing revealed up-regulated translation of the LPS-response program. These data suggest hyperactive ERK signaling utilizes multiple posttranscriptional mechanisms to amplify inflammatory responses in DCs, advancing our understanding of LCH and basic DC biology.
Collapse
Affiliation(s)
- Danielle Minichino
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Pediatric Rheumatology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kaosheng Lv
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Niansheng Chu
- Division of Pediatric Rheumatology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Wei Tong
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Edward M Behrens
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Pediatric Rheumatology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
6
|
Åkefeldt SO, Ismail MB, Belot A, Salvatore G, Bissay N, Gavhed D, Aricò M, Henter JI, Valentin H, Delprat C. Neutralizing Anti-IL-17A Antibody Demonstrates Preclinical Activity Enhanced by Vinblastine in Langerhans Cell Histiocytosis. Front Oncol 2022; 11:780191. [PMID: 35127485 PMCID: PMC8814633 DOI: 10.3389/fonc.2021.780191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/30/2021] [Indexed: 11/13/2022] Open
Abstract
Langerhans cell histiocytosis (LCH) is an inflammatory myeloid neoplasm characterised by the accumulation into granulomas of apoptosis-resistant pathological dendritic cells (LCH-DCs). LCH outcome ranges from self-resolving to fatal. Having previously shown that, (i) monocyte-derived DCs (Mo-DCs) from LCH patients differentiate into abnormal and pro-inflammatory IL-17A-producing DCs, and (ii) recombinant IL-17A induces survival and chemoresistance of healthy Mo-DCs, we investigated the link between IL-17A and resistance to apoptosis of LCH-DCs. In LCH granulomas, we uncovered the strong expression of BCL2A1 (alias BFL1), an anti-apoptotic BCL2 family member. In vitro, intracellular IL-17A expression was correlated with BCL2A1 expression and survival of Mo-DCs from LCH patients. Based on the chemotherapeutic drugs routinely used as first or second line LCH therapy, we treated these cells with vinblastine, or cytarabine and cladribine. Our preclinical results indicate that high doses of these drugs decreased the expression of Mcl-1, the main anti-apoptotic BCL2 family member for myeloid cells, and killed Mo-DCs from LCH patients ex vivo, without affecting BCL2A1 expression. Conversely, neutralizing anti-IL-17A antibodies decreased BCL2A1 expression, the downregulation of which lowered the survival rate of Mo-DCs from LCH patients. Interestingly, the in vitro combination of low-dose vinblastine with neutralizing anti-IL-17A antibodies killed Mo-DCs from LCH patients. In conclusion, we show that BCL2A1 expression induced by IL-17A links the inflammatory environment to the unusual pro-survival gene activation in LCH-DCs. Finally, these preclinical data support that targeting both Mcl-1 and BCL2A1 with low-dose vinblastine and anti-IL-17A biotherapy may represent a synergistic combination for managing recurrent or severe forms of LCH.
Collapse
Affiliation(s)
- Selma Olsson Åkefeldt
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden.,UnivLyon, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Mohamad Bachar Ismail
- UnivLyon, Université Claude Bernard Lyon 1, Villeurbanne, France.,Laboratoire Microbiologie Santé et Environnement, Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon.,Faculty of Science, Lebanese University, Tripoli, Lebanon
| | - Alexandre Belot
- UnivLyon, Université Claude Bernard Lyon 1, Villeurbanne, France.,Centre International de Recherche en Infectiologie (CIRI), Univ Lyon, Inserm, U1111, Université Claude Bernard, Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France.,Pediatric Nephrology, Rheumatology, Dermatology Unit, HFME, Hospices Civils de Lyon, Bron, France
| | - Giulia Salvatore
- UnivLyon, Université Claude Bernard Lyon 1, Villeurbanne, France.,Radiotherapy Unit, Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Florence, Firenze, Italy
| | - Nathalie Bissay
- UnivLyon, Université Claude Bernard Lyon 1, Villeurbanne, France.,Unité de recherche "Lymphoma Immuno-Biology", Faculté de Médecine Lyon-Sud, Oullins, France
| | - Désirée Gavhed
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | | | - Jan-Inge Henter
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Hélène Valentin
- Centre de Recherche en Cancérologie de Lyon (CRCL) - INSERM U1052 - CNRS UMR5286 - Centre Léon Bérard, Lyon, France
| | - Christine Delprat
- UnivLyon, Université Claude Bernard Lyon 1, Villeurbanne, France.,Centre de Recherche en Cancérologie de Lyon (CRCL) - INSERM U1052 - CNRS UMR5286 - Centre Léon Bérard, Lyon, France
| |
Collapse
|
7
|
Eder SK, Schwentner R, Ben Soussia P, Abagnale G, Attarbaschi A, Minkov M, Halbritter F, Hutter C. Vemurafenib acts as a molecular on-off switch governing systemic inflammation in Langerhans cell histiocytosis. Blood Adv 2022; 6:970-975. [PMID: 34619771 PMCID: PMC8945316 DOI: 10.1182/bloodadvances.2021005442] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/23/2021] [Indexed: 11/20/2022] Open
Abstract
Langerhans cell histiocytosis (LCH) is a neoplasm marked by the accumulation of CD1A+CD207+ cells. It is most commonly driven by a somatic, activating mutation in the BRAF serine-threonine kinase (BRAFV600E). Multisystem disease with risk-organ involvement requires myelotoxic chemotherapy, making BRAF-inhibitors an attractive treatment option. Here, we present a comprehensive analysis of the course of an LCH patient treated with the combination of vemurafenib and salvage chemotherapy who achieved sustained clinical and molecular remission. We show that there is no relationship between peripheral blood BRAFV600E levels and clinical presentation during treatment with vemurafenib, but that vemurafenib leads to a fast, efficient, but reversible inhibition of clinical manifestations of systemic inflammation. In line, serum levels of inflammatory cytokines exactly mirror vemurafenib administration. Genotyping analysis identified the BRAFV600E mutation in multiple hematopoietic cell types, including NK cells and granulocytes. Single-cell transcriptome analyses of peripheral blood and bone marrow cells at time of diagnosis and during treatment indicate that RAF-inhibition abrogates the expression of inflammatory cytokines previously implicated in LCH such as IL1B and CXCL8. Together, our data suggest that while the CD1A+CD207+ histiocytes are the hallmark of LCH, other BRAF-mutated cell populations may contribute significantly to morbidity in patients with multisystem LCH.
Collapse
Affiliation(s)
- Sebastian K. Eder
- St. Anna Children’s Hospital, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
- St. Anna Children’s Cancer Research Institute, Vienna, Austria; and
| | | | | | - Giulio Abagnale
- St. Anna Children’s Cancer Research Institute, Vienna, Austria; and
| | - Andishe Attarbaschi
- St. Anna Children’s Hospital, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Milen Minkov
- St. Anna Children’s Cancer Research Institute, Vienna, Austria; and
- Klinik Floridsdorf, Department of Pediatrics, Neonatology and Adolescent Medicine, Vienna, Austria
| | | | - Caroline Hutter
- St. Anna Children’s Hospital, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
- St. Anna Children’s Cancer Research Institute, Vienna, Austria; and
| |
Collapse
|
8
|
Mitchell J, Kvedaraite E, von Bahr Greenwood T, Lourda M, Henter JI, Berzins SP, Kannourakis G. Plasma Signaling Factors in Patients With Langerhans Cell Histiocytosis (LCH) Correlate With Relative Frequencies of LCH Cells and T Cells Within Lesions. Front Pediatr 2022; 10:872859. [PMID: 35844751 PMCID: PMC9277082 DOI: 10.3389/fped.2022.872859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/30/2022] [Indexed: 11/17/2022] Open
Abstract
Langerhans cell histiocytosis (LCH) lesions contain an inflammatory infiltrate of immune cells including myeloid-derived LCH cells. Cell-signaling proteins within the lesion environment suggest that LCH cells and T cells contribute majorly to the inflammation. Foxp3+ regulatory T cells (Tregs) are enriched in lesions and blood from patients with LCH and are likely involved in LCH pathogenesis. In contrast, mucosal associated invariant T (MAIT) cells are reduced in blood from these patients and the consequence of this is unknown. Serum/plasma levels of cytokines have been associated with LCH disease extent and may play a role in the recruitment of cells to lesions. We investigated whether plasma signaling factors differed between patients with active and non-active LCH. Cell-signaling factors (38 analytes total) were measured in patient plasma and cell populations from matched lesions and/or peripheral blood were enumerated. This study aimed at understanding whether plasma factors corresponded with LCH cells and/or LCH-associated T cell subsets in patients with LCH. We identified several associations between plasma factors and lesional/circulating immune cell populations, thus highlighting new factors as potentially important in LCH pathogenesis. This study highlights plasma cell-signaling factors that are associated with LCH cells, MAIT cells or Tregs in patients, thus they are potentially important in LCH pathogenesis. Further study into these associations is needed to determine whether these factors may become suitable prognostic indicators or therapeutic targets to benefit patients.
Collapse
Affiliation(s)
- Jenée Mitchell
- Fiona Elsey Cancer Research Institute, Ballarat, VIC, Australia.,School of Science, Psychology and Sport, Federation University Australia, Ballarat, VIC, Australia
| | - Egle Kvedaraite
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.,Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| | - Tatiana von Bahr Greenwood
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Magda Lourda
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jan-Inge Henter
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Stuart P Berzins
- Fiona Elsey Cancer Research Institute, Ballarat, VIC, Australia.,School of Science, Psychology and Sport, Federation University Australia, Ballarat, VIC, Australia
| | - George Kannourakis
- Fiona Elsey Cancer Research Institute, Ballarat, VIC, Australia.,School of Science, Psychology and Sport, Federation University Australia, Ballarat, VIC, Australia
| |
Collapse
|
9
|
Tang X, Guo X, Gao J, Sun JJ, Wan Z. Hemophagocytic Lymphohistiocytosis in Langerhans Cell Histiocytosis: A Case Series and Literature Review. J Pediatr Hematol Oncol 2022; 44:e20-e25. [PMID: 34133378 DOI: 10.1097/mph.0000000000002212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 04/08/2021] [Indexed: 11/26/2022]
Abstract
Langerhans cell histiocytosis (LCH) is characterized pathologically by langerin-positive (CD207+) dendritic cell proliferation and is considered by some as a myeloid neoplastic disorder. Hemophagocytic lymphohistiocytosis (HLH) is associated with immune dysregulation characterized by the accumulation of activated macrophages and hypercytokinemia. However, these 2 histiocytosis rarely coexist. Currently, the etiology, risk factors, optimal therapy, and outcomes of LCH-HLH remain unclear. We reviewed the medical records of 7 LCH-HLH patients from our hospital and analyzed 50 LCH-HLH patients reported in scientific literature. The median age of LCH onset of these 57 LCH-HLH patients was 1 year, and 91% (52/57) of patients diagnosed as LCH were less than 2 years old. Fifty-six LCH-HLH patients belonged to the multisystem LCH category and 84% (47/56) patients had risk-organ involvement. Twenty-three LCH-HLH patients were complicated with infection and 3 patients had a primary pathogenic mutation of HLH. Overall, 90% of LCH patients developed HLH at the diagnosis or during chemotherapy. Of the 57 LCH-HLH patients, 15 died. Multisystem LCH patients with risk-organ involvement under 2 years old were most likely to develop HLH when complicated with infection at diagnosis or during chemotherapy. Identifying LCH-HLH patients during early stages and treating them with prompt chemotherapy, hematopoietic stem cell transplantation, or supportive therapies are important for better survival.
Collapse
Affiliation(s)
- Xue Tang
- Department of Pediatrics, West China Second University Hospital, Sichuan University
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan Province, China
| | - Xia Guo
- Department of Pediatrics, West China Second University Hospital, Sichuan University
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan Province, China
| | - Ju Gao
- Department of Pediatrics, West China Second University Hospital, Sichuan University
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan Province, China
| | - Jing-Jing Sun
- Department of Pediatrics, West China Second University Hospital, Sichuan University
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan Province, China
| | - Zhi Wan
- Department of Pediatrics, West China Second University Hospital, Sichuan University
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan Province, China
| |
Collapse
|
10
|
Mitchell J, Kannourakis G. Does CD1a Expression Influence T Cell Function in Patients With Langerhans Cell Histiocytosis? Front Immunol 2021; 12:773598. [PMID: 34956202 PMCID: PMC8702800 DOI: 10.3389/fimmu.2021.773598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/25/2021] [Indexed: 11/13/2022] Open
Abstract
Langerhans cell histiocytosis lesions are characterized by CD1a+ myeloid lineage LCH cells and an inflammatory infiltrate of cytokines and immune cells, including T cells. T cells that recognize CD1a may be implicated in the pathology of many disease states including cancer and autoimmunity but have not been studied in the context of LCH despite the expression of CD1a by LCH cells. In this perspective article, we discuss the expression of CD1a by LCH cells, and we explore the potential for T cells that recognize CD1a to be involved in LCH pathogenesis.
Collapse
Affiliation(s)
- Jenée Mitchell
- Fiona Elsey Cancer Research Institute, Ballarat, VIC, Australia
| | - George Kannourakis
- Fiona Elsey Cancer Research Institute, Ballarat, VIC, Australia
- Federation University Australia, Ballarat, VIC, Australia
- *Correspondence: George Kannourakis,
| |
Collapse
|
11
|
Mitogen-activating protein kinase pathway alterations in Langerhans cell histiocytosis. Curr Opin Oncol 2021; 33:101-109. [PMID: 33315630 DOI: 10.1097/cco.0000000000000707] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Langerhans cell histiocytosis (LCH) is a rare disorder characterized by the infiltration of involved tissues by specialized dendritic cells. The demonstration of the constant activation of the mitogen-activated protein kinase (MAPK) pathway in LCH lesions has been a breakthrough in the understanding of the pathogenesis of this rare disease. We will summarize the current knowledge on MAPK alterations in LCH and the new therapeutic options indicated by these findings. RECENT FINDINGS Since the description of the B-Raf proto-oncogene, serine/threonine kinase (BRAF)V600E mutation in LCH lesions, several other molecular alterations affecting the MAPK pathway have been identified in most cases. Based on these driver alterations, LCH cells were shown to be derived from hematopoietic precursors, which yielded the current concept of LCH as a myeloid inflammatory neoplasia. MAPK pathway inhibitors have emerged as an innovative therapy in severe forms of LCH, resulting in virtually no acquired resistance. However, although they are highly effective, their effect is only temporary, as the disease relapses upon discontinuation of the treatment. SUMMARY LCH is an inflammatory myeloid neoplastic disorder, driven by mutations activating the MAPK pathway. MAPK-targeted treatments represent an important stepforward in the management of patients with severe progressive LCH.
Collapse
|
12
|
Montalvo N, Lara-Endara J, Redrobán L, Leiva M, Armijos C, Russo L. Primary splenic histiocytic sarcoma associated with hemophagocytic lymphohistiocytosis: A case report and review of literature of next-generation sequencing involving FLT3, NOTCH2, and KMT2A mutations. Cancer Rep (Hoboken) 2021; 5:e1496. [PMID: 34292677 PMCID: PMC9124500 DOI: 10.1002/cnr2.1496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/01/2021] [Accepted: 06/17/2021] [Indexed: 11/25/2022] Open
Abstract
Background Histiocytic sarcoma is a very rare monocyte/macrophage‐derived hematopoietic system tumor with a poor prognosis whose diagnosis is pathologically challenging due to its extreme rarity and histological overlap with various mimicking entities in which histiocytes also predominate. Case We report the case of a 33‐year‐old male patient with hemophagocytic lymphohistiocytosis, purpuric syndrome, and significant splenomegaly. The patient underwent splenectomy; subsequent macroscopic examination revealed a spleen weighing 2065 grams with hyperemic red pulp and multiple infarcts at the periphery. The histological and immunohistochemical study established a diagnosis of primary splenic histiocytic sarcoma with frequent hemophagocytosis. Next‐generation sequencing demonstrated mutations in FLT3, NOTCH2, and KMT2A, microsatellite stability, and a tumor mutational burden of 2 mut/Mb. The patient's condition deteriorated clinically from the appearance of the first symptoms and he died 6 months later from multi‐organ failure. Conclusion Primary splenic histiocytic sarcoma is one of the rarest tumors of the hematopoietic system. We report the first case with mutations in FLT3, NOTCH2, and KMT2A, and associated hemophagocytic lymphohistiocytosis.
Collapse
Affiliation(s)
- Nelson Montalvo
- Facultad de Ciencias Médicas de la Salud y la Vida, Escuela de Medicina, Departamento de Docencia e Investigación, Universidad Internacional del Ecuador, Av. Simón Bolívar y Jorge Fernández, Quito, Ecuador.,Servicio de Patología, Hospital Metropolitano, Av. Mariana de Jesús s/n y Nicolás Arteta, Quito, Ecuador
| | - Jorge Lara-Endara
- Facultad de Ciencias Médicas de la Salud y la Vida, Escuela de Medicina, Departamento de Docencia e Investigación, Universidad Internacional del Ecuador, Av. Simón Bolívar y Jorge Fernández, Quito, Ecuador
| | - Ligia Redrobán
- Servicio de Patología, Hospital Metropolitano, Av. Mariana de Jesús s/n y Nicolás Arteta, Quito, Ecuador
| | - María Leiva
- Servicio de Hematología, Hospital Metropolitano, Av. Mariana de Jesús s/n y Nicolás Arteta, Quito, Ecuador
| | - Christian Armijos
- Facultad de Ciencias Médicas de la Salud y la Vida, Escuela de Medicina, Departamento de Docencia e Investigación, Universidad Internacional del Ecuador, Av. Simón Bolívar y Jorge Fernández, Quito, Ecuador.,Servicio de Radiología, Hospital Metropolitano, Av. Mariana de Jesús s/n y Nicolás Arteta, Quito, Ecuador
| | - Leonardo Russo
- Facultad de Ciencias Médicas de la Salud y la Vida, Escuela de Medicina, Departamento de Docencia e Investigación, Universidad Internacional del Ecuador, Av. Simón Bolívar y Jorge Fernández, Quito, Ecuador
| |
Collapse
|
13
|
Transcriptomic Landscape of Circulating Mononuclear Phagocytes in Langerhans Cell Histiocytosis at Single-cell Level. Blood 2021; 138:1237-1248. [PMID: 34132762 DOI: 10.1182/blood.2020009064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 06/05/2021] [Indexed: 11/20/2022] Open
Abstract
Langerhans cell histiocytosis (LCH) is an inflammatory myeloid neoplasm caused by aberrant activation of the mitogen-activated protein kinase (MAPK) pathway. Circulating myeloid cells from patients often carry disease-associated mutations and can be differentiated into langerinhigh LCH-like cells in vitro, but their detailed immune-phenotypic and molecular profiles are lacking and could shed key insights into disease biology. Here we recruited 217 pediatric LCH patients and took blood and tissue samples for BRAFV600E analysis. Immune-phenotyping of the circulating Lin-HLA-DR+ immune population in 49 of these patients revealed that decreased frequency of pDC was significantly linked to disease severity. By single-cell RNA sequencing of samples from 14 patients, we identified key changes in expression of RAS-MAPK-ERK signaling-related genes and transcription factors in distinct members of the mononuclear phagocyte system in the presence of BRAFV600E. Moreover, treatment of patients with the BRAF inhibitor Dabrafenib resulted in MAPK cascade inhibition, inflammation prevention, and regulation of cellular metabolism within mononuclear phagocytes. Finally, we also observed elevated expression of RAS-MAPK-ERK signaling-related genes in a CD207+CD1a+ cell subcluster in skin. Taken together, our data extends the molecular understanding of LCH biology at single-cell resolution, which might contribute to improvement of clinical diagnostics and therapeutics, and aid in the development of personalized medicine approaches.
Collapse
|
14
|
Sengal A, Velazquez J, Hahne M, Burke TM, Abhyankar H, Reyes R, Olea W, Scull B, Eckstein OS, Bigenwald C, Bollard CM, Yu W, Merad M, McClain KL, Allen CE, Chakraborty R. Overcoming T-cell exhaustion in LCH: PD-1 blockade and targeted MAPK inhibition are synergistic in a mouse model of LCH. Blood 2021; 137:1777-1791. [PMID: 33075814 PMCID: PMC8020265 DOI: 10.1182/blood.2020005867] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 09/17/2020] [Indexed: 12/15/2022] Open
Abstract
Langerhans cell histiocytosis (LCH) is an inflammatory myeloid neoplasia characterized by granulomatous lesions containing pathological CD207+ dendritic cells (DCs) with persistent MAPK pathway activation. Standard-of-care chemotherapies are inadequate for most patients with multisystem disease, and optimal strategies for relapsed and refractory disease are not defined. The mechanisms underlying development of inflammation in LCH lesions, the role of inflammation in pathogenesis, and the potential for immunotherapy are unknown. Analysis of the immune infiltrate in LCH lesions identified the most prominent immune cells as T lymphocytes. Both CD8+ and CD4+ T cells exhibited "exhausted" phenotypes with high expression of the immune checkpoint receptors. LCH DCs showed robust expression of ligands to checkpoint receptors. Intralesional CD8+ T cells showed blunted expression of Tc1/Tc2 cytokines and impaired effector function. In contrast, intralesional regulatory T cells demonstrated intact suppressive activity. Treatment of BRAFV600ECD11c LCH mice with anti-PD-1 or MAPK inhibitor reduced lesion size, but with distinct responses. Whereas MAPK inhibitor treatment resulted in reduction of the myeloid compartment, anti-PD-1 treatment was associated with reduction in the lymphoid compartment. Notably, combined treatment with MAPK inhibitor and anti-PD-1 significantly decreased both CD8+ T cells and myeloid LCH cells in a synergistic fashion. These results are consistent with a model that MAPK hyperactivation in myeloid LCH cells drives recruitment of functionally exhausted T cells within the LCH microenvironment, and they highlight combined MAPK and checkpoint inhibition as a potential therapeutic strategy.
Collapse
Affiliation(s)
- Amel Sengal
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX
- Division of Pediatric Hematology-Oncology, Department of Pediatrics and
| | - Jessica Velazquez
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX
- Division of Pediatric Hematology-Oncology, Department of Pediatrics and
| | - Meryl Hahne
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX
| | - Thomas M Burke
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX
- Division of Pediatric Hematology-Oncology, Department of Pediatrics and
- Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX
| | - Harshal Abhyankar
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX
| | - Robert Reyes
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX
| | - Walter Olea
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX
| | - Brooks Scull
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX
| | - Olive S Eckstein
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX
| | - Camille Bigenwald
- Department of Oncological Sciences, Tisch Cancer Institute, and
- Department of Dermatology, Icahn School of Medicine, New York, NY
| | - Catherine M Bollard
- Center for Cancer and Immunology Research, Children's National Medical Center, Washington, DC
- Department of Pediatrics and
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, DC; and
| | - Wendong Yu
- Department of Pathology, Baylor College of Medicine, Houston, TX
| | - Miriam Merad
- Department of Oncological Sciences, Tisch Cancer Institute, and
- Department of Dermatology, Icahn School of Medicine, New York, NY
| | - Kenneth L McClain
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX
- Division of Pediatric Hematology-Oncology, Department of Pediatrics and
| | - Carl E Allen
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX
- Division of Pediatric Hematology-Oncology, Department of Pediatrics and
- Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX
| | - Rikhia Chakraborty
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX
- Division of Pediatric Hematology-Oncology, Department of Pediatrics and
| |
Collapse
|
15
|
Bone marrow-derived myeloid progenitors as driver mutation carriers in high- and low-risk Langerhans cell histiocytosis. Blood 2021; 136:2188-2199. [PMID: 32750121 DOI: 10.1182/blood.2020005209] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022] Open
Abstract
Langerhans cell histiocytosis (LCH) is a myeloid neoplasia, driven by sporadic activating mutations in the MAPK pathway. The misguided myeloid dendritic cell (DC) model proposes that high-risk, multisystem, risk-organ-positive (MS-RO+) LCH results from driver mutation in a bone marrow (BM)-resident multipotent hematopoietic progenitor, while low-risk, MS-RO- and single-system LCH would result from driver mutation in a circulating or tissue-resident, DC-committed precursor. We have examined the CD34+c-Kit+Flt3+ myeloid progenitor population as potential mutation carrier in all LCH disease manifestations. This population contains oligopotent progenitors of monocytes (Mo's)/macrophages (MΦs), osteoclasts (OCs), and DCs. CD34+c-Kit+Flt3+ cells from BM of MS-RO+ LCH patients produced Langerhans cell (LC)-like cells in vitro. Both LC-like and DC offspring from this progenitor carried the BRAF mutation, confirming their common origin. In both high- and low-risk LCH patients, CD34+c-Kit+Flt3+ progenitor frequency in blood was higher than in healthy donors. In one MS-RO+ LCH patient, CD34+c-Kit+Flt3+ cell frequency in blood and its BRAF-mutated offspring reported response to chemotherapy. CD34+c-Kit+Flt3+ progenitors from blood of both high- and low-risk LCH patients gave rise to DCs and LC-like cells in vitro, but the driver mutation was not easily detectable, likely due to low frequency of mutated progenitors. Mutant BRAF alleles were found in Mo's /MΦs, DCs, LC-like cells, and/or OC-like cells in lesions and/or Mo and DCs in blood of multiple low-risk patients. We therefore hypothesize that in both high- and low-risk LCH, the driver mutation is present in a BM-resident myeloid progenitor that can be mobilized to the blood.
Collapse
|
16
|
Oulee A, Ma F, Teles RMB, de Andrade Silva BJ, Pellegrini M, Klechevsky E, Harman AN, Rhodes JW, Modlin RL. Identification of Genes Encoding Antimicrobial Proteins in Langerhans Cells. Front Immunol 2021; 12:695373. [PMID: 34512625 PMCID: PMC8426439 DOI: 10.3389/fimmu.2021.695373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/06/2021] [Indexed: 12/03/2022] Open
Abstract
Langerhans cells (LCs) reside in the epidermis where they are poised to mount an antimicrobial response against microbial pathogens invading from the outside environment. To elucidate potential pathways by which LCs contribute to host defense, we mined published LC transcriptomes deposited in GEO and the scientific literature for genes that participate in antimicrobial responses. Overall, we identified 31 genes in LCs that encode proteins that contribute to antimicrobial activity, ten of which were cross-validated in at least two separate experiments. Seven of these ten antimicrobial genes encode chemokines, CCL1, CCL17, CCL19, CCL2, CCL22, CXCL14 and CXCL2, which mediate both antimicrobial and inflammatory responses. Of these, CCL22 was detected in seven of nine transcriptomes and by PCR in cultured LCs. Overall, the antimicrobial genes identified in LCs encode proteins with broad antibacterial activity, including against Staphylococcus aureus, which is the leading cause of skin infections. Thus, this study illustrates that LCs, consistent with their anatomical location, are programmed to mount an antimicrobial response against invading pathogens in skin.
Collapse
Affiliation(s)
- Aislyn Oulee
- Division of Dermatology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Feiyang Ma
- Division of Dermatology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Rosane M B Teles
- Division of Dermatology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Bruno J de Andrade Silva
- Division of Dermatology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Eynav Klechevsky
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Andrew N Harman
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,School of Medical Sciences, Faculty of Medicine and Health Sydney, The University of Sydney, Westmead, NSW, Australia
| | - Jake W Rhodes
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,School of Medical Sciences, Faculty of Medicine and Health Sydney, The University of Sydney, Westmead, NSW, Australia
| | - Robert L Modlin
- Division of Dermatology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
17
|
Jansen C, Dykstra J, Callaway D, Lynch D, Cunningham A, Frohm ML. Aggressive Langerhans cell histiocytosis following T-cell acute lymphoblastic leukemia. Pediatr Blood Cancer 2020; 67:e28704. [PMID: 32918521 DOI: 10.1002/pbc.28704] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 08/30/2020] [Accepted: 08/31/2020] [Indexed: 11/07/2022]
Abstract
A 4-year-old female child developed cutaneous Langerhans cell histiocytosis 6 months following a diagnosis of T-cell acute lymphoblastic leukemia. Imaging revealed no evidence of systemic disease. Seven months later, the first systemic lesion was discovered on laryngoscopy. Restaging Positron Emission Tomography - Computed Tomography at that time revealed new 18-fluorodeoxyglucose-positive lesions in the left apical pleural margin, right lower peri-esophageal region, left ventricular myocardium, pancreas, upper pole of the left kidney, and inguinal and gluteal regions consistent with progressive systemic disease. Genomic testing revealed a low tumor mutational burden as well as mutations in KRAS G12A, ARID1A Q524, CDKN2A/B loss, and an alteration in NOTCH1.
Collapse
Affiliation(s)
| | - Jordan Dykstra
- USD Sanford School of Medicine, Sioux Falls, South Dakota
| | - Daniel Callaway
- Sanford Health, USD Sanford School of Medicine, Sioux Falls, South Dakota
| | - Douglas Lynch
- USD Sanford School of Medicine, Sioux Falls, South Dakota.,Sanford Health, USD Sanford School of Medicine, Sioux Falls, South Dakota
| | | | - Marcus L Frohm
- USD Sanford School of Medicine, Sioux Falls, South Dakota.,Sanford Health, USD Sanford School of Medicine, Sioux Falls, South Dakota
| |
Collapse
|
18
|
Rojahn TB, Vorstandlechner V, Krausgruber T, Bauer WM, Alkon N, Bangert C, Thaler FM, Sadeghyar F, Fortelny N, Gernedl V, Rindler K, Elbe-Bürger A, Bock C, Mildner M, Brunner PM. Single-cell transcriptomics combined with interstitial fluid proteomics defines cell type-specific immune regulation in atopic dermatitis. J Allergy Clin Immunol 2020; 146:1056-1069. [PMID: 32344053 DOI: 10.1016/j.jaci.2020.03.041] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/10/2020] [Accepted: 03/27/2020] [Indexed: 02/09/2023]
Abstract
BACKGROUND Atopic dermatitis (AD) is the most common chronic inflammatory skin disease, but its complex pathogenesis is only insufficiently understood, resulting in still limited treatment options. OBJECTIVE We sought to characterize AD on both transcriptomic and proteomic levels in humans. METHODS We used skin suction blistering, a painless and nonscarring procedure that can simultaneously sample skin cells and interstitial fluid. We then compared results with conventional biopsies. RESULTS Suction blistering captured epidermal and most immune cells equally well as biopsies, except for mast cells and nonmigratory CD163+ macrophages that were only present in biopsy isolates. Using single-cell RNA sequencing, we found comparable transcriptional profiles of key inflammatory pathways between blister and biopsy AD, but suction blistering was superior in cell-specific resolution for high-abundance transcripts (KRT1/KRT10, KRT16/KRT6A, S100A8/S100A9), which showed some background signals in biopsy isolates. Compared with healthy controls, we found characteristic upregulation of AD-typical cytokines such as IL13 and IL22 in Th2 and Th22 cells, respectively, but we also discovered these mediators in proliferating T cells and natural killer T cells, that also expressed the antimicrobial cytokine IL26. Overall, not T cells, but myeloid cells were most strongly enriched in AD, and we found dendritic cell (CLEC7A, amphiregulin/AREG, EREG) and macrophage products (CCL13) among the top upregulated proteins in AD blister fluid proteomic analyses. CONCLUSION These data show that by using cutting-edge technology, suction blistering offers several advantages over conventional biopsies, including better transcriptomic resolution of skin cells, combined with proteomic information from interstitial fluid, unraveling novel inflammatory players that shape the cellular and proteomic microenvironment of AD.
Collapse
Affiliation(s)
- Thomas B Rojahn
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Vera Vorstandlechner
- Department of Dermatology, Medical University of Vienna, Vienna, Austria; Department of Surgery, Research Laboratory for Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Thomas Krausgruber
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Wolfgang M Bauer
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Natalia Alkon
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Christine Bangert
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Felix M Thaler
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Farzaneh Sadeghyar
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Nikolaus Fortelny
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Victoria Gernedl
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Katharina Rindler
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | | | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Michael Mildner
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Patrick M Brunner
- Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
19
|
Mitchell J, Kelly J, Kvedaraite E, von Bahr Greenwood T, Henter JI, Pellicci DG, Berzins SP, Kannourakis G. Foxp3+ Tregs from Langerhans cell histiocytosis lesions co-express CD56 and have a definitively regulatory capacity. Clin Immunol 2020; 215:108418. [DOI: 10.1016/j.clim.2020.108418] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 03/30/2020] [Accepted: 04/09/2020] [Indexed: 12/13/2022]
|
20
|
Kemps PG, Zondag TC, Steenwijk EC, Andriessen Q, Borst J, Vloemans S, Roelen DL, Voortman LM, Verdijk RM, van Noesel CJM, Cleven AHG, Hawkins C, Lang V, de Ru AH, Janssen GMC, Haasnoot GW, Franken KLMC, van Eijk R, Solleveld-Westerink N, van Wezel T, Egeler RM, Beishuizen A, van Laar JAM, Abla O, van den Bos C, van Veelen PA, van Halteren AGS. Apparent Lack of BRAF V600E Derived HLA Class I Presented Neoantigens Hampers Neoplastic Cell Targeting by CD8 + T Cells in Langerhans Cell Histiocytosis. Front Immunol 2020; 10:3045. [PMID: 31998317 PMCID: PMC6967030 DOI: 10.3389/fimmu.2019.03045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 12/12/2019] [Indexed: 12/14/2022] Open
Abstract
Langerhans Cell Histiocytosis (LCH) is a neoplastic disorder of hematopoietic origin characterized by inflammatory lesions containing clonal histiocytes (LCH-cells) intermixed with various immune cells, including T cells. In 50-60% of LCH-patients, the somatic BRAF V600E driver mutation, which is common in many cancers, is detected in these LCH-cells in an otherwise quiet genomic landscape. Non-synonymous mutations like BRAF V600E can be a source of neoantigens capable of eliciting effective antitumor CD8+ T cell responses. This requires neopeptides to be stably presented by Human Leukocyte Antigen (HLA) class I molecules and sufficient numbers of CD8+ T cells at tumor sites. Here, we demonstrate substantial heterogeneity in CD8+ T cell density in n = 101 LCH-lesions, with BRAF V600E mutated lesions displaying significantly lower CD8+ T cell:CD1a+ LCH-cell ratios (p = 0.01) than BRAF wildtype lesions. Because LCH-lesional CD8+ T cell density had no significant impact on event-free survival, we investigated whether the intracellularly expressed BRAF V600E protein is degraded into neopeptides that are naturally processed and presented by cell surface HLA class I molecules. Epitope prediction tools revealed a single HLA class I binding BRAF V600E derived neopeptide (KIGDFGLATEK), which indeed displayed strong to intermediate binding capacity to HLA-A*03:01 and HLA-A*11:01 in an in vitro peptide-HLA binding assay. Mass spectrometry-based targeted peptidomics was used to investigate the presence of this neopeptide in HLA class I presented peptides isolated from several BRAF V600E expressing cell lines with various HLA genotypes. While the HLA-A*02:01 binding BRAF wildtype peptide KIGDFGLATV was traced in peptides isolated from all five cell lines expressing this HLA subtype, KIGDFGLATEK was not detected in the HLA class I peptidomes of two distinct BRAF V600E transduced cell lines with confirmed expression of HLA-A*03:01 or HLA-A*11:01. These data indicate that the in silico predicted HLA class I binding and proteasome-generated neopeptides derived from the BRAF V600E protein are not presented by HLA class I molecules. Given that the BRAF V600E mutation is highly prevalent in chemotherapy refractory LCH-patients who may qualify for immunotherapy, this study therefore questions the efficacy of immune checkpoint inhibitor therapy in LCH.
Collapse
Affiliation(s)
- Paul G Kemps
- Immunology Laboratory Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, Netherlands
| | - Timo C Zondag
- Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Eline C Steenwijk
- Immunology Laboratory Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, Netherlands
| | - Quirine Andriessen
- Immunology Laboratory Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, Netherlands
| | - Jelske Borst
- Immunology Laboratory Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, Netherlands
| | - Sandra Vloemans
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Dave L Roelen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Lenard M Voortman
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Robert M Verdijk
- Department of Pathology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Carel J M van Noesel
- Department of Pathology, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Arjen H G Cleven
- Department of Pathology, Leiden University Medical Center, Leiden, Netherlands
| | - Cynthia Hawkins
- Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Veronica Lang
- Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Arnoud H de Ru
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - George M C Janssen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Geert W Haasnoot
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Kees L M C Franken
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Ronald van Eijk
- Department of Pathology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Tom van Wezel
- Department of Pathology, Leiden University Medical Center, Leiden, Netherlands
| | - R Maarten Egeler
- Immunology Laboratory Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, Netherlands.,Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Auke Beishuizen
- Department of Pediatric Oncology, Sophia Children's Hospital, Erasmus University Medical Center, Rotterdam, Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Jan A M van Laar
- Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Oussama Abla
- Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Cor van den Bos
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands.,Department of Pediatric Oncology, Emma Children's Hospital, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Peter A van Veelen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Astrid G S van Halteren
- Immunology Laboratory Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| |
Collapse
|
21
|
Allen CE, Beverley PCL, Collin M, Diamond EL, Egeler RM, Ginhoux F, Glass C, Minkov M, Rollins BJ, van Halteren A. The coming of age of Langerhans cell histiocytosis. Nat Immunol 2020; 21:1-7. [PMID: 31831887 DOI: 10.1038/s41590-019-0558-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Carl E Allen
- Scientific Member of the Steering Committee, Nikolas Symposia, Piraeus, Greece
- Baylor College of Medicine, Texas Children's Cancer Center, Houston, TX, USA
| | - Peter C L Beverley
- Scientific Member of the Steering Committee, Nikolas Symposia, Piraeus, Greece.
- TB Research Centre, National Heart and Lung Institute, Imperial College London, London, UK.
| | - Matthew Collin
- Scientific Member of the Steering Committee, Nikolas Symposia, Piraeus, Greece
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Eli L Diamond
- Scientific Member of the Steering Committee, Nikolas Symposia, Piraeus, Greece
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - R Maarten Egeler
- Scientific Member of the Steering Committee, Nikolas Symposia, Piraeus, Greece
- University of Leiden, Leiden, the Netherlands
- University of Toronto, Toronto, Ontario, Canada
| | - Florent Ginhoux
- Scientific Member of the Steering Committee, Nikolas Symposia, Piraeus, Greece
- University of California, San Diego, La Jolla, CA, USA
| | - Christopher Glass
- Scientific Member of the Steering Committee, Nikolas Symposia, Piraeus, Greece
- Singapore Immunology Network, A*Star Singapore, Singapore, Singapore
| | - Milen Minkov
- Scientific Member of the Steering Committee, Nikolas Symposia, Piraeus, Greece
- Sigmund Freud University, Department of Pediatrics and Adolescent Medicine, Clinic Floridsdorf of the City of Vienna, Vienna, Austria
| | - Barrett J Rollins
- Scientific Member of the Steering Committee, Nikolas Symposia, Piraeus, Greece
- Department of Medical Oncology, Dana-Farber Cancer Institute, Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Astrid van Halteren
- Scientific Member of the Steering Committee, Nikolas Symposia, Piraeus, Greece
- Leiden University Medical Center and Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| |
Collapse
|
22
|
Karamova AE, Chikin VV, Znamenskaya LF, Nefedova MA, Mikhina VA, Battalova NS. Langerhans cell histiocytosis in an adult patient. VESTNIK DERMATOLOGII I VENEROLOGII 2019. [DOI: 10.25208/0042-4609-2019-95-4-57-66] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Aim: to present a clinical case of a rare dermatosis — Langerhans cell histiocytosis (LCH) in an adult patient.Materials and methods. A clinical and laboratory examination of a 64-year-old woman who had complained of rashes on the skin of the scalp, neck, trunk and lower extremities accompanied by itching was carried out. A histological study of skin biopsy samples from the lesion area, as well as an immunohistochemical study of Langerhans cell markers — langerin and S-100 protein — were performed.Results. Clinical manifestations of the disease, the presence of histiocytic infiltrate in the epidermis and dermis during the histological study and immunohistochemical detection of langerin infiltrate cells and S-100 protein were all consistent with the diagnosis of LCH. The therapy with methotrexate subcutaneously significantly improved the patient’s condition.Conclusion. Verification of the LCH diagnosis requires a histological study of skin biopsy samples and an immunohistochemical study of Langerhans cell markers. The efficacy of methotrexate in the treatment of this disease has been confirmed.
Collapse
Affiliation(s)
- A. E. Karamova
- State Research Center of Dermatovenereology and Cosmetology, Ministry of Health of the Russian Federation
| | - V. V. Chikin
- State Research Center of Dermatovenereology and Cosmetology, Ministry of Health of the Russian Federation
| | - L. F. Znamenskaya
- State Research Center of Dermatovenereology and Cosmetology, Ministry of Health of the Russian Federation
| | - M. A. Nefedova
- State Research Center of Dermatovenereology and Cosmetology, Ministry of Health of the Russian Federation
| | - V. A. Mikhina
- State Research Center of Dermatovenereology and Cosmetology, Ministry of Health of the Russian Federation
| | - N. S. Battalova
- State Research Center of Dermatovenereology and Cosmetology, Ministry of Health of the Russian Federation
| |
Collapse
|
23
|
Carpentier S, Romagné F, Vivier E. A comprehensive approach to gene expression profiling in immune cells. Methods Enzymol 2019; 636:1-47. [PMID: 32178815 DOI: 10.1016/bs.mie.2019.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
With the advent of whole-transcriptome studies and the growing need for public repositories, it has become essential to combine multiple heterogeneous datasets for immune cells. In this chapter, we describe the implementation of a compendium of 10,833 genes for 975 samples, corresponding to 52 resting immune cell types. We begin by describing the datasets, and their selection, in particular. We then explain the methodology implemented to create a qualified compendium: the processing of each array (quality control, normalization and bias correction), integration (merging rules, global normalization and batch removal) and validation. Finally some examples of use will be detailed. The utility and limitations of the compendium are also discussed, as an introduction to the next version.
Collapse
Affiliation(s)
| | | | - Eric Vivier
- Innate Pharma Research Laboratories, Innate Pharma, Marseille, France; Aix-Marseille Univ, APHM, CNRS, INSERM, CIML, Hôpital de la Timone, Marseille-Immunopole, Marseille, France.
| |
Collapse
|
24
|
Halbritter F, Farlik M, Schwentner R, Jug G, Fortelny N, Schnöller T, Pisa H, Schuster LC, Reinprecht A, Czech T, Gojo J, Holter W, Minkov M, Bauer WM, Simonitsch-Klupp I, Bock C, Hutter C. Epigenomics and Single-Cell Sequencing Define a Developmental Hierarchy in Langerhans Cell Histiocytosis. Cancer Discov 2019; 9:1406-1421. [PMID: 31345789 DOI: 10.1158/2159-8290.cd-19-0138] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/03/2019] [Accepted: 07/10/2019] [Indexed: 01/10/2023]
Abstract
Langerhans cell histiocytosis (LCH) is a rare neoplasm predominantly affecting children. It occupies a hybrid position between cancers and inflammatory diseases, which makes it an attractive model for studying cancer development. To explore the molecular mechanisms underlying the pathophysiology of LCH and its characteristic clinical heterogeneity, we investigated the transcriptomic and epigenomic diversity in primary LCH lesions. Using single-cell RNA sequencing, we identified multiple recurrent types of LCH cells within these biopsies, including putative LCH progenitor cells and several subsets of differentiated LCH cells. We confirmed the presence of proliferative LCH cells in all analyzed biopsies using IHC, and we defined an epigenomic and gene-regulatory basis of the different LCH-cell subsets by chromatin-accessibility profiling. In summary, our single-cell analysis of LCH uncovered an unexpected degree of cellular, transcriptomic, and epigenomic heterogeneity among LCH cells, indicative of complex developmental hierarchies in LCH lesions. SIGNIFICANCE: This study sketches a molecular portrait of LCH lesions by combining single-cell transcriptomics with epigenome profiling. We uncovered extensive cellular heterogeneity, explained in part by an intrinsic developmental hierarchy of LCH cells. Our findings provide new insights and hypotheses for advancing LCH research and a starting point for personalizing therapy.See related commentary by Gruber et al., p. 1343.This article is highlighted in the In This Issue feature, p. 1325.
Collapse
Affiliation(s)
- Florian Halbritter
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Matthias Farlik
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | | | - Gunhild Jug
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Nikolaus Fortelny
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Thomas Schnöller
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Hanja Pisa
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Linda C Schuster
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Andrea Reinprecht
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Thomas Czech
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Johannes Gojo
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Holter
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
- St. Anna Children's Hospital, St. Anna Kinderspital, Vienna, Austria
| | - Milen Minkov
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- Department of Pediatrics, Adolescent Medicine and Neonatology, Rudolfstiftung Hospital, Vienna, Austria
| | - Wolfgang M Bauer
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | | | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Caroline Hutter
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
- St. Anna Children's Hospital, St. Anna Kinderspital, Vienna, Austria
| |
Collapse
|
25
|
Papo M, Cohen-Aubart F, Trefond L, Bauvois A, Amoura Z, Emile JF, Haroche J. Systemic Histiocytosis (Langerhans Cell Histiocytosis, Erdheim-Chester Disease, Destombes-Rosai-Dorfman Disease): from Oncogenic Mutations to Inflammatory Disorders. Curr Oncol Rep 2019; 21:62. [PMID: 31115724 DOI: 10.1007/s11912-019-0810-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW Provide an overview of recent progress in decoding the pathogenesis and treatment of systemic histiocytoses. RECENT FINDINGS Advances in molecular techniques over the last few years, enabling the identification of several MAPK mutations in lesion histiocytes, have revolutionized our understanding of histiocytosis that led to a revised classification and new treatments. Since the 2010 discovery of the BRAFV600E mutation in 57% of Langerhans cell histiocytosis (LCH) lesions, several other kinase mutations have been found, mostly in the MAPK pathway, and also in other key signaling pathways, in LCH, Erdheim-Chester Disease (ECD) and, less frequently, Destombes-Rosai-Dorfman disease (RDD). Those revolutionary breakthroughs enhanced our understanding of the pathogenesis of histiocytosis and led to trials with targeted therapies that demonstrated notable efficacy.
Collapse
Affiliation(s)
- Matthias Papo
- Assistance Publique-Hôpitaux de Paris, Service de Médecine Interne 2, Centre National de Références des Histiocytoses, Hôpital Pitié-Salpêtrière, Sorbonne Université, 47-83, Boulevard de l'Hôpital, 75651, Paris Cedex 13, France
| | - Fleur Cohen-Aubart
- Assistance Publique-Hôpitaux de Paris, Service de Médecine Interne 2, Centre National de Références des Histiocytoses, Hôpital Pitié-Salpêtrière, Sorbonne Université, 47-83, Boulevard de l'Hôpital, 75651, Paris Cedex 13, France
| | - Ludovic Trefond
- Assistance Publique-Hôpitaux de Paris, Service de Médecine Interne 2, Centre National de Références des Histiocytoses, Hôpital Pitié-Salpêtrière, Sorbonne Université, 47-83, Boulevard de l'Hôpital, 75651, Paris Cedex 13, France
| | - Adeline Bauvois
- Assistance Publique-Hôpitaux de Paris, Service de Médecine Interne 2, Centre National de Références des Histiocytoses, Hôpital Pitié-Salpêtrière, Sorbonne Université, 47-83, Boulevard de l'Hôpital, 75651, Paris Cedex 13, France
| | - Zahir Amoura
- Assistance Publique-Hôpitaux de Paris, Service de Médecine Interne 2, Centre National de Références des Histiocytoses, Hôpital Pitié-Salpêtrière, Sorbonne Université, 47-83, Boulevard de l'Hôpital, 75651, Paris Cedex 13, France
| | - Jean-François Emile
- EA4340-BECCOH, Versailles University, & Département de Pathologie, Hôpital Ambroise Paré, AP-HP, 9 Avenue Charles de Gaulle, 92100, Boulogne, France
| | - Julien Haroche
- Assistance Publique-Hôpitaux de Paris, Service de Médecine Interne 2, Centre National de Références des Histiocytoses, Hôpital Pitié-Salpêtrière, Sorbonne Université, 47-83, Boulevard de l'Hôpital, 75651, Paris Cedex 13, France.
| |
Collapse
|
26
|
Schwentner R, Jug G, Kauer MO, Schnöller T, Waidhofer-Söllner P, Holter W, Hutter C. JAG2 signaling induces differentiation of CD14 + monocytes into Langerhans cell histiocytosis-like cells. J Leukoc Biol 2018; 105:101-111. [PMID: 30296338 DOI: 10.1002/jlb.1a0318-098r] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 08/12/2018] [Accepted: 09/17/2018] [Indexed: 12/26/2022] Open
Abstract
Langerhans cell histiocytosis (LCH) is a MAPK pathway-driven disease characterized by the accumulation of CD1a+ langerin+ cells of unknown origin. We have previously reported that the Notch signaling pathway is active in LCH lesions and that the Notch ligand Jagged2 (JAG2) induces CD1a and langerin expression in monocytes in vitro. Here we show that Notch signaling induces monocytes to acquire an LCH gene signature and that Notch inhibition suppresses the LCH phenotype. In contrast, while also CD1c+ dendritic cells or IL-4-stimulated CD14+ monocytes acquire CD1a and langerin positivity in culture, their gene expression profiles and surface phenotypes are more different from primary LCH cells. We propose a model where CD14+ monocytes serve as LCH cell precursor and JAG2-mediated activation of the Notch signaling pathway initiates a differentiation of monocytes toward LCH cells in selected niches and thereby contributes to LCH pathogenesis.
Collapse
Affiliation(s)
- Raphaela Schwentner
- Children´s Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna, Austria
| | - Gunhild Jug
- Children´s Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna, Austria
| | - Maximilian O Kauer
- Children´s Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna, Austria
| | - Thomas Schnöller
- Children´s Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna, Austria
| | | | - Wolfgang Holter
- Children´s Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna, Austria.,St. Anna Children's Hospital, Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Caroline Hutter
- Children´s Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna, Austria.,St. Anna Children's Hospital, Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
27
|
Collin M, Bigley V. Human dendritic cell subsets: an update. Immunology 2018; 154:3-20. [PMID: 29313948 PMCID: PMC5904714 DOI: 10.1111/imm.12888] [Citation(s) in RCA: 808] [Impact Index Per Article: 134.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/30/2017] [Accepted: 12/04/2017] [Indexed: 02/06/2023] Open
Abstract
Dendritic cells (DC) are a class of bone-marrow-derived cells arising from lympho-myeloid haematopoiesis that form an essential interface between the innate sensing of pathogens and the activation of adaptive immunity. This task requires a wide range of mechanisms and responses, which are divided between three major DC subsets: plasmacytoid DC (pDC), myeloid/conventional DC1 (cDC1) and myeloid/conventional DC2 (cDC2). Each DC subset develops under the control of a specific repertoire of transcription factors involving differential levels of IRF8 and IRF4 in collaboration with PU.1, ID2, E2-2, ZEB2, KLF4, IKZF1 and BATF3. DC haematopoiesis is conserved between mammalian species and is distinct from monocyte development. Although monocytes can differentiate into DC, especially during inflammation, most quiescent tissues contain significant resident populations of DC lineage cells. An extended range of surface markers facilitates the identification of specific DC subsets although it remains difficult to dissociate cDC2 from monocyte-derived DC in some settings. Recent studies based on an increasing level of resolution of phenotype and gene expression have identified pre-DC in human blood and heterogeneity among cDC2. These advances facilitate the integration of mouse and human immunology, support efforts to unravel human DC function in vivo and continue to present new translational opportunities to medicine.
Collapse
Affiliation(s)
- Matthew Collin
- Human Dendritic Cell LabInstitute of Cellular Medicine and NIHR Newcastle Biomedical Research Centre Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle UniversityNewcastle upon TyneUK
| | - Venetia Bigley
- Human Dendritic Cell LabInstitute of Cellular Medicine and NIHR Newcastle Biomedical Research Centre Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle UniversityNewcastle upon TyneUK
| |
Collapse
|
28
|
Strobl H, Krump C, Borek I. Micro-environmental signals directing human epidermal Langerhans cell differentiation. Semin Cell Dev Biol 2018; 86:36-43. [PMID: 29448069 DOI: 10.1016/j.semcdb.2018.02.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 12/12/2017] [Accepted: 02/10/2018] [Indexed: 01/11/2023]
Abstract
Human Langerhans cells (LC) can be generated ex vivo from hematopoietic precursor cells in response to cytokines and cell-membrane associated ligands. These in vitro differentiation models provided mechanistic insights into the molecular and cellular pathways underlying the development of this unique, epithelia-associated dendritic cell subset. Notably, the human epidermal microenvironment is fully sufficient to induce LC differentiation from hematopoietic progenitors. Hence, dissecting the molecular characteristics of the human epithelial/epidermal LC niche, and testing defined ligands for their capacity to induce LC differentiation, led to a refined molecular model of LC lineage commitment. During epidermal ontogeny, spatially and temporally regulated availability of TGF-β family members cooperate with other keratinocyte-derived signals, such as E-cadherin and Notch ligands, for instructing LC differentiation. In this review, we discuss the signals known to instruct human hematopoietic progenitor cells and myelomonocytic cells to undergo LC lineage commitment. Additionally, the current methods for generation of large numbers of human LC-like cells ex vivo in defined serum-free media are discussed.
Collapse
Affiliation(s)
- Herbert Strobl
- Otto Loewi Research Center, Chair of Immunology and Pathophysiology, Medical University of Graz, Graz, Austria.
| | - Corinna Krump
- Otto Loewi Research Center, Chair of Immunology and Pathophysiology, Medical University of Graz, Graz, Austria
| | - Izabela Borek
- Otto Loewi Research Center, Chair of Immunology and Pathophysiology, Medical University of Graz, Graz, Austria
| |
Collapse
|
29
|
Clinical implications of oncogenic mutations in pulmonary Langerhans cell histiocytosis. Curr Opin Pulm Med 2018; 24:281-286. [PMID: 29470255 DOI: 10.1097/mcp.0000000000000470] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
PURPOSE OF REVIEW Langerhans cell histiocytosis (LCH) is a neoplasm of dendritic cells with a wide clinical spectrum. Localized pulmonary LCH occurs in young adults with a history of smoking and can either resolve spontaneously or lead to progressive decline in pulmonary function. Young children can also present with localized disease - frequently bone or skin - or with multifocal or multisystem disease. Clinical outcomes in these patients also vary widely, ranging from spontaneous resolution to multiorgan failure and death. This review describes recent developments in our understanding of the underlying pathogenesis of LCH and how these discoveries and other research are affecting how the disease is classified, treated and monitored. RECENT FINDINGS Somatic mutations resulting in activation of the mitogen-activated protein kinase (MAPK) pathway were recently identified as a key pathogenetic mechanism in both pediatric and pulmonary LCH. SUMMARY Knowledge of underlying pathogenetic mechanisms of LCH transforming how this disease and other histocytic/dendritic disorders are classified, treated and monitored.
Collapse
|
30
|
CDKN2A/B Deletion and Double-hit Mutations of the MAPK Pathway Underlie the Aggressive Behavior of Langerhans Cell Tumors. Am J Surg Pathol 2018; 42:150-159. [DOI: 10.1097/pas.0000000000000989] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
31
|
The Reticulum-Associated Protein RTN1A Specifically Identifies Human Dendritic Cells. J Invest Dermatol 2018; 138:1318-1327. [PMID: 29369773 DOI: 10.1016/j.jid.2018.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 12/22/2017] [Accepted: 01/03/2018] [Indexed: 12/21/2022]
Abstract
RTN1 is an endoplasmic reticulum-associated protein that was initially identified in neuronal tissues. Here we show that the main isoform RTN1A is a marker for dendritic cells. In the skin, HLA-DR+CD1ahighCD207+CD11cweak Langerhans cells were the only cells in the epidermis, and HLA-DR+CD11c+ dendritic cells were the main cells in the dermis, expressing this protein. RTN1A+ dendritic cells were also found in gingiva, trachea, tonsil, thymus, and peripheral blood. During differentiation of MUTZ-3 cells into Langerhans cells, expression of RTN1A mRNA and protein preceded established Langerhans cell markers CD1a and CD207, and RTN1A protein partially co-localized with the endoplasmic reticulum marker protein disulfide isomerase. In line with this observation, we found that RTN1A was expressed by around 80% of Langerhans cell precursors in human embryonic skin. Our findings show that RTN1A is a marker for cells of the dendritic lineage, including Langerhans cells and dermal dendritic cells. This unexpected finding will serve as a starting point for the elucidation of the, until now, elusive functional roles of RTN1A in both the immune and the nervous system.
Collapse
|
32
|
Dyjack N, Goleva E, Rios C, Kim BE, Bin L, Taylor P, Bronchick C, Hall CF, Richers BN, Seibold MA, Leung DYM. Minimally invasive skin tape strip RNA sequencing identifies novel characteristics of the type 2-high atopic dermatitis disease endotype. J Allergy Clin Immunol 2018; 141:1298-1309. [PMID: 29309794 DOI: 10.1016/j.jaci.2017.10.046] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/11/2017] [Accepted: 10/11/2017] [Indexed: 01/12/2023]
Abstract
BACKGROUND Expression profiling of skin biopsy specimens has established molecular features of the skin in patients with atopic dermatitis (AD). The invasiveness of biopsies has prevented their use in defining individual-level AD pathobiological mechanisms (endotypes) in large research studies. OBJECTIVE We sought to determine whether minimally invasive skin tape strip transcriptome analysis identifies gene expression dysregulation in AD and molecular disease endotypes. METHODS We sampled nonlesional and lesional skin tape strips and biopsy specimens from white adult patients with AD (18 male and 12 female patients; age [mean ± SE], 36.3 ± 2.2 years) and healthy control subjects (9 male and 16 female subjects; age [mean ± SE], 34.8 ± 2.2 years). AmpliSeq whole-transcriptome sequencing was performed on extracted RNA. Differential expression, clustering/pathway analyses, immunostaining of skin biopsy specimens, and clinical trait correlations were performed. RESULTS Skin tape expression profiles were distinct from skin biopsy profiles and better sampled epidermal differentiation complex genes. Skin tape expression of 29 immune and epidermis-related genes (false discovery rate < 5%) separated patients with AD from healthy subjects. Agnostic gene set analyses and clustering revealed 50% of patients with AD exhibited a type 2 inflammatory signature (type 2-high endotype) characterized by differential expression of 656 genes, including overexpression of IL13, IL4R, CCL22, CCR4 (log2 fold change = 5.5, 2.0, 4.0, and 4.1, respectively) and at a pathway level by TH2/dendritic cell activation. Both expression and immunostaining of skin biopsy specimens indicated this type 2-high group was enriched for inflammatory, type 2-skewed dendritic cells expressing FcεRI. The type 2-high endotype group exhibited more severe disease by using both the Eczema Area and Severity Index score and body surface area covered by lesions. CONCLUSION Minimally invasive expression profiling of nonlesional skin reveals stratification in AD molecular pathology by type 2 inflammation that correlates with disease severity.
Collapse
Affiliation(s)
- Nathan Dyjack
- Center for Genes, Environment, and Health, National Jewish Health, Denver, Colo
| | - Elena Goleva
- Department of Pediatrics, National Jewish Health, Denver, Colo
| | - Cydney Rios
- Center for Genes, Environment, and Health, National Jewish Health, Denver, Colo
| | - Byung Eui Kim
- Department of Pediatrics, National Jewish Health, Denver, Colo
| | - Lianghua Bin
- Department of Pediatrics, National Jewish Health, Denver, Colo
| | - Patricia Taylor
- Department of Pediatrics, National Jewish Health, Denver, Colo
| | | | - Clifton F Hall
- Department of Pediatrics, National Jewish Health, Denver, Colo
| | | | - Max A Seibold
- Center for Genes, Environment, and Health, National Jewish Health, Denver, Colo; Department of Pediatrics, National Jewish Health, Denver, Colo; Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Denver, Aurora, Colo.
| | - Donald Y M Leung
- Department of Pediatrics, National Jewish Health, Denver, Colo; Department of Pediatrics, University of Colorado Denver, Aurora, Colo.
| |
Collapse
|
33
|
Clayton K, Vallejo AF, Davies J, Sirvent S, Polak ME. Langerhans Cells-Programmed by the Epidermis. Front Immunol 2017; 8:1676. [PMID: 29238347 PMCID: PMC5712534 DOI: 10.3389/fimmu.2017.01676] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 11/15/2017] [Indexed: 12/24/2022] Open
Abstract
Langerhans cells (LCs) reside in the epidermis as a dense network of immune system sentinels. These cells determine the appropriate adaptive immune response (inflammation or tolerance) by interpreting the microenvironmental context in which they encounter foreign substances. In a normal physiological, "non-dangerous" situation, LCs coordinate a continuous state of immune tolerance, preventing unnecessary and harmful immune activation. Conversely, when they sense a danger signal, for example during infection or when the physical integrity of skin has been compromised as a result of a trauma, they instruct T lymphocytes of the adaptive immune system to mount efficient effector responses. Recent advances investigating the molecular mechanisms underpinning the cross talk between LCs and the epidermal microenvironment reveal its importance for programming LC biology. This review summarizes the novel findings describing LC origin and function through the analysis of the transcriptomic programs and gene regulatory networks (GRNs). Review and meta-analysis of publicly available datasets clearly delineates LCs as distinct from both conventional dendritic cells (DCs) and macrophages, suggesting a primary role for the epidermal microenvironment in programming LC biology. This concept is further supported by the analysis of the effect of epidermal pro-inflammatory signals, regulating key GRNs in human and murine LCs. Applying whole transcriptome analyses and in silico analysis has advanced our understanding of how LCs receive, integrate, and process signals from the steady-state and diseased epidermis. Interestingly, in homeostasis and under immunological stress, the molecular network in LCs remains relatively stable, reflecting a key evolutionary need related to tissue localization. Importantly, to fulfill their key role in orchestrating antiviral adaptive immune responses, LC share specific transcriptomic modules with other DC types able to cross-present antigens to cytotoxic CD8+ T cells, pointing to a possible evolutionary convergence mechanism. With the development of more advanced technologies allowing delineation of the molecular networks at the level of chromatin organization, histone modifications, protein translation, and phosphorylation, future "omics" investigations will bring in-depth understanding of the complex molecular mechanisms underpinning human LC biology.
Collapse
Affiliation(s)
- Kalum Clayton
- Systems Immmunology Group, Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Andres F Vallejo
- Systems Immmunology Group, Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - James Davies
- Systems Immmunology Group, Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Sofia Sirvent
- Systems Immmunology Group, Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Marta E Polak
- Systems Immmunology Group, Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
34
|
Torre O, Elia D, Caminati A, Harari S. New insights in lymphangioleiomyomatosis and pulmonary Langerhans cell histiocytosis. Eur Respir Rev 2017; 26:26/145/170042. [PMID: 28954765 PMCID: PMC9488980 DOI: 10.1183/16000617.0042-2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 07/26/2017] [Indexed: 12/15/2022] Open
Abstract
Lymphangioleiomyomatosis (LAM) and pulmonary Langerhans cell histiocytosis (PLCH) are rare diseases that lead to progressive cystic destruction of the lungs. Despite their distinctive characteristics, these diseases share several features. Patients affected by LAM or PLCH have similar radiological cystic patterns, a similar age of onset, and the possibility of extrapulmonary involvement. In this review, the recent advances in the understanding of the molecular pathogenesis, as well as the current and most promising biomarkers and therapeutic approaches, are described. Understanding of LAM/PLCH pathogenesis has improved over the past years, leading to new therapeutic approacheshttp://ow.ly/7wjR30erSJY
Collapse
Affiliation(s)
- Olga Torre
- U.O. di Pneumologia e Terapia Semi-Intensiva Respiratoria, Servizio di Fisiopatologia Respiratoria ed Emodinamica Polmonare, Ospedale San Giuseppe, MultiMedica IRCCS, Milan, Italy
| | - Davide Elia
- U.O. di Pneumologia e Terapia Semi-Intensiva Respiratoria, Servizio di Fisiopatologia Respiratoria ed Emodinamica Polmonare, Ospedale San Giuseppe, MultiMedica IRCCS, Milan, Italy
| | - Antonella Caminati
- U.O. di Pneumologia e Terapia Semi-Intensiva Respiratoria, Servizio di Fisiopatologia Respiratoria ed Emodinamica Polmonare, Ospedale San Giuseppe, MultiMedica IRCCS, Milan, Italy
| | - Sergio Harari
- U.O. di Pneumologia e Terapia Semi-Intensiva Respiratoria, Servizio di Fisiopatologia Respiratoria ed Emodinamica Polmonare, Ospedale San Giuseppe, MultiMedica IRCCS, Milan, Italy
| |
Collapse
|
35
|
Lorillon G, Tazi A. How I manage pulmonary Langerhans cell histiocytosis. Eur Respir Rev 2017; 26:26/145/170070. [PMID: 28877978 DOI: 10.1183/16000617.0070-2017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 07/12/2017] [Indexed: 02/07/2023] Open
Abstract
Pulmonary Langerhans cell histiocytosis (PLCH) is a rare sporadic cystic lung disease of unknown aetiology that is characterised by the infiltration and destruction of the wall of distal bronchioles by CD1a+ Langerhans-like cells. In adults, PLCH is frequently isolated and affects young smokers of both sexes. Recent multicentre studies have led to the more standardised management of patients in clinical practice. Smoking cessation is essential and is occasionally the only suitable intervention. Serial lung function testing is important because a significant proportion of patients may experience an early decline in forced expiratory volume in 1 s and develop airflow obstruction. Cladribine was reported to dramatically improve progressive PLCH in some patients. Its efficacy and tolerance are currently being evaluated. Patients who complain of unexplained dyspnoea with decreased diffusing capacity of the lung for carbon monoxide should be screened for pulmonary hypertension by Doppler echocardiography, which must be confirmed by right heart catheterisation. Lung transplantation is a therapeutic option for patients with advanced PLCH.The identification of the BRAFV600E mutation in approximately half of Langerhans cell histiocytosis lesions, including PLCH, and other mutations of the mitogen-activated protein kinase (MAPK) pathway in a subset of lesions has led to targeted treatments (BRAF and MEK (MAPK kinase) inhibitors). These treatments need to be rigorously evaluated because of their potentially severe side-effects.
Collapse
Affiliation(s)
- Gwenaël Lorillon
- National Reference Centre for Histiocytoses, Pulmonary Dept, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Paris, France
| | - Abdellatif Tazi
- National Reference Centre for Histiocytoses, Pulmonary Dept, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Paris, France .,University Paris Diderot, Sorbonne, Paris Cité, Inserm UMR-1153 (CRESS), Biostatistics and Clinical Epidemiology Research Team (ECSTRA), Paris, France
| |
Collapse
|
36
|
Milne P, Bigley V, Bacon CM, Néel A, McGovern N, Bomken S, Haniffa M, Diamond EL, Durham BH, Visser J, Hunt D, Gunawardena H, Macheta M, McClain KL, Allen C, Abdel-Wahab O, Collin M. Hematopoietic origin of Langerhans cell histiocytosis and Erdheim-Chester disease in adults. Blood 2017; 130:167-175. [PMID: 28512190 PMCID: PMC5524529 DOI: 10.1182/blood-2016-12-757823] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 04/24/2017] [Indexed: 12/15/2022] Open
Abstract
Langerhans cell histiocytosis (LCH) and Erdheim-Chester disease (ECD) are rare histiocytic disorders induced by somatic mutation of MAPK pathway genes. BRAFV600E mutation is the most common mutation in both conditions and also occurs in the hematopoietic neoplasm hairy cell leukemia (HCL). It is not known if adult LCH or ECD arises from hematopoietic stem cells (HSCs), nor which potential blood borne precursors lead to the formation of histiocytic lesions. In this study, BRAFV600E allele-specific polymerase chain reaction was used to map the neoplastic clone in 20 adults with LCH, ECD, and HCL. BRAFV600E was tracked to classical monocytes, nonclassical monocytes, and CD1c+ myeloid dendritic cells (DCs) in the blood, and mutations were observed in HSCs and myeloid progenitors in the bone marrow of 4 patients. The pattern of involvement of peripheral blood myeloid cells was indistinguishable between LCH and ECD, although the histiocytic disorders were distinct to HCL. As reported in children, detection of BRAFV600E in peripheral blood of adults was a marker of active multisystem LCH. The healthy counterparts of myeloid cells affected by BRAF mutation had a range of differentiation potentials depending on exogenous signals. CD1c+ DCs acquired high langerin and CD1a with granulocyte-macrophage colony-stimulating factor and transforming growth factor β alone, whereas CD14+ classical monocytes required additional notch ligation. Both classical and nonclassical monocytes, but not CD1c+ DCs, made foamy macrophages easily in vitro with macrophage colony-stimulating factor and human serum. These studies are consistent with a hematopoietic origin and >1 immediate cellular precursor in both LCH and ECD.
Collapse
MESH Headings
- Adult
- Alleles
- Antigens, CD/genetics
- Antigens, CD/immunology
- Antigens, CD1/genetics
- Antigens, CD1/immunology
- Bone Marrow Cells/immunology
- Bone Marrow Cells/pathology
- Cell Differentiation
- Dendritic Cells/immunology
- Dendritic Cells/pathology
- Diagnosis, Differential
- Erdheim-Chester Disease/diagnosis
- Erdheim-Chester Disease/genetics
- Erdheim-Chester Disease/immunology
- Erdheim-Chester Disease/pathology
- Female
- Foam Cells/immunology
- Foam Cells/pathology
- Gene Expression
- Glycoproteins/genetics
- Glycoproteins/immunology
- Granulocyte-Macrophage Colony-Stimulating Factor/genetics
- Granulocyte-Macrophage Colony-Stimulating Factor/immunology
- Hematopoietic Stem Cells/immunology
- Hematopoietic Stem Cells/pathology
- Histiocytosis, Langerhans-Cell/diagnosis
- Histiocytosis, Langerhans-Cell/genetics
- Histiocytosis, Langerhans-Cell/immunology
- Histiocytosis, Langerhans-Cell/pathology
- Humans
- Immunophenotyping
- Lectins, C-Type/genetics
- Lectins, C-Type/immunology
- Lipopolysaccharide Receptors/genetics
- Lipopolysaccharide Receptors/immunology
- Male
- Mannose-Binding Lectins/genetics
- Mannose-Binding Lectins/immunology
- Monocytes/immunology
- Monocytes/pathology
- Mutation
- Proto-Oncogene Proteins B-raf/genetics
- Proto-Oncogene Proteins B-raf/immunology
- Receptors, Notch/genetics
- Receptors, Notch/immunology
- Transforming Growth Factor beta/genetics
- Transforming Growth Factor beta/immunology
Collapse
Affiliation(s)
| | | | - Chris M Bacon
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
- Department of Cellular Pathology, Newcastle upon Tyne Hospitals National Health Service Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Antoine Néel
- Internal Medicine Department, Hôtel-Dieu University Hopital, Nantes, France
| | | | - Simon Bomken
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Eli L Diamond
- Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Johannes Visser
- East Midlands Children's and Young Persons' Integrated Cancer Service, Leicester Children's Hospital, Leicester, United Kingdom
| | - David Hunt
- Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Harsha Gunawardena
- Rheumatology Department, North Bristol National Health Service Trust, Bristol, United Kingdom
| | - Mac Macheta
- Blackpool Teaching Hospitals National Health Service Foundation Trust, Blackpool, United Kingdom; and
| | - Kenneth L McClain
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX
| | - Carl Allen
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX
| | | | | |
Collapse
|
37
|
Vassallo R, Harari S, Tazi A. Current understanding and management of pulmonary Langerhans cell histiocytosis. Thorax 2017; 72:937-945. [PMID: 28689173 DOI: 10.1136/thoraxjnl-2017-210125] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 05/10/2017] [Accepted: 05/15/2017] [Indexed: 12/13/2022]
Abstract
Pulmonary Langerhans cell histiocytosis (PLCH) is a diffuse lung disease that usually affects young adult smokers. PLCH affects different lung compartments; bronchiolar, interstitial and pulmonary vascular dysfunction may coexist to varying extents, resulting in diverse phenotypes. Analyses of PLCH tissues have identified activating mutations of specific mitogen-activated protein kinases (BRAFV600E and others). The current consensus is that PLCH represents a myeloid neoplasm with inflammatory properties: the myeloid tumour cells exhibit surface CD1a expression and up to 50% of the cells harbour activating BRAF or other MAPK mutations. PLCH may be associated with multisystem disease. The detection of disease outside of the thorax is facilitated by whole body positron emission tomography. The natural history of PLCH is unpredictable. In some patients, disease may remit or stabilise following smoking cessation. Others develop progressive lung disease, often associated with evidence of airflow limitation and pulmonary vascular dysfunction. Due to the inability to accurately predict the natural history, it is important that all patients undergo longitudinal follow-up at least twice a year for the first few years following diagnosis. The treatment of PLCH is challenging and should be individualised. While there is no general consensus regarding the role of immunosuppression or chemotherapy in management, selected patients may experience improvement in lung function with therapy. Determination of BRAFV600E or other mutations may assist with the development of an individualised approach to therapy. Patients with progressive disease should be referred to specialised centres and considered for a trial of pharmacotherapy or evaluated for transplantation.
Collapse
Affiliation(s)
- Robert Vassallo
- Departments of Medicine, Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Sergio Harari
- U.O. di Pneumologia e Terapia Semi-Intensiva Respiratoria "Servizio di Fisiopatologia Respiratoria ed Emodinamica Polmonare, Ospedale San Giuseppe" Multimedica IRCCS, Milano, Italy
| | - Abdellatif Tazi
- Department of Pulmonary Medicine, Saint-Louis Hospital, National Reference Center for Langerhans Cell Histiocytosis, University Paris Diderot, Sorbonne Paris Cite, Inserm UMR-1153 (CRESS), Biostatistics and Clinical Epidemiology Research Team (ECSTRA), Paris, Ile-de-France, France
| |
Collapse
|
38
|
Jurkin J, Krump C, Köffel R, Fieber C, Schuster C, Brunner PM, Borek I, Eisenwort G, Lim C, Mages J, Lang R, Bauer W, Mechtcheriakova D, Meshcheryakova A, Elbe-Bürger A, Stingl G, Strobl H. Human skin dendritic cell fate is differentially regulated by the monocyte identity factor Kruppel-like factor 4 during steady state and inflammation. J Allergy Clin Immunol 2017; 139:1873-1884.e10. [PMID: 27742396 PMCID: PMC5538449 DOI: 10.1016/j.jaci.2016.09.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/25/2016] [Accepted: 09/09/2016] [Indexed: 11/01/2022]
Abstract
BACKGROUND Langerhans cell (LC) networks play key roles in immunity and tolerance at body surfaces. LCs are established prenatally and can be replenished from blood monocytes. Unlike skin-resident dermal DCs (dDCs)/interstitial-type DCs and inflammatory dendritic epidermal cells appearing in dermatitis/eczema lesions, LCs lack key monocyte-affiliated markers. Inversely, LCs express various epithelial genes critical for their long-term peripheral tissue residency. OBJECTIVE Dendritic cells (DCs) are functionally involved in inflammatory diseases; however, the mechanisms remained poorly understood. METHODS In vitro differentiation models of human DCs, gene profiling, gene transduction, and immunohistology were used to identify molecules involved in DC subset specification. RESULTS Here we identified the monocyte/macrophage lineage identity transcription factor Kruppel-like factor 4 (KLF4) to be inhibited during LC differentiation from human blood monocytes. Conversely, KLF4 is maintained or induced during dermal DC and monocyte-derived dendritic cell/inflammatory dendritic epidermal cell differentiation. We showed that in monocytic cells KLF4 has to be repressed to allow their differentiation into LCs. Moreover, respective KLF4 levels in DC subsets positively correlate with proinflammatory characteristics. We identified epithelial Notch signaling to repress KLF4 in monocytes undergoing LC commitment. Loss of KLF4 in monocytes transcriptionally derepresses Runt-related transcription factor 3 in response to TGF-β1, thereby allowing LC differentiation marked by a low cytokine expression profile. CONCLUSION Monocyte differentiation into LCs depends on activation of Notch signaling and the concomitant loss of KLF4.
Collapse
Affiliation(s)
- Jennifer Jurkin
- Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Corinna Krump
- Institute of Pathophysiology and Immunology, Medical University of Graz, Graz, Austria
| | - René Köffel
- Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Christina Fieber
- Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Christopher Schuster
- Division of Immunology, Allergy and Infectious Diseases, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Patrick M Brunner
- Division of Immunology, Allergy and Infectious Diseases, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Izabela Borek
- Institute of Pathophysiology and Immunology, Medical University of Graz, Graz, Austria
| | - Gregor Eisenwort
- Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Clarice Lim
- Institute of Pathophysiology and Immunology, Medical University of Graz, Graz, Austria; Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Jörg Mages
- Institute of Clinical Microbiology, Immunology and Hygiene, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Roland Lang
- Institute of Clinical Microbiology, Immunology and Hygiene, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Wolfgang Bauer
- Division of Immunology, Allergy and Infectious Diseases, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Diana Mechtcheriakova
- Departments of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Anastasia Meshcheryakova
- Departments of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Adelheid Elbe-Bürger
- Division of Immunology, Allergy and Infectious Diseases, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Georg Stingl
- Division of Immunology, Allergy and Infectious Diseases, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Herbert Strobl
- Institute of Pathophysiology and Immunology, Medical University of Graz, Graz, Austria; Institute of Immunology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
39
|
Ozkaya N, Dogan A, Abdel-Wahab O. Identification and Targeting of Kinase Alterations in Histiocytic Neoplasms. Hematol Oncol Clin North Am 2017; 31:705-719. [PMID: 28673397 DOI: 10.1016/j.hoc.2017.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Histiocytic disorders represent clonal disorders of cells believed to be derived from the monocyte, macrophage, and/or dendritic cell lineage presenting with a range of manifestations. Although their nature as clonal versus inflammatory nonclonal conditions have long been debated, recent studies identified numerous somatic mutations that activate mitogen-activated protein kinase signaling in clinically and histologically diverse forms of histiocytosis. Clinical trials and case series have revealed that targeting aberrant kinase signaling using BRAF and/or MEK inhibitors may be effective. These findings suggest that a personalized approach in which patient-specific alterations are identified and targeted may be a critically important therapeutic approach.
Collapse
Affiliation(s)
- Neval Ozkaya
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Ahmet Dogan
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
40
|
Targeted inhibition of the MAPK pathway: emerging salvage option for progressive life-threatening multisystem LCH. Blood Adv 2017; 1:352-356. [PMID: 29296950 DOI: 10.1182/bloodadvances.2016003533] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 01/05/2017] [Indexed: 12/19/2022] Open
Abstract
Single-agent vemurafenib leads to a rapid and sustained clinical response in severe multisystem LCH but does not eradicate the disease.Longitudinal assessment of BRAF V600E during treatment shows that clinical remission can occur despite significant amounts of mutated BRAF.
Collapse
|
41
|
|
42
|
Abstract
Langerhans cell histiocytosis (LCH) is a rare disease affecting both genders and can occur at any age. It often evolves through successive flares, and its severity varies from benign forms that don't require treatment to life threatening disease. Some patients have important functional impairment with psychological and social consequences and prolonged disability. LCH may affect only one organ, with uni- or multifocal involvement or be multisystem disease involving multiple organs. The organs most frequently involved are bones, lung, skin and the endocrinal system. Pulmonary LCH is strongly related to smoking. Some patients have mixed histocytosis combining LCH and other histiocytic disorders. The diagnosis relies on the histological study of tissues samples, and shows tissue infiltration with large cell with pale cytoplasm and reniform nucleus, staining for CD1a and Langerin (CD207) on immunohistochemistry. The BRAFV600E mutation is observed in tissue samples in approximately half of patients and the activation of the RAS-RAF-MEK-ERK pathway has been shown to be constantly activated in LCH lesions, regardless the BRAF status. These findings represent an important forward step in the understanding of the physiopathology of the disease. Treatment must be adapted to the severity of the disease and goes from conservative observation to systemic chemotherapy. Therapies targeting the RAS-RAF-MEK-ERK pathway are promising treatments for progressive disease.
Collapse
Affiliation(s)
- Mathilde de Menthon
- Assistance publique-Hôpitaux de Paris, hôpital Saint-Louis, département de médecine interne, 75010 Paris, France.
| | - Véronique Meignin
- Assistance publique-Hôpitaux de Paris, hôpital Saint-Louis, Inserm UMR_S1165, service de pathologie, 75010 Paris, France
| | - Alfred Mahr
- Assistance publique-Hôpitaux de Paris, hôpital Saint-Louis, département de médecine interne, 75010 Paris, France; Université Paris-Diderot, Sorbonne Paris Cité, Inserm UMR 1153 CRESS, équipe de recherche en biostatistiques et épidémiologie clinique, 75010 Paris, France
| | - Abdellatif Tazi
- Université Paris-Diderot, Sorbonne Paris Cité, Inserm UMR 1153 CRESS, équipe de recherche en biostatistiques et épidémiologie clinique, 75010 Paris, France; Assistance publique-Hôpitaux de Paris, hôpital Saint-Louis, centre national de référence de l'histiocytose langerhansienne, service de pneumologie, 75010 Paris, France
| |
Collapse
|
43
|
Hutter C, Minkov M. Insights into the pathogenesis of Langerhans cell histiocytosis: the development of targeted therapies. Immunotargets Ther 2016; 5:81-91. [PMID: 27785447 PMCID: PMC5066850 DOI: 10.2147/itt.s91058] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
More than a century after its first description, Langerhans cell histiocytosis (LCH) still remains an intriguing disease. Considerable progress in understanding its biology has been achieved recently. Description of the V600E BRAF mutation in samples of LCH tissue in 2010 was followed by description of additional mutations, all leading to constitutive ERK activation. Current experimental data suggest that LCH is a myeloid neoplasia with inflammatory properties, yet the exact pathophysiology remains poorly understood. Disease management paradigms have changed over time, closely reflecting the evolving view of the nature of the disease. The international Histiocyte Society have conducted three prospective clinical studies on multisystem LCH since the early 1990s. The standard frontline therapy for patients with multisystem LCH based on the cumulative knowledge of those trials consists of 6–12 weeks of initial therapy (daily oral steroids and weekly vinblastine injections), followed by pulses of prednisolone/vinblastine every 3 weeks, for a total treatment duration of 12 months. A currently ongoing study (LCH-IV) with a complex design (five interventional and two observational strata) targets further reduction of mortality and morbidity by tailoring treatment intensity depending on expected risk, as well as by exploring treatment regimens for special locations. Current knowledge on LCH pathobiology opens opportunities for improvement in the patient outcome. The activating BRAF and MAP2K1 mutations collectively accounting for about 75% of the LCH population as well as the resulting constitutive activation of downstream ERK offer an opportunity for targeted treatment. Related issues (eg, finding most effective and less toxic drugs or combinations, appropriate dosage, and optimal treatment duration) must be addressed in controlled prospective trials. Additional mechanisms, such as the interactions of the mutated dendritic cell clone with other inflammatory cells and key cytokines and chemokines, still remain attractive targets for therapeutic intervention, particularly in patients with localized, less aggressive disease.
Collapse
Affiliation(s)
- Caroline Hutter
- International LCH Study Reference Center, Children's Cancer Research Institute, Vienna, Austria; St. Anna Children's Hospital, University Clinic of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Milen Minkov
- International LCH Study Reference Center, Children's Cancer Research Institute, Vienna, Austria; St. Anna Children's Hospital, University Clinic of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria; Department of Pediatrics, Adolescent Medicine and Neonatology, Rudolfstiftung Hospital, Vienna, Austria
| |
Collapse
|
44
|
Egeler RM, Katewa S, Leenen PJM, Beverley P, Collin M, Ginhoux F, Arceci RJ, Rollins BJ. Langerhans cell histiocytosis is a neoplasm and consequently its recurrence is a relapse: In memory of Bob Arceci. Pediatr Blood Cancer 2016; 63:1704-12. [PMID: 27314817 DOI: 10.1002/pbc.26104] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/19/2016] [Accepted: 05/19/2016] [Indexed: 01/01/2023]
Abstract
Langerhans cell histiocytosis (LCH) remains a poorly understood disorder with heterogeneous clinical presentations characterized by focal or disseminated lesions that contain excessive CD1a+ langerin+ cells with dendritic cell features known as "LCH cells." Two of the major questions investigated over the past century have been (i) the origin of LCH cells and (ii) whether LCH is primarily an immune dysregulatory disorder or a neoplasm. Current opinion is that LCH cells are likely to arise from hematopoietic precursor cells, although the stage of derailment and site of transformation remain unclear and may vary in patients with different extent of disease. Over the years, evidence has provided the view that LCH is a neoplasm. The demonstration of clonality of LCH cells, insufficient evidence alone for neoplasia, is now bolstered by finding driver somatic mutations in BRAF in up to 55% of patients with LCH, and activation of the RAS-RAF-MEK-ERK (where MEK and ERK are mitogen-activated protein kinase and extracellular signal-regulated kinase, respectively) pathway in nearly 100% of patients with LCH. Herein, we review the evidence that recurrent genetic abnormalities characterized by activating oncogenic mutations should satisfy prerequisites for LCH to be called a neoplasm. As a consequence, recurrent episodes of LCH should be considered relapsed disease rather than disease reactivation. Mapping the complete genetic landscape of this intriguing disease will provide additional support for the conclusion that LCH is a neoplasm and is likely to provide more potential opportunities for molecularly targeted therapies.
Collapse
Affiliation(s)
- R Maarten Egeler
- Division of Haematology/Oncology, Department of Paediatrics, The Hospital for Sick Children/University of Toronto, Toronto, Ontario, Canada
| | - Satyendra Katewa
- Department of Pediatric Hematology/Oncology & BMT, Soni Manipal Hospital, Main Sikar Road, Sector 5, Jaipur, Rajasthan, India
| | - Pieter J M Leenen
- Department of Immunology, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Matthew Collin
- Department of Haematological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, 138648
| | - Robert J Arceci
- Department of Child Health, University of Arizona, College of Medicine - Phoenix, Ron Matricaria Institute of Molecular Medicine, Phoenix, Arizona
| | - Barrett J Rollins
- Division of Medical Oncology, Dana-Farber Cancer Institute, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | | |
Collapse
|
45
|
|
46
|
Zhang L, Moss J. Genetic studies yield clues to the pathogenesis of Langerhans cell histiocytosis. Eur Respir J 2016; 47:1629-31. [PMID: 27246079 DOI: 10.1183/13993003.00568-2016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 03/21/2016] [Indexed: 11/05/2022]
Affiliation(s)
- Li Zhang
- Cardiovascular and Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Joel Moss
- Cardiovascular and Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
47
|
Picarda G, Chéneau C, Humbert JM, Bériou G, Pilet P, Martin J, Duteille F, Perrot P, Bellier-Waast F, Heslan M, Haspot F, Guillon F, Josien R, Halary FA. Functional Langerinhigh-Expressing Langerhans-like Cells Can Arise from CD14highCD16−Human Blood Monocytes in Serum-Free Condition. THE JOURNAL OF IMMUNOLOGY 2016; 196:3716-28. [DOI: 10.4049/jimmunol.1501304] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 02/23/2016] [Indexed: 12/31/2022]
|
48
|
Abstract
PURPOSE OF REVIEW This article summarizes recent research on the ontogeny of Langerhans cells and regulation of their homeostasis in quiescent and inflamed conditions. RECENT FINDINGS Langerhans cells originate prenatally and may endure throughout life, independently of bone marrow-derived precursors. Fate-mapping experiments have recently resolved the relative contribution of primitive yolk sac and fetal liver hematopoiesis to the initial formation of Langerhans cells. In postnatal life, local self-renewal restores Langerhans cell numbers following chronic or low-grade inflammatory insults. However, severe inflammation recruits de-novo bone marrow-derived precursors in two waves; a transient population of classical monocytes followed by uncharacterized myeloid precursors that form a stable self-renewing Langerhans cell network as inflammation subsides. Human CD1c⁺ dendritic cells have Langerhans cell potential in vitro, raising the possibility that dendritic cell progenitors provide the second wave. Langerhans cell development depends upon transforming growth factor beta receptor signaling with distinct pathways active during differentiation and homeostasis. Langerhans cell survival is mediated by multiple pathways including mechanistic target of rapamycin and extracellular signal-regulated kinase signaling, mechanisms that become highly relevant in Langerhans cell neoplasia. SUMMARY The study of Langerhans cells continues to provide novel and unexpected insights into the origin and regulation of myeloid cell populations. The melding of macrophage and dendritic cell biology, shaped by a unique habitat, is a special feature of Langerhans cells.
Collapse
Affiliation(s)
- Matthew Collin
- Human Dendritic Cell Laboratory, Institute of Cellular Medicine, Newcastle University, Framlington Place, Newcastle upon Tyne, UK
| | | |
Collapse
|
49
|
Abstract
Langerhans cell histiocytosis (LCH) is heterogeneous disease characterized by common histology of inflammatory lesions containing Langerin(+) (CD207) histiocytes. Emerging data support a model in which MAPK activation in self-renewing hematopoietic progenitors may drive disseminated high-risk disease, whereas MAPK activation in more differentiated committed myeloid populations may induce low-risk LCH. The heterogeneous clinical manifestations with shared histology may represent the final common pathway of an acquired defect of differentiation, initiated at more than one point. Implications of this model include re-definition of LCH as a myeloid neoplasia and re-focusing therapeutic strategies on the cells and lineages of origin.
Collapse
Affiliation(s)
- Matthew Collin
- Human Dendritic Cell Laboratory, Institute of Cellular Medicine, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Venetia Bigley
- Human Dendritic Cell Laboratory, Institute of Cellular Medicine, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Kenneth L McClain
- Texas Children's Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Carl E Allen
- Texas Children's Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
50
|
Néel A, Artifoni M, Donadieu J, Lorillon G, Hamidou M, Tazi A. Histiocytose langerhansienne de l’adulte. Rev Med Interne 2015; 36:658-67. [DOI: 10.1016/j.revmed.2015.04.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 01/30/2015] [Accepted: 04/30/2015] [Indexed: 12/21/2022]
|