1
|
Romero A, Cumplido-Laso G, Fernández A, Moreno J, Canales J, Ferreira R, López-Gómez J, Ribeiro JM, Costas MJ, Cameselle JC. Free amino acids accelerate the time-dependent inactivation of rat liver nucleotide pyrophosphatase/phosphodiesterase Enpp3 elicited by EDTA. Amino Acids 2024; 57:1. [PMID: 39641818 PMCID: PMC11624235 DOI: 10.1007/s00726-024-03431-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/24/2024] [Indexed: 12/07/2024]
Abstract
Nucleotide-pyrophosphatases/phosphodiesterases (NPP/PDE) are membrane or secreted Zn2+-metallohydrolases of nucleoside-5´-monophosphate derivatives. They hydrolyze, for instance, ATP and 4-nitrophenyl-dTMP, and belong to the ecto-nucleotide pyrophosphatase/phosphodiesterase (ENPP) family that contains seven members (ENPP1-ENPP7). Earlier we had shown that an NPP/PDE activity solubilized and partially purified from rat liver membranes is inactivated by EDTA in a time-dependent fashion, an effect enhanced by glycine and blocked by the 4-nitrophenyl-dTMP. Here, we extended this observation to other free amino acids. Activity assays started after different incubation lengths with EDTA provided first-order, apparent inactivation constants (ki(ap)). With the exception of cysteine (a strong inhibitor) and histidine (itself evoking a time-dependent inactivation), free amino acids themselves did not affect activity but increased ki(ap). The results are compatible with a conformational change of NPP/PDE evoked by interaction with free amino acids. The enzyme preparation was analyzed to identify what ENPP family members were present. First, the hydrolytic activity on 2´,3´-cGAMP was assayed because until very recently ENPP1 was the only mammalian enzyme known to display it. 2´,3´-cGAMP hydrolase activity was clearly detected, but mass spectrometry data obtained by LC-MS/MS gave evidence that only rat Enpp3, Enpp4 and Enpp5 were present with low abundance. This finding coincided in time with a recent publication claiming that mouse Enpp3 hydrolyzes 2´,3´-cGAMP, and that Enpp1 and Enpp3 account for all the 2´,3´-cGAMP hydrolase activity in mice. So, our results are confirmatory of Enpp3 activity towards 2´,3´-cGAMP. Finally, the effect of amino acids could be relevant to NPP/PDE actions dependent on protein-protein interactions, like the known insulin-related effects of ENPP1 and possibly ENPP3.
Collapse
Grants
- BMC2001-0719 Dirección General de Investigación, Ministerio de Ciencia y Tecnología, Spain
- BMC2001-0719 Dirección General de Investigación, Ministerio de Ciencia y Tecnología, Spain
- BMC2001-0719 Dirección General de Investigación, Ministerio de Ciencia y Tecnología, Spain
- BMC2001-0719 Dirección General de Investigación, Ministerio de Ciencia y Tecnología, Spain
- BMC2001-0719 Dirección General de Investigación, Ministerio de Ciencia y Tecnología, Spain
- BMC2001-0719 Dirección General de Investigación, Ministerio de Ciencia y Tecnología, Spain
- Universidad de Extremadura
Collapse
Affiliation(s)
- Ana Romero
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, 06006, Badajoz, Spain
| | - Guadalupe Cumplido-Laso
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06006, Badajoz, Spain
| | - Ascensión Fernández
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, 06006, Badajoz, Spain
| | - Javier Moreno
- Colegio María Inmaculada Ríos Rosas, c/Ríos Rosas 35, 28003, Madrid, Spain
| | - José Canales
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, 06006, Badajoz, Spain
| | - Rui Ferreira
- Departamento de Química e Bioquímica, Escola de Ciências e Tecnologia, Universidade de Évora, 7002-554, Evora, Portugal
| | - Juan López-Gómez
- Servicio de Análisis Clínicos, Hospital Universitario de Badajoz, Servicio Extremeño de Salud, 06006, Badajoz, Spain
| | - João Meireles Ribeiro
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, 06006, Badajoz, Spain.
| | - María Jesús Costas
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, 06006, Badajoz, Spain
| | - José Carlos Cameselle
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, 06006, Badajoz, Spain
| |
Collapse
|
2
|
Imam I, Rautureau GJP, Violot S, Mulard ED, Magne D, Ballut L. Structural and Functional Integration of Tissue-Nonspecific Alkaline Phosphatase Within the Alkaline Phosphatase Superfamily: Evolutionary Insights and Functional Implications. Metabolites 2024; 14:659. [PMID: 39728440 DOI: 10.3390/metabo14120659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/08/2024] [Accepted: 11/19/2024] [Indexed: 12/28/2024] Open
Abstract
Phosphatases are enzymes that catalyze the hydrolysis of phosphate esters. They play critical roles in diverse biological processes such as extracellular nucleotide homeostasis, transport of molecules across membranes, intracellular signaling pathways, or vertebrate mineralization. Among them, tissue-nonspecific alkaline phosphatase (TNAP) is today increasingly studied, due to its ubiquitous expression and its ability to dephosphorylate a very broad range of substrates and participate in several different biological functions. For instance, TNAP hydrolyzes inorganic pyrophosphate (PPi) to allow skeletal and dental mineralization. Additionally, TNAP hydrolyzes pyridoxal phosphate to allow cellular pyridoxal uptake, and stimulate vitamin B6-dependent reactions. Furthermore, TNAP has been identified as a key enzyme in non-shivering adaptive thermogenesis, by dephosphorylating phosphocreatine in the mitochondrial creatine futile cycle. This latter recent discovery and others suggest that the list of substrates and functions of TNAP may be much longer than previously thought. In the present review, we sought to examine TNAP within the alkaline phosphatase (AP) superfamily, comparing its sequence, structure, and evolutionary trajectory. The AP superfamily, characterized by a conserved central folding motif of a mixed beta-sheet flanked by alpha-helices, includes six subfamilies: AP, arylsulfatases (ARS), ectonucleotide pyrophosphatases/phosphodiesterases (ENPP), phosphoglycerate mutases (PGM), phosphonoacetate hydrolases, and phosphopentomutases. Interestingly, TNAP and several ENPP family members appear to participate in the same metabolic pathways and functions. For instance, extra-skeletal mineralization in vertebrates is inhibited by ENPP1-mediated ATP hydrolysis into the mineralization inhibitor PPi, which is hydrolyzed by TNAP expressed in the skeleton. Better understanding how TNAP and other AP family members differ structurally will be very useful to clarify their complementary functions. Structurally, TNAP shares the conserved catalytic core with other AP superfamily members but has unique features affecting substrate specificity and activity. The review also aims to highlight the importance of oligomerization in enzyme stability and function, and the role of conserved metal ion coordination, particularly magnesium, in APs. By exploring the structural and functional diversity within the AP superfamily, and discussing to which extent its members exert redundant, complementary, or specific functions, this review illuminates the evolutionary pressures shaping these enzymes and their broad physiological roles, offering insights into TNAP's multifunctionality and its implications for health and disease.
Collapse
Affiliation(s)
- Iliass Imam
- Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS, University Lyon, F-69367 Lyon, France
| | | | - Sébastien Violot
- Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS, University Lyon, F-69367 Lyon, France
| | - Eva Drevet Mulard
- Institute of Chemistry and Biochemistry (ICBMS), UMR 5246, CNRS, University Lyon, F-69622 Villeurbanne, France
| | - David Magne
- Institute of Chemistry and Biochemistry (ICBMS), UMR 5246, CNRS, University Lyon, F-69622 Villeurbanne, France
| | - Lionel Ballut
- Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS, University Lyon, F-69367 Lyon, France
| |
Collapse
|
3
|
Chang S, Just J, Skakkebæk A, Johannsen EB, Fedder J, Gravholt CH, Münster AMB. Testosterone Replacement Therapy in Klinefelter Syndrome-Follow-up Study Associating Hemostasis and RNA Expression. J Clin Endocrinol Metab 2024; 109:978-991. [PMID: 37962976 DOI: 10.1210/clinem/dgad658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/16/2023]
Abstract
BACKGROUND Men with Klinefelter syndrome (KS) develop hypergonadotropic hypogonadism, are in need of testosterone replacement therapy (TRT), and present with a more than 4-fold increased risk of thrombosis. TRT in KS has the potential to modify thrombotic risk, but data are scarce. AIM To assess effects of 18 months of TRT on hemostasis in KS and identify genes associated with the prothrombotic phenotype. METHODS Untreated and TRT-treated men with KS were included at baseline and matched to healthy controls. TRT was initiated in untreated KS and all groups were reassessed after 18 months of follow-up. Thrombin generation was evaluated with or without thrombomodulin, and fibrin clot lysis was evaluated by turbidity measurements. RNA expression was assessed in blood, fat, and muscle tissue of patients with TRT-treated KS and controls. RESULTS Thrombin generation with thrombomodulin was slightly increased in untreated KS, but overall KS was not associated with a hypercoagulable state. KS presented with fibrinolytic impairment associated with higher body fat and higher levels of fibrinogen. Eighteen months of TRT in KS was associated with a reduction in body fat and fibrinogen, attenuating the prothrombotic profile. The expression of ENPP4 was higher in men with KS and served as a key player among a group of genes associated with impaired fibrinolysis. CONCLUSION KS is associated with a specific expression profile contributing to fibrinolytic impairment and increased thrombotic risk in the patients. TRT in patients with KS has the potential for alleviating the prothrombotic phenotype, in particular by reducing body fat and fibrinogen.
Collapse
Affiliation(s)
- Simon Chang
- Unit for Thrombosis Research, University Hospital of Southern Denmark, 6700 Esbjerg, Denmark
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Jesper Just
- Department of Molecular Medicine, Aarhus University Hospital, 8200 Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark
| | - Anne Skakkebæk
- Department of Molecular Medicine, Aarhus University Hospital, 8200 Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark
- Department of Clinical Genetics, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Emma B Johannsen
- Department of Molecular Medicine, Aarhus University Hospital, 8200 Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark
| | - Jens Fedder
- Centre of Andrology and Fertility Clinic, Odense University Hospital, 5000 Odense, Denmark
| | - Claus H Gravholt
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, 8200 Aarhus, Denmark
- Department of Molecular Medicine, Aarhus University Hospital, 8200 Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark
| | - Anna-Marie B Münster
- Unit for Thrombosis Research, University Hospital of Southern Denmark, 6700 Esbjerg, Denmark
| |
Collapse
|
4
|
NAD-catabolizing ectoenzymes of Schistosoma mansoni. Biochem J 2022; 479:1165-1180. [PMID: 35593185 DOI: 10.1042/bcj20210784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022]
Abstract
Infection with schistosomes (blood flukes) can result in the debilitating disease schistosomiasis. These parasites survive in their host for many years, and we hypothesize that proteins on their tegumental surface, interacting with the host microenvironment, facilitate longevity. One such ectoenzyme - the nucleotide pyrophosphatase/phosphodiesterase SmNPP5 can cleave ADP (to prevent platelet aggregation) and NAD (likely preventing Treg apoptosis). A second tegumental ectoenzyme, the glycohydrolase SmNACE, also catabolizes NAD. Here, we undertake a comparative biochemical characterization of these parasite ectoenzymes. Both are GPI-linked and exhibit different optimal pH ranges. While SmNPP5 requires divalent cations, SmNACE does not. The Km values of the two enzymes for NAD at physiological pH differ: SmNPP5, Km=340µM±44; SmNACE, Km=49µM±4. NAD cleavage by each enzyme yields different products. SmNPP5 cleaves NAD to form nicotinamide mononucleotide (NMN) and AMP, whereas SmNACE cleaves NAD to generate nicotinamide (NAM) and adenosine diphosphate ribose (ADPR). Each enzyme can process the other's reaction product. Thus, SmNACE cleaves NMN (to yield NAM and ribose phosphate) and SmNPP5 cleaves ADPR (yielding AMP and ribose phosphate). Metabolomic analysis of plasma containing adult worms supports the idea that these cleavage pathways are active in vivo. We hypothesize that a primary function of SmNPP5 is to cleave NAD to control host immune cell function and a primary function of SmNACE is to cleave NMN to generate the vital nutrient nicotinamide (vitamin B3) for convenient uptake by the worms. Chemical inhibition of one or both ectoenzymes could upset worm metabolism and control schistosome infection.
Collapse
|
5
|
Bano S, Al-Rashida M, Alharthy RD, Khan IA, Iqbal J. Nucleotide pyrophosphatase/phosphodiesterases (NPPs) including NPP1 and NPP2/ ATX as important drug targets: A patent review (2015-2020). Expert Opin Ther Pat 2022; 32:743-751. [PMID: 35333684 DOI: 10.1080/13543776.2022.2058874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Nucleoside triphosphate diphosphohydrolases (NTPDases), alkaline phosphatases (APs), and ecto-nucleotide pyrophosphatases/phosphodiesterases (NPPs) are nucleotidases found on the cell surface. It is a promising therapeutic target for a range of disorders, including fibrosis, tumour metastasis, pruritus, inflammation, multiple sclerosis, and autoimmune diseases. As a result, therapeutic intervention including selective inhibitors of NPPs is required. AREA COVERED Many chemical substances, including pyrazole, pyridine and bicyclic compounds have demonstrated promising inhibitory potential for ecto-nucleotide pyrophosphatase/phosphodiesterases. The chemistry and clinical applications of NPPs inhibitors patented between 2015 and 2020 are discussed in this review. EXPERT OPINION : In recent years, there has been a lot of effort put into finding effective and selective inhibitors of NPPs. Despite the fact that a variety of synthetic inhibitors have been created, only a few investigations on their in vivo activity have been published. In addition to IOA-289 which has passed Phase Ia clinical trials; potent ATX inhibitor compounds such as BLD-0409, IPF and BBT-877 have been placed in phase I clinical studies. Some of the most promising ATX inhibitors in recent years are closely related analogs of previously known inhibitors, such as PF-8380. Knowledge of the structure activity relationship of such promising inhibitors can potentially translate into the discovery of more potent and effective inhibitors of NPP with a variety of structural characteristics and favourable therapeutic activities.
Collapse
Affiliation(s)
- Sehrish Bano
- Center for Advanced Drug Research, COMSATS Institute of Information Technology, Abbottabad 22060, Pakistan
| | - Mariya Al-Rashida
- Department of Chemistry, Forman Christian College (A Chartered University), Ferozepur Road, Lahore 54600, Pakistan
| | - Rima D Alharthy
- Department of Chemistry, Science and Arts College, Rabigh Campus, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Imtiaz Ali Khan
- Department of Entomology, Agricultural University, Peshawar 25130, Khyber Pakhtunkhwa, Pakistan
| | - Jamshed Iqbal
- Center for Advanced Drug Research, COMSATS Institute of Information Technology, Abbottabad 22060, Pakistan
| |
Collapse
|
6
|
Chen Z, Song J, Wang W, Bai J, Zhang Y, Shi J, Bai J, Zhou Y. A novel 4-mRNA signature predicts the overall survival in acute myeloid leukemia. Am J Hematol 2021; 96:1385-1395. [PMID: 34339537 DOI: 10.1002/ajh.26309] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/13/2022]
Abstract
Acute myeloid leukemia (AML) is an aggressive cancer of myeloid cells with high levels of heterogeneity and great variability in prognostic behaviors. Cytogenetic abnormalities and genetic mutations have been widely used in the prognostic stratification of AML to assign patients into different risk categories. Nevertheless, nearly half of AML patients assigned to intermediate risk need more precise prognostic schemes. Here, 336 differentially expressed genes (DEGs) between AML and control samples and 206 genes representing the intratumor heterogeneity of AML were identified. By applying a LASSO Cox regression model, we generated a 4-mRNA prognostic signature comprising KLF9, ENPP4, TUBA4A and CD247. Higher risk scores were significantly associated with shorter overall survival, complex karyotype, and adverse mutations. We then validated the prognostic value of this 4-mRNA signature in two independent cohorts. We also proved that incorporation of the 4-mRNA-based signature in the 2017 European LeukemiaNet (ELN) risk classification could enhance the predictive accuracy of survival in patients with AML. Univariate and multivariate analyses showed that this signature was independent of traditional prognostic factors such as age, WBC count, and unfavorable cytogenetics. Finally, the molecular mechanisms underlying disparate outcomes in high-risk and low-risk AML patients were explored. Therefore, our findings suggest that the 4-mRNA signature refines the risk stratification and prognostic prediction of AML patients.
Collapse
Affiliation(s)
- Zizhen Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital Chinese Academy of Medical Sciences & Peking Union Medical College Tianjin China
| | - Junzhe Song
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital Chinese Academy of Medical Sciences & Peking Union Medical College Tianjin China
| | - Wenjun Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital Chinese Academy of Medical Sciences & Peking Union Medical College Tianjin China
| | - Jiaojiao Bai
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital Chinese Academy of Medical Sciences & Peking Union Medical College Tianjin China
| | - Yuhui Zhang
- Department of Hematology The Second Affiliated Hospital of Tianjin Medical University Tianjin China
| | - Jun Shi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital Chinese Academy of Medical Sciences & Peking Union Medical College Tianjin China
| | - Jie Bai
- Department of Hematology The Second Affiliated Hospital of Tianjin Medical University Tianjin China
| | - Yuan Zhou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital Chinese Academy of Medical Sciences & Peking Union Medical College Tianjin China
| |
Collapse
|
7
|
Massé K, Bhamra S, Paroissin C, Maneta-Peyret L, Boué-Grabot E, Jones EA. The enpp4 ectonucleotidase regulates kidney patterning signalling networks in Xenopus embryos. Commun Biol 2021; 4:1158. [PMID: 34620987 PMCID: PMC8497618 DOI: 10.1038/s42003-021-02688-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 09/17/2021] [Indexed: 11/30/2022] Open
Abstract
The enpp ectonucleotidases regulate lipidic and purinergic signalling pathways by controlling the extracellular concentrations of purines and bioactive lipids. Although both pathways are key regulators of kidney physiology and linked to human renal pathologies, their roles during nephrogenesis remain poorly understood. We previously showed that the pronephros was a major site of enpp expression and now demonstrate an unsuspected role for the conserved vertebrate enpp4 protein during kidney formation in Xenopus. Enpp4 over-expression results in ectopic renal tissues and, on rare occasion, complete mini-duplication of the entire kidney. Enpp4 is required and sufficient for pronephric markers expression and regulates the expression of RA, Notch and Wnt pathway members. Enpp4 is a membrane protein that binds, without hydrolyzing, phosphatidylserine and its effects are mediated by the receptor s1pr5, although not via the generation of S1P. Finally, we propose a novel and non-catalytic mechanism by which lipidic signalling regulates nephrogenesis.
Collapse
Affiliation(s)
- Karine Massé
- School of Life Sciences, Warwick University, Coventry, CV47AL, UK.
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000, Bordeaux, France.
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000, Bordeaux, France.
| | - Surinder Bhamra
- School of Life Sciences, Warwick University, Coventry, CV47AL, UK
| | - Christian Paroissin
- Université de Pau et des Pays de l'Adour, Laboratoire de Mathématiques et de leurs Applications-UMR CNRS 5142, 64013, Pau cedex, France
| | - Lilly Maneta-Peyret
- Université de Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire UMR 5200, F-33800, Villenave d'Ornon, France
| | - Eric Boué-Grabot
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000, Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000, Bordeaux, France
| | | |
Collapse
|
8
|
Cai D, Chen S, Wu B, Chen J, Tao D, Li Z, Dong Q, Zou Y, Chen Y, Bi C, Zu D, Lu L, Fang B. Construction of multifunctional porcine acellular dermal matrix hydrogel blended with vancomycin for hemorrhage control, antibacterial action, and tissue repair in infected trauma wounds. Mater Today Bio 2021; 12:100127. [PMID: 34585135 PMCID: PMC8452890 DOI: 10.1016/j.mtbio.2021.100127] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/29/2021] [Accepted: 08/16/2021] [Indexed: 12/18/2022] Open
Abstract
Prevention of bacterial infection and reduction of hemorrhage, the primary challenges posed by trauma before hospitalization, are essential steps in prolonging the patient's life until they have been transported to a trauma center. Extracellular matrix (ECM) hydrogel is a promising biocompatible material for accelerating wound closure. However, due to the lack of antibacterial properties, this hydrogel is difficult to be applied to acute contaminated wounds. This study formulates an injectable dermal extracellular matrix hydrogel (porcine acellular dermal matrix (ADM)) as a scaffold for skin defect repair. The hydrogel combines vancomycin, an antimicrobial agent for inducing hemostasis, expediting antimicrobial activity, and promoting tissue repair. The hydrogel possesses a porous structure beneficial for the adsorption of vancomycin. The antimicrobial agent can be timely released from the hydrogel within an hour, which is less than the time taken by bacteria to infest an injury, with a cumulative release rate of approximately 80%, and thus enables a relatively fast bactericidal effect. The cytotoxicity investigation demonstrates the biocompatibility of the ADM hydrogel. Dynamic coagulation experiments reveal accelerated blood coagulation by the hydrogel. In vivo antibacterial and hemostatic experiments on a rat model indicate the healing of infected tissue and effective control of hemorrhaging by the hydrogel. Therefore, the vancomycin-loaded ADM hydrogel will be a viable biomaterial for controlling hemorrhage and preventing bacterial infections in trauma patients.
Collapse
Affiliation(s)
- D Cai
- Department of Spine Surgery, The Central Hospital Affiliated to Shaoxing University, Shaoxing, China
| | - S Chen
- Department of Spine Surgery, The Central Hospital Affiliated to Shaoxing University, Shaoxing, China
| | - B Wu
- Department of Spine Surgery, The Central Hospital Affiliated to Shaoxing University, Shaoxing, China
| | - J Chen
- Bacterial Laboratory, The Central Hospital Affiliated to Shaoxing University, Shaoxing, China
| | - D Tao
- Pathology Department, The Central Hospital Affiliated to Shaoxing University, Shaoxing, China
| | - Z Li
- Pathology Department, The Central Hospital Affiliated to Shaoxing University, Shaoxing, China
| | - Q Dong
- Department of Spine Surgery, The Central Hospital Affiliated to Shaoxing University, Shaoxing, China
| | - Y Zou
- Department of Spine Surgery, The Central Hospital Affiliated to Shaoxing University, Shaoxing, China
| | - Y Chen
- Department of Spine Surgery, The Central Hospital Affiliated to Shaoxing University, Shaoxing, China.,School of Medcine, Shaoxing University, Shaoxing, China
| | - C Bi
- Department of Spine Surgery, The Central Hospital Affiliated to Shaoxing University, Shaoxing, China.,School of Medcine, Shaoxing University, Shaoxing, China
| | - D Zu
- Central Laboratory, The Central Hospital Affiliated to Shaoxing University, Shaoxing, China
| | - L Lu
- Department of Spine Surgery, The Central Hospital Affiliated to Shaoxing University, Shaoxing, China
| | - B Fang
- Department of Spine Surgery, The Central Hospital Affiliated to Shaoxing University, Shaoxing, China
| |
Collapse
|
9
|
Lee SY, Namasivayam V, Boshta NM, Perotti A, Mirza S, Bua S, Supuran CT, Müller CE. Discovery of potent nucleotide pyrophosphatase/phosphodiesterase3 (NPP3) inhibitors with ancillary carbonic anhydrase inhibition for cancer (immuno)therapy. RSC Med Chem 2021; 12:1187-1206. [PMID: 34355184 PMCID: PMC8292979 DOI: 10.1039/d1md00117e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/05/2021] [Indexed: 11/21/2022] Open
Abstract
Nucleotide pyrophosphatase/phosphodiesterase3 (NPP3) catalyzes the hydrolysis of extracellular nucleotides. It is expressed by immune cells and some carcinomas, e.g. of kidney and colon. Together with ecto-5'-nucleotidase (CD73), NPP3 produces immunosuppressive, cancer-promoting adenosine, and has therefore been proposed as a target for cancer therapy. Here we report on the discovery of 4-[(4-methylphthalazin-1-yl)amino]benzenesulfonamide (1) as an inhibitor of human NPP3 identified by compound library screening. Subsequent structure-activity relationship (SAR) studies led to the potent competitive NPP3 inhibitor 2-methyl-5-{4-[(4-sulfamoylphenyl)amino]phthalazin-1-yl}benzenesulfonamide (23, K i 53.7 nM versus the natural substrate ATP). Docking studies predicted its binding pose and interactions. While 23 displayed high selectivity versus other ecto-nucleotidases, it showed ancillary inhibition of two proposed anti-cancer targets, the carbonic anhydrases CA-II (Ki 74.7 nM) and CA-IX (Ki 20.3 nM). Thus, 23 may act as multi-target anti-cancer drug. SARs for NPP3 were steeper than for CAs leading to the identification of potent dual CA-II/CA-IX (e.g. 34) as well as selective CA-IX inhibitors (e.g. 31).
Collapse
Affiliation(s)
- Sang-Yong Lee
- PharmaCenter Bonn, Pharmaceutical Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn An der Immenburg 4 D-53121 Bonn Germany +49 228 73 2567 +49 228 73 2301
| | - Vigneshwaran Namasivayam
- PharmaCenter Bonn, Pharmaceutical Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn An der Immenburg 4 D-53121 Bonn Germany +49 228 73 2567 +49 228 73 2301
| | - Nader M Boshta
- PharmaCenter Bonn, Pharmaceutical Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn An der Immenburg 4 D-53121 Bonn Germany +49 228 73 2567 +49 228 73 2301
- Chemistry Department, Faculty of Science, Menoufia University Gamal Abdel-Nasser Street Shebin El-Kom 32511 Egypt
| | - Arianna Perotti
- PharmaCenter Bonn, Pharmaceutical Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn An der Immenburg 4 D-53121 Bonn Germany +49 228 73 2567 +49 228 73 2301
| | - Salahuddin Mirza
- PharmaCenter Bonn, Pharmaceutical Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn An der Immenburg 4 D-53121 Bonn Germany +49 228 73 2567 +49 228 73 2301
| | - Silvia Bua
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze Via Ugo Schiff 7,50019 Sesto Fiorentino Florence Italy
| | - Claudiu T Supuran
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze Via Ugo Schiff 7,50019 Sesto Fiorentino Florence Italy
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn An der Immenburg 4 D-53121 Bonn Germany +49 228 73 2567 +49 228 73 2301
| |
Collapse
|
10
|
Tanshinones induce tumor cell apoptosis via directly targeting FHIT. Sci Rep 2021; 11:12217. [PMID: 34108553 PMCID: PMC8190080 DOI: 10.1038/s41598-021-91708-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 05/17/2021] [Indexed: 02/08/2023] Open
Abstract
The liposoluble tanshinones are bioactive components in Salvia miltiorrhiza and are widely investigated as anti-cancer agents, while the molecular mechanism is to be clarified. In the present study, we identified that the human fragile histidine triad (FHIT) protein is a direct binding protein of sodium tanshinone IIA sulfonate (STS), a water-soluble derivative of Tanshinone IIA (TSA), with a Kd value of 268.4 ± 42.59 nM. We also found that STS inhibited the diadenosine triphosphate (Ap3A) hydrolase activity of FHIT through competing for the substrate-binding site with an IC50 value of 2.2 ± 0.05 µM. Notably, near 100 times lower binding affinities were determined between STS and other HIT proteins, including GALT, DCPS, and phosphodiesterase ENPP1, while no direct binding was detected with HINT1. Moreover, TSA, Tanshinone I (TanI), and Cryptotanshinone (CST) exhibited similar inhibitory activity as STS. Finally, we demonstrated that depletion of FHIT significantly blocked TSA's pro-apoptotic function in colorectal cancer HCT116 cells. Taken together, our study sheds new light on the molecular basis of the anti-cancer effects of the tanshinone compounds.
Collapse
|
11
|
Reichert KP, Castro MFV, Assmann CE, Bottari NB, Miron VV, Cardoso A, Stefanello N, Morsch VMM, Schetinger MRC. Diabetes and hypertension: Pivotal involvement of purinergic signaling. Biomed Pharmacother 2021; 137:111273. [PMID: 33524787 PMCID: PMC7846467 DOI: 10.1016/j.biopha.2021.111273] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/11/2020] [Accepted: 12/26/2020] [Indexed: 02/07/2023] Open
Abstract
Diabetes mellitus (DM) and hypertension are highly prevalent worldwide health problems and frequently associated with severe clinical complications, such as diabetic cardiomyopathy, nephropathy, retinopathy, neuropathy, stroke, and cardiac arrhythmia, among others. Despite all existing research results and reasonable speculations, knowledge about the role of purinergic system in individuals with DM and hypertension remains restricted. Purinergic signaling accounts for a complex network of receptors and extracellular enzymes responsible for the recognition and degradation of extracellular nucleotides and adenosine. The main components of this system that will be presented in this review are: P1 and P2 receptors and the enzymatic cascade composed by CD39 (NTPDase; with ATP and ADP as a substrate), CD73 (5'-nucleotidase; with AMP as a substrate), and adenosine deaminase (ADA; with adenosine as a substrate). The purinergic system has recently emerged as a central player in several physiopathological conditions, particularly those linked to inflammatory responses such as diabetes and hypertension. Therefore, the present review focuses on changes in both purinergic P1 and P2 receptor expression as well as the activities of CD39, CD73, and ADA in diabetes and hypertension conditions. It can be postulated that the manipulation of the purinergic axis at different levels can prevent or exacerbate the insurgency and evolution of diabetes and hypertension working as a compensatory mechanism.
Collapse
Affiliation(s)
- Karine Paula Reichert
- Department of Biochemistry and Molecular Biology, Post-Graduation Program of Biological Sciences: Toxicological Biochemistry, CCNE, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Milagros Fanny Vera Castro
- Department of Biochemistry and Molecular Biology, Post-Graduation Program of Biological Sciences: Toxicological Biochemistry, CCNE, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Charles Elias Assmann
- Department of Biochemistry and Molecular Biology, Post-Graduation Program of Biological Sciences: Toxicological Biochemistry, CCNE, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Nathieli Bianchin Bottari
- Department of Biochemistry and Molecular Biology, Post-Graduation Program of Biological Sciences: Toxicological Biochemistry, CCNE, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Vanessa Valéria Miron
- Department of Biochemistry and Molecular Biology, Post-Graduation Program of Biological Sciences: Toxicological Biochemistry, CCNE, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Andréia Cardoso
- Academic Coordination, Medicine, Campus Chapecó, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Naiara Stefanello
- Department of Biochemistry and Molecular Biology, Post-Graduation Program of Biological Sciences: Toxicological Biochemistry, CCNE, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Vera Maria Melchiors Morsch
- Department of Biochemistry and Molecular Biology, Post-Graduation Program of Biological Sciences: Toxicological Biochemistry, CCNE, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Maria Rosa Chitolina Schetinger
- Department of Biochemistry and Molecular Biology, Post-Graduation Program of Biological Sciences: Toxicological Biochemistry, CCNE, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
12
|
Maulding ND, Kavanagh D, Zimmerman K, Coppola G, Carpenter TO, Jue NK, Braddock DT. Genetic pathways disrupted by ENPP1 deficiency provide insight into mechanisms of osteoporosis, osteomalacia, and paradoxical mineralization. Bone 2021; 142:115656. [PMID: 32980560 PMCID: PMC7744330 DOI: 10.1016/j.bone.2020.115656] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/16/2022]
Abstract
Ectonucleotide phosphatase/phosphodiesterase 1 (ENPP1) deficiency results in either lethal arterial calcifications ('Generalized Arterial Calcification of Infancy' - GACI), phosphate wasting rickets ('Autosomal Recessive Hypophosphatemic Rickets type 2' - ARHR2), early onset osteoporosis, or progressive spinal rigidity ('Ossification of the Posterior Longitudinal Ligament' - OPLL). As ENPP1 generates a strong endogenous mineralization inhibitor - extracellular pyrophosphate (PPi) - ENPP1 deficiency should not result in reduced bone volume, and therefore the mechanism ENPP1 associated osteoporosis is not apparent given current understanding of the enzyme's function. To investigate genetic pathways driving the skeletal phenotype of ENPP1 deficiency we compared gene expression in Enpp1asj/asj mice and WT sibling pairs by RNAseq and qPCR in whole bones, and in the liver and kidney by qPCR, directly correlating gene expression with measures of bone microarchitectural and biomechanical phenotypes. Unbiased analysis of the differentially expressed genes compared to relevant human disease phenotypes revealed that Enpp1asj/asj mice exhibit strong signatures of osteoporosis, ARHR2 and OPLL. We found that ENPP1 deficient mice exhibited reduced gene transcription of Wnt ligands in whole bone and increased transcription of soluble Wnt inhibitors in the liver and kidney, suggestive of multiorgan inhibition of Wnt activity. Consistent with Wnt suppression in bone, Collagen gene pathways in bone were significantly decreased and Fgf23 was significantly increased, all of which directly correlated with bone microarchitectural defects and fracture risk in Enpp1asj/asj mice. Moreover, the bone findings in 10-week old mice correlated with Enpp1 transcript counts but not plasma [PPi], suggesting that the skeletal phenotype at 10 weeks is driven by catalytically independent ENPP1 function. In contrast, the bone findings in 23-week Enpp1asj/asj mice strongly correlated with plasma PPi, suggesting that chronically low PPi drives the skeletal phenotype in older mice. Finally, correlation between Enpp1 and Fgf23 transcription suggested ENPP1 regulation of Fgf23, which we confirmed by dosing Enpp1asj/asj mice with soluble ENPP1-Fc and observing suppression of intact plasma FGF23 and ALP. In summary, our findings suggest that osteoporosis associated with ENPP1 deficiency involves the suppression of Wnt via catalytically independent Enpp1 pathways, and validates Enpp1asj/asj mice as tools to better understand OPLL and Paradoxical Mineralization Disorders.
Collapse
Affiliation(s)
- Nathan D Maulding
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Dillon Kavanagh
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Kristin Zimmerman
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Gianfilippo Coppola
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Thomas O Carpenter
- Department of Pediatrics at Yale University School of Medicine, New Haven, CT 06510, USA
| | - Nathaniel K Jue
- Department of Biology and Chemistry, California State University, Monterey Bay, CA, USA.
| | - Demetrios T Braddock
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
13
|
Yegutkin GG. Adenosine metabolism in the vascular system. Biochem Pharmacol 2020; 187:114373. [PMID: 33340515 DOI: 10.1016/j.bcp.2020.114373] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 12/20/2022]
Abstract
The concept of extracellular purinergic signaling was first proposed by Geoffrey Burnstock in the early 1970s. Since then, extracellular ATP and its metabolites ADP and adenosine have attracted an enormous amount of attention in terms of their involvement in a wide range of immunomodulatory, thromboregulatory, angiogenic, vasoactive and other pathophysiological activities in different organs and tissues, including the vascular system. In addition to significant progress in understanding the properties of nucleotide- and adenosine-selective receptors, recent studies have begun to uncover the complexity of regulatory mechanisms governing the duration and magnitude of the purinergic signaling cascade. This knowledge has led to the development of new paradigms in understanding the entire purinome by taking into account the multitude of signaling and metabolic pathways involved in biological effects of ATP and adenosine and compartmentalization of the adenosine system. Along with the "canonical route" of ATP breakdown to adenosine via sequential ecto-nucleoside triphosphate diphosphohydrolase-1 (NTPDase1/CD39) and ecto-5'-nucleotidase/CD73 activities, it has now become clear that purine metabolism is the result of concerted effort between ATP release, its metabolism through redundant nucleotide-inactivating and counteracting ATP-regenerating ectoenzymatic pathways, as well as cellular nucleoside uptake and phosphorylation of adenosine to ATP through complex phosphotransfer reactions. In this review I provide an overview of key enzymes involved in adenosine metabolic network, with special emphasis on the emerging roles of purine-converting ectoenzymes as novel targets for cancer and vascular therapies.
Collapse
|
14
|
Zimmermann H. History of ectonucleotidases and their role in purinergic signaling. Biochem Pharmacol 2020; 187:114322. [PMID: 33161020 DOI: 10.1016/j.bcp.2020.114322] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/03/2020] [Accepted: 11/03/2020] [Indexed: 12/15/2022]
Abstract
Ectonucleotidases are key for purinergic signaling. They control the duration of activity of purinergic receptor agonists. At the same time, they produce hydrolysis products as additional ligands of purinergic receptors. Due to the considerable diversity of enzymes, purinergic receptor ligands and purinergic receptors, deciphering the impact of extracellular purinergic receptor control has become a challenge. The first group of enzymes described were the alkaline phosphatases - at the time not as nucleotide-metabolizing but as nonspecific phosphatases. Enzymes now referred to as nucleoside triphosphate diphosphohydrolases and ecto-5'-nucleotidase were the first and only nucleotide-specific ectonucleotidases identified. And they were the first group of enzymes related to purinergic signaling. Additional research brought to light a surprising number of ectoenzymes with broad substrate specificity, which can also hydrolyze nucleotides. This short overview traces the development of the field and briefly highlights important results and benefits for therapies of human diseases achieved within nearly a century of investigations.
Collapse
Affiliation(s)
- Herbert Zimmermann
- Goethe University, Institute of Cell Biology and Neuroscience, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
15
|
Stabach PR, Zimmerman K, Adame A, Kavanagh D, Saeui CT, Agatemor C, Gray S, Cao W, De La Cruz EM, Yarema KJ, Braddock DT. Improving the Pharmacodynamics and In Vivo Activity of ENPP1-Fc Through Protein and Glycosylation Engineering. Clin Transl Sci 2020; 14:362-372. [PMID: 33064927 PMCID: PMC7877847 DOI: 10.1111/cts.12887] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023] Open
Abstract
Enzyme replacement with ectonucleotide pyrophosphatase phospodiesterase‐1 (ENPP1) eliminates mortality in a murine model of the lethal calcification disorder generalized arterial calcification of infancy. We used protein engineering, glycan optimization, and a novel biomanufacturing platform to enhance potency by using a three‐prong strategy. First, we added new N‐glycans to ENPP1; second, we optimized pH‐dependent cellular recycling by protein engineering of the Fc neonatal receptor; finally, we used a two‐step process to improve sialylation by first producing ENPP1‐Fc in cells stably transfected with human α‐2,6‐sialyltransferase (ST6) and further enhanced terminal sialylation by supplementing production with 1,3,4‐O‐Bu3ManNAc. These steps sequentially increased the half‐life of the parent compound in rodents from 37 hours to ~ 67 hours with an added N‐glycan, to ~ 96 hours with optimized pH‐dependent Fc recycling, to ~ 204 hours when the therapeutic was produced in ST6‐overexpressing cells with 1,3,4‐O‐Bu3ManNAc supplementation. The alterations were demonstrated to increase drug potency by maintaining efficacious levels of plasma phosphoanhydride pyrophosphate in ENPP1‐deficient mice when the optimized biologic was administered at a 10‐fold lower mass dose less frequently than the parent compound—once every 10 days vs. 3 times a week. We believe these improvements represent a general strategy to rationally optimize protein therapeutics.
Collapse
Affiliation(s)
- Paul R Stabach
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Kristin Zimmerman
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Aaron Adame
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Dillon Kavanagh
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Christopher T Saeui
- Department of Biomedical Engineering, Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Christian Agatemor
- Department of Biomedical Engineering, Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Shawn Gray
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Wenxiang Cao
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Enrique M De La Cruz
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Kevin J Yarema
- Department of Biomedical Engineering, Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Demetrios T Braddock
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
16
|
Sabatucci A, Pintus F, Cabras T, Vincenzoni F, Maccarrone M, Medda R, Dainese E. Structure of a nucleotide pyrophosphatase/phosphodiesterase (NPP) from Euphorbia characias latex characterized by small-angle X-ray scattering: clues for the general organization of plant NPPs. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2020; 76:857-867. [PMID: 32876061 DOI: 10.1107/s2059798320010207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/23/2020] [Indexed: 02/06/2023]
Abstract
Little information is available concerning the structural features of nucleotide pyrophosphatase/phosphodiesterases (NPPs) of plant origin and the crystal structures of these proteins have not yet been reported. The aim of this study was to obtain insight into these aspects by carrying out a comparative analysis of the sequences of two different fragments of an NPP from the latex of the Mediterranean shrub Euphorbia characias (ELNPP) and by studying the low-resolution structure of the purified protein in solution by means of small-angle X-ray scattering. This is the first structure of a plant NPP in solution that has been reported to date. It is shown that the ELNPP sequence is highly conserved in many other plant species. Of note, the catalytic domains of these plant NPPs have the same highly conserved PDE-domain organization as mammalian NPPs. Moreover, ELNPP is a dimer in solution and this oligomerization state is likely to be common to other plant enzymes.
Collapse
Affiliation(s)
- Annalaura Sabatucci
- Faculty of Biosciences and Technology for Food Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy
| | - Francesca Pintus
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, 09042 Cagliari, Italy
| | - Tiziana Cabras
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, 09042 Cagliari, Italy
| | - Federica Vincenzoni
- Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Mauro Maccarrone
- Campus Bio-Medico University, Via Álvaro del Portillo 21, 00128 Roma, Italy
| | - Rosaria Medda
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, 09042 Cagliari, Italy
| | - Enrico Dainese
- Faculty of Biosciences and Technology for Food Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy
| |
Collapse
|
17
|
Lopez V, Lee SY, Stephan H, Müller CE. Recombinant expression of ecto-nucleotide pyrophosphatase/phosphodiesterase 4 (NPP4) and development of a luminescence-based assay to identify inhibitors. Anal Biochem 2020; 603:113774. [PMID: 32445636 DOI: 10.1016/j.ab.2020.113774] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 04/24/2020] [Accepted: 05/10/2020] [Indexed: 12/18/2022]
Abstract
Nucleotide pyrophosphatase/phosphodiesterase 4 (NPP4) is a membrane-bound enzyme that hydrolyzes extracellular diadenosine polyphosphates such as diadenosine triphosphate (Ap3A) and diadenosine tetraphosphate (Ap4A) yielding mononucleotides. NPP4 on the surface of endothelial cells was reported to promote platelet aggregation by hydrolyzing Ap3A to ADP, which activates pro-thrombotic G protein-coupled P2Y1 and P2Y12 receptors. Thus, NPP4 inhibitors have potential as novel antithrombotic drugs. In the present study we expressed soluble human NPP4 in Sf9 insect cells and established an enzyme assay using diadenosine tetraphosphate (Ap4A) as a substrate. The reaction product ATP was quantified by luciferin-luciferase reaction in a 96-well plate format. The sensitive method displayed a limit of detection (LOD) of 14.6 nM, and a Z'-factor of 0.68 indicating its suitability for high-throughput screening. The new assay was applied for studying enzyme kinetics and led to the identification of the first NPP4 inhibitors.
Collapse
Affiliation(s)
- Vittoria Lopez
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany; PharmaCenter Bonn, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Sang-Yong Lee
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany; PharmaCenter Bonn, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Holger Stephan
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Christa E Müller
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany; PharmaCenter Bonn, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany.
| |
Collapse
|
18
|
Transcriptional profiling of circulating tumor cells in multiple myeloma: a new model to understand disease dissemination. Leukemia 2019; 34:589-603. [PMID: 31595039 DOI: 10.1038/s41375-019-0588-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/25/2019] [Accepted: 07/23/2019] [Indexed: 12/28/2022]
Abstract
The reason why a few myeloma cells egress from the bone marrow (BM) into peripheral blood (PB) remains unknown. Here, we investigated molecular hallmarks of circulating tumor cells (CTCs) to identify the events leading to myeloma trafficking into the bloodstream. After using next-generation flow to isolate matched CTCs and BM tumor cells from 32 patients, we found high correlation in gene expression at single-cell and bulk levels (r ≥ 0.94, P = 10-16), with only 55 genes differentially expressed between CTCs and BM tumor cells. CTCs overexpressed genes involved in inflammation, hypoxia, or epithelial-mesenchymal transition, whereas genes related with proliferation were downregulated in CTCs. The cancer stem cell marker CD44 was overexpressed in CTCs, and its knockdown significantly reduced migration of MM cells towards SDF1-α and their adhesion to fibronectin. Approximately half (29/55) of genes differentially expressed in CTCs were prognostic in patients with newly-diagnosed myeloma (n = 553; CoMMpass). In a multivariate analysis including the R-ISS, overexpression of CENPF and LGALS1 was significantly associated with inferior survival. Altogether, these results help understanding the presence of CTCs in PB and suggest that hypoxic BM niches together with a pro-inflammatory microenvironment induce an arrest in proliferation, forcing tumor cells to circulate in PB and seek other BM niches to continue growing.
Collapse
|
19
|
Döhler C, Zebisch M, Krinke D, Robitzki A, Sträter N. Crystallization of ectonucleotide phosphodiesterase/pyrophosphatase-3 and orientation of the SMB domains in the full-length ectodomain. Acta Crystallogr F Struct Biol Commun 2018; 74:696-703. [PMID: 30387774 PMCID: PMC6213977 DOI: 10.1107/s2053230x18011111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 08/03/2018] [Indexed: 11/11/2022] Open
Abstract
Ectonucleotide phosphodiesterase/pyrophosphatase-3 (NPP3, ENPP3) is an ATP-hydrolyzing glycoprotein that is located in the extracellular space. The full-length ectodomain of rat NPP3 was expressed in HEK293S GntI- cells, purified using two chromatographic steps and crystallized. Its structure at 2.77 Å resolution reveals that the active-site zinc ions are missing and a large part of the active site and the surrounding residues are flexible. The SMB-like domains have the same orientation in all four molecules in the asymmetric unit. The SMB2 domain is oriented as in NPP2, but the SMB1 domain does not interact with the PDE domain but extends further away from the PDE domain. Deletion of the SMB domains resulted in crystals that diffracted to 2.4 Å resolution and are suitable for substrate-binding studies.
Collapse
Affiliation(s)
- Christoph Döhler
- Institute of Bioanalytical Chemistry, Center for Biotechnology and Biomedicine, Leipzig University, Deutscher Platz 5, 04103 Leipzig, Germany
| | - Matthias Zebisch
- Institute of Bioanalytical Chemistry, Center for Biotechnology and Biomedicine, Leipzig University, Deutscher Platz 5, 04103 Leipzig, Germany
- Division of Structural Biology, Evotec, 114 Innovation Drive, Milton Park, Abingdon OX14 4RZ, England
| | - Dana Krinke
- Division of Molecular Biological–Biochemical Processing Technology, Center for Biotechnology and Biomedicine, Leipzig University, Deutscher Platz 5, 04103 Leipzig, Germany
| | - Andrea Robitzki
- Division of Molecular Biological–Biochemical Processing Technology, Center for Biotechnology and Biomedicine, Leipzig University, Deutscher Platz 5, 04103 Leipzig, Germany
| | - Norbert Sträter
- Institute of Bioanalytical Chemistry, Center for Biotechnology and Biomedicine, Leipzig University, Deutscher Platz 5, 04103 Leipzig, Germany
| |
Collapse
|
20
|
Crystal structure and substrate binding mode of ectonucleotide phosphodiesterase/pyrophosphatase-3 (NPP3). Sci Rep 2018; 8:10874. [PMID: 30022031 PMCID: PMC6052110 DOI: 10.1038/s41598-018-28814-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 06/12/2018] [Indexed: 01/29/2023] Open
Abstract
Ectonucleotide phosphodiesterase/pyrophosphatase-3 (NPP3) is a membrane-bound glycoprotein that regulates extracellular levels of nucleotides. NPP3 is known to contribute to the immune response on basophils by hydrolyzing ATP and to regulate the glycosyltransferase activity in Neuro2a cells. Here, we report on crystal structures of the nuclease and phosphodiesterase domains of rat NPP3 in complex with different substrates, products and substrate analogs giving insight into details of the catalytic mechanism. Complex structures with a phosphate ion, the product AMP and the substrate analog AMPNPP provide a consistent picture of the coordination of the substrate in which one zinc ion activates the threonine nucleophile whereas the other zinc ion binds the phosphate group. Co-crystal structures with the dinucleotide substrates Ap4A and UDPGlcNAc reveal a binding pocket for the larger leaving groups of these substrates. The crystal structures as well as mutational and kinetic analysis demonstrate that the larger leaving groups interact only weakly with the enzyme such that the substrate affinity is dominated by the interactions of the first nucleoside group. For this moiety, the nucleobase is stacked between Y290 and F207 and polar interactions with the protein are only formed via water molecules thus explaining the limited nucleobase selectivity.
Collapse
|
21
|
Pérez de Lara MJ, Guzmán-Aranguez A, Gómez-Villafuertes R, Gualix J, Miras-Portugal MT, Pintor J. Increased Ap 4A levels and ecto-nucleotidase activity in glaucomatous mice retina. Purinergic Signal 2018; 14:259-270. [PMID: 29948577 DOI: 10.1007/s11302-018-9612-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 05/22/2018] [Indexed: 10/14/2022] Open
Abstract
The pathogenesis of glaucoma involves numerous intracellular mechanisms including the purinergic system contribution. Furthermore, the presence and release of nucleotides and dinucleotides during the glaucomatous damage and the maintenance of degradation machinery through ecto-nucleotidase activity are participating in the modulation of the suitable extracellular complex balance. The aim of this study was to investigate the levels of diadenosine tetraphosphate (Ap4A) and the pattern of ecto-nucleotidase activity expression in glaucomatous retinas during the progress the pathology. Ap4A levels were analyzed by HPLC in glaucomatous retinas from the DBA/2J mice at 3, 9, 15, and 23 months of age. For that, retinas were dissected as flattened whole-mounts and stimulated in Ringer buffer with or without 59 mM KCl. NPP1 expression was analyzed by RT-PCR and western blot and its distribution was assessed by immunohistochemistry studies examined under confocal microscopy. Glaucomatous mice exhibited Ap4A values, which changed in stimulated retinas as long as the pathology progressed varying from 0.73 ± 0.04 (3 months) to 0.170 ± 0.05 pmol/mg retina (23 months). Concomitantly, NPP1 expression was significantly increased (82.15%) in the DBA/2J mice at 15 months. Furthermore, immunohistochemical studies showed that NPP1 labeling was stronger in OPL and IPL labeling tangentially in the vitreal part of the retina and was upregulated at 15 months of age. Our findings demonstrate that Ap4A decreased levels may be related with exacerbated activity of NPP1 protein in glaucomatous degeneration and in this way contributing to elucidate different mechanisms involved in retinal impairment in glaucomatous degeneration.
Collapse
Affiliation(s)
- María J Pérez de Lara
- Department of Biochemistry and Molecular Biology IV, Faculty of Optics and Optometry, Complutense University of Madrid, c/Arcos de Jalón 118, 28037, Madrid, Spain
| | - Ana Guzmán-Aranguez
- Department of Biochemistry and Molecular Biology IV, Faculty of Optics and Optometry, Complutense University of Madrid, c/Arcos de Jalón 118, 28037, Madrid, Spain
| | - Rosa Gómez-Villafuertes
- Department of Biochemistry and Molecular Biology IV, Faculty of Veterinary, Complutense University of Madrid, Av/ Puerta del Hierro s/n, 28040, Madrid, Spain
| | - Javier Gualix
- Department of Biochemistry and Molecular Biology IV, Faculty of Veterinary, Complutense University of Madrid, Av/ Puerta del Hierro s/n, 28040, Madrid, Spain
| | - María Teresa Miras-Portugal
- Department of Biochemistry and Molecular Biology IV, Faculty of Veterinary, Complutense University of Madrid, Av/ Puerta del Hierro s/n, 28040, Madrid, Spain
| | - Jesús Pintor
- Department of Biochemistry and Molecular Biology IV, Faculty of Optics and Optometry, Complutense University of Madrid, c/Arcos de Jalón 118, 28037, Madrid, Spain.
| |
Collapse
|
22
|
Gorelik A, Randriamihaja A, Illes K, Nagar B. Structural basis for nucleotide recognition by the ectoenzyme CD203c. FEBS J 2018; 285:2481-2494. [PMID: 29717535 DOI: 10.1111/febs.14489] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/21/2018] [Accepted: 04/25/2018] [Indexed: 12/11/2022]
Abstract
The ecto-nucleotide pyrophosphatase/phosphodiesterase (NPP) enzyme family modulates purinergic signaling by degrading extracellular nucleotides. CD203c (NPP3, ENPP3) regulates the inflammatory response of basophils via ATP hydrolysis and is a marker for allergen sensitivity on the surface of these cells. Multiple other roles and substrates have also been proposed for this protein. In order to gain insight into its molecular functions, we determined the crystal structure of human NPP3 as well as its complex with an ATP analog. The enzyme exhibits little preference for nucleobase type, and forms specific contacts with the alpha and beta phosphate groups of its ligands. Dimerization of the protein does not affect its catalytic activity. These findings expand our understanding of substrate recognition within the NPP family. DATABASE Structural data are available in the Protein Data Bank under the accession numbers 6C01 (human NPP3) and 6C02 (human NPP3 T205A N594S with AMPCPP).
Collapse
Affiliation(s)
- Alexei Gorelik
- Department of Biochemistry and Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, Quebec, Canada
| | - Antsa Randriamihaja
- Department of Biochemistry and Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, Quebec, Canada
| | - Katalin Illes
- Department of Biochemistry and Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, Quebec, Canada
| | - Bhushan Nagar
- Department of Biochemistry and Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
23
|
Lee SY, Müller CE. Nucleotide pyrophosphatase/phosphodiesterase 1 (NPP1) and its inhibitors. MEDCHEMCOMM 2017; 8:823-840. [PMID: 30108800 PMCID: PMC6072468 DOI: 10.1039/c7md00015d] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 02/08/2017] [Indexed: 01/22/2023]
Abstract
Ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (NPP1, EC 3.1.4.1) is a metalloenzyme that belongs to the NPP family, which comprises seven subtypes (NPP1-7). NPP1 hydrolyzes a wide range of phosphodiester bonds, e.g. in nucleoside triphosphates, (cyclic) dinucleotides, and nucleotide sugars yielding nucleoside 5'-monophosphates as products. Its main substrate is ATP which is cleaved to AMP and diphosphate. The enzyme is involved in various biological processes including bone mineralization, soft-tissue calcification, insulin receptor signalling, cancer cell proliferation and immune modulation. Therefore, NPP1 inhibitors have potential as novel drugs, e.g. for (immuno)oncology. In the last two decades several inhibitors of NPP1 derived from nucleotide- or non-nucleotide scaffolds have been developed. The most potent and selective NPP1-inhibitory substrate analog is adenosine 5'-α,β-methylene-γ-thiotriphosphate (Ki = 20 nM vs. p-Nph-5'-TMP, human membrane-bound NPP1). Non-nucleotide-derived NPP1 inhibitors comprise polysulfonates, polysaccharides, polyoxometalates and small heterocyclic compounds. The polyoxometalate [TiW11CoO40]8- (PSB-POM141) is the most potent and selective NPP1 inhibitor described to date (Ki = 1.46 nM vs. ATP, human soluble NPP1); it displays an allosteric mechanism of inhibition and represents a useful pharmacological tool for evaluating the potential of NPP1 as a novel drug target.
Collapse
Affiliation(s)
- Sang-Yong Lee
- PharmaCenter Bonn , Pharmaceutical Institute , Pharmaceutical Chemistry I , University of Bonn , An der Immenburg 4 , D-53121 Bonn , Germany . ; ; Tel: +49 228 73 2480
| | - Christa E Müller
- PharmaCenter Bonn , Pharmaceutical Institute , Pharmaceutical Chemistry I , University of Bonn , An der Immenburg 4 , D-53121 Bonn , Germany . ; ; Tel: +49 228 73 2480
| |
Collapse
|
24
|
Namasivayam V, Lee SY, Müller CE. The promiscuous ectonucleotidase NPP1: molecular insights into substrate binding and hydrolysis. Biochim Biophys Acta Gen Subj 2016; 1861:603-614. [PMID: 28011303 DOI: 10.1016/j.bbagen.2016.12.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 12/16/2016] [Accepted: 12/19/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Vigneshwaran Namasivayam
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical Chemistry I, University of Bonn, Germany
| | - Sang-Yong Lee
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical Chemistry I, University of Bonn, Germany
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical Chemistry I, University of Bonn, Germany.
| |
Collapse
|
25
|
Discovery and synthetic optimization of a novel scaffold for hydrophobic tunnel-targeted autotaxin inhibition. Bioorg Med Chem 2016; 24:4660-4674. [PMID: 27544588 DOI: 10.1016/j.bmc.2016.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 08/01/2016] [Accepted: 08/03/2016] [Indexed: 12/11/2022]
Abstract
Autotaxin (ATX) is a ubiquitous ectoenzyme that hydrolyzes lysophosphatidylcholine (LPC) to form the bioactive lipid mediator lysophosphatidic acid (LPA). LPA activates specific G-protein coupled receptors to elicit downstream effects leading to cellular motility, survival, and invasion. Through these pathways, upregulation of ATX is linked to diseases such as cancer and cardiovascular disease. Recent crystal structures confirm that the catalytic domain of ATX contains multiple binding regions including a polar active site, hydrophobic tunnel, and a hydrophobic pocket. This finding is consistent with the promiscuous nature of ATX hydrolysis of multiple and diverse substrates and prior investigations of inhibitor impacts on ATX enzyme kinetics. The current study used virtual screening methods to guide experimental identification and characterization of inhibitors targeting the hydrophobic region of ATX. An initially discovered inhibitor, GRI392104 (IC50 4μM) was used as a lead for synthetic optimization. In total twelve newly synthesized inhibitors of ATX were more potent than GRI392104 and were selective for ATX as they had no effect on other LPC-specific NPP family members or on LPA1-5 GPCR.
Collapse
|
26
|
Lee SY, Perotti A, De Jonghe S, Herdewijn P, Hanck T, Müller CE. Thiazolo[3,2-a]benzimidazol-3(2H)-one derivatives: Structure-activity relationships of selective nucleotide pyrophosphatase/phosphodiesterase1 (NPP1) inhibitors. Bioorg Med Chem 2016; 24:3157-65. [PMID: 27265686 DOI: 10.1016/j.bmc.2016.05.046] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/17/2016] [Accepted: 05/20/2016] [Indexed: 02/03/2023]
Abstract
Ecto-nucleotide pyrophosphatase/phosphodiesterase1 (NPP1) is the most important member of the NPP family, which consists of seven closely related proteins (NPP1-NPP7). This glycoprotein is a membrane-associated or secreted enzyme, which catalyzes the hydrolysis of a wide range of phosphodiester bonds, e.g., in nucleoside triphosphates, dinucleotides and nucleotide sugars. NPP1 plays a crucial role in various physiological functions including bone mineralization, soft-tissue calcification, and insulin receptor signaling. Recently, an upregulated expression of NPP1 has been observed in astrocytic brain cancers. Therefore, NPP1 has been proposed as a novel drug target for the treatment of glioblastoma. Despite their therapeutic potential, only few NPP1 inhibitors have been reported to date, which are in most cases non- or only moderately selective. The best investigated NPP1 inhibitors so far are nucleotide derivatives and analogs, however they are not orally bioavailable due to their high polarity. We identified thiazolo[3,2-a]benzimidazol-3(2H)-one derivatives as a new class of NPP1 inhibitors with drug-like properties. Among the 25 derivatives investigated in the present study, 2-[(5-iodo-2-furanyl)methylene]thiazolo[3,2-a]benzimidazol-3(2H)-one (17) was found to be the most potent NPP1 inhibitor with a Ki value of 467nM versus ATP as a substrate and an un-competitive mechanism of inhibition. Compound 17 did not inhibit other human ecto-nucleotidases, including NTPDase1 (CD39), NTPDases2-3, NPP2, NPP3, tissue-nonspecific alkaline phosphatase (TNAP), and ecto-5'-nucleotidase (eN, CD73), and is thus highly selective for NPP1.
Collapse
Affiliation(s)
- Sang-Yong Lee
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Arianna Perotti
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Steven De Jonghe
- KU Leuven, Rega Institute for Medical Research, Laboratory of Medicinal Chemistry, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Piet Herdewijn
- KU Leuven, Rega Institute for Medical Research, Laboratory of Medicinal Chemistry, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Theodor Hanck
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany.
| |
Collapse
|
27
|
Morita J, Kano K, Kato K, Takita H, Sakagami H, Yamamoto Y, Mihara E, Ueda H, Sato T, Tokuyama H, Arai H, Asou H, Takagi J, Ishitani R, Nishimasu H, Nureki O, Aoki J. Structure and biological function of ENPP6, a choline-specific glycerophosphodiester-phosphodiesterase. Sci Rep 2016; 6:20995. [PMID: 26888014 PMCID: PMC4757880 DOI: 10.1038/srep20995] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 01/14/2016] [Indexed: 11/09/2022] Open
Abstract
Choline is an essential nutrient for all living cells and is produced extracellularly by sequential degradation of phosphatidylcholine (PC). However, little is known about how choline is produced extracellularly. Here, we report that ENPP6, a choline-specific phosphodiesterase, hydrolyzes glycerophosphocholine (GPC), a degradation product of PC, as a physiological substrate and participates in choline metabolism. ENPP6 is highly expressed in liver sinusoidal endothelial cells and developing oligodendrocytes, which actively incorporate choline and synthesize PC. ENPP6-deficient mice exhibited fatty liver and hypomyelination, well known choline-deficient phenotypes. The choline moiety of GPC was incorporated into PC in an ENPP6-dependent manner both in vivo and in vitro. The crystal structure of ENPP6 in complex with phosphocholine revealed that the choline moiety of the phosphocholine is recognized by a choline-binding pocket formed by conserved aromatic and acidic residues. The present study provides the molecular basis for ENPP6-mediated choline metabolism at atomic, cellular and tissue levels.
Collapse
Affiliation(s)
- Junko Morita
- Department of Biological Sciences, Graduate School of Sciences, The University of Tokyo, 2-11-16, Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Kuniyuki Kano
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Kazuki Kato
- Department of Biological Sciences, Graduate School of Sciences, The University of Tokyo, 2-11-16, Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Hiroyuki Takita
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Hideki Sakagami
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bumkyo-ku, Tokyo, 113-0033, Japan
| | - Yasuo Yamamoto
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Emiko Mihara
- Institute for Protein Research, Osaka University, 3-2, Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
| | - Hirofumi Ueda
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Takanao Sato
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Hidetoshi Tokuyama
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Hiroyuki Arai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bumkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroaki Asou
- Center for Kampo Medicine, Keio University School of Medicine, 35, Shinanomachi, Shinjuku-ku, Tokyo, 160-0016, Japan
| | - Junichi Takagi
- Institute for Protein Research, Osaka University, 3-2, Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
| | - Ryuichiro Ishitani
- Department of Biological Sciences, Graduate School of Sciences, The University of Tokyo, 2-11-16, Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Hiroshi Nishimasu
- Department of Biological Sciences, Graduate School of Sciences, The University of Tokyo, 2-11-16, Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan.,PRESTO (Precursory Research for Embryonic Science and Technology), JST (Japan Science and Technology Agency), 4-1-8, Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Sciences, The University of Tokyo, 2-11-16, Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan.,AMED (Japan Agency for Medical Research and Development)-CREST (Core Research for Evolutional Science and Technology), 1-7-1, Otemachi, Chiyoda-ku, Tokyo, 100-0004, Japan
| | - Junken Aoki
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578, Japan.,AMED (Japan Agency for Medical Research and Development)-CREST (Core Research for Evolutional Science and Technology), 1-7-1, Otemachi, Chiyoda-ku, Tokyo, 100-0004, Japan
| |
Collapse
|
28
|
ENPP1-Fc prevents mortality and vascular calcifications in rodent model of generalized arterial calcification of infancy. Nat Commun 2015; 6:10006. [PMID: 26624227 PMCID: PMC4686714 DOI: 10.1038/ncomms10006] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 10/23/2015] [Indexed: 12/02/2022] Open
Abstract
Diseases of ectopic calcification of the vascular wall range from lethal orphan diseases such as generalized arterial calcification of infancy (GACI), to common diseases such as hardening of the arteries associated with aging and calciphylaxis of chronic kidney disease (CKD). GACI is a lethal orphan disease in which infants calcify the internal elastic lamina of their medium and large arteries and expire of cardiac failure as neonates, while calciphylaxis of CKD is a ubiquitous vascular calcification in patients with renal failure. Both disorders are characterized by vascular Mönckeburg's sclerosis accompanied by decreased concentrations of plasma inorganic pyrophosphate (PPi). Here we demonstrate that subcutaneous administration of an ENPP1-Fc fusion protein prevents the mortality, vascular calcifications and sequela of disease in animal models of GACI, and is accompanied by a complete clinical and biomarker response. Our findings have implications for the treatment of rare and common diseases of ectopic vascular calcification. Generalized arterial calcification of infancy (GACI) is a terminal disease caused by the ENPP1 enzyme deficiency. Here, Albrigh et al. show that ENPP1 enzyme replacement therapy prevents the ectopic calcifications and mortality in mice with GACI, suggesting a novel treatment for vascular calcification in humans.
Collapse
|
29
|
Yegutkin GG. Enzymes involved in metabolism of extracellular nucleotides and nucleosides: functional implications and measurement of activities. Crit Rev Biochem Mol Biol 2015; 49:473-97. [PMID: 25418535 DOI: 10.3109/10409238.2014.953627] [Citation(s) in RCA: 224] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Extracellular nucleotides and nucleosides mediate diverse signaling effects in virtually all organs and tissues. Most models of purinergic signaling depend on functional interactions between distinct processes, including (i) the release of endogenous ATP and other nucleotides, (ii) triggering of signaling events via a series of nucleotide-selective ligand-gated P2X and metabotropic P2Y receptors as well as adenosine receptors and (iii) ectoenzymatic interconversion of purinergic agonists. The duration and magnitude of purinergic signaling is governed by a network of ectoenzymes, including the enzymes of the nucleoside triphosphate diphosphohydrolase (NTPDase) family, the nucleotide pyrophosphatase/phosphodiesterase (NPP) family, ecto-5'-nucleotidase/CD73, tissue-nonspecific alkaline phosphatase (TNAP), prostatic acid phosphatase (PAP) and other alkaline and acid phosphatases, adenosine deaminase (ADA) and purine nucleoside phosphorylase (PNP). Along with "classical" inactivating ectoenzymes, recent data provide evidence for the co-existence of a counteracting ATP-regenerating pathway comprising the enzymes of the adenylate kinase (AK) and nucleoside diphosphate kinase (NDPK/NME/NM23) families and ATP synthase. This review describes recent advances in this field, with special emphasis on purine-converting ectoenzymes as a complex and integrated network regulating purinergic signaling in such (patho)physiological states as immunomodulation, inflammation, tumorigenesis, arterial calcification and other diseases. The second part of this review provides a comprehensive overview and basic principles of major approaches employed for studying purinergic activities, including spectrophotometric Pi-liberating assays, high-performance liquid chromatographic (HPLC) and thin-layer chromatographic (TLC) analyses of purine substrates and metabolites, capillary electrophoresis, bioluminescent, fluorometric and electrochemical enzyme-coupled assays, histochemical staining, and further emphasizes their advantages, drawbacks and suitability for assaying a particular catalytic reaction.
Collapse
Affiliation(s)
- Gennady G Yegutkin
- Department of Medical Microbiology and Immunology, University of Turku , Turku , Finland
| |
Collapse
|
30
|
Jacobson KA, Paoletta S, Katritch V, Wu B, Gao ZG, Zhao Q, Stevens RC, Kiselev E. Nucleotides Acting at P2Y Receptors: Connecting Structure and Function. Mol Pharmacol 2015; 88:220-30. [PMID: 25837834 DOI: 10.1124/mol.114.095711] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 04/02/2015] [Indexed: 12/23/2022] Open
Abstract
Eight G protein-coupled P2Y receptor (P2YR) subtypes are important physiologic mediators. The human P2YRs are fully activated by ATP (P2Y2 and P2Y11), ADP (P2Y1, P2Y12, and P2Y13), UTP (P2Y2 and P2Y4), UDP (P2Y6 and P2Y14), and UDP glucose (P2Y14). Their structural elucidation is progressing rapidly. The X-ray structures of three ligand complexes of the Gi-coupled P2Y12R and two of the Gq-coupled P2Y1Rs were recently determined and will be especially useful in structure-based ligand design at two P2YR subfamilies. These high-resolution structures, which display unusual binding site features, complement mutagenesis studies for probing ligand recognition and activation. The structural requirements for nucleotide agonist recognition at P2YRs are relatively permissive with respect to the length of the phosphate moiety, but less so with respect to base recognition. Nucleotide-like antagonists and partial agonists are also known for P2Y1, P2Y2, P2Y4, and P2Y12Rs. Each P2YR subtype has the ability to be activated by structurally bifunctional agonists, such as dinucleotides, typically, dinucleoside triphosphates or tetraphosphates, and nucleoside polyphosphate sugars (e.g., UDP glucose) as well as the more conventional mononucleotide agonists. A range of dinucleoside polyphosphates, from triphosphates to higher homologs, occurs naturally. Earlier modeling predictions of the P2YRs were not very accurate, but recent findings have provided much detailed structural insight into this receptor family to aid in the rational design of new drugs.
Collapse
Affiliation(s)
- Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland (K.A.J., S.P., Z.-G.G., E.K.); The Bridge Institute, Dana and David Dornsife School of Letters, Arts, and Sciences, University of Southern California, Los Angeles, California (V.K., R.C.S.); and Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (B.W., Q.Z.)
| | - Silvia Paoletta
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland (K.A.J., S.P., Z.-G.G., E.K.); The Bridge Institute, Dana and David Dornsife School of Letters, Arts, and Sciences, University of Southern California, Los Angeles, California (V.K., R.C.S.); and Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (B.W., Q.Z.)
| | - Vsevolod Katritch
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland (K.A.J., S.P., Z.-G.G., E.K.); The Bridge Institute, Dana and David Dornsife School of Letters, Arts, and Sciences, University of Southern California, Los Angeles, California (V.K., R.C.S.); and Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (B.W., Q.Z.)
| | - Beili Wu
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland (K.A.J., S.P., Z.-G.G., E.K.); The Bridge Institute, Dana and David Dornsife School of Letters, Arts, and Sciences, University of Southern California, Los Angeles, California (V.K., R.C.S.); and Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (B.W., Q.Z.)
| | - Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland (K.A.J., S.P., Z.-G.G., E.K.); The Bridge Institute, Dana and David Dornsife School of Letters, Arts, and Sciences, University of Southern California, Los Angeles, California (V.K., R.C.S.); and Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (B.W., Q.Z.)
| | - Qiang Zhao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland (K.A.J., S.P., Z.-G.G., E.K.); The Bridge Institute, Dana and David Dornsife School of Letters, Arts, and Sciences, University of Southern California, Los Angeles, California (V.K., R.C.S.); and Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (B.W., Q.Z.)
| | - Raymond C Stevens
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland (K.A.J., S.P., Z.-G.G., E.K.); The Bridge Institute, Dana and David Dornsife School of Letters, Arts, and Sciences, University of Southern California, Los Angeles, California (V.K., R.C.S.); and Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (B.W., Q.Z.)
| | - Evgeny Kiselev
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland (K.A.J., S.P., Z.-G.G., E.K.); The Bridge Institute, Dana and David Dornsife School of Letters, Arts, and Sciences, University of Southern California, Los Angeles, California (V.K., R.C.S.); and Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (B.W., Q.Z.)
| |
Collapse
|
31
|
Takeda K, Tsai SH, Kayama H. Regulation of immune responses by ATP-hydrolyzing ecto-enzymes. Inflamm Regen 2015. [DOI: 10.2492/inflammregen.35.172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Kiyoshi Takeda
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama, Japan
| | - Shih Han Tsai
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Hisako Kayama
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| |
Collapse
|
32
|
Tocco A, Pinson B, Thiébaud P, Thézé N, Massé K. Comparative genomic and expression analysis of the adenosine signaling pathway members in Xenopus. Purinergic Signal 2014; 11:59-77. [PMID: 25319637 DOI: 10.1007/s11302-014-9431-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 09/30/2014] [Indexed: 12/13/2022] Open
Abstract
Adenosine is an endogenous molecule that regulates many physiological processes via the activation of four specific G-protein-coupled ADORA receptors. Extracellular adenosine may originate either from the hydrolysis of released ATP by the ectonucleotidases or from cellular exit via the equilibrative nucleoside transporters (SLC29A). Adenosine extracellular concentration is also regulated by its successive hydrolysis into uric acid by membrane-bound enzymes or by cell influx via the concentrative nucleoside transporters (SLC28A). All of these members constitute the adenosine signaling pathway and regulate adenosine functions. Although the roles of this pathway are quite well understood in adults, little is known regarding its functions during vertebrate embryogenesis. We have used Xenopus laevis as a model system to provide a comparative expression map of the different members of this pathway during vertebrate development. We report the characterization of the different enzymes, receptors, and nucleoside transporters in both X. laevis and X. tropicalis, and we demonstrate by phylogenetic analyses the high level of conservation of these members between amphibians and mammals. A thorough expression analysis of these members during development and in the adult frog reveals that each member displays distinct specific expression patterns. These data suggest potentially different developmental roles for these proteins and therefore for extracellular adenosine. In addition, we show that adenosine levels during amphibian embryogenesis are very low, confirming that they must be tightly controlled for normal development.
Collapse
Affiliation(s)
- Alice Tocco
- Université de Bordeaux, CIRID UMR 5164, F-33000, Bordeaux, France
| | | | | | | | | |
Collapse
|
33
|
Gómez-Villafuertes R, Pintor J, Miras-Portugal MT, Gualix J. Ectonucleotide pyrophosphatase/phosphodiesterase activity in Neuro-2a neuroblastoma cells: changes in expression associated with neuronal differentiation. J Neurochem 2014; 131:290-302. [PMID: 24947519 DOI: 10.1111/jnc.12794] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 06/06/2014] [Accepted: 06/16/2014] [Indexed: 01/04/2023]
Abstract
Neuro-2a (N2a) neuroblastoma cells display an ectoenzymatic hydrolytic activity capable of degrading diadenosine polyphosphates. The Apn A-cleaving activity has been analysed with the use of the fluorogenic compound BODIPY FL guanosine 5'-O-(3-thiotriphosphate) thioester. Hydrolysis of this dinucleotide analogue showed a hyperbolic kinetic with a Km value of 4.9 ± 1.3 μM. Diadenosine pentaphosphate, diadenosine tetraphosphate, diadenosine triphosphate, and the nucleoside monophosphate AMP behaved as an inhibitor of BODIPY FL guanosine 5'-O-(3-thiotriphosphate) thioester extracellular degradation. Ectoenzymatic activity shared the typical characteristics of the ectonucleotide pyrophosphatase/phosphodiesterase family, as hydrolysis reached maximal activity at alkaline pH and was dependent on the presence of divalent cations, being strongly inhibited by EDTA and activated by Zn(2+) ions. Both NPP1 and NPP3 isozymes are expressed in N2a cells, their expression levels substantially changing when cells differentiate into a neuronal-like phenotype. In this sense, it is relevant to point the expression pattern of the NPP3 protein, whose levels were drastically reduced in the differentiated cells, being almost completely absent after 24 h of differentiation. Enzymatic activity assays carried out with differentiated N2a cells showed that NPP1 is the main isozyme involved in the extracellular degradation of dinucleotides in these cells, this enzyme reducing its activity and changing its subcellular location following neuronal differentiation. We described the presence of an ectoenzymatic activity able to hydrolyse diadenosine polyphosphates (ApnA) in N2a cells. This activity displays biochemical features that are typical of the ectonucleotide pyrophosphatase/phosphodiesterase (E-NPP) family members, as demonstrated by the use of the fluorogenic compound BODIPY-FL-GTPγS. Both NPP1 and NPP3 ectoenzymes are expressed in N2a cells, their levels dramatically changing when cells differentiate into a neuronal-like phenotype. Activity assays in differentiated cells showed that the ApnA-hydrolytic activity largely depends on the NPP1 isozyme.
Collapse
Affiliation(s)
- Rosa Gómez-Villafuertes
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | | | | | | |
Collapse
|
34
|
Morita J, Kato K, Mihara E, Ishitani R, Takagi J, Nishimasu H, Aoki J, Nureki O. Expression, purification, crystallization and preliminary X-ray crystallographic analysis of Enpp6. ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS 2014; 70:794-9. [PMID: 24915096 DOI: 10.1107/s2053230x14008929] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 04/19/2014] [Indexed: 01/09/2023]
Abstract
Enpp (ectonucleotide phosphodiesterase/pyrophosphatase) 6 is a membrane-bound glycoprotein that hydrolyzes choline-containing compounds such as lysophosphatidylcholine and glycerophosphorylcholine, and presumably participates in choline metabolism. The catalytic domain of mouse Enpp6 was expressed in HEK293T cells, purified using the TARGET tag/P20.1-Sepharose system and crystallized. An X-ray diffraction data set was collected to 1.8 Å resolution. The crystal belonged to space group P1, with unit-cell parameters a=63.7, b=68.8, c=69.7 Å, α=60.6, β=87.0, γ=68.1°. Assuming the presence of two protein molecules per asymmetric unit, the solvent content was estimated to be 49.5%.
Collapse
Affiliation(s)
- Junko Morita
- Department of Biological Science, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Kazuki Kato
- Department of Biological Science, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Emiko Mihara
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ryuichiro Ishitani
- Department of Biological Science, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Junichi Takagi
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiroshi Nishimasu
- Department of Biological Science, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Junken Aoki
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Osamu Nureki
- Department of Biological Science, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| |
Collapse
|
35
|
Albright RA, Ornstein DL, Cao W, Chang WC, Robert D, Tehan M, Hoyer D, Liu L, Stabach P, Yang G, De La Cruz EM, Braddock DT. Molecular basis of purinergic signal metabolism by ectonucleotide pyrophosphatase/phosphodiesterases 4 and 1 and implications in stroke. J Biol Chem 2013; 289:3294-306. [PMID: 24338010 DOI: 10.1074/jbc.m113.505867] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
NPP4 is a type I extracellular membrane protein on brain vascular endothelium inducing platelet aggregation via the hydrolysis of Ap3A, whereas NPP1 is a type II extracellular membrane protein principally present on the surface of chondrocytes that regulates tissue mineralization. To understand the metabolism of purinergic signals resulting in the physiologic activities of the two enzymes, we report the high resolution crystal structure of human NPP4 and explore the molecular basis of its substrate specificity with NPP1. Both enzymes cleave Ap3A, but only NPP1 can hydrolyze ATP. Comparative structural analysis reveals a tripartite lysine claw in NPP1 that stabilizes the terminal phosphate of ATP, whereas the corresponding region of NPP4 contains features that hinder this binding orientation, thereby inhibiting ATP hydrolysis. Furthermore, we show that NPP1 is unable to induce platelet aggregation at physiologic concentrations reported in human blood, but it could stimulate platelet aggregation if localized at low nanomolar concentrations on vascular endothelium. The combined studies expand our understanding of NPP1 and NPP4 substrate specificity and range and provide a rational mechanism by which polymorphisms in NPP1 confer stroke resistance.
Collapse
Affiliation(s)
- Ronald A Albright
- From the Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06510
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
al-Rashida M, Iqbal J. Therapeutic potentials of ecto-nucleoside triphosphate diphosphohydrolase, ecto-nucleotide pyrophosphatase/phosphodiesterase, ecto-5'-nucleotidase, and alkaline phosphatase inhibitors. Med Res Rev 2013; 34:703-43. [PMID: 24115166 DOI: 10.1002/med.21302] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The modulatory role of extracellular nucleotides and adenosine in relevance to purinergic cell signaling mechanisms has long been known and is an object of much research worldwide. These extracellular nucleotides are released by a variety of cell types either innately or as a response to patho-physiological stress or injury. A variety of surface-located ecto-nucleotidases (of four major types; nucleoside triphosphate diphosphohydrolases or NTPDases, nucleotide pyrophosphatase/phosphodiesterases or NPPs, alkaline phosphatases APs or ALPs, and ecto-5'-nucleotidase or e5NT) are responsible for meticulously controlling the availability of these important signaling molecules (at their respective receptors) in extracellular environment and are therefore crucial for maintaining the integrity of normal cell functioning. Overexpression of many of these ubiquitous ecto-enzymes has been implicated in a variety of disorders including cell adhesion, activation, proliferation, apoptosis, and degenerative neurological and immunological responses. Selective inhibition of these ecto-enzymes is an area that is currently being explored with great interest and hopes remain high that development of selective ecto-nucleotidase inhibitors will prove to have many beneficial therapeutic implications. The aim of this review is to emphasize and focus on recent developments made in the field of inhibitors of ecto-nucleotidases and to highlight their structure activity relationships wherever possible. Most recent and significant advances in field of NTPDase, NPP, AP, and e5NT inhibitors is being discussed in detail in anticipation of providing prolific leads and relevant background for research groups interested in synthesis of selective ecto-nucleotidase inhibitors.
Collapse
Affiliation(s)
- Mariya al-Rashida
- Department of Pharmaceutical Sciences, COMSATS Institute of Information Technology, Abbottabad, 22060, Pakistan
| | | |
Collapse
|