1
|
Saporiti S, Bianchi D, Ben Mariem O, Rossi M, Guerrini U, Eberini I, Centola F. In silico evaluation of the role of Fab glycosylation in cetuximab antibody dynamics. Front Immunol 2024; 15:1429600. [PMID: 39185413 PMCID: PMC11342397 DOI: 10.3389/fimmu.2024.1429600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/23/2024] [Indexed: 08/27/2024] Open
Abstract
Introduction N-glycosylation is a post-translational modification that is highly important for the development of monoclonal antibodies (mAbs), as it regulates their biological activity, particularly in terms of immune effector functions. While typically added at the Fc level, approximately 15-25% of circulating antibodies exhibit glycosylation in the Fab domains as well. To the best of our knowledge, cetuximab (Erbitux®) is the only therapeutic antibody presenting Fab glycosylation approved world-wide targeting the epidermal growth factor receptor for the treatment of metastatic-colorectal and head and neck cancers. Additionally, it can trigger antibody-dependent cell cytotoxicity (ADCC), a response that typically is influenced by N-glycosylation at Fc level. However, the role of Fab glycosylation in cetuximab remains poorly understood. Hence, this study aims to investigate the structural role of Fab glycosylation on the conformational behavior of cetuximab. Methods The study was performed in silico via accelerated molecular dynamics simulations. The commercial cetuximab was compared to its form without Fab glycosylation and structural descriptors were evaluated to establish conformational differences. Results The results clearly show a correlation between the Fab glycosylation and structural descriptors that may modulate the conformational freedom of the antibody, potentially affecting Fc effector functions, and suggesting a negative role of Fab glycosylation on the interaction with FcγRIIIa. Conclusion Fab glycosylation of cetuximab is the most critical challenge for biosimilar development, but the differences highlighted in this work with respect to its aglycosylated form can improve the knowledge and represent also a great opportunity to develop novel strategies of biotherapeutics.
Collapse
Affiliation(s)
- Simona Saporiti
- Analytical Excellence and Program Management, Merck Serono S.p.A., Rome, Italy
| | - Davide Bianchi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Omar Ben Mariem
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Mara Rossi
- Analytical Excellence and Program Management, Merck Serono S.p.A., Rome, Italy
| | - Uliano Guerrini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Ivano Eberini
- Dipartimento di Scienze Farmacologiche e Biomolecolari & Data Science Research Center (DSRC), Università degli Studi di Milano, Milan, Italy
| | - Fabio Centola
- Analytical Excellence and Program Management, Merck Serono S.p.A., Rome, Italy
| |
Collapse
|
2
|
Radtke AJ, Postovalova E, Varlamova A, Bagaev A, Sorokina M, Kudryashova O, Meerson M, Polyakova M, Galkin I, Svekolkin V, Isaev S, Wiebe D, Sharun A, Sarachakov A, Perelman G, Lozinsky Y, Yaniv Z, Lowekamp BC, Speranza E, Yao L, Pittaluga S, Shaffer AL, Jonigk D, Phelan JD, Davies-Hill T, Huang DW, Ovcharov P, Nomie K, Nuzhdina E, Kotlov N, Ataullakhanov R, Fowler N, Kelly M, Muppidi J, Davis JL, Hernandez JM, Wilson WH, Jaffe ES, Staudt LM, Roschewski M, Germain RN. Multi-omic profiling of follicular lymphoma reveals changes in tissue architecture and enhanced stromal remodeling in high-risk patients. Cancer Cell 2024; 42:444-463.e10. [PMID: 38428410 PMCID: PMC10966827 DOI: 10.1016/j.ccell.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/04/2023] [Accepted: 02/05/2024] [Indexed: 03/03/2024]
Abstract
Follicular lymphoma (FL) is a generally incurable malignancy that evolves from developmentally blocked germinal center (GC) B cells. To promote survival and immune escape, tumor B cells undergo significant genetic changes and extensively remodel the lymphoid microenvironment. Dynamic interactions between tumor B cells and the tumor microenvironment (TME) are hypothesized to contribute to the broad spectrum of clinical behaviors observed among FL patients. Despite the urgent need, existing clinical tools do not reliably predict disease behavior. Using a multi-modal strategy, we examined cell-intrinsic and -extrinsic factors governing progression and therapeutic outcomes in FL patients enrolled onto a prospective clinical trial. By leveraging the strengths of each platform, we identify several tumor-specific features and microenvironmental patterns enriched in individuals who experience early relapse, the most high-risk FL patients. These features include stromal desmoplasia and changes to the follicular growth pattern present 20 months before first progression and first relapse.
Collapse
Affiliation(s)
- Andrea J Radtke
- Lymphocyte Biology Section and Center for Advanced Tissue Imaging, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Ziv Yaniv
- Bioinformatics and Computational Bioscience Branch, NIAID, NIH, Bethesda, MD 20892, USA
| | - Bradley C Lowekamp
- Bioinformatics and Computational Bioscience Branch, NIAID, NIH, Bethesda, MD 20892, USA
| | - Emily Speranza
- Lymphocyte Biology Section and Center for Advanced Tissue Imaging, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD 20892, USA; Florida Research and Innovation Center, Cleveland Clinic Lerner Research Institute, Port Saint Lucie, FL 34987, USA
| | - Li Yao
- Li Yao Visuals, Rockville, MD 20855, USA
| | | | - Arthur L Shaffer
- Lymphoid Malignancies Branch, NCI, NIH, Bethesda, MD 20892, USA; Tumor Targeted Delivery, Heme Malignancy Target Discovery Group, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Danny Jonigk
- Institute of Pathology, Aachen Medical University, RWTH Aachen, 52074 Aachen, Germany; German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), 30625 Hannover, Germany
| | - James D Phelan
- Lymphoid Malignancies Branch, NCI, NIH, Bethesda, MD 20892, USA
| | | | - Da Wei Huang
- Lymphoid Malignancies Branch, NCI, NIH, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | - Michael Kelly
- CCR Single Analysis Facility, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Bethesda, MD 20892, USA
| | - Jagan Muppidi
- Lymphoid Malignancies Branch, NCI, NIH, Bethesda, MD 20892, USA
| | - Jeremy L Davis
- Surgical Oncology Program, Metastasis Biology Section, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Jonathan M Hernandez
- Surgical Oncology Program, Metastasis Biology Section, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | | | - Elaine S Jaffe
- Laboratory of Pathology, NCI, NIH, Bethesda, MD 20892, USA
| | - Louis M Staudt
- Lymphoid Malignancies Branch, NCI, NIH, Bethesda, MD 20892, USA
| | - Mark Roschewski
- Lymphoid Malignancies Branch, NCI, NIH, Bethesda, MD 20892, USA
| | - Ronald N Germain
- Lymphocyte Biology Section and Center for Advanced Tissue Imaging, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
3
|
Coupland SE, Du MQ, Ferry JA, de Jong D, Khoury JD, Leoncini L, Naresh KN, Ott G, Siebert R, Xerri L. The fifth edition of the WHO classification of mature B-cell neoplasms: open questions for research. J Pathol 2024; 262:255-270. [PMID: 38180354 DOI: 10.1002/path.6246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/21/2023] [Accepted: 12/01/2023] [Indexed: 01/06/2024]
Abstract
The fifth edition of the World Health Organization Classification of Haematolymphoid Tumours (WHO-HAEM5) is the product of an evidence-based evolution of the revised fourth edition with wide multidisciplinary consultation. Nonetheless, while every classification incorporates scientific advances and aims to improve upon the prior version, medical knowledge remains incomplete and individual neoplasms may not be easily subclassified in a given scheme. Thus, optimal classification requires ongoing study, and there are certain aspects of some entities and subtypes that require further refinements. In this review, we highlight a selection of these challenging areas to prompt more research investigations. These include (1) a 'placeholder term' of splenic B-cell lymphoma/leukaemia with prominent nucleoli (SBLPN) to accommodate many of the splenic lymphomas previously classified as hairy cell leukaemia variant and B-prolymphocytic leukaemia, a clear new start to define their pathobiology; (2) how best to classify BCL2 rearrangement negative follicular lymphoma including those with BCL6 rearrangement, integrating the emerging new knowledge on various germinal centre B-cell subsets; (3) what is the spectrum of non-IG gene partners of MYC translocation in diffuse large B-cell lymphoma/high-grade B-cell lymphoma and how they impact MYC expression and clinical outcome; how best to investigate this in a routine clinical setting; and (4) how best to define high-grade B-cell lymphoma not otherwise specified and high-grade B-cell lymphoma with 11q aberrations to distinguish them from their mimics and characterise their molecular pathogenetic mechanism. Addressing these questions would provide more robust evidence to better define these entities/subtypes, improve their diagnosis and/or prognostic stratification, leading to better patient care. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Sarah E Coupland
- Liverpool Clinical Laboratories, Liverpool University Hospitals Foundation Trust, Liverpool, UK
| | - Ming-Qing Du
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Judith A Ferry
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Daphne de Jong
- The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Joseph D Khoury
- Department of Pathology, Microbiology and Immunology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Lorenzo Leoncini
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Kikkeri N Naresh
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - German Ott
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, and Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Luc Xerri
- Institut Paoli-Calmettes, CRCM and Aix-Marseille University, Marseille, France
| |
Collapse
|
4
|
Tkachenko A, Kupcova K, Havranek O. B-Cell Receptor Signaling and Beyond: The Role of Igα (CD79a)/Igβ (CD79b) in Normal and Malignant B Cells. Int J Mol Sci 2023; 25:10. [PMID: 38203179 PMCID: PMC10779339 DOI: 10.3390/ijms25010010] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024] Open
Abstract
B-cell receptor (BCR) is a B cell hallmark surface complex regulating multiple cellular processes in normal as well as malignant B cells. Igα (CD79a)/Igβ (CD79b) are essential components of BCR that are indispensable for its functionality, signal initiation, and signal transduction. CD79a/CD79b-mediated BCR signaling is required for the survival of normal as well as malignant B cells via a wide signaling network. Recent studies identified the great complexity of this signaling network and revealed the emerging role of CD79a/CD79b in signal integration. In this review, we have focused on functional features of CD79a/CD79b, summarized signaling consequences of CD79a/CD79b post-translational modifications, and highlighted specifics of CD79a/CD79b interactions within BCR and related signaling cascades. We have reviewed the complex role of CD79a/CD79b in multiple aspects of normal B cell biology and how is the normal BCR signaling affected by lymphoid neoplasms associated CD79A/CD79B mutations. We have also summarized important unresolved questions and highlighted issues that remain to be explored for better understanding of CD79a/CD79b-mediated signal transduction and the eventual identification of additional therapeutically targetable BCR signaling vulnerabilities.
Collapse
Affiliation(s)
- Anton Tkachenko
- BIOCEV, First Faculty of Medicine, Charles University, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Kristyna Kupcova
- BIOCEV, First Faculty of Medicine, Charles University, Prumyslova 595, 252 50 Vestec, Czech Republic
- First Department of Internal Medicine–Hematology, General University Hospital and First Faculty of Medicine, Charles University, 128 08 Prague, Czech Republic
| | - Ondrej Havranek
- BIOCEV, First Faculty of Medicine, Charles University, Prumyslova 595, 252 50 Vestec, Czech Republic
- First Department of Internal Medicine–Hematology, General University Hospital and First Faculty of Medicine, Charles University, 128 08 Prague, Czech Republic
| |
Collapse
|
5
|
García-Alija M, van Moer B, Sastre DE, Azzam T, Du JJ, Trastoy B, Callewaert N, Sundberg EJ, Guerin ME. Modulating antibody effector functions by Fc glycoengineering. Biotechnol Adv 2023; 67:108201. [PMID: 37336296 PMCID: PMC11027751 DOI: 10.1016/j.biotechadv.2023.108201] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/09/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
Antibody based drugs, including IgG monoclonal antibodies, are an expanding class of therapeutics widely employed to treat cancer, autoimmune and infectious diseases. IgG antibodies have a conserved N-glycosylation site at Asn297 that bears complex type N-glycans which, along with other less conserved N- and O-glycosylation sites, fine-tune effector functions, complement activation, and half-life of antibodies. Fucosylation, galactosylation, sialylation, bisection and mannosylation all generate glycoforms that interact in a specific manner with different cellular antibody receptors and are linked to a distinct functional profile. Antibodies, including those employed in clinical settings, are generated with a mixture of glycoforms attached to them, which has an impact on their efficacy, stability and effector functions. It is therefore of great interest to produce antibodies containing only tailored glycoforms with specific effects associated with them. To this end, several antibody engineering strategies have been developed, including the usage of engineered mammalian cell lines, in vitro and in vivo glycoengineering.
Collapse
Affiliation(s)
- Mikel García-Alija
- Structural Glycobiology Laboratory, Biocruces Health Research Institute, Barakaldo, Bizkaia 48903, Spain
| | - Berre van Moer
- VIB Center for Medical Biotechnology, VIB, Zwijnaarde, Technologiepark 71, 9052 Ghent (Zwijnaarde), Belgium; Department of Biochemistry and Microbiology, Ghent University, Technologiepark 71, 9052 Ghent (Zwijnaarde), Belgium
| | - Diego E Sastre
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Tala Azzam
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jonathan J Du
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Beatriz Trastoy
- Structural Glycoimmunology Laboratory, Biocruces Health Research Institute, Barakaldo, Bizkaia, 48903, Spain; Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain.
| | - Nico Callewaert
- VIB Center for Medical Biotechnology, VIB, Zwijnaarde, Technologiepark 71, 9052 Ghent (Zwijnaarde), Belgium; Department of Biochemistry and Microbiology, Ghent University, Technologiepark 71, 9052 Ghent (Zwijnaarde), Belgium.
| | - Eric J Sundberg
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Marcelo E Guerin
- Structural Glycobiology Laboratory, Biocruces Health Research Institute, Barakaldo, Bizkaia 48903, Spain; Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain.
| |
Collapse
|
6
|
Discovery of 1,5-diaryl-1,2,4-triazole derivatives as myoferlin inhibitors and their antitumor effects in pancreatic cancer. Future Med Chem 2022; 14:1425-1440. [PMID: 36165130 DOI: 10.4155/fmc-2022-0168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: The first inhibitor targeting myoferlin (MYOF), WJ460, bears poor metabolic stability and water solubility. Therefore, this study aimed to improve the druglike properties of WJ460. Materials & methods: The authors synthesized an array of 1,5-diaryl-1,2,4-triazole analogs and appraised the binding activities with MYOF and their antiproliferative and antimigratory activities against pancreatic cancer cells. Results: Molecular docking and surface plasmon resonance results showed that E4 was directly bound to the MYOF-C2D domain. E4 effectively inhibited the proliferation and migration of pancreatic cancer cells in vitro. In silico study suggested that the water solubility of E4 was improved by about 22-times than that of WJ460. Conclusion: The findings suggested that the druglike ability of E4 was significantly improved.
Collapse
|
7
|
Profitós-Pelejà N, Santos JC, Marín-Niebla A, Roué G, Ribeiro ML. Regulation of B-Cell Receptor Signaling and Its Therapeutic Relevance in Aggressive B-Cell Lymphomas. Cancers (Basel) 2022; 14:860. [PMID: 35205606 PMCID: PMC8870007 DOI: 10.3390/cancers14040860] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 01/27/2023] Open
Abstract
The proliferation and survival signals emanating from the B-cell receptor (BCR) constitute a crucial aspect of mature lymphocyte's life. Dysregulated BCR signaling is considered a potent contributor to tumor survival in different subtypes of B-cell non-Hodgkin lymphomas (B-NHLs). In the last decade, the emergence of BCR-associated kinases as rational therapeutic targets has led to the development and approval of several small molecule inhibitors targeting either Bruton's tyrosine kinase (BTK), spleen tyrosine kinase (SYK), or phosphatidylinositol 3 kinase (PI3K), offering alternative treatment options to standard chemoimmunotherapy, and making some of these drugs valuable assets in the anti-lymphoma armamentarium. Despite their initial effectiveness, these precision medicine strategies are limited by primary resistance in aggressive B-cell lymphoma such as diffuse large B-cell lymphoma (DLBCL) and mantle cell lymphoma (MCL), especially in the case of first generation BTK inhibitors. In these patients, BCR-targeting drugs often fail to produce durable responses, and nearly all cases eventually progress with a dismal outcome, due to secondary resistance. This review will discuss our current understanding of the role of antigen-dependent and antigen-independent BCR signaling in DLBCL and MCL and will cover both approved inhibitors and investigational molecules being evaluated in early preclinical studies. We will discuss how the mechanisms of action of these molecules, and their off/on-target effects can influence their effectiveness and lead to toxicity, and how our actual knowledge supports the development of more specific inhibitors and new, rationally based, combination therapies, for the management of MCL and DLBCL patients.
Collapse
Affiliation(s)
- Núria Profitós-Pelejà
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain
| | - Juliana Carvalho Santos
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain
| | - Ana Marín-Niebla
- Department of Hematology, Experimental Hematology, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron University Hospital, 08035 Barcelona, Spain
| | - Gaël Roué
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain
| | - Marcelo Lima Ribeiro
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University Medical School, Braganca Paulista 12916-900, Brazil
| |
Collapse
|
8
|
Abstract
Glycosylation, one of the most common post-translational modifications in mammalian cells, impacts many biological processes such as cell adhesion, proliferation and differentiation. As the most abundant glycoprotein in human serum, immunoglobulin G (IgG) plays a vital role in immune response and protection. There is a growing body of evidence suggests that IgG structure and function are modulated by attached glycans, especially N-glycans, and aberrant glycosylation is associated with disease states. In this chapter, we review IgG glycan repertoire and function, strategies for profiling IgG N-glycome and recent studies. Mass spectrometry (MS) based techniques are the most powerful tools for profiling IgG glycome. IgG glycans can be divided into high-mannose, biantennary complex and hybrid types, modified with mannosylation, core-fucosylation, galactosylation, bisecting GlcNAcylation, or sialylation. Glycosylation of IgG affects antibody half-life and their affinity and avidity for antigens, regulates crystallizable fragment (Fc) structure and Fcγ receptor signaling, as well as antibody effector function. Because of their critical roles, IgG N-glycans appear to be promising biomarkers for various disease states. Specific IgG glycosylation can convert a pro-inflammatory response to an anti-inflammatory activity. Accordingly, IgG glycoengineering provides a powerful approach to potentially develop effective drugs and treat disease. Based on the understanding of the functional role of IgG glycans, the development of vaccines with enhanced capacity and long-term protection are possible in the near future.
Collapse
|
9
|
Ahn IE, Brown JR. Targeting Bruton's Tyrosine Kinase in CLL. Front Immunol 2021; 12:687458. [PMID: 34248972 PMCID: PMC8261291 DOI: 10.3389/fimmu.2021.687458] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/18/2021] [Indexed: 01/19/2023] Open
Abstract
Targeting the B-cell receptor signaling pathway through BTK inhibition proved to be effective for the treatment of chronic lymphocytic leukemia (CLL) and other B-cell lymphomas. Covalent BTK inhibitors (BTKis) led to an unprecedented improvement in outcome in CLL, in particular for high-risk subgroups with TP53 aberration and unmutated immunoglobulin heavy-chain variable-region gene (IGHV). Ibrutinib and acalabrutinib are approved by the US Food and Drug Administration for the treatment of CLL and other B-cell lymphomas, and zanubrutinib, for patients with mantle cell lymphoma. Distinct target selectivity of individual BTKis confer differences in target-mediated as well as off-target adverse effects. Disease progression on covalent BTKis, driven by histologic transformation or selective expansion of BTK and PLCG2 mutated CLL clones, remains a major challenge in the field. Fixed duration combination regimens and reversible BTKis with non-covalent binding chemistry hold promise for the prevention and treatment of BTKi-resistant disease.
Collapse
Affiliation(s)
- Inhye E Ahn
- Lymphoid Malignancies Section, National Heart, Lung, and Blood Institute, Bethesda, MD, United States
| | - Jennifer R Brown
- Chronic Lymphocytic Leukemia Center, Division of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
10
|
Montesinos-Rongen M, Terrao M, May C, Marcus K, Blümcke I, Hellmich M, Küppers R, Brunn A, Deckert M. The process of somatic hypermutation increases polyreactivity for central nervous system antigens in primary central nervous system lymphoma. Haematologica 2021; 106:708-717. [PMID: 32193251 PMCID: PMC7927892 DOI: 10.3324/haematol.2019.242701] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Indexed: 02/06/2023] Open
Abstract
The immunoglobulin (Ig) heavy and light chain variable gene mutational pattern of the B-cell receptor (BCR) in primary central nervous system lymphoma (PCNSL) cells suggests antigenic selection to drive pathogenesis and confinement to the central nervous system (CNS). This hypothesis is supported by the observation that the tumor B-cell receptor (tBCR) of PCNSL is polyreactive and may be stimulated by CNS proteins. To obtain further insight into the role of the germinal center (GC) reaction on BCR reactivity, we constructed recombinant antibodies (recAb) with Ig heavy and light chain sequences of the corresponding naïve BCR (nBCR) by reverting tBCR somatic mutations in ten PCNSL. Analysis of nBCR-derived recAb reactivity by a protein microarray and immunoprecipitation demonstrated auto- and polyreactivity in all cases. Self- /polyreactivity was not lost during the GC reaction; surprisingly, tBCR significantly increased self-/polyreactivity. In addition to proteins recognized by both the nBCR and tBCR, tBCR gained self-/polyreactivity particularly for proteins expressed in the CNS including proteins of oligodendrocytes/ myelin, the S100 protein family, and splicing factors. Thus, in PCNSL pathogenesis, a faulty GC reaction may increase self-/polyreactivity, hereby facilitating BCR signaling via multiple CNS antigens, and may ultimately foster tumor cell survival in the CNS.
Collapse
Affiliation(s)
- Manuel Montesinos-Rongen
- Institute of Neuropathology, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Monica Terrao
- Institute of Neuropathology, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Caroline May
- Medizinisches Proteom-Center, Ruhr-University Bochum, Bochum, Germany
| | - Katrin Marcus
- Medizinisches Proteom-Center, Ruhr-University Bochum, Bochum, Germany
| | - Ingmar Blümcke
- Department of Neuropathology, University Hospital Erlangen, Erlangen, Germany
| | - Martin Hellmich
- Institute of Medical Statistics and Computational Biology, University Hospital of Cologne, Cologne
| | - Ralf Küppers
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Medical School, Essen
| | - Anna Brunn
- Institute of Neuropathology, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Martina Deckert
- Institute of Neuropathology, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| |
Collapse
|
11
|
Mechanisms of B Cell Receptor Activation and Responses to B Cell Receptor Inhibitors in B Cell Malignancies. Cancers (Basel) 2020; 12:cancers12061396. [PMID: 32481736 PMCID: PMC7352865 DOI: 10.3390/cancers12061396] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 12/27/2022] Open
Abstract
The B cell receptor (BCR) pathway has been identified as a potential therapeutic target in a number of common B cell malignancies, including chronic lymphocytic leukemia, diffuse large B cell lymphoma, Burkitt lymphoma, follicular lymphoma, mantle cell lymphoma, marginal zone B cell lymphoma, and Waldenstrom's macroglobulinemia. This finding has resulted in the development of numerous drugs that target this pathway, including various inhibitors of the kinases BTK, PI3K, and SYK. Several of these drugs have been approved in recent years for clinical use, resulting in a profound change in the way these diseases are currently being treated. However, the response rates and durability of responses vary largely across the different disease entities, suggesting a different proportion of patients with an activated BCR pathway and different mechanisms of BCR pathway activation. Indeed, several antigen-dependent and antigen-independent mechanisms have recently been described and shown to result in the activation of distinct downstream signaling pathways. The purpose of this review is to provide an overview of the mechanisms responsible for the activation of the BCR pathway in different B cell malignancies and to correlate these mechanisms with clinical responses to treatment with BCR inhibitors.
Collapse
|
12
|
Laban KG, Rijken R, Hiddingh S, Mertens JS, van der Veen RLP, Eenhorst CAE, Pandit A, Radstake TRDJ, de Boer JH, Kalmann R, Kuiper JJW. cDC2 and plasmacytoid dendritic cells diminish from tissues of patients with non-Hodgkin orbital lymphoma and idiopathic orbital inflammation. Eur J Immunol 2020; 50:548-557. [PMID: 31841217 PMCID: PMC7187234 DOI: 10.1002/eji.201948370] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/21/2019] [Accepted: 12/10/2019] [Indexed: 12/21/2022]
Abstract
Non-Hodgkin orbital lymphoma (NHOL) and idiopathic orbital inflammation (IOI) are common orbital conditions with largely unknown pathophysiology. To investigate the immune cell composition of these diseases, we performed standardized 29 parameter flow cytometry phenotyping in peripheral blood mononuclear cells of 18 NHOL patients, 21 IOI patients, and 41 unaffected controls. Automatic gating by FlowSOM revealed decreased abundance of meta-clusters containing dendritic cells in patients, which we confirmed by manual gating. A decreased percentage of (HLA-DR+ CD303+ CD123+ ) plasmacytoid dendritic cells (pDC) in the circulation of IOI patients and decreased (HLA-DR+ CD11c+ CD1c+ ) conventional dendritic cells (cDC) type-2 for IOI patients were replicated in an independent cohort of patients and controls. Meta-analysis of both cohorts demonstrated that pDCs are also decreased in blood of NHOL patients and highlighted that the decrease in blood cDC type-2 was specific for IOI patients compared to NHOL or controls. Deconvolution-based estimation of immune cells in transcriptomic data of 48 orbital biopsies revealed a decrease in the abundance of pDC and cDC populations within the orbital microenvironment of IOI patients. Collectively, these data suggest a previously underappreciated role for dendritic cells in orbital disorders.
Collapse
Affiliation(s)
- Kamil G Laban
- Ophthalmo-Immunology Unit, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Department of Ophthalmology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Rianne Rijken
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Sanne Hiddingh
- Ophthalmo-Immunology Unit, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Department of Ophthalmology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jorre S Mertens
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Department of Dermatology, Radboud University Medical Centre, Radboud University, Nijmegen, The Netherlands
| | - Rob L P van der Veen
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Christine A E Eenhorst
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Aridaman Pandit
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Timothy R D J Radstake
- Ophthalmo-Immunology Unit, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Joke H de Boer
- Ophthalmo-Immunology Unit, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Department of Ophthalmology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Rachel Kalmann
- Ophthalmo-Immunology Unit, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Department of Ophthalmology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jonas J W Kuiper
- Ophthalmo-Immunology Unit, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Department of Ophthalmology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
13
|
Myoferlin, a Membrane Protein with Emerging Oncogenic Roles. BIOMED RESEARCH INTERNATIONAL 2019; 2019:7365913. [PMID: 31828126 PMCID: PMC6885792 DOI: 10.1155/2019/7365913] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/02/2019] [Accepted: 08/21/2019] [Indexed: 12/12/2022]
Abstract
Myoferlin (MYOF), initially identified in muscle cells, is a member of the Ferlin family involved in membrane fusion, membrane repair, and membrane trafficking. Dysfunction of this protein is associated with muscular dysfunction. Recently, a growing body of studies have identified MYOF as an oncogenic protein. It is overexpressed in a variety of human cancers and promotes tumorigenesis, tumor cell motility, proliferation, migration, epithelial to mesenchymal transition, angiogenesis as well as metastasis. Clinically, MYOF overexpression is associated with poor outcome in various cancers. It can serve as a prognostic marker of human malignant disease. MYOF drives the progression of cancer in various processes, including surface receptor transportation, endocytosis, exocytosis, intercellular communication, fit mitochondrial structure maintenance and cell metabolism. Depletion of MYOF demonstrates significant antitumor effects both in vitro and in vivo, suggesting that targeting MYOF may produce promising clinical benefits in the treatment of malignant disease. In the present article, we reviewed the physiological function of MYOF as well as its role in cancer, thus providing a general understanding for further exploration of this protein.
Collapse
|
14
|
Jiang XN, Yu BH, Yan WH, Lee J, Zhou XY, Li XQ. Epstein-Barr virus-positive diffuse large B-cell lymphoma features disrupted antigen capture/presentation and hijacked T-cell suppression. Oncoimmunology 2019; 9:1683346. [PMID: 32002294 PMCID: PMC6959427 DOI: 10.1080/2162402x.2019.1683346] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/07/2019] [Accepted: 10/16/2019] [Indexed: 10/31/2022] Open
Abstract
Background: B cells can function as antigen-presenting cells by presenting antigens captured by the B-cell receptor (BCR) on Class II Major Histocompatibility Complex (MHC II) to T cells. In addition, B-cells can also maintain immune homeostasis by expressing PD-L1 and suppressing T-cell activity. Epstein-Barr virus (EBV) infection can disrupt B-cell function and lead to B cell malignancies, including diffuse large B-cell lymphoma (DLBCL). Here we show that EBV-positive DLBCL (EBV+ DLBCL) has decreased expression of BCR and MHC II, but over-expressed PD-L1, which may lead to immune evasion. Methods: An EBV+ DLBCL cohort (n = 30) and an EBV- DLBCL control cohort (n = 83) were established. Immunostaining of PD-L1, MHC II, MHC II Transactivator (CIITA) and pBTK was performed on automated stainer. H-score was used to denote the results of staining of PD-L1 and pBTK. Break apart and deletion of CIITA locus was studied by fluorescent in situ hybridization. Surface immunoglobulin mean fluorescent insensitivity (MFI) was detected by flow cytometry to demonstrate the level BCR. Results: EBV+ DLBCL showed significantly lower expression of CIITA and MHC II compared to EBV- DLBCL. Genetic aberrations involving CIITA were also more common in EBV+ DLBCL, with 23% break apart events and 6% deletion events, comparted to 2% break apart and 0% deletion in EBV- DLBCL. In addition to the loss of antigen presentation molecule, the antigen capture receptor, BCR, was also down-regulated in EBV+ DLBCL. Accordingly, BCR signaling was also significantly decreased in EBV+ DLBCL as denoted by the respective pBTK levels. Conclusions: EBV+ DLBCL shows over expression of the T-cell inhibitory ligand, PD-L1. Antigen capture and presentation system were disrupted, and T-cell inhibitory molecule was hijacked in EBV+ DLBCL, which may contribute to immune escape in this high risk disease. Therapies targeting these aberrations may improve the outcome of patients with EBV+ DLBCL.
Collapse
Affiliation(s)
- Xiang-Nan Jiang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Fudan University Shanghai Medical School, Shanghai, China
| | - Bao-Hua Yu
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Fudan University Shanghai Medical School, Shanghai, China
| | - Wan-Hui Yan
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Fudan University Shanghai Medical School, Shanghai, China
| | - Jimmy Lee
- Department of Pathology, University of Chicago, Chicago, IL USA
| | - Xiao-Yan Zhou
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Fudan University Shanghai Medical School, Shanghai, China
| | - Xiao-Qiu Li
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Fudan University Shanghai Medical School, Shanghai, China
| |
Collapse
|
15
|
Filip D, Mraz M. The role of MYC in the transformation and aggressiveness of ‘indolent’ B-cell malignancies. Leuk Lymphoma 2019; 61:510-524. [DOI: 10.1080/10428194.2019.1675877] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Daniel Filip
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine, Haematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Marek Mraz
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine, Haematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
16
|
Mulder TA, Wahlin BE, Österborg A, Palma M. Targeting the Immune Microenvironment in Lymphomas of B-Cell Origin: From Biology to Clinical Application. Cancers (Basel) 2019; 11:cancers11070915. [PMID: 31261914 PMCID: PMC6678966 DOI: 10.3390/cancers11070915] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/21/2019] [Accepted: 06/25/2019] [Indexed: 02/08/2023] Open
Abstract
In lymphomas of B-cell origin, cancer cells orchestrate an inflammatory microenvironment of immune and stromal cells that sustain the tumor cell survival and growth, known as a tumor microenvironment (TME). The features of the TME differ between the different lymphoma types, ranging from extremely inflammatory, such as in Hodgkin lymphoma, to anergic, leading to immune deficiency and susceptibility to infections, such as in chronic lymphocytic leukemia. Understanding the characteristic features of the TME as well as the interactions between cancer and TME cells has given insight into the pathogenesis of most lymphomas and contributed to identify novel therapeutic targets. Here, we summarize the preclinical data that contributed to clarifying the role of the immune cells in the TME of different types of lymphomas of B-cell origin, and explain how the understanding of the biological background has led to new clinical applications. Moreover, we provide an overview of the clinical results of trials that assessed the safety and efficacy of drugs directly targeting TME immune cells in lymphoma patients.
Collapse
Affiliation(s)
- Tom A Mulder
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Björn E Wahlin
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
| | - Anders Österborg
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
| | - Marzia Palma
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
17
|
Li Y, He Y, Shao T, Pei H, Guo W, Mi D, Krimm I, Zhang Y, Wang P, Wang X, Liu M, Yi Z, Chen Y. Modification and Biological Evaluation of a Series of 1,5-Diaryl-1,2,4-triazole Compounds as Novel Agents against Pancreatic Cancer Metastasis through Targeting Myoferlin. J Med Chem 2019; 62:4949-4966. [DOI: 10.1021/acs.jmedchem.9b00059] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yunqi Li
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yuan He
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
- Joint Center for Translational Medicine, Fengxian District Central Hospital, 6600th Nanfeng Road, Fengxian District, Shanghai 201499, China
| | - Ting Shao
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Haixiang Pei
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Weikai Guo
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Dazhao Mi
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Isabelle Krimm
- Université de Lyon, CNRS, Université Claude-Bernard Lyon 1, ENS de Lyon, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, Villeurbanne 69100, France
| | - Yuanjin Zhang
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Peili Wang
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xin Wang
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
- Joint Center for Translational Medicine, Fengxian District Central Hospital, 6600th Nanfeng Road, Fengxian District, Shanghai 201499, China
| | - Zhengfang Yi
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
- Joint Center for Translational Medicine, Fengxian District Central Hospital, 6600th Nanfeng Road, Fengxian District, Shanghai 201499, China
| | - Yihua Chen
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
- Joint Center for Translational Medicine, Fengxian District Central Hospital, 6600th Nanfeng Road, Fengxian District, Shanghai 201499, China
| |
Collapse
|
18
|
Lardinois OM, Deterding LJ, Hess JJ, Poulton CJ, Henderson CD, Jennette JC, Nachman PH, Falk RJ. Immunoglobulins G from patients with ANCA-associated vasculitis are atypically glycosylated in both the Fc and Fab regions and the relation to disease activity. PLoS One 2019; 14:e0213215. [PMID: 30818380 PMCID: PMC6395067 DOI: 10.1371/journal.pone.0213215] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/15/2019] [Indexed: 02/07/2023] Open
Abstract
Background Anti-neutrophil cytoplasmic autoantibodies (ANCA) directed against myeloperoxidase (MPO) and proteinase 3 (PR3) are pathogenic in ANCA-associated vasculitis (AAV). The respective role of IgG Fc and Fab glycosylation in mediating ANCA pathogenicity is incompletely understood. Herein we investigate in detail the changes in Fc and Fab glycosylation in MPO-ANCA and Pr3-ANCA and examine the association of glycosylation aberrancies with disease activity. Methodology Total IgG was isolated from serum or plasma of a cohort of 30 patients with AAV (14 MPO-ANCA; 16 PR3-ANCA), and 19 healthy control subjects. Anti-MPO specific IgG was affinity-purified from plasma of an additional cohort of 18 MPO-ANCA patients undergoing plasmapheresis. We used lectin binding assays, liquid chromatography, and mass spectrometry-based methods to analyze Fc and Fab glycosylation, the degree of sialylation of Fc and Fab fragments and to determine the exact localization of N-glycans on Fc and Fab fragments. Principal findings IgG1 Fc glycosylation of total IgG was significantly reduced in patients with active AAV compared to controls. Clinical remission was associated with complete glycan normalization for PR3-ANCA patients but not for MPO-ANCA patients. Fc-glycosylation of anti-MPO specific IgG was similar to total IgG purified from plasma. A major fraction of anti-MPO specific IgG harbor extensive glycosylation within the variable domain on the Fab portion. Conclusions/Significance Significant differences exist between MPO and PR3-ANCA regarding the changes in amounts and types of glycans on Fc fragment and the association with disease activity. These differences may contribute to significant clinical difference in the disease course observed between the two diseases.
Collapse
Affiliation(s)
- Olivier M. Lardinois
- UNC Kidney Center, Division of Nephrology and Hypertension, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Mass Spectrometry Research and Support Group, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, United States of America
- * E-mail:
| | - Leesa J. Deterding
- Mass Spectrometry Research and Support Group, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, United States of America
| | - Jacob J. Hess
- UNC Kidney Center, Division of Nephrology and Hypertension, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Caroline J. Poulton
- UNC Kidney Center, Division of Nephrology and Hypertension, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Candace D. Henderson
- UNC Kidney Center, Division of Nephrology and Hypertension, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - J. Charles Jennette
- Department of Pathology and Laboratory of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Patrick H. Nachman
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Ronald J. Falk
- UNC Kidney Center, Division of Nephrology and Hypertension, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
19
|
Stepanov AV, Markov OV, Chernikov IV, Gladkikh DV, Zhang H, Jones T, Sen’kova AV, Chernolovskaya EL, Zenkova MA, Kalinin RS, Rubtsova MP, Meleshko AN, Genkin DD, Belogurov AA, Xie J, Gabibov AG, Lerner RA. Autocrine-based selection of ligands for personalized CAR-T therapy of lymphoma. SCIENCE ADVANCES 2018; 4:eaau4580. [PMID: 30443597 PMCID: PMC6235538 DOI: 10.1126/sciadv.aau4580] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 10/12/2018] [Indexed: 05/24/2023]
Abstract
We report the development of a novel platform to enhance the efficacy and safety of follicular lymphoma (FL) treatment. Since lymphoma is a clonal malignancy of a diversity system, every tumor has a different antibody on its cell surface. Combinatorial autocrine-based selection is used to rapidly identify specific ligands for these B cell receptors on the surface of FL tumor cells. The selected ligands are used in a chimeric antigen receptor T cell (CAR-T) format for redirection of human cytotoxic T lymphocytes. Essentially, the format is the inverse of the usual CAR-T protocol. Instead of being a guide molecule, the antibody itself is the target. Thus, these studies raise the possibility of personalized treatment of lymphomas using a private antibody binding ligand that can be obtained in a few weeks.
Collapse
MESH Headings
- Animals
- Autocrine Communication
- Female
- Humans
- Ligands
- Lymphoma, B-Cell/immunology
- Lymphoma, B-Cell/metabolism
- Lymphoma, B-Cell/therapy
- Mice, Inbred NOD
- Mice, SCID
- Peptide Fragments/immunology
- Peptide Fragments/metabolism
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Alexey V. Stepanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow V-437, Russian Federation
| | - Oleg V. Markov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave. 8, 630090 Novosibirsk, Russian Federation
| | - Ivan V. Chernikov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave. 8, 630090 Novosibirsk, Russian Federation
| | - Daniil V. Gladkikh
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave. 8, 630090 Novosibirsk, Russian Federation
| | - Hongkai Zhang
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road MB-10, La Jolla, CA 92037, USA
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, 38 Tongyan Road, Tianjin 300350, China
| | - Teresa Jones
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road MB-10, La Jolla, CA 92037, USA
| | - Alexandra V. Sen’kova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave. 8, 630090 Novosibirsk, Russian Federation
| | - Elena L. Chernolovskaya
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave. 8, 630090 Novosibirsk, Russian Federation
| | - Marina A. Zenkova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave. 8, 630090 Novosibirsk, Russian Federation
| | - Roman S. Kalinin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow V-437, Russian Federation
| | - Maria P. Rubtsova
- Chemistry Department, M.V. Lomonosov Moscow State University, Lenin Hills, 1, bld. 3, 119991 Moscow, Russian Federation
| | - Alexander N. Meleshko
- Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | | | - Alexey A. Belogurov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow V-437, Russian Federation
| | - Jia Xie
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road MB-10, La Jolla, CA 92037, USA
| | - Alexander G. Gabibov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow V-437, Russian Federation
| | - Richard A. Lerner
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road MB-10, La Jolla, CA 92037, USA
| |
Collapse
|
20
|
Devan J, Janikova A, Mraz M. New concepts in follicular lymphoma biology: From BCL2 to epigenetic regulators and non-coding RNAs. Semin Oncol 2018; 45:291-302. [PMID: 30360879 DOI: 10.1053/j.seminoncol.2018.07.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 07/06/2018] [Accepted: 07/18/2018] [Indexed: 02/06/2023]
Abstract
The molecular pathogenesis of follicular lymphoma (FL) was partially revealed 3 decades ago, with the discovery of the translocation that brings BCL2 under the influence of immunoglobulin heavy chain enhancers in a vast majority of cases. Despite the importance of this seminal observation, it has become increasingly clear that additional genetic alterations need to occur to trigger neoplastic transformation and disease progression. The evolution of FL involves developmental arrest and disruption of the normal function of one or more of epigenetic regulators including KMT2D/MLL2, EZH2, CBP/CREBBP, p300/EP300, and HIST1H1 in >95% of cases. B-cells "arrested" in germinal centers acquire dozens of additional genetic aberrations that influence key pathways controlling their physiological development including B Cell Receptor (BCR) signaling, PI3K/AKT, TLR, mTOR, NF-κB, JAK/STAT, MAPK, CD40/CD40L, chemokine, and interleukin signaling. Additionally, most cases of FL do not result from linear accumulation of genomic aberrations, but rather evolve from a common progenitor cell population by diverse evolution, creating multiple FL subclones in one patient. Moreover, one of the subclones might acquire a combination of aberrations involving genes controlling cell survival and proliferation including MDM2, CDKN2A/B, BCL6, MYC, TP53, β2M, FOXO1, MYD88, STAT3, or miR-17-92, and this can lead to the transformation of an initially indolent FL to an aggressive lymphoma (2%-3% risk per year). The complexity of the disease is also underscored by the importance of its interactions with the microenvironment that can substantially influence disease development and prognosis. Interpreting individual aberrations in relation to their impact on normal processes, their frequency, position in the disease evolution, and the consequences of their (co)occurrence, are the basis for understanding FL pathogenesis. This is necessary for the identification of patients with risk of early progression or transformation, for the development of novel targeted therapies, and for personalized treatment approaches. In this review, we summarize recent knowledge of molecular pathways and microenvironmental components involved in FL biology, and discuss them in the context of physiological B-cell development, FL evolution, and targeted therapies.
Collapse
Affiliation(s)
- Jan Devan
- Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Andrea Janikova
- Department of Internal Medicine, Haematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Marek Mraz
- Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic; Department of Internal Medicine, Haematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
21
|
Rodgers TD, Reagan PM. Targeting the B-cell receptor pathway: a review of current and future therapies for non-Hodgkin's lymphoma. Expert Opin Emerg Drugs 2018; 23:111-122. [PMID: 29781323 DOI: 10.1080/14728214.2018.1479396] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
INTRODUCTION The B-cell receptor (BCR) pathway is a crucial aspect of mature lymphocytes and is maintained in B-cell neoplasms. Many small module inhibitors targeting kinases within the BCR pathway are approved, with others in development, offering alternative treatment options to standard chemoimmunotherapy. Areas covered: This review covers both approved inhibitors and investigational inhibitors of spleen tyrosine kinase (SYK), Bruton's tyrosine kinase (BTK), and phosphoinositide-3-kinase (PI3K) in the treatment of B-cell lymphomas. To collect relevant articles, a literature search was completed through the use of PubMed and abstracts from ASH and ASCO national meetings. Search terms including non-Hodgkin lymphoma, and BCR inhibitors, as well as the individual drug names, were utilized. The majority of included studies are dated from 2012 to March 2018. Expert opinion: BCR pathway inhibitors, such as ibrutinib and idelalisib, are novel treatments for non-Hodgkin lymphomas. While providing alternative treatment options to those with high-risk disease, poor functional status, and relapsed disease, outside of chronic lymphocytic leukemia (CLL), they have been limited to the relapsed/refractory setting. Their mechanisms of action, off/on-target effects, and resistance patterns create unique therapeutic dilemmas. It is our opinion that more specific inhibitors, as well as combination therapy, will define the future for BCR inhibitors.
Collapse
Affiliation(s)
- Thomas D Rodgers
- a James P. Wilmot Cancer Institute, University of Rochester Medical Center , Rochester , NY.,b Department of Medicine , Division of Hematology Oncology , United States
| | - Patrick M Reagan
- b Department of Medicine , Division of Hematology Oncology , United States
| |
Collapse
|
22
|
Abstract
INTRODUCTION Dysregulated B cell receptor (BCR) signaling has been identified as a potent contributor to tumor survival in B cell non-Hodgkin lymphomas (NHLs). This pathway's emergence as a rational therapeutic target in NHL led to development of BCR-directed agents, including inhibitors of Bruton's tyrosine kinase (BTK), spleen tyrosine kinase (SYK), and phosphatidylinositol 3 kinase (PI3K). Several drugs have become valuable assets in the anti-lymphoma armamentarium. AREAS COVERED We provide an overview of the BCR pathway, its dysregulation in B cell NHL, and the drugs developed to target BCR signaling in lymphoma. Mechanisms, pharmacokinetics, pharmacodynamics, efficacy, and toxicity of currently available BTK, SYK, and PI3K inhibitors are described. EXPERT OPINION While the excellent response rates and favorable toxicity profile of the BTK inhibitor ibrutinib in certain NHL subtypes have propelled it to consideration as frontline therapy in selected populations, additional data and clinical studies are needed before other agents targeting BCR signaling influence clinical practice similarly. PI3K inhibitors remain an option for some relapsed indolent lymphomas and chronic lymphocytic leukemia, but their widespread use may be limited by adverse effects. Future research should include efforts to overcome resistance to BTK inhibitors, combination therapy using BCR-targeted agents, and exploration of novel agents.
Collapse
Affiliation(s)
- Kelly Valla
- Winship Cancer Institute of Emory University - Department of Hematology and Medical Oncology, 1365 C Clifton Rd NE, Atlanta, Georgia 30322, United States
| | - Christopher R. Flowers
- Emory University - Winship Cancer Institute, School of Medicine, 1365 Clifton Road, N.E. Building B, Atlanta, Georgia 30322, United States
| | - Jean L. Koff
- Emory University - Winship Cancer Institute, School of Medicine, 1365 Clifton Road, N.E. Building B, Atlanta, Georgia 30322, United States
| |
Collapse
|
23
|
Critical influences on the pathogenesis of follicular lymphoma. Blood 2018; 131:2297-2306. [PMID: 29666116 DOI: 10.1182/blood-2017-11-764365] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 12/28/2017] [Indexed: 12/15/2022] Open
Abstract
The development of follicular lymphoma (FL) from a founder B cell with an upregulation of B-cell lymphoma 2 (BCL2), via the t(14;18) translocation, to a proliferating clone, poised to undergo further transformation to an aggressive lymphoma, illustrates the opportunistic Darwinian process of tumorigenesis. Protection against apoptosis allows an innocent cell to persist and divide, with dangerous accumulation of further mutational changes, commonly involving inactivation of chromatin-modifying genes. But this is not all. FL cells reflect normal B cells in relying on expression of surface immunoglobulin. In doing so, they add another supportive mechanism by exploiting the natural process of somatic hypermutation of the IGV genes. Positive selection of motifs for addition of glycan into the antigen-binding sites of virtually all cases, and the placement of unusual mannoses in those sites, reveals a posttranslational strategy to engage the microenvironment. A bridge between mannosylated surface immunoglobulin of FL cells and macrophage-expressed dendritic cell-specific ICAM-3-grabbing nonintegrin produces a persistent low-level signal that appears essential for life in the hostile germinal center. Early-stage FL therefore requires a triad of changes: protection from apoptosis, mutations in chromatin modifiers, and an ability to interact with lectin-expressing macrophages. These changes are common and persistent. Genetic/epigenetic analysis is providing important data but investigation of the posttranslational landscape is the next challenge. We have one glimpse of its operation via the influence of added glycan on the B-cell receptor of FL. The consequential interaction with environmental lectins illustrates how posttranslational modifications can be exploited by tumor cells, and could lead to new approaches to therapy.
Collapse
|
24
|
Huet S, Sujobert P, Salles G. From genetics to the clinic: a translational perspective on follicular lymphoma. Nat Rev Cancer 2018; 18:224-239. [PMID: 29422597 DOI: 10.1038/nrc.2017.127] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Follicular lymphoma (FL) is the most frequent indolent B cell lymphoma and is still considered to be incurable. In recent years, whole-exome sequencing studies of large cohorts of patients have greatly improved our knowledge of the FL mutational landscape. Moreover, the prolonged evolution of this disease has enabled some insights regarding the early pre-lymphoma lesions as well as the clonal evolution after treatment, allowing an evolutionary perspective on lymphomagenesis. Deciphering the earliest initiating lesions and identifying the molecular alterations leading to disease progression currently represent important goals; accomplishing these could help identify the most relevant targets for precision therapy.
Collapse
Affiliation(s)
- Sarah Huet
- Cancer Research Center of Lyon, INSERM 1052 CNRS5286, 'Clinical and experimental models of lymphomagenesis' Team, Equipe labellisée Ligue Contre le Cancer Oullins, France
- Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, 165 chemin du Grand Revoyet, Pierre Bénite 69495, France
- Université Lyon-1, ISPB-Faculté de Pharmacie de Lyon, Lyon, France
| | - Pierre Sujobert
- Cancer Research Center of Lyon, INSERM 1052 CNRS5286, 'Clinical and experimental models of lymphomagenesis' Team, Equipe labellisée Ligue Contre le Cancer Oullins, France
- Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, 165 chemin du Grand Revoyet, Pierre Bénite 69495, France
- Université Lyon-1, Faculté de Médecine et de Maïeutique Lyon-Sud Charles Mérieux, Oullins, France
| | - Gilles Salles
- Cancer Research Center of Lyon, INSERM 1052 CNRS5286, 'Clinical and experimental models of lymphomagenesis' Team, Equipe labellisée Ligue Contre le Cancer Oullins, France
- Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, 165 chemin du Grand Revoyet, Pierre Bénite 69495, France
- Université Lyon-1, Faculté de Médecine et de Maïeutique Lyon-Sud Charles Mérieux, Oullins, France
| |
Collapse
|
25
|
Abstract
B cell receptor (BCR) signalling is crucial for normal B cell development and adaptive immunity. BCR signalling also supports the survival and growth of malignant B cells in patients with B cell leukaemias or lymphomas. The mechanism of BCR pathway activation in these diseases includes continuous BCR stimulation by microbial antigens or autoantigens present in the tissue microenvironment, activating mutations within the BCR complex or downstream signalling components and ligand-independent tonic BCR signalling. The most established agents targeting BCR signalling are Bruton tyrosine kinase (BTK) inhibitors and PI3K isoform-specific inhibitors, and their introduction into the clinic is rapidly changing how B cell malignancies are treated. B cells and BCR-related kinases, such as BTK, also play a role in the microenvironment of solid tumours, such as squamous cell carcinoma and pancreatic cancer, and therefore targeting B cells or BCR-related kinases may have anticancer activity beyond B cell malignancies.
Collapse
MESH Headings
- Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors
- Antineoplastic Agents/pharmacology
- B-Lymphocytes/metabolism
- B-Lymphocytes/pathology
- Drug Resistance, Neoplasm
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Lymphoma, Mantle-Cell/drug therapy
- Lymphoma, Mantle-Cell/metabolism
- Molecular Targeted Therapy/methods
- Neoplasms/drug therapy
- Neoplasms/metabolism
- Protein Kinase Inhibitors/pharmacology
- Receptors, Antigen, B-Cell/antagonists & inhibitors
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, B-Cell/metabolism
- Signal Transduction/drug effects
- Tumor Microenvironment
Collapse
Affiliation(s)
- Jan A Burger
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Adrian Wiestner
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
26
|
Finke JM, Banks WA. Modulators of IgG penetration through the blood-brain barrier: Implications for Alzheimer's disease immunotherapy. Hum Antibodies 2018; 25:131-146. [PMID: 28035915 DOI: 10.3233/hab-160306] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review serves to highlight approaches that may improve the access of antibody drugs to regions of the brain affected by Alzheimer's Disease. While previous antibody drugs have been unsuccessful in treating Alzheimer's disease, recent work demonstrates that Alzheimer's pathology can be modified if these drugs can penetrate the brain parenchyma with greater efficacy. Research in antibody blood-brain barrier drug delivery predominantly follows one of three distinct directions: (1) enhancing influx with reduced antibody size, addition of Trojan horse modules, or blood-brain barrier disruption; (2) modulating trancytotic equilibrium and/or kinetics of the neonatal Fc Receptor; and (3) manipulation of antibody glycan carbohydrate composition. In addition to these topics, recent studies are discussed that reveal a role of glycan sialic acid in suppressing antibody efflux from the brain.
Collapse
Affiliation(s)
- John M Finke
- Division of Sciences and Mathematics, Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, WA, USA
| | - William A Banks
- Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle, WA, USA.,Department of Geriatric Medicine, Division of Gerontology and Geriatric Medicine, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
27
|
Mature lymphoid malignancies: origin, stem cells, and chronicity. Blood Adv 2017; 1:2444-2455. [PMID: 29296894 DOI: 10.1182/bloodadvances.2017008854] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 10/10/2017] [Indexed: 12/15/2022] Open
Abstract
The chronic behavior of mature lymphoid malignancies, with relapses occurring years apart in many patients, has until recently been unexplained. Patterns of relapse also differ vastly between disease entities, with some being highly curable by chemotherapy whereas others are destined to reemerge after treatment. Lately, the use of next-generation sequencing techniques has revealed essential information on the clonal evolution of lymphoid malignancies. Also, experimental xenograft transplantation point to the possible existence of an ancestral (stem) cell. Such a malignant lymphoid stem cell population could potentially evade current therapies and be the cause of chronicity and death in lymphoma patients; however, the evidence is divergent across disease entities and between studies. In this review we present an overview of genetic studies, case reports, and experimental evidence of the source of mature lymphoid malignancy and discuss the perspectives.
Collapse
|
28
|
Biology Informs Treatment Choices in Diffuse Large B Cell Lymphoma. Trends Cancer 2017; 3:871-882. [PMID: 29198442 DOI: 10.1016/j.trecan.2017.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/24/2017] [Accepted: 09/26/2017] [Indexed: 01/09/2023]
Abstract
The effective deployment of rationally developed therapies for diffuse large B cell lymphoma (DLBCL) requires rapid assimilation of new biological data. Within this framework, here we address topical issues at the intersection of DLBCL biology and the clinic. We discuss targeting of B cell receptor (BCR) signaling, with emphasis on identifying patients who may benefit from this maneuver and how to best achieve it. We address strategies to modulate the DLBCL microenvironment, including the use of immune checkpoint inhibitors in selected DLBCL subsets, and the potential activity of alternative antiangiogenic therapies. Lastly, we highlight the emerging recognition of MYC and BCL2 coexpression as the most robust predictor of DLBCL outcome, and discuss rationally conceived experimental approaches to treat these high-risk patients.
Collapse
|
29
|
Pathogenesis of follicular lymphoma. Best Pract Res Clin Haematol 2017; 31:2-14. [PMID: 29452662 DOI: 10.1016/j.beha.2017.10.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 10/23/2017] [Indexed: 12/21/2022]
Abstract
Follicular lymphoma (FL) is presented as a germinal centre B cell lymphoma that is characterized by an indolent clinical course, but remains - paradoxically - largely incurable to date. The last years have seen significant progress in our understanding of FL lymphomagenesis, which is a multi-step process beginning in the bone marrow with the hallmark t(14;18)(q32;q21) translocation. The pathobiology of FL is complex and combines broad somatic changes at the level of both the genome and the epigenome, the latter evidenced by highly recurrent mutations in chromatin-modifying genes such as KMT2D and CREBBP. While the importance of the FL microenvironment has since long been well understood, it has become evident that somatic lesions within tumour cells re-educate normal immune and stromal cells to their advantage. Enhanced understanding of FL pathogenesis is currently leading to refined therapeutic targeting of perturbed biology, paving the way for precision medicine in this lymphoma subtype.
Collapse
|
30
|
Abstract
I started research in high school, experimenting on immunological tolerance to transplantation antigens. This led to studies of the thymus as the site of maturation of T cells, which led to the discovery, isolation, and clinical transplantation of purified hematopoietic stem cells (HSCs). The induction of immune tolerance with HSCs has led to isolation of other tissue-specific stem cells for regenerative medicine. Our studies of circulating competing germline stem cells in colonial protochordates led us to document competing HSCs. In human acute myelogenous leukemia we showed that all preleukemic mutations occur in HSCs, and determined their order; the final mutations occur in a multipotent progenitor derived from the preleukemic HSC clone. With these, we discovered that CD47 is an upregulated gene in all human cancers and is a "don't eat me" signal; blocking it with antibodies leads to cancer cell phagocytosis. CD47 is the first known gene common to all cancers and is a target for cancer immunotherapy.
Collapse
Affiliation(s)
- Irving Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, and Ludwig Center for Cancer Stem Cell Research and Medicine at Stanford, Stanford, CA 94305
| |
Collapse
|
31
|
Ghia P, Nadel B, Sander B, Stamatopoulos K, Stevenson FK. Early stages in the ontogeny of small B-cell lymphomas: genetics and microenvironment. J Intern Med 2017; 282:395-414. [PMID: 28393412 DOI: 10.1111/joim.12608] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In this review, we focus on the mechanisms underlying lymphomagenesis in chronic lymphocytic leukaemia, follicular lymphoma, mantle cell lymphoma and splenic marginal zone lymphoma. The cells of origin of these small B-cell lymphomas are distinct, as are the characteristic chromosomal lesions and clinical courses. One shared feature is retention of expression of surface immunoglobulin. Analysis of this critical receptor reveals the point of differentiation reached by the cell of origin. Additionally, the sequence patterns of the immunoglobulin-variable domains can indicate a role for stimulants of the B-cell receptor before, during and after malignant transformation. The pathways driven via the B-cell receptor are now being targeted by specific kinase inhibitors with exciting clinical effects. To consider routes to pathogenesis, potentially offering earlier intervention, or to identify causative factors, genetic tools are being used to track pretransformation events and the early phases in lymphomagenesis. These methods are revealing that chromosomal changes are only one of the many steps involved, and that the influence of surrounding cells, probably multiple and variable according to tissue location, is required, both to establish tumours and to maintain growth and survival. Similarly, the influence of the tumour microenvironment may protect malignant cells from eradication by treatment, and the resulting minimal residual disease will eventually give rise to relapse. The common and different features of the four lymphomas will be summarized to show how normal B lymphocytes can be subverted to generate tumours, how these tumours evolve and how their weaknesses can be attacked by targeted therapies.
Collapse
Affiliation(s)
- P Ghia
- Division of Experimental Oncology, Università Vita-Salute San Raffaele and IRCCS San Raffaele Scientific Institute Milan, Milan, Italy
| | - B Nadel
- Aix-Marseille Université, CNRS, INSERM, CIML, Marseille, France
| | - B Sander
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - K Stamatopoulos
- Institute of Applied Biosciences, Center for Research and Technology Hellas, Thessaloniki, Greece.,Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - F K Stevenson
- Cancer Research UK Centre, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, UK
| |
Collapse
|
32
|
Wogsland CE, Greenplate AR, Kolstad A, Myklebust JH, Irish JM, Huse K. Mass Cytometry of Follicular Lymphoma Tumors Reveals Intrinsic Heterogeneity in Proteins Including HLA-DR and a Deficit in Nonmalignant Plasmablast and Germinal Center B-Cell Populations. CYTOMETRY PART B-CLINICAL CYTOMETRY 2017; 92:79-87. [PMID: 27933753 DOI: 10.1002/cyto.b.21498] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 11/22/2016] [Accepted: 11/29/2016] [Indexed: 12/31/2022]
Abstract
BACKGROUND Follicular lymphoma (FL) is an indolent non-Hodgkin lymphoma that has a risk of transformation to more aggressive lymphoma. Relatively little is known about the nonmalignant B-cell and T-cell subset composition within the tumor microenvironment and whether altered phenotypes are associated with patterns of lymphoma B-cell heterogeneity. METHODS Two mass cytometry (CyTOF) panels were designed to immunophenotype B and T cells in FL tumors. Populations of malignant B cells, nonmalignant B cells, and T cells from each FL tumor were identified and their phenotypes compared to B and T cells from healthy human tonsillar tissue. RESULTS Diversity in cellular phenotype between tumors was greater for the malignant B cells than for nonmalignant B or T cells. The malignant B-cell population bore little phenotypic similarity to any healthy B-cell subset, and unexpectedly clustered closer to naïve B-cell populations than GC B-cell populations. Among the nonmalignant B cells within FL tumors, a significant lack of GC and plasmablast B cells was observed relative to tonsil controls. In contrast, nonmalignant T cells in FL tumors were present at levels similar to their cognate tonsillar T-cell subsets. CONCLUSION Mass cytometry revealed that diverse HLA-DR expression on FL cells within individual tumors contributed greatly to tumor heterogeneity. Both malignant and nonmalignant B cells in the tumor bore little phenotypic resemblance to healthy GC B cells despite the presence of T follicular helper cells in the tumor. These findings suggest that ongoing signaling interactions between malignant B cells and intra-tumor T cells shape the tumor microenvironment. © 2016 International Clinical Cytometry Society.
Collapse
Affiliation(s)
- Cara Ellen Wogsland
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Allison Rae Greenplate
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Arne Kolstad
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - June Helen Myklebust
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway
| | - Jonathan Michael Irish
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee
| | - Kanutte Huse
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway
| |
Collapse
|
33
|
Hollander N, Haimovich J. Altered N-Linked Glycosylation in Follicular Lymphoma and Chronic Lymphocytic Leukemia: Involvement in Pathogenesis and Potential Therapeutic Targeting. Front Immunol 2017; 8:912. [PMID: 28824637 PMCID: PMC5539419 DOI: 10.3389/fimmu.2017.00912] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 07/17/2017] [Indexed: 01/06/2023] Open
Abstract
B-cell antigen receptor (BCR) expression is indispensable for survival of most B-cell malignancies. In follicular lymphoma (FL), N-linked glycosylation sites are introduced in the immunoglobulin (Ig) variable region genes. Oligosaccharides added to the acquired sites are unusually of the high-mannose type. These glycans interact with mannose-specific lectins, especially with dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN). Lectin binding to FL triggers persistent activating signals, suggesting that lectins within the tumor microenvironment promote cell survival and proliferation. Insertion of N-glycosylation sites in Ig variable region genes has been detected in other germinal center-associated lymphomas, specifically in subsets of diffuse large B-cell lymphomas and Burkitt’s lymphomas, suggesting involvement of altered glycans in pathogenesis of these malignancies as well. Furthermore, the BCR in chronic lymphocytic leukemia (CLL) carries high-mannose oligosaccharides, albeit in the heavy chain constant rather than variable region. The high expression level of the unique glycoform, particularly in the more aggressive unmutated CLL subset, suggests a functional significance for this glycan in CLL. As lectin interaction with the BCR is critical for FL and probably for some other lymphomas, targeting this interaction is considered to be an interesting therapeutic strategy. Reagents for blockade of lectin–BCR interaction may include antibodies against high-mannose glycans and mannose-based oligosaccharide mimics or non-carbohydrate glycomimetics. Moreover, as this interaction triggers signaling pathways similar to those demonstrated for BCR engagement by antigen, BCR signal transduction inhibitors may emerge as effective therapeutics for lectin-driven malignancies.
Collapse
Affiliation(s)
- Nurit Hollander
- Department of Clinical Microbiology and Immunology, Tel Aviv University, Tel Aviv, Israel
| | - Joseph Haimovich
- Department of Clinical Microbiology and Immunology, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
34
|
de Winde CM, Elfrink S, van Spriel AB. Novel Insights into Membrane Targeting of B Cell Lymphoma. Trends Cancer 2017; 3:442-453. [DOI: 10.1016/j.trecan.2017.04.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 04/12/2017] [Accepted: 04/13/2017] [Indexed: 11/28/2022]
|
35
|
Activity of the novel BCR kinase inhibitor IQS019 in preclinical models of B-cell non-Hodgkin lymphoma. J Hematol Oncol 2017; 10:80. [PMID: 28359287 PMCID: PMC5374673 DOI: 10.1186/s13045-017-0447-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 03/21/2017] [Indexed: 11/13/2022] Open
Abstract
Background Pharmacological inhibition of B cell receptor (BCR) signaling has recently emerged as an effective approach in a wide range of B lymphoid neoplasms. However, despite promising clinical activity of the first Bruton’s kinase (Btk) and spleen tyrosine kinase (Syk) inhibitors, a small fraction of patients tend to develop progressive disease after initial response to these agents. Methods We evaluated the antitumor activity of IQS019, a new BCR kinase inhibitor with increased affinity for Btk, Syk, and Lck/Yes novel tyrosine kinase (Lyn), in a set of 34 B lymphoid cell lines and primary cultures, including samples with acquired resistance to the first-in-class Btk inhibitor ibrutinib. Safety and efficacy of the compound were then evaluated in two xenograft mouse models of B cell lymphoma. Results IQS019 simultaneously engaged a rapid and dose-dependent de-phosphorylation of both constitutive and IgM-activated Syk, Lyn, and Btk, leading to impaired cell proliferation, reduced CXCL12-dependent cell migration, and induction of caspase-dependent apoptosis. Accordingly, B cell lymphoma-bearing mice receiving IQS019 presented a reduced tumor outgrowth characterized by a decreased mitotic index and a lower infiltration of malignant cells in the spleen, in tight correlation with downregulation of phospho-Syk, phospho-Lyn, and phospho-Btk. More interestingly, IQS019 showed improved efficacy in vitro and in vivo when compared to the first-in-class Btk inhibitor ibrutinib, and was active in cells with acquired resistance to this latest. Conclusions These results define IQS019 as a potential drug candidate for a variety of B lymphoid neoplasms, including cases with acquired resistance to current BCR-targeting therapies. Electronic supplementary material The online version of this article (doi:10.1186/s13045-017-0447-6) contains supplementary material, which is available to authorized users.
Collapse
|
36
|
High-throughput sequencing of the B-cell receptor in African Burkitt lymphoma reveals clues to pathogenesis. Blood Adv 2017; 1:535-544. [PMID: 29296973 DOI: 10.1182/bloodadvances.2016000794] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 01/30/2017] [Indexed: 11/20/2022] Open
Abstract
Burkitt lymphoma (BL), the most common pediatric cancer in sub-Saharan Africa, is a malignancy of antigen-experienced B lymphocytes. High-throughput sequencing (HTS) of the immunoglobulin heavy (IGH) and light chain (IGK/IGL) loci was performed on genomic DNA from 51 primary BL tumors: 19 from Uganda and 32 from Ghana. Reverse transcription polymerase chain reaction analysis and tumor RNA sequencing (RNAseq) was performed on the Ugandan tumors to confirm and extend the findings from the HTS of tumor DNA. Clonal IGH and IGK/IGL rearrangements were identified in 41 and 46 tumors, respectively. Evidence for rearrangement of the second IGH allele was observed in only 6 of 41 tumor samples with a clonal IGH rearrangement, suggesting that the normal process of biallelic IGHD to IGHJ diversity-joining (DJ) rearrangement is often disrupted in BL progenitor cells. Most tumors, including those with a sole dominant, nonexpressed DJ rearrangement, contained many IGH and IGK/IGL sequences that differed from the dominant rearrangement by < 10 nucleotides, suggesting that the target of ongoing mutagenesis of these loci in BL tumor cells is not limited to expressed alleles. IGHV usage in both BL tumor cohorts revealed enrichment for IGHV genes that are infrequently used in memory B cells from healthy subjects. Analysis of publicly available DNA sequencing and RNAseq data revealed that these same IGHV genes were overrepresented in dominant tumor-associated IGH rearrangements in several independent BL tumor cohorts. These data suggest that BL derives from an abnormal B-cell progenitor and that aberrant mutational processes are active on the immunoglobulin loci in BL cells.
Collapse
|
37
|
Distinct patterns of B-cell receptor signaling in non-Hodgkin lymphomas identified by single-cell profiling. Blood 2016; 129:759-770. [PMID: 28011673 DOI: 10.1182/blood-2016-05-718494] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 12/09/2016] [Indexed: 12/22/2022] Open
Abstract
Kinases downstream of B-cell antigen receptor (BCR) represent attractive targets for therapy in non-Hodgkin lymphoma (NHL). As clinical responses vary, improved knowledge regarding activation and regulation of BCR signaling in individual patients is needed. Here, using phosphospecific flow cytometry to obtain malignant B-cell signaling profiles from 95 patients representing 4 types of NHL revealed a striking contrast between chronic lymphocytic leukemia (CLL) and mantle cell lymphoma (MCL) tumors. Lymphoma cells from diffuse large B-cell lymphoma patients had high basal phosphorylation levels of most measured signaling nodes, whereas follicular lymphoma cells represented the opposite pattern with no or very low basal levels. MCL showed large interpatient variability in basal levels, and elevated levels for the phosphorylated forms of AKT, extracellular signal-regulated kinase, p38, STAT1, and STAT5 were associated with poor outcome. CLL tumors had elevated basal levels for the phosphorylated forms of BCR-signaling nodes (Src family tyrosine kinase, spleen tyrosine kinase [SYK], phospholipase Cγ), but had low α-BCR-induced signaling. This contrasted MCL tumors, where α-BCR-induced signaling was variable, but significantly potentiated as compared with the other types. Overexpression of CD79B, combined with a gating strategy whereby signaling output was directly quantified per cell as a function of CD79B levels, confirmed a direct relationship between surface CD79B, immunoglobulin M (IgM), and IgM-induced signaling levels. Furthermore, α-BCR-induced signaling strength was variable across patient samples and correlated with BCR subunit CD79B expression, but was inversely correlated with susceptibility to Bruton tyrosine kinase (BTK) and SYK inhibitors in MCL. These individual differences in BCR levels and signaling might relate to differences in therapy responses to BCR-pathway inhibitors.
Collapse
|
38
|
Blomme A, Costanza B, de Tullio P, Thiry M, Van Simaeys G, Boutry S, Doumont G, Di Valentin E, Hirano T, Yokobori T, Gofflot S, Peulen O, Bellahcène A, Sherer F, Le Goff C, Cavalier E, Mouithys-Mickalad A, Jouret F, Cusumano PG, Lifrange E, Muller RN, Goldman S, Delvenne P, De Pauw E, Nishiyama M, Castronovo V, Turtoi A. Myoferlin regulates cellular lipid metabolism and promotes metastases in triple-negative breast cancer. Oncogene 2016; 36:2116-2130. [DOI: 10.1038/onc.2016.369] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/30/2016] [Accepted: 08/28/2016] [Indexed: 02/07/2023]
|
39
|
García-Muñoz R, Panizo C. Follicular lymphoma (FL): Immunological tolerance theory in FL. Hum Immunol 2016; 78:138-145. [PMID: 27693433 DOI: 10.1016/j.humimm.2016.09.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 09/27/2016] [Accepted: 09/28/2016] [Indexed: 11/19/2022]
Abstract
The ultimate cause of follicular lymphoma (FL) remains unknown. Remarkably, almost nothing is known about immunological tolerance mechanisms that might contribute to FL development. Immunological tolerance mechanisms, like other stimuli, also induce persistent changes of B cell receptors that induce genetic instability and molecular aberrations promoting the development of a neoplasm. Using the same method as Burnet, we provide a new perspective taking advantage of the comparison of a normal linear B cell differentiation process and FL development within the framework of clonal selection theory. We propose that FL is a malignancy of cells that acquire both translocation t(14;18) and self-BCR, inducing them to proliferate and mature, resistant to negative selection. Additional genetic damage induced by non-apoptotic tolerance mechanisms, such as receptor editing, may transform a self-reactive B cell with t(14;18) into an FL. The result of tolerogenic mechanisms and genetic aberrations is the survival of FL B cell clones with similar markers and homogenous gene expression signatures despite the different stages of maturation at which the molecular damage occurs. To antagonize further growth advantage due to self-antigen recognition and chronic activation of tolerance mechanisms in the apoptosis-resistant background of FL B cells, inhibitors of BCR signaling may be promising therapeutic options.
Collapse
Affiliation(s)
| | - Carlos Panizo
- Hematology Department, Clínica Universidad de Navarra, Pamplona, Spain
| |
Collapse
|
40
|
Preclinical Evaluation of the Novel BTK Inhibitor Acalabrutinib in Canine Models of B-Cell Non-Hodgkin Lymphoma. PLoS One 2016; 11:e0159607. [PMID: 27434128 PMCID: PMC4951150 DOI: 10.1371/journal.pone.0159607] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 07/05/2016] [Indexed: 12/28/2022] Open
Abstract
Acalabrutinib (ACP-196) is a second-generation inhibitor of Bruton agammaglobulinemia tyrosine kinase (BTK) with increased target selectivity and potency compared to ibrutinib. In this study, we evaluated acalabrutinib in spontaneously occurring canine lymphoma, a model of B-cell malignancy similar to human diffuse large B-cell lymphoma (DLBCL). First, we demonstrated that acalabrutinib potently inhibited BTK activity and downstream effectors in CLBL1, a canine B-cell lymphoma cell line, and primary canine lymphoma cells. Acalabrutinib also inhibited proliferation in CLBL1 cells. Twenty dogs were enrolled in the clinical trial and treated with acalabrutinib at dosages of 2.5 to 20mg/kg every 12 or 24 hours. Acalabrutinib was generally well tolerated, with adverse events consisting primarily of grade 1 or 2 anorexia, weight loss, vomiting, diarrhea and lethargy. Overall response rate (ORR) was 25% (5/20) with a median progression free survival (PFS) of 22.5 days. Clinical benefit was observed in 30% (6/20) of dogs. These findings suggest that acalabrutinib is safe and exhibits activity in canine B-cell lymphoma patients and support the use of canine lymphoma as a relevant model for human non-Hodgkin lymphoma (NHL).
Collapse
|
41
|
van de Bovenkamp FS, Hafkenscheid L, Rispens T, Rombouts Y. The Emerging Importance of IgG Fab Glycosylation in Immunity. THE JOURNAL OF IMMUNOLOGY 2016; 196:1435-41. [PMID: 26851295 DOI: 10.4049/jimmunol.1502136] [Citation(s) in RCA: 220] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Human IgG is the most abundant glycoprotein in serum and is crucial for protective immunity. In addition to conserved IgG Fc glycans, ∼15-25% of serum IgG contains glycans within the variable domains. These so-called "Fab glycans" are primarily highly processed complex-type biantennary N-glycans linked to N-glycosylation sites that emerge during somatic hypermutation. Specific patterns of Fab glycosylation are concurrent with physiological and pathological conditions, such as pregnancy and rheumatoid arthritis. With respect to function, Fab glycosylation can significantly affect stability, half-life, and binding characteristics of Abs and BCRs. Moreover, Fab glycans are associated with the anti-inflammatory activity of IVIgs. Consequently, IgG Fab glycosylation appears to be an important, yet poorly understood, process that modulates immunity.
Collapse
Affiliation(s)
- Fleur S van de Bovenkamp
- Department of Immunopathology, Sanquin Research, 1066 CX Amsterdam, the Netherlands; Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Lise Hafkenscheid
- Department of Rheumatology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Theo Rispens
- Department of Immunopathology, Sanquin Research, 1066 CX Amsterdam, the Netherlands; Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands;
| | - Yoann Rombouts
- Department of Rheumatology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; and Université Lille, CNRS, UMR 8576, Unité de Glycobiologie Structurale et Fonctionnelle, F 59 000 Lille, France
| |
Collapse
|
42
|
Allen JC, Talab F, Slupsky JR. Targeting B-cell receptor signaling in leukemia and lymphoma: how and why? Int J Hematol Oncol 2016; 5:37-53. [PMID: 30302202 DOI: 10.2217/ijh-2016-0003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/13/2016] [Indexed: 01/04/2023] Open
Abstract
B-lymphocytes are dependent on B-cell receptor (BCR) signaling for the constant maintenance of their physiological function, and in many B-cell malignancies this signaling pathway is prone to aberrant activation. This understanding has led to an ever-increasing interest in the signaling networks activated following ligation of the BCR in both normal and malignant cells, and has been critical in establishing an array of small molecule inhibitors targeting BCR-induced signaling. By dissecting how different malignancies signal through BCR, researchers are contributing to the design of more customized therapeutics which have greater efficacy and lower toxicity than previous therapies. This allows clinicians access to an array of approaches to best treat patients whose malignancies have BCR signaling as a driver of pathogenesis.
Collapse
Affiliation(s)
- John C Allen
- Department of Molecular & Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3GE, UK.,Department of Molecular & Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3GE, UK
| | - Fatima Talab
- Redx Oncology Plc, Duncan Building, Royal Liverpool University Hospital, Daulby Street, Liverpool, L69 3GA, UK.,Redx Oncology Plc, Duncan Building, Royal Liverpool University Hospital, Daulby Street, Liverpool, L69 3GA, UK
| | - Joseph R Slupsky
- Department of Molecular & Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Ashton Street, Liverpool, L69 3GE, UK.,Department of Molecular & Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Ashton Street, Liverpool, L69 3GE, UK
| |
Collapse
|
43
|
Abstract
PURPOSE OF REVIEW Follicular lymphoma and chronic lymphocytic leukemia (CLL) are indolent B-cell malignancies characterized by a long preclinical phase and frequent relapses once treatment is initiated. The present review gathers recent findings on the occurrence, relevance, and dynamics of premalignant cells in the development of follicular lymphoma and CLL. RECENT FINDINGS The frequency of circulating cells bearing the follicular lymphoma hallmark translocation t(14;18) in healthy persons is correlated to the risk of developing follicular lymphoma later in life. Chronic B-cell receptor stimulation induces cyclic re-entries of BCL2 B cells into germinal centers that propagate clonal evolution and early follicular lymphoma progression. The lymph node microenvironment is a key activation/proliferation niche for malignant cells in CLL, also active in its preclinical antecedent monoclonal B-cell lymphocytosis. SUMMARY Considering recent studies of premalignant cells in both diseases and of their putative normal cell counterparts, we propose different models of premalignant evolution for the two pathologies. Before overt follicular lymphoma, t(14;18) B cells exploit the dynamics of memory B cells to re-enter multiple times into local or distant germinal centers, gather activation/proliferation signals, and gain additional mutations to progress to malignant lymphoma. In monoclonal B-cell lymphocytosis, CLL-like activated/memory B cells follow cycles of germinal center-independent activation/proliferation in lymph node. Finally, we discuss the next level genetic and functional analyses that should result in a better understanding of the origins and mechanisms of frequent relapses in follicular lymphoma and CLL.
Collapse
|
44
|
Abstract
In this issue of Blood, complementary studies by Amin et al and Linley et al demonstrate that sugar moieties linked to surface immunoglobulin (sIg) of follicular lymphoma (FL) cells directly interact with endogenous lectins within the lymphoma niche and lead to activation of downstream B-cell receptor (BCR) signaling pathways. In addition to providing further insight into the role of the microenvironment in lymphomagenesis, these findings expose a unique molecular interaction that may represent a viable target for therapeutic intervention.
Collapse
|
45
|
Scherer F, van der Burgt M, Kiełbasa SM, Bertinetti-Lapatki C, Dühren von Minden M, Mikesch K, Zirlik K, de Wreede L, Veelken H, Navarrete MA. Selection patterns of B-cell receptors and the natural history of follicular lymphoma. Br J Haematol 2015; 175:972-975. [PMID: 26687432 DOI: 10.1111/bjh.13901] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Florian Scherer
- Department of Haematology and Oncology, University Medical Centre Freiburg, Freiburg, Germany
| | - Marlon van der Burgt
- Department of Haematology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Szymon M Kiełbasa
- Department of Medical Statistics and Bioinformatics, Leiden University Medical Centre, Leiden, The Netherlands
| | | | - Marcus Dühren von Minden
- Centre for Biological Signalling Studies (BIOSS), Albert-Ludwigs University Freiburg, Freiburg, Germany
| | - Kristina Mikesch
- Department of Haematology and Oncology, University Medical Centre Freiburg, Freiburg, Germany
| | - Katja Zirlik
- Department of Haematology and Oncology, University Medical Centre Freiburg, Freiburg, Germany
| | - Liesbeth de Wreede
- Department of Medical Statistics and Bioinformatics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Hendrik Veelken
- Department of Haematology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Marcelo A Navarrete
- Department of Haematology, Leiden University Medical Centre, Leiden, The Netherlands.,School of Medicine, University of Magallanes, Punta Arenas, Chile
| |
Collapse
|
46
|
Montesinos-Rongen M, Purschke F, Brunn A, Deckert M. Response to Comment on "Primary Central Nervous System (CNS) Lymphoma B Cell Receptors Recognize CNS Proteins". THE JOURNAL OF IMMUNOLOGY 2015; 195:4550-1. [PMID: 26546684 DOI: 10.4049/jimmunol.1502051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
| | - Frauke Purschke
- Institute of Neuropathology, University Hospital of Cologne, 50924 Cologne, Germany
| | - Anna Brunn
- Institute of Neuropathology, University Hospital of Cologne, 50924 Cologne, Germany
| | - Martina Deckert
- Institute of Neuropathology, University Hospital of Cologne, 50924 Cologne, Germany
| |
Collapse
|
47
|
Ahmadzadeh V, Tofigh R, Farajnia S, Pouladi N. The Central Role for Microenvironment in B-Cell Malignancies: Recent Insights into Synergistic Effects of its Therapeutic Targeting and Anti-CD20 Antibodies. Int Rev Immunol 2015; 35:136-55. [DOI: 10.3109/08830185.2015.1077830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
48
|
Abstract
PURPOSE OF REVIEW This review summarizes the recent progress in defining the patterns of genetic evolution giving rise to relapse in follicular lymphoma and multiple myeloma, and discusses their implications with respect to 'personalized medicine'. RECENT FINDINGS High-throughput sequencing studies have uncovered a large degree of clonal heterogeneity within tumors, and found that subclones have a variable contribution to relapse. Recent studies aimed at defining patterns of clonal evolution have revealed that serial tumors in some malignancies share their ancestry in a less evolved common progenitor cell (CPC) that bears only a subset of the mutations that are present in the fully evolved tumors that present clinically. This pattern of 'divergent evolution' means that the majority of 'actionable mutations' in tumor specimens are absent within the progenitors that give rise to relapse. SUMMARY Follicular lymphoma and multiple myeloma are clinically, biologically and genetically distinct mature B-cell malignancies. However, recent studies have found them to share important similarities in their patterns of genetic evolution. Tumor cells that constitute subclonal populations within these tumors, or between consecutive tumors, share their origins within a genetically less evolved common progenitor cell. This pattern of evolution indicates that current therapies are unable to eradicate these less evolved populations that are at the root of relapse. This suggests that in order to obtain the best results with modern 'targeted therapies' that are directed towards 'actionable mutations', these mutations should be considered within the context of the evolutionary stage at which mutations are acquired, not simply on a presence or absence basis.
Collapse
|
49
|
DC-SIGN-expressing macrophages trigger activation of mannosylated IgM B-cell receptor in follicular lymphoma. Blood 2015; 126:1911-20. [PMID: 26272216 DOI: 10.1182/blood-2015-04-640912] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 08/07/2015] [Indexed: 01/01/2023] Open
Abstract
Follicular lymphoma (FL) results from the accumulation of malignant germinal center (GC) B cells leading to the development of an indolent and largely incurable disease. FL cells remain highly dependent on B-cell receptor (BCR) signaling and on a specific cell microenvironment, including T cells, macrophages, and stromal cells. Importantly, FL BCR is characterized by a selective pressure to retain surface immunoglobulin M (IgM) BCR despite an active class-switch recombination process, and by the introduction, in BCR variable regions, of N-glycosylation acceptor sites harboring unusual high-mannose oligosaccharides. However, the relevance of these 2 FL BCR features for lymphomagenesis remains unclear. In this study, we demonstrated that IgM(+) FL B cells activated a stronger BCR signaling network than IgG(+) FL B cells and normal GC B cells. BCR expression level and phosphatase activity could both contribute to such heterogeneity. Moreover, we underlined that a subset of IgM(+) FL samples, displaying highly mannosylated BCR, efficiently bound dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN), which could in turn trigger delayed but long-lasting BCR aggregation and activation. Interestingly, DC-SIGN was found within the FL cell niche in situ. Finally, M2 macrophages induced a DC-SIGN-dependent adhesion of highly mannosylated IgM(+) FL B cells and triggered BCR-associated kinase activation. Interestingly, pharmacologic BCR inhibitors abolished such crosstalk between macrophages and FL B cells. Altogether, our data support an important role for DC-SIGN-expressing infiltrating cells in the biology of FL and suggest that they could represent interesting therapeutic targets.
Collapse
|
50
|
Montesinos-Rongen M, Purschke FG, Brunn A, May C, Nordhoff E, Marcus K, Deckert M. Primary Central Nervous System (CNS) Lymphoma B Cell Receptors Recognize CNS Proteins. THE JOURNAL OF IMMUNOLOGY 2015; 195:1312-9. [PMID: 26116512 DOI: 10.4049/jimmunol.1402341] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 05/27/2015] [Indexed: 01/09/2023]
Abstract
Primary lymphoma of the CNS (PCNSL) is a diffuse large B cell lymphoma confined to the CNS. To elucidate its peculiar organ tropism, we generated recombinant Abs (recAbs) identical to the BCR of 23 PCNSLs from immunocompetent patients. Although none of the recAbs showed self-reactivity upon testing with common autoantigens, they recognized 1547 proteins present on a large-scale protein microarray, indicating polyreactivity. Interestingly, proteins (GRINL1A, centaurin-α, BAIAP2) recognized by the recAbs are physiologically expressed by CNS neurons. Furthermore, 87% (20/23) of the recAbs, including all Abs derived from IGHV4-34 using PCNSL, recognized galectin-3, which was upregulated on microglia/macrophages, astrocytes, and cerebral endothelial cells upon CNS invasion by PCNSL. Thus, PCNSL Ig may recognize CNS proteins as self-Ags. Their interaction may contribute to BCR signaling with sustained NF-κB activation and, ultimately, may foster tumor cell proliferation and survival. These data may also explain, at least in part, the affinity of PCNSL cells for the CNS.
Collapse
Affiliation(s)
| | - Frauke G Purschke
- Institute of Neuropathology, University Hospital of Cologne, D-50925 Cologne, Germany; and
| | - Anna Brunn
- Institute of Neuropathology, University Hospital of Cologne, D-50925 Cologne, Germany; and
| | - Caroline May
- Medical Proteome-Center, Ruhr-University Bochum, D-44801 Bochum, Germany
| | - Eckhard Nordhoff
- Medical Proteome-Center, Ruhr-University Bochum, D-44801 Bochum, Germany
| | - Katrin Marcus
- Medical Proteome-Center, Ruhr-University Bochum, D-44801 Bochum, Germany
| | - Martina Deckert
- Institute of Neuropathology, University Hospital of Cologne, D-50925 Cologne, Germany; and
| |
Collapse
|