1
|
Jestrabek H, Kohlhas V, Hallek M, Nguyen PH. Impact of leukemia-associated macrophages on the progression and therapy response of chronic lymphocytic leukemia. Leuk Res 2024; 143:107531. [PMID: 38851084 DOI: 10.1016/j.leukres.2024.107531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
The treatment landscape of chronic lymphocytic leukemia (CLL) has advanced remarkably over the past decade. The advent and approval of the BTK inhibitor ibrutinib and BCL-2 inhibitor venetoclax, as well as monoclonal anti-CD20 antibodies rituximab and obinutuzumab, have resulted in deep remissions and substantially improved survival outcomes for patients. However, CLL remains a complex disease with many patients still experiencing relapse and unsatisfactory treatment responses. CLL cells are highly dependent on their pro-leukemic tumor microenvironment (TME), which comprises different cellular and soluble factors. A large body of evidence suggests that CLL-associated macrophages shaped by leukemic cells play a pivotal role in maintaining CLL cell survival. In this review, we summarize the pro-survival interactions between CLL cells and macrophages, as well as the impact of the current first-line treatment agents, including ibrutinib, venetoclax, and CD20 antibodies on leukemia-associated macrophages.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/immunology
- Tumor-Associated Macrophages/immunology
- Tumor-Associated Macrophages/drug effects
- Disease Progression
- Bridged Bicyclo Compounds, Heterocyclic/therapeutic use
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Adenine/analogs & derivatives
- Sulfonamides/therapeutic use
- Piperidines/therapeutic use
- Macrophages/pathology
- Macrophages/immunology
Collapse
Affiliation(s)
- Hendrik Jestrabek
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Center for Molecular Medicine Cologne, CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, Cologne 50931, Germany; Mildred Scheel School of Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital of Cologne, Cologne 50931, Germany
| | - Viktoria Kohlhas
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Center for Molecular Medicine Cologne, CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, Cologne 50931, Germany
| | - Michael Hallek
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Center for Molecular Medicine Cologne, CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, Cologne 50931, Germany; Mildred Scheel School of Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital of Cologne, Cologne 50931, Germany
| | - Phuong-Hien Nguyen
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Center for Molecular Medicine Cologne, CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, Cologne 50931, Germany.
| |
Collapse
|
2
|
Floerchinger A, Seiffert M. Lessons learned from the Eµ-TCL1 mouse model of CLL. Semin Hematol 2024; 61:194-200. [PMID: 38839457 DOI: 10.1053/j.seminhematol.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 06/07/2024]
Abstract
The Eµ-TCL1 mouse model has been used for over 20 years to study the pathobiology of chronic lymphocytic leukemia (CLL) and for preclinical testing of novel therapies. A CLL-like disease develops with increasing age in these mice due to a B cell specific overexpression of human TCL1. The reliability of this model to mirror human CLL is controversially discussed, as none of the known driver mutations identified in patients are found in Eµ-TCL1 mice. It has to be acknowledged that this mouse model was key to develop targeted therapies that aim at inhibiting the constitutive B cell receptor (BCR) signaling, a main driver of CLL. Inhibitors of BCR signaling became standard-of-care for a large proportion of patients with CLL as they are highly effective. The Eµ-TCL1 model further advanced our understanding of CLL biology owed to studies that crossed this mouse line with various transgenic mouse models and demonstrated the relevance of CLL-cell intrinsic and -extrinsic drivers of disease. These studies were instrumental in showing the relevance of the tumor microenvironment in the lymphoid tissues for disease progression and immune escape in CLL. It became clear that CLL cells shape and rely on stromal and immune cells, and that immune suppressive mechanisms and T cell exhaustion contribute to CLL progression. Based on this knowledge, new immunotherapy strategies were clinically tested for CLL, but so far with disappointing results. As some of these therapies were effective in the Eµ-TCL1 mouse model, the question arose concerning the translatability of preclinical studies in these mice. The aim of this review is to summarize lessons we have learnt over the last decades by studying CLL-like disease in the Eµ-TCL1 mouse model. The article focuses on pitfalls and limitations of the model, as well as the gained knowledge and potential of using this model for the development of novel treatment strategies to achieve the goal of curing patients with CLL.
Collapse
MESH Headings
- Animals
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Mice
- Disease Models, Animal
- Humans
- Mice, Transgenic
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins/antagonists & inhibitors
- Tumor Microenvironment/immunology
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Antigen, B-Cell/genetics
Collapse
Affiliation(s)
- Alessia Floerchinger
- Department of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Biosciences of the University of Heidelberg, Heidelberg, Germany
| | - Martina Seiffert
- Department of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
3
|
Valdez CN, Sánchez-Zuno GA, Bucala R, Tran TT. Macrophage Migration Inhibitory Factor (MIF) and D-Dopachrome Tautomerase (DDT): Pathways to Tumorigenesis and Therapeutic Opportunities. Int J Mol Sci 2024; 25:4849. [PMID: 38732068 PMCID: PMC11084905 DOI: 10.3390/ijms25094849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Discovered as inflammatory cytokines, MIF and DDT exhibit widespread expression and have emerged as critical mediators in the response to infection, inflammation, and more recently, in cancer. In this comprehensive review, we provide details on their structures, binding partners, regulatory mechanisms, and roles in cancer. We also elaborate on their significant impact in driving tumorigenesis across various cancer types, supported by extensive in vitro, in vivo, bioinformatic, and clinical studies. To date, only a limited number of clinical trials have explored MIF as a therapeutic target in cancer patients, and DDT has not been evaluated. The ongoing pursuit of optimal strategies for targeting MIF and DDT highlights their potential as promising antitumor candidates. Dual inhibition of MIF and DDT may allow for the most effective suppression of canonical and non-canonical signaling pathways, warranting further investigations and clinical exploration.
Collapse
Affiliation(s)
- Caroline Naomi Valdez
- School of Medicine, Yale University, 333 Cedar St., New Haven, CT 06510, USA; (C.N.V.); (R.B.)
| | - Gabriela Athziri Sánchez-Zuno
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale University, 333 Cedar St., New Haven, CT 06510, USA;
| | - Richard Bucala
- School of Medicine, Yale University, 333 Cedar St., New Haven, CT 06510, USA; (C.N.V.); (R.B.)
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale University, 333 Cedar St., New Haven, CT 06510, USA;
- Yale Cancer Center, Yale University, 333 Cedar St., New Haven, CT 06510, USA
| | - Thuy T. Tran
- School of Medicine, Yale University, 333 Cedar St., New Haven, CT 06510, USA; (C.N.V.); (R.B.)
- Yale Cancer Center, Yale University, 333 Cedar St., New Haven, CT 06510, USA
- Section of Medical Oncology, Department of Internal Medicine, Yale University, 333 Cedar St., New Haven, CT 06510, USA
| |
Collapse
|
4
|
Spertini C, Bénéchet AP, Birch F, Bellotti A, Román-Trufero M, Arber C, Auner HW, Mitchell RA, Spertini O, Smirnova T. Macrophage migration inhibitory factor blockade reprograms macrophages and disrupts prosurvival signaling in acute myeloid leukemia. Cell Death Discov 2024; 10:157. [PMID: 38548753 PMCID: PMC10978870 DOI: 10.1038/s41420-024-01924-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 04/01/2024] Open
Abstract
The malignant microenvironment plays a major role in the development of resistance to therapies and the occurrence of relapses in acute myeloid leukemia (AML). We previously showed that interactions of AML blasts with bone marrow macrophages (MΦ) shift their polarization towards a protumoral (M2-like) phenotype, promoting drug resistance; we demonstrated that inhibiting the colony-stimulating factor-1 receptor (CSF1R) repolarizes MΦ towards an antitumoral (M1-like) phenotype and that other factors may be involved. We investigated here macrophage migration inhibitory factor (MIF) as a target in AML blast survival and protumoral interactions with MΦ. We show that pharmacologically inhibiting MIF secreted by AML blasts results in their apoptosis. However, this effect is abrogated when blasts are co-cultured in close contact with M2-like MΦ. We next demonstrate that pharmacological inhibition of MIF secreted by MΦ, in the presence of granulocyte macrophage-colony stimulating factor (GM-CSF), efficiently reprograms MΦ to an M1-like phenotype that triggers apoptosis of interacting blasts. Furthermore, contact with reprogrammed MΦ relieves blast resistance to venetoclax and midostaurin acquired in contact with CD163+ protumoral MΦ. Using intravital imaging in mice, we also show that treatment with MIF inhibitor 4-IPP and GM-CSF profoundly affects the tumor microenvironment in vivo: it strikingly inhibits tumor vasculature, reduces protumoral MΦ, and slows down leukemia progression. Thus, our data demonstrate that MIF plays a crucial role in AML MΦ M2-like protumoral phenotype that can be reversed by inhibiting its activity and suggest the therapeutic targeting of MIF as an avenue towards improved AML treatment outcomes.
Collapse
Affiliation(s)
- Caroline Spertini
- Service and Central Laboratory of Hematology, Lausanne University Hospital (CHUV), 1011, Lausanne, Switzerland
| | - Alexandre P Bénéchet
- In Vivo Imaging Facility (IVIF), Department of Research and Training, Lausanne University Hospital and University of Lausanne, Lausanne, 1011, Switzerland
| | - Flora Birch
- Department of oncology UNIL-CHUV, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), 1011, Lausanne, Switzerland
- Ludwig Institute for Cancer Research Lausanne, 1015, Lausanne, Switzerland
| | - Axel Bellotti
- Service and Central Laboratory of Hematology, Lausanne University Hospital (CHUV), 1011, Lausanne, Switzerland
| | - Mónica Román-Trufero
- Service and Central Laboratory of Hematology, Lausanne University Hospital (CHUV), 1011, Lausanne, Switzerland
| | - Caroline Arber
- Service and Central Laboratory of Hematology, Lausanne University Hospital (CHUV), 1011, Lausanne, Switzerland
- Department of oncology UNIL-CHUV, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), 1011, Lausanne, Switzerland
- Ludwig Institute for Cancer Research Lausanne, 1015, Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, 1011, Lausanne, Switzerland
- Service of Immuno-oncology, Lausanne University Hospital (CHUV), 1011, Lausanne, Switzerland
| | - Holger W Auner
- Service and Central Laboratory of Hematology, Lausanne University Hospital (CHUV), 1011, Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, 1011, Lausanne, Switzerland
| | - Robert A Mitchell
- Department of Surgery, Division of Immunotherapy, University of Louisville, Louisville, KY, 40202, USA
| | - Olivier Spertini
- Faculty of Biology and Medicine, University of Lausanne, 1011, Lausanne, Switzerland
| | - Tatiana Smirnova
- Service and Central Laboratory of Hematology, Lausanne University Hospital (CHUV), 1011, Lausanne, Switzerland.
| |
Collapse
|
5
|
Saluja S, Bansal I, Bhardwaj R, Beg MS, Palanichamy JK. Inflammation as a driver of hematological malignancies. Front Oncol 2024; 14:1347402. [PMID: 38571491 PMCID: PMC10987768 DOI: 10.3389/fonc.2024.1347402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/05/2024] [Indexed: 04/05/2024] Open
Abstract
Hematopoiesis is a tightly regulated process that produces all adult blood cells and immune cells from multipotent hematopoietic stem cells (HSCs). HSCs usually remain quiescent, and in the presence of external stimuli like infection or inflammation, they undergo division and differentiation as a compensatory mechanism. Normal hematopoiesis is impacted by systemic inflammation, which causes HSCs to transition from quiescence to emergency myelopoiesis. At the molecular level, inflammatory cytokine signaling molecules such as tumor necrosis factor (TNF), interferons, interleukins, and toll-like receptors can all cause HSCs to multiply directly. These cytokines actively encourage HSC activation, proliferation, and differentiation during inflammation, which results in the generation and activation of immune cells required to combat acute injury. The bone marrow niche provides numerous soluble and stromal cell signals, which are essential for maintaining normal homeostasis and output of the bone marrow cells. Inflammatory signals also impact this bone marrow microenvironment called the HSC niche to regulate the inflammatory-induced hematopoiesis. Continuous pro-inflammatory cytokine and chemokine activation can have detrimental effects on the hematopoietic system, which can lead to cancer development, HSC depletion, and bone marrow failure. Reactive oxygen species (ROS), which damage DNA and ultimately lead to the transformation of HSCs into cancerous cells, are produced due to chronic inflammation. The biological elements of the HSC niche produce pro-inflammatory cytokines that cause clonal growth and the development of leukemic stem cells (LSCs) in hematological malignancies. The processes underlying how inflammation affects hematological malignancies are still not fully understood. In this review, we emphasize the effects of inflammation on normal hematopoiesis, the part it plays in the development and progression of hematological malignancies, and potential therapeutic applications for targeting these pathways for therapy in hematological malignancies.
Collapse
|
6
|
Sánchez Suárez MDM, Martín Roldán A, Alarcón-Payer C, Rodríguez-Gil MÁ, Poquet-Jornet JE, Puerta Puerta JM, Jiménez Morales A. Treatment of Chronic Lymphocytic Leukemia in the Personalized Medicine Era. Pharmaceutics 2023; 16:55. [PMID: 38258066 PMCID: PMC10818903 DOI: 10.3390/pharmaceutics16010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/26/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
Chronic lymphocytic leukemia is a lymphoproliferative disorder marked by the expansion of monoclonal, mature CD5+CD23+ B cells in peripheral blood, secondary lymphoid tissues, and bone marrow. The disease exhibits significant heterogeneity, with numerous somatic genetic alterations identified in the neoplastic clone, notably mutated TP53 and immunoglobulin heavy chain mutational statuses. Recent studies emphasize the pivotal roles of genetics and patient fragility in treatment decisions. This complexity underscores the need for a personalized approach, tailoring interventions to individual genetic profiles for heightened efficacy. The era of personalized treatment in CLL signifies a transformative shift, holding the potential for improved outcomes in the conquest of this intricate hematologic disorder. This review plays a role in elucidating the evolving CLL treatment landscape, encompassing all reported genetic factors. Through a comprehensive historical analysis, it provides insights into the evolution of CLL management. Beyond its retrospective nature, this review could be a valuable resource for clinicians, researchers, and stakeholders, offering a window into the latest advancements. In essence, it serves as a dynamic exploration of our current position and the promising prospects on the horizon.
Collapse
Affiliation(s)
- María Del Mar Sánchez Suárez
- Servicio de Farmacia, Hospital Universitario Virgen de las Nieves, 18014 Granada, Granada, Spain; (M.D.M.S.S.); (A.M.R.); (A.J.M.)
| | - Alicia Martín Roldán
- Servicio de Farmacia, Hospital Universitario Virgen de las Nieves, 18014 Granada, Granada, Spain; (M.D.M.S.S.); (A.M.R.); (A.J.M.)
| | - Carolina Alarcón-Payer
- Servicio de Farmacia, Hospital Universitario Virgen de las Nieves, 18014 Granada, Granada, Spain; (M.D.M.S.S.); (A.M.R.); (A.J.M.)
| | - Miguel Ángel Rodríguez-Gil
- Unidad de Gestión Clínica Hematología y Hemoterapia, Hospital Universitario Virgen de las Nieves, 18014 Granada, Granada, Spain; (M.Á.R.-G.); (J.M.P.P.)
| | | | - José Manuel Puerta Puerta
- Unidad de Gestión Clínica Hematología y Hemoterapia, Hospital Universitario Virgen de las Nieves, 18014 Granada, Granada, Spain; (M.Á.R.-G.); (J.M.P.P.)
| | - Alberto Jiménez Morales
- Servicio de Farmacia, Hospital Universitario Virgen de las Nieves, 18014 Granada, Granada, Spain; (M.D.M.S.S.); (A.M.R.); (A.J.M.)
| |
Collapse
|
7
|
Koehrer S, Burger JA. Chronic Lymphocytic Leukemia: Disease Biology. Acta Haematol 2023; 147:8-21. [PMID: 37717577 DOI: 10.1159/000533610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/13/2023] [Indexed: 09/19/2023]
Abstract
BACKGROUND B-cell receptor (BCR) signaling is crucial for normal B-cell development and adaptive immunity. In chronic lymphocytic leukemia (CLL), the malignant B cells display many features of normal mature B lymphocytes, including the expression of functional B-cell receptors (BCRs). Cross talk between CLL cells and the microenvironment in secondary lymphatic organs results in BCR signaling and BCR-driven proliferation of the CLL cells. This critical pathomechanism can be targeted by blocking BCR-related kinases (BTK, PI3K, spleen tyrosine kinase) using small-molecule inhibitors. Among these targets, Bruton tyrosine kinase (BTK) inhibitors have the highest therapeutic efficacy; they effectively block leukemia cell proliferation and generally induce durable remissions in CLL patients, even in patients with high-risk disease. By disrupting tissue homing receptor (i.e., chemokine receptor and adhesion molecule) signaling, these kinase inhibitors also mobilize CLL cells from the lymphatic tissues into the peripheral blood (PB), causing a transient redistribution lymphocytosis, thereby depriving CLL cells from nurturing factors within the tissue niches. SUMMARY The clinical success of the BTK inhibitors in CLL underscores the central importance of the BCR in CLL pathogenesis. Here, we review CLL pathogenesis with a focus on the role of the BCR and other microenvironment cues. KEY MESSAGES (i) CLL cells rely on signals from their microenvironment for proliferation and survival. (ii) These signals are mediated by the BCR as well as chemokine and integrin receptors and their respective ligands. (iii) Targeting the CLL/microenvironment interaction with small-molecule inhibitors provides a highly effective treatment strategy, even in high-risk patients.
Collapse
Affiliation(s)
- Stefan Koehrer
- Department of Laboratory Medicine, Klinik Donaustadt, Vienna, Austria
- Labdia Labordiagnostik, Clinical Genetics, Vienna, Austria
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Jan A Burger
- Department of Leukemia, The University of Texas, M.D. Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
8
|
Coyne V, Mead HL, Mongini PKA, Barker BM. B Cell Chronic Lymphocytic Leukemia Development in Mice with Chronic Lung Exposure to Coccidioides Fungal Arthroconidia. Immunohorizons 2023; 7:333-352. [PMID: 37195872 PMCID: PMC10579974 DOI: 10.4049/immunohorizons.2300013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/24/2023] [Indexed: 05/19/2023] Open
Abstract
Links between repeated microbial infections and B cell chronic lymphocytic leukemia (B-CLL) have been proposed but not tested directly. This study examines how prolonged exposure to a human fungal pathogen impacts B-CLL development in Eµ-hTCL1-transgenic mice. Monthly lung exposure to inactivated Coccidioides arthroconidia, agents of Valley fever, altered leukemia development in a species-specific manner, with Coccidioides posadasii hastening B-CLL diagnosis/progression in a fraction of mice and Coccidioides immitis delaying aggressive B-CLL development, despite fostering more rapid monoclonal B cell lymphocytosis. Overall survival did not differ significantly between control and C. posadasii-treated cohorts but was significantly extended in C. immitis-exposed mice. In vivo doubling time analyses of pooled B-CLL showed no difference in growth rates of early and late leukemias. However, within C. immitis-treated mice, B-CLL manifests longer doubling times, as compared with B-CLL in control or C. posadasii-treated mice, and/or evidence of clonal contraction over time. Through linear regression, positive relationships were noted between circulating levels of CD5+/B220low B cells and hematopoietic cells previously linked to B-CLL growth, albeit in a cohort-specific manner. Neutrophils were positively linked to accelerated growth in mice exposed to either Coccidioides species, but not in control mice. Conversely, only C. posadasii-exposed and control cohorts displayed positive links between CD5+/B220low B cell frequency and abundance of M2 anti-inflammatory monocytes and T cells. The current study provides evidence that chronic lung exposure to fungal arthroconidia affects B-CLL development in a manner dependent on fungal genotype. Correlative studies suggest that fungal species differences in the modulation of nonleukemic hematopoietic cells are involved.
Collapse
Affiliation(s)
- Vanessa Coyne
- Pathogen Microbiome Institute, Northern Arizona University, Flagstaff, AZ
| | - Heather L. Mead
- Pathogen Microbiome Institute, Northern Arizona University, Flagstaff, AZ
| | | | - Bridget M. Barker
- Pathogen Microbiome Institute, Northern Arizona University, Flagstaff, AZ
| |
Collapse
|
9
|
Macrophage- and BCR-derived but not TLR-derived signals support the growth of CLL and Richter syndrome murine models in vivo. Blood 2022; 140:2335-2347. [PMID: 36084319 DOI: 10.1182/blood.2022016272] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 09/01/2022] [Indexed: 11/20/2022] Open
Abstract
A large amount of circumstantial evidence has accumulated suggesting that Toll-like receptor (TLR) signals are involved in driving chronic lymphocytic leukemia (CLL) cell proliferation, but direct in vivo evidence for this is still lacking. We have now further addressed this possibility by pharmacologically inhibiting or genetically inactivating the TLR pathway in murine CLL and human Richter syndrome (RS) patient-derived xenograft (PDX) cells. Surprisingly, we show that pharmacologic inhibition of TLR signaling by treatment with an IRAK1/4 inhibitor delays the growth of the transplanted malignant cells in recipient mice, but genetic inactivation of the same pathway by CRISPR/Cas9-mediated disruption of IRAK4 or its proximal adaptor MyD88 has no effect. We further show that treatment with the IRAK1/4 inhibitor results in depletion of macrophages and demonstrate that these cells can support the survival and enhance the proliferation of both murine Eμ-TCL1 leukemia and human RS cells. We also show that genetic disruption of the B-cell receptor (BCR) by CRISPR/Cas9 editing of the immunoglobulin M constant region gene inhibits the growth of human RS-PDX cells in vivo, consistent with our previous finding with murine Eμ-TCL1 leukemia cells. Finally, we show that genetic disruption of IRAK4 does not result in negative selection of human CLL cell lines xenografted in immunodeficient mice. The obtained data suggest that TLR signals are unlikely to represent a major driver of CLL/RS cell proliferation and provide further evidence that signals from macrophages and the BCR promote the growth and survival of CLL and RS cells in vivo.
Collapse
|
10
|
Thavayogarajah T, Sinitski D, Bounkari OE, Torres-Garcia L, Lewinsky H, Harjung A, Chen HR, Panse J, Vankann L, Shachar I, Bernhagen J, Koschmieder S. CXCR4 and CD74 together enhance cell survival in response to macrophage migration-inhibitory factor in chronic lymphocytic leukemia. Exp Hematol 2022; 115:30-43. [PMID: 36096455 DOI: 10.1016/j.exphem.2022.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/16/2022] [Accepted: 08/29/2022] [Indexed: 11/04/2022]
Abstract
Chronic lymphocytic leukemia (CLL) is characterized by the accumulation of small, mature CD5+ B lymphocytes in the blood, marrow, and lymphoid organs. Cell survival depends on interaction with the leukemic microenvironment. However, the mechanisms controlling CLL cell survival are still incompletely understood. Macrophage migration-inhibitory factor (MIF), a pro-inflammatory and immunoregulatory chemokine-like cytokine, interacts with CXCR4, a major chemokine receptor, as well as with CD74/invariant chain, a single-pass type II receptor. In this study, we analyzed the roles of CXCR4, CD74, and MIF in CLL. Mononuclear cells from patients with hematological malignancies were analyzed for coexpression of CXCR4 and CD74 by flow cytometry. Strong co- and overexpression of CXCR4 and CD74 were observed on B cells of CLL patients (n = 10). Survival and chemotaxis assays indicated that CXCR4 and CD74 work together to enhance the survival and migration of malignant cells in CLL. Blockade of the receptors, either individually or in combination, promoted cell death and led to an abrogation of MIF-driven migration responses in murine and human CLL cells, suggesting that joint activation of both receptors is crucial for CLL cell survival and mobility. These findings indicate that the MIF/CXCR4/CD74 axis represents a novel therapeutic target in CLL.
Collapse
Affiliation(s)
- Tharshika Thavayogarajah
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, Rheinisch-Westfälische Technische (RWTH) Aachen University, Aachen, Germany; Department of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München, Ludwig-Maximilians University Munich, Munich, Germany; Department of Medical Oncology and Hematology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Dzmitry Sinitski
- Department of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München, Ludwig-Maximilians University Munich, Munich, Germany
| | - Omar El Bounkari
- Department of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München, Ludwig-Maximilians University Munich, Munich, Germany
| | - Laura Torres-Garcia
- Department of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München, Ludwig-Maximilians University Munich, Munich, Germany
| | - Hadas Lewinsky
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Alexander Harjung
- Department of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München, Ludwig-Maximilians University Munich, Munich, Germany
| | - Hong-Ru Chen
- Department of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München, Ludwig-Maximilians University Munich, Munich, Germany
| | - Jens Panse
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, Rheinisch-Westfälische Technische (RWTH) Aachen University, Aachen, Germany
| | - Lucia Vankann
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, Rheinisch-Westfälische Technische (RWTH) Aachen University, Aachen, Germany
| | - Idit Shachar
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Jürgen Bernhagen
- Department of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München, Ludwig-Maximilians University Munich, Munich, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany; SyNergy Excellence Cluster, Munich, Germany.
| | - Steffen Koschmieder
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, Rheinisch-Westfälische Technische (RWTH) Aachen University, Aachen, Germany.
| |
Collapse
|
11
|
Zhang Z, Zhou X, Guo J, Zhang F, Qian Y, Wang G, Duan M, Wang Y, Zhao H, Yang Z, Liu Z, Jiang X. TA-MSCs, TA-MSCs-EVs, MIF: their crosstalk in immunosuppressive tumor microenvironment. J Transl Med 2022; 20:320. [PMID: 35842634 PMCID: PMC9287873 DOI: 10.1186/s12967-022-03528-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/08/2022] [Indexed: 11/24/2022] Open
Abstract
As an important component of the immunosuppressive tumor microenvironment (TME), it has been established that mesenchymal stem cells (MSCs) promote the progression of tumor cells. MSCs can directly promote the proliferation, migration, and invasion of tumor cells via cytokines and chemokines, as well as promote tumor progression by regulating the functions of anti-tumor immune and immunosuppressive cells. MSCs-derived extracellular vesicles (MSCs-EVs) contain part of the plasma membrane and signaling factors from MSCs; therefore, they display similar effects on tumors in the immunosuppressive TME. The tumor-promoting role of macrophage migration inhibitory factor (MIF) in the immunosuppressive TME has also been revealed. Interestingly, MIF exerts similar effects to those of MSCs in the immunosuppressive TME. In this review, we summarized the main effects and related mechanisms of tumor-associated MSCs (TA-MSCs), TA-MSCs-EVs, and MIF on tumors, and described their relationships. On this basis, we hypothesized that TA-MSCs-EVs, the MIF axis, and TA-MSCs form a positive feedback loop with tumor cells, influencing the occurrence and development of tumors. The functions of these three factors in the TME may undergo dynamic changes with tumor growth and continuously affect tumor development. This provides a new idea for the targeted treatment of tumors with EVs carrying MIF inhibitors.
Collapse
Affiliation(s)
- Zhenghou Zhang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiangyu Zhou
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jinshuai Guo
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Fusheng Zhang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yiping Qian
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Guang Wang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Meiqi Duan
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yutian Wang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Haiying Zhao
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhi Yang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zunpeng Liu
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, China.
| | - Xiaofeng Jiang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
12
|
Collard JP, McKenna MK, Noothi SK, Alhakeem SS, Rivas JR, Rangnekar VM, Muthusamy N, Bondada S. Role of the splenic microenvironment in chronic lymphocytic leukemia development in Eµ-TCL1 transgenic mice. Leuk Lymphoma 2022; 63:1810-1822. [DOI: 10.1080/10428194.2022.2045596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- James P. Collard
- Department of Microbiology, Immunology and Molecular Genetics and Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Mary K. McKenna
- Department of Microbiology, Immunology and Molecular Genetics and Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Sunil K. Noothi
- Department of Microbiology, Immunology and Molecular Genetics and Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Sara S. Alhakeem
- Department of Microbiology, Immunology and Molecular Genetics and Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Jacqueline R. Rivas
- Department of Microbiology, Immunology and Molecular Genetics and Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Vivek M. Rangnekar
- Department of Radiation Medicine and Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Natarajan Muthusamy
- Division of Hematology, James Cancer Center, Ohio State University, Columbus, OH, USA
| | - Subbarao Bondada
- Department of Microbiology, Immunology and Molecular Genetics and Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
13
|
Wang M, Meng R, Gao Y, Huang J, Li T, Mao C, Liu S, Xu Y, Xu H, Feng X. Cyclosporine A therapy of chronic lymphoblastic leukemia-related pancytopenia: A case report. Clin Case Rep 2022; 10:e05538. [PMID: 35310307 PMCID: PMC8908086 DOI: 10.1002/ccr3.5538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 01/28/2022] [Accepted: 02/16/2022] [Indexed: 11/25/2022] Open
Abstract
To explore the clinical characteristics, diagnosis, and treatment of chronic lymphocytic leukemia with secondary pancytopenia. Here, a case of pancytopenia secondary to chronic lymphocytic leukemia is reported. Additionally, a review of relevant chronic lymphocytic leukemia literature was conducted to summarize its diagnosis, clinical characteristics, treatment history, and experience. After treatment with cyclosporine A, the patient's chronic lymphocytic leukemia continued to resolve, and hematopoiesis returned to normal. Cyclosporine A therapy resulted in improved patient outcomes. However, the mechanism by which cyclosporine A rebuilds the immune microenvironment and its antileukemia effect in the body remains to be studied.
Collapse
Affiliation(s)
- Mengying Wang
- Department of HematologyFaculty of MedicineQingdao UniversityThe Affiliated Hospital of Qingdao UniversityQingdaoChina
- Department of HematologyThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Ruoyu Meng
- Department of PhysiologyChonbuk National University Medical SchoolJeonjuKorea
| | - Yan Gao
- Department of HematologyThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Junxia Huang
- Department of HematologyThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Tianlan Li
- Department of HematologyThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Chunxia Mao
- Department of HematologyThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Shanshan Liu
- Department of HematologyThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Yujie Xu
- Department of HematologyThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Han Xu
- Department of HematologyFaculty of MedicineQingdao UniversityThe Affiliated Hospital of Qingdao UniversityQingdaoChina
- Department of HematologyThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Xianqi Feng
- Department of HematologyThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| |
Collapse
|
14
|
Hallek M, Al‐Sawaf O. Chronic lymphocytic leukemia: 2022 update on diagnostic and therapeutic procedures. Am J Hematol 2021; 96:1679-1705. [PMID: 34625994 DOI: 10.1002/ajh.26367] [Citation(s) in RCA: 163] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 10/05/2021] [Indexed: 12/26/2022]
Abstract
DISEASE OVERVIEW Chronic lymphocytic leukemia (CLL) is one of the most frequent types of leukemia. It typically occurs in elderly patients and has a highly variable clinical course. Leukemic transformation is initiated by specific genomic alterations that interfere with the regulation of proliferation and of apoptosis in clonal B-cells. DIAGNOSIS The diagnosis is established by blood counts, blood smears, and immunophenotyping of circulating B-lymphocytes, which identify a clonal B-cell population carrying the CD5 antigen as well as typical B-cell markers. PROGNOSIS AND STAGING The clinical staging systems provide prognostic information by using the results of physical examination and blood counts. Various biological and genetic markers provide additional prognostic information. Deletions of the short arm of chromosome 17 (del[17p]) and/or mutations of the TP53 gene predict resistance to chemoimmunotherapy and a shorter time to progression with most targeted therapies. The CLL international prognostic index integrates genetic, biological, and clinical variables to identify distinct risk groups of patients with CLL. THERAPY Only patients with active or symptomatic disease or with advanced Binet or Rai stages require therapy. When treatment is indicated, several therapeutic options exist: a combination of the B-cell lymphoma 2 (BCL2) inhibitor venetoclax with obinutuzumab, monotherapy with inhibitors of Bruton tyrosine kinase (BTK) such as ibrutinib and acalabrutinib, or chemoimmunotherapy. At relapse, the initial treatment may be repeated, if the treatment-free interval exceeds 3 years. If the disease relapses earlier, therapy should be changed using an alternative regimen. Patients with a del(17p) or TP53 mutation are usually resistant to chemotherapy and should, therefore, be treated with targeted agents. FUTURE CHALLENGES Combinations of targeted agents are now being investigated to create efficient, potentially curative therapies of CLL with fixed duration. One of the most relevant questions currently addressed in clinical trials is the comparison of monotherapies with BTK inhibitors with fixed duration combination therapies. Moreover, the optimal sequencing of targeted therapies remains to be determined. Alternative therapies are needed for patients with BTK and BCL2 inhibitor double-refractory disease.
Collapse
Affiliation(s)
- Michael Hallek
- Department I of Internal Medicine, University of Cologne, Center for Integrated Oncology Aachen Bonn Köln Düsseldorf, Center of Excellence on “Cellular Stress Responses in Aging‐Associated Diseases” University of Cologne Köln Germany
| | - Othman Al‐Sawaf
- Department I of Internal Medicine, University of Cologne, Center for Integrated Oncology Aachen Bonn Köln Düsseldorf, Center of Excellence on “Cellular Stress Responses in Aging‐Associated Diseases” University of Cologne Köln Germany
| |
Collapse
|
15
|
Ng MG, Ng KY, Koh RY, Chye SM. Potential role of melatonin in prevention and treatment of leukaemia. Horm Mol Biol Clin Investig 2021; 42:445-461. [PMID: 34355548 DOI: 10.1515/hmbci-2021-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 07/06/2021] [Indexed: 11/15/2022]
Abstract
Leukaemia is a haematological malignancy originated from the bone marrow. Studies have shown that shift work could disrupt the melatonin secretion and eventually increase leukaemia incidence risk. Melatonin, a pineal hormone, has shown promising oncostatic properties on a wide range of cancers, including leukaemia. We first reviewed the relationship between shift work and the incidence rate of leukaemia and then discussed the role of melatonin receptors (MT1 and MT2) and their functions in leukaemia. Moreover, the connection between inflammation and leukaemia, and melatonin-induced anti-leukaemia mechanisms including anti-proliferation, apoptosis induction and immunomodulation are comprehensively discussed. Apart from that, the synergistic effects of melatonin with other anticancer compounds are also included. In short, this review article has compiled the evidence of anti-leukaemia properties displayed by melatonin and discuss its potential to act as adjunct for anti-leukaemia treatment. This review may serve as a reference for future studies or experimental research to explore the possibility of melatonin serving as a novel therapeutic agent for leukaemia.
Collapse
Affiliation(s)
- Ming Guan Ng
- School of Health Science, International Medical University, Kuala Lumpur, Malaysia
| | - Khuen Yen Ng
- School of Pharmacy, Monash University Malaysia, Selangor, Malaysia
| | - Rhun Yian Koh
- Division of Biomedical Science and Biotechnology, School of Health Science, International Medical University, Kuala Lumpur, Malaysia
| | - Soi Moi Chye
- Division of Biomedical Science and Biotechnology, School of Health Science, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
16
|
Xu J, Yu N, Zhao P, Wang F, Huang J, Cui Y, Ding H, Yang Y, Gao Y, Pan L, Chang H, Wu Y, Xiang B, Gong Y, Shuai X, Hou L, Xie L, Niu T, Liu T, Zhang L, Liu W, Zhang W, Qu Y, Lin W, Zhu Y, Zhao S, Zheng Y. Intratumor Heterogeneity of MIF Expression Correlates With Extramedullary Involvement of Multiple Myeloma. Front Oncol 2021; 11:694331. [PMID: 34268123 PMCID: PMC8276700 DOI: 10.3389/fonc.2021.694331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/10/2021] [Indexed: 02/05/2023] Open
Abstract
Macrophage migration inhibitory factor (MIF) has been shown to promote disease progression in many malignancies, including multiple myeloma (MM). We previously reported that MIF regulates MM bone marrow homing and knockdown of MIF favors the extramedullary myeloma formation in mice. Here, based on MIF immunostaining of myeloma cells in paired intramedullary and extramedullary biopsies from 17 patients, we found lower MIF intensity in extramedullary MM (EMM) versus intramedullary MM (IMM). Flow cytometry and histology analysis in xenograft models showed a portion of inoculated human MM cells lost their MIF expression (MIFLow) in vivo. Of note, IMM had dominantly MIFHigh cells, while EMM showed a significantly increased ratio of MIFLow cells. Furthermore, we harvested the extramedullary human MM cells from a mouse and generated single-cell transcriptomic data. The developmental trajectories of MM cells from the MIFHigh to MIFLow state were indicated. The MIFHigh cells featured higher proliferation. The MIFLow ones were more quiescent and harbored abundant ribosomal protein genes. Our findings identified in vivo differential regulation of MIF expression in MM and suggested a potential pathogenic role of MIF in the extramedullary spread of disease.
Collapse
Affiliation(s)
- Juan Xu
- Department of Hematology, Institute of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Nanhui Yu
- Department of Anesthesiology, The Second Xiangya Hospital of Central South University, Changsha, China.,Hunan Provincial Key Lab of Emergency and Critical Care, Hunan Provincial People's Hospital, Changsha, China
| | - Pan Zhao
- Department of Hematology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Fangfang Wang
- Department of Hematology, Institute of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Jingcao Huang
- Department of Hematology, Institute of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Yushan Cui
- Department of Hematology, Institute of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Ding
- Department of Hematology, Institute of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Yang
- Department of Hematology, Institute of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuhan Gao
- Department of Hematology, Institute of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Ling Pan
- Department of Hematology, Institute of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Chang
- Department of Hematology, Institute of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Wu
- Department of Hematology, Institute of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Bing Xiang
- Department of Hematology, Institute of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuping Gong
- Department of Hematology, Institute of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiao Shuai
- Department of Hematology, Institute of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Li Hou
- Department of Hematology, Institute of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Liping Xie
- Department of Hematology, Institute of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Ting Niu
- Department of Hematology, Institute of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Ting Liu
- Department of Hematology, Institute of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Li Zhang
- Department of Hematology, Institute of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Weiping Liu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Wenyan Zhang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Ying Qu
- Department of Hematology, Institute of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Lin
- Hunan Provincial Key Lab of Emergency and Critical Care, Hunan Provincial People's Hospital, Changsha, China.,State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiaotong University, Shanghai, China
| | - Yimin Zhu
- Hunan Provincial Key Lab of Emergency and Critical Care, Hunan Provincial People's Hospital, Changsha, China
| | - Sha Zhao
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuhuan Zheng
- Department of Hematology, Institute of Hematology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
17
|
Sportoletti P, De Falco F, Del Papa B, Baldoni S, Guarente V, Marra A, Dorillo E, Rompietti C, Adamo FM, Ruggeri L, Di Ianni M, Rosati E. NK Cells in Chronic Lymphocytic Leukemia and Their Therapeutic Implications. Int J Mol Sci 2021; 22:ijms22136665. [PMID: 34206399 PMCID: PMC8268440 DOI: 10.3390/ijms22136665] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 12/11/2022] Open
Abstract
Key features of chronic lymphocytic leukemia (CLL) are defects in the immune system and the ability of leukemic cells to evade immune defenses and induce immunosuppression, resulting in increased susceptibility to infections and disease progression. Several immune effectors are impaired in CLL, including T and natural killer (NK) cells. The role of T cells in defense against CLL and in CLL progression and immunotherapy has been extensively studied. Less is known about the role of NK cells in this leukemia, and data on NK cell alterations in CLL are contrasting. Besides studies showing that NK cells have intrinsic defects in CLL, there is a large body of evidence indicating that NK cell dysfunctions in CLL mainly depend on the escape mechanisms employed by leukemic cells. In keeping, it has been shown that NK cell functions, including antibody-dependent cellular cytotoxicity (ADCC), can be retained and/or restored after adequate stimulation. Therefore, due to their preserved ADCC function and the reversibility of CLL-related dysfunctions, NK cells are an attractive source for novel immunotherapeutic strategies in this disease, including chimeric antigen receptor (CAR) therapy. Recently, satisfying clinical responses have been obtained in CLL patients using cord blood-derived CAR-NK cells, opening new possibilities for further exploring NK cells in the immunotherapy of CLL. However, notwithstanding the promising results of this clinical trial, more evidence is needed to fully understand whether and in which CLL cases NK cell-based immunotherapy may represent a valid, alternative/additional therapeutic option for this leukemia. In this review, we provide an overview of the current knowledge about phenotypic and functional alterations of NK cells in CLL and the mechanisms by which CLL cells circumvent NK cell-mediated immunosurveillance. Additionally, we discuss the potential relevance of using NK cells in CLL immunotherapy.
Collapse
MESH Headings
- Biomarkers
- Cell Communication
- Disease Management
- Disease Susceptibility
- Humans
- Immune System/immunology
- Immune System/metabolism
- Immunotherapy/adverse effects
- Immunotherapy/methods
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/etiology
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Ligands
- Protein Binding
- Receptors, Natural Killer Cell/genetics
- Receptors, Natural Killer Cell/metabolism
- Treatment Outcome
- Tumor Escape/genetics
- Tumor Escape/immunology
Collapse
Affiliation(s)
- Paolo Sportoletti
- Centro di Ricerca Emato-Oncologica (CREO), Department of Medicine and Surgery, Institute of Hematology, University of Perugia, 06129 Perugia, Italy; (P.S.); (F.D.F.); (B.D.P.); (S.B.); (V.G.); (A.M.); (E.D.); (C.R.); (F.M.A.); (L.R.)
| | - Filomena De Falco
- Centro di Ricerca Emato-Oncologica (CREO), Department of Medicine and Surgery, Institute of Hematology, University of Perugia, 06129 Perugia, Italy; (P.S.); (F.D.F.); (B.D.P.); (S.B.); (V.G.); (A.M.); (E.D.); (C.R.); (F.M.A.); (L.R.)
| | - Beatrice Del Papa
- Centro di Ricerca Emato-Oncologica (CREO), Department of Medicine and Surgery, Institute of Hematology, University of Perugia, 06129 Perugia, Italy; (P.S.); (F.D.F.); (B.D.P.); (S.B.); (V.G.); (A.M.); (E.D.); (C.R.); (F.M.A.); (L.R.)
| | - Stefano Baldoni
- Centro di Ricerca Emato-Oncologica (CREO), Department of Medicine and Surgery, Institute of Hematology, University of Perugia, 06129 Perugia, Italy; (P.S.); (F.D.F.); (B.D.P.); (S.B.); (V.G.); (A.M.); (E.D.); (C.R.); (F.M.A.); (L.R.)
- Department of Medicine and Sciences of Aging, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Valerio Guarente
- Centro di Ricerca Emato-Oncologica (CREO), Department of Medicine and Surgery, Institute of Hematology, University of Perugia, 06129 Perugia, Italy; (P.S.); (F.D.F.); (B.D.P.); (S.B.); (V.G.); (A.M.); (E.D.); (C.R.); (F.M.A.); (L.R.)
| | - Andrea Marra
- Centro di Ricerca Emato-Oncologica (CREO), Department of Medicine and Surgery, Institute of Hematology, University of Perugia, 06129 Perugia, Italy; (P.S.); (F.D.F.); (B.D.P.); (S.B.); (V.G.); (A.M.); (E.D.); (C.R.); (F.M.A.); (L.R.)
| | - Erica Dorillo
- Centro di Ricerca Emato-Oncologica (CREO), Department of Medicine and Surgery, Institute of Hematology, University of Perugia, 06129 Perugia, Italy; (P.S.); (F.D.F.); (B.D.P.); (S.B.); (V.G.); (A.M.); (E.D.); (C.R.); (F.M.A.); (L.R.)
| | - Chiara Rompietti
- Centro di Ricerca Emato-Oncologica (CREO), Department of Medicine and Surgery, Institute of Hematology, University of Perugia, 06129 Perugia, Italy; (P.S.); (F.D.F.); (B.D.P.); (S.B.); (V.G.); (A.M.); (E.D.); (C.R.); (F.M.A.); (L.R.)
| | - Francesco Maria Adamo
- Centro di Ricerca Emato-Oncologica (CREO), Department of Medicine and Surgery, Institute of Hematology, University of Perugia, 06129 Perugia, Italy; (P.S.); (F.D.F.); (B.D.P.); (S.B.); (V.G.); (A.M.); (E.D.); (C.R.); (F.M.A.); (L.R.)
| | - Loredana Ruggeri
- Centro di Ricerca Emato-Oncologica (CREO), Department of Medicine and Surgery, Institute of Hematology, University of Perugia, 06129 Perugia, Italy; (P.S.); (F.D.F.); (B.D.P.); (S.B.); (V.G.); (A.M.); (E.D.); (C.R.); (F.M.A.); (L.R.)
| | - Mauro Di Ianni
- Department of Medicine and Sciences of Aging, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy;
- Department of Oncology and Hematology, Ospedale Civile “Santo Spirito”, ASL Pescara, 65124 Pescara, Italy
| | - Emanuela Rosati
- Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy
- Correspondence:
| |
Collapse
|
18
|
Affiliation(s)
- M Hallek
- University Hospital of Cologne Department I of Internal Medicine Cologne Germany
| |
Collapse
|
19
|
von Heydebrand F, Fuchs M, Kunz M, Voelkl S, Kremer AN, Oostendorp RAJ, Wilke J, Leitges M, Egle A, Mackensen A, Lutzny-Geier G. Protein kinase C-β-dependent changes in the glucose metabolism of bone marrow stromal cells of chronic lymphocytic leukemia. STEM CELLS (DAYTON, OHIO) 2021; 39:819-830. [PMID: 33539629 DOI: 10.1002/stem.3352] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/15/2021] [Indexed: 11/10/2022]
Abstract
Survival of chronic lymphocytic leukemia (CLL) cells critically depends on the support of an adapted and therefore appropriate tumor microenvironment. Increasing evidence suggests that B-cell receptor-associated kinases such as protein kinase C-β (PKCβ) or Lyn kinase are essential for the formation of a microenvironment supporting leukemic growth. Here, we describe the impact of PKCβ on the glucose metabolism in bone marrow stromal cells (BMSC) upon CLL contact. BMSC get activated by CLL contact expressing stromal PKCβ that diminishes mitochondrial stress and apoptosis in CLL cells by stimulating glucose uptake. In BMSC, the upregulation of PKCβ results in increased mitochondrial depolarization and leads to a metabolic switch toward oxidative phosphorylation. In addition, PKCβ-deficient BMSC regulates the expression of Hnf1 promoting stromal insulin signaling after CLL contact. Our data suggest that targeting PKCβ and the glucose metabolism of the leukemic niche could be a potential therapeutic strategy to overcome stroma-mediated drug resistance.
Collapse
Affiliation(s)
- Franziska von Heydebrand
- Department of Medicine 5-Hematology and Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Maximilian Fuchs
- Department of Medical Informatics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Meik Kunz
- Department of Medical Informatics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Simon Voelkl
- Department of Medicine 5-Hematology and Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Anita N Kremer
- Department of Medicine 5-Hematology and Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Robert A J Oostendorp
- Clinic and Polyclinic for Internal Medicine III: Hematology and Oncology, Klinikum Rechts der Isar, Technical University Munich, Munich, Germany
| | - Jochen Wilke
- Practice for Oncology and Hematology, Fürth, Germany
| | - Michael Leitges
- Faculty of Medicine, Division of BioMedical Sciences, Craig L. Dobbin Genetics Research Centre, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Alexander Egle
- IIIrd Medical Department with Hematology, Medical Oncology, Hemostaseology, Infectious Diseases and Rheumatology, Oncologic Center, Paracelsus Medical University, Salzburg, Austria.,Salzburg Cancer Research Institute (SCRI) with Laboratory of Immunological and Molecular Cancer Research (LIMCR), Salzburg, Austria.,Cancer Cluster Salzburg, Salzburg, Austria
| | - Andreas Mackensen
- Department of Medicine 5-Hematology and Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Gloria Lutzny-Geier
- Department of Medicine 5-Hematology and Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
20
|
Klemke L, De Oliveira T, Witt D, Winkler N, Bohnenberger H, Bucala R, Conradi LC, Schulz-Heddergott R. Hsp90-stabilized MIF supports tumor progression via macrophage recruitment and angiogenesis in colorectal cancer. Cell Death Dis 2021; 12:155. [PMID: 33542244 PMCID: PMC7862487 DOI: 10.1038/s41419-021-03426-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/02/2021] [Accepted: 01/07/2021] [Indexed: 12/19/2022]
Abstract
Macrophage migration inhibitory factor (MIF) is an upstream regulator of innate immunity, but its expression is increased in some cancers via stabilization with HSP90-associated chaperones. Here, we show that MIF stabilization is tumor-specific in an acute colitis-associated colorectal cancer (CRC) mouse model, leading to tumor-specific functions and selective therapeutic vulnerabilities. Therefore, we demonstrate that a Mif deletion reduced CRC tumor growth. Further, we define a dual role for MIF in CRC tumor progression. Mif deletion protects mice from inflammation-associated tumor initiation, confirming the action of MIF on host inflammatory pathways; however, macrophage recruitment, neoangiogenesis, and proliferative responses are reduced in Mif-deficient tumors once the tumors are established. Thus, during neoplastic transformation, the function of MIF switches from a proinflammatory cytokine to an angiogenesis promoting factor within our experimental model. Mechanistically, Mif-containing tumor cells regulate angiogenic gene expression via a MIF/CD74/MAPK axis in vitro. Clinical correlation studies of CRC patients show the shortest overall survival for patients with high MIF levels in combination with CD74 expression. Pharmacological inhibition of HSP90 to reduce MIF levels decreased tumor growth in vivo, and selectively reduced the growth of organoids derived from murine and human tumors without affecting organoids derived from healthy epithelial cells. Therefore, novel, clinically relevant Hsp90 inhibitors provide therapeutic selectivity by interfering with tumorigenic MIF in tumor epithelial cells but not in normal cells. Furthermore, Mif-depleted colonic tumor organoids showed growth defects compared to wild-type organoids and were less susceptible toward HSP90 inhibitor treatment. Our data support that tumor-specific stabilization of MIF promotes CRC progression and allows MIF to become a potential and selective therapeutic target in CRC.
Collapse
Affiliation(s)
- Luisa Klemke
- Institute of Molecular Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Tiago De Oliveira
- Department of General, Visceral, and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Daria Witt
- Institute of Molecular Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Nadine Winkler
- Institute of Molecular Oncology, University Medical Center Göttingen, Göttingen, Germany
| | | | - Richard Bucala
- Departments of Medicine, Pathology, and Epidemiology & Public Health, Yale School of Medicine and Yale Cancer Center, New Haven, CT, USA
| | - Lena-Christin Conradi
- Department of General, Visceral, and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | | |
Collapse
|
21
|
Blanco G, Puiggros A, Sherry B, Nonell L, Calvo X, Puigdecanet E, Chiu PY, Kieso Y, Ferrer G, Palacios F, Arnal M, Rodríguez-Rivera M, Gimeno E, Abella E, Rai KR, Abrisqueta P, Bosch F, Calon A, Ferrer A, Chiorazzi N, Espinet B. Chronic lymphocytic leukemia-like monoclonal B-cell lymphocytosis exhibits an increased inflammatory signature that is reduced in early-stage chronic lymphocytic leukemia. Exp Hematol 2021; 95:68-80. [PMID: 33421548 DOI: 10.1016/j.exphem.2020.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 11/16/2022]
Abstract
Several studies in chronic lymphocytic leukemia (CLL) patients have reported impaired immune cell functions, which contribute to tumor evasion and disease progression. However, studies on CLL-like monoclonal B-cell lymphocytosis (MBL) are scarce. In the study described here, we characterized the immune environment in 62 individuals with clinical MBL, 56 patients with early-stage CLL, and 31 healthy controls. Gene expression arrays and quantitative reverse transcription polymerase chain reaction were performed on RNA from CD4+ peripheral blood cells; serum cytokines were measured with immunoassays; and HLA-DR expression on circulating monocytes, as well as the percentages of Th1, cytotoxic, exhausted, and effector CD4+ T cells, were evaluated by flow cytometry. In addition, cell cultures of clonal B cells and CD14-enriched or -depleted cell fractions were performed. Strikingly, MBL and early-stage CLL differed in pro-inflammatory signatures. An increased inflammatory drive orchestrated mainly by monocytes was identified in MBL, which exhibited enhanced phagocytosis, pattern recognition receptors, interleukin-8 (IL8), HMGB1, and acute response signaling pathways and increased pro-inflammatory cytokines (in particular IL8, interferon γ [IFNγ], and tumor necrosis factor α). This inflammatory signature was diminished in early-stage CLL (reduced IL8 and IFNγ levels, IL8 signaling pathway, and monocytic HLA-DR expression compared with MBL), especially in those patients with mutations in IGHV genes. Additionally, CD4+ T cells of MBL and early-stage CLL exhibited a similar upregulation of Th1 and cytotoxic genes and expanded CXCR3+ and perforin+ CD4+ T cells, as well as PD1+ CD4+ T cells, compared with controls. Cell culture assays disclosed tumor-supporting effects of monocytes similarly observed in MBL and early-stage CLL. These novel findings reveal differences in the inflammatory environment between MBL and CLL, highlighting an active role for antigen stimulation in the very early stages of the disease, potentially related to malignant B-cell transformation.
Collapse
Affiliation(s)
- Gonzalo Blanco
- Laboratori de Citogenètica Molecular, Laboratori de Citologia Hematològica, Servei de Patologia, Hospital del Mar, Barcelona, Spain; Grup de Recerca Translacional en Neoplàsies Hematològiques, Cancer Research Program, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Anna Puiggros
- Laboratori de Citogenètica Molecular, Laboratori de Citologia Hematològica, Servei de Patologia, Hospital del Mar, Barcelona, Spain; Grup de Recerca Translacional en Neoplàsies Hematològiques, Cancer Research Program, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Barbara Sherry
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, NY; Department of Medicine, Hofstra Northwell School of Medicine, Hempstead, NY; Department of Molecular Medicine, Hofstra Northwell School of Medicine, Hempstead, NY
| | | | - Xavier Calvo
- Laboratori de Citogenètica Molecular, Laboratori de Citologia Hematològica, Servei de Patologia, Hospital del Mar, Barcelona, Spain; Grup de Recerca Translacional en Neoplàsies Hematològiques, Cancer Research Program, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | | | - Pui Yan Chiu
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, NY
| | - Yasmine Kieso
- Karches Center for Oncology Research, The Feinstein Institute for Medical Research, Manhasset, NY
| | - Gerardo Ferrer
- Karches Center for Oncology Research, The Feinstein Institute for Medical Research, Manhasset, NY
| | - Florencia Palacios
- Karches Center for Oncology Research, The Feinstein Institute for Medical Research, Manhasset, NY
| | | | - María Rodríguez-Rivera
- Laboratori de Citogenètica Molecular, Laboratori de Citologia Hematològica, Servei de Patologia, Hospital del Mar, Barcelona, Spain; Grup de Recerca Translacional en Neoplàsies Hematològiques, Cancer Research Program, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Eva Gimeno
- Servei d'Hematologia, Hospital del Mar-IMIM, Barcelona, Spain; Grup de Recerca Clínica Aplicada en Neoplàsies Hematològiques, Cancer Research Program, IMIM-Hospital del Mar, Barcelona, Spain
| | - Eugènia Abella
- Servei d'Hematologia, Hospital del Mar-IMIM, Barcelona, Spain; Grup de Recerca Clínica Aplicada en Neoplàsies Hematològiques, Cancer Research Program, IMIM-Hospital del Mar, Barcelona, Spain
| | - Kanti R Rai
- Department of Medicine, Hofstra Northwell School of Medicine, Hempstead, NY; Karches Center for Oncology Research, The Feinstein Institute for Medical Research, Manhasset, NY
| | - Pau Abrisqueta
- Servei d'Hematologia, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Francesc Bosch
- Servei d'Hematologia, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Alexandre Calon
- Laboratori de Recerca Translacional en Microambient Tumoral, Cancer Research Program, IMIM, Barcelona, Spain
| | - Ana Ferrer
- Laboratori de Citogenètica Molecular, Laboratori de Citologia Hematològica, Servei de Patologia, Hospital del Mar, Barcelona, Spain; Grup de Recerca Translacional en Neoplàsies Hematològiques, Cancer Research Program, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Nicholas Chiorazzi
- Department of Medicine, Hofstra Northwell School of Medicine, Hempstead, NY; Department of Molecular Medicine, Hofstra Northwell School of Medicine, Hempstead, NY; Karches Center for Oncology Research, The Feinstein Institute for Medical Research, Manhasset, NY
| | - Blanca Espinet
- Laboratori de Citogenètica Molecular, Laboratori de Citologia Hematològica, Servei de Patologia, Hospital del Mar, Barcelona, Spain; Grup de Recerca Translacional en Neoplàsies Hematològiques, Cancer Research Program, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain.
| |
Collapse
|
22
|
Constitutive activation of Lyn kinase enhances BCR responsiveness, but not the development of CLL in Eµ-TCL1 mice. Blood Adv 2020; 4:6106-6116. [PMID: 33351104 DOI: 10.1182/bloodadvances.2020002584] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/17/2020] [Indexed: 01/02/2023] Open
Abstract
The treatment of chronic lymphocytic leukemia (CLL) has been improved dramatically by inhibitors targeting B-cell receptor (BCR)-associated kinases. The tyrosine kinase Lyn is a key modulator of BCR signaling and shows increased expression and activity in CLL. To evaluate the functional relevance of Lyn for CLL, we generated a conditional knockin mouse model harboring a gain-of-function mutation of the Lyn gene (LynY508F), which was specifically expressed in the B-cell lineage (Lynup-B). Kinase activity profiling revealed an enhanced responsiveness to BCR stimulation in Lynup-B B cells. When crossing Lynup-B mice with Eµ-TCL1 mice (TCL1tg/wt), a transgenic mouse model for CLL, the resulting TCL1tg/wt Lynup-B mice showed no significant change of hepatomegaly, splenomegaly, bone marrow infiltration, or overall survival when compared with TCL1tg/wt mice. Our data also suggested that TCL1 expression has partially masked the effect of the Lynup-B mutation, because the BCR response was only slightly increased in TCL1tg/wt Lynup-B compared with TCL1tg/wt. In contrast, TCL1tg/wt Lynup-B were protected at various degrees against spontaneous apoptosis in vitro and upon treatment with kinase inhibitors targeting the BCR. Collectively, and consistent with our previous data in a Lyn-deficient CLL model, these data lend further suggest that an increased activation of Lyn kinase in B cells does not appear to be a major driver of leukemia progression and the level of increased BCR responsiveness induced by Lynup-B is insufficient to induce clear changes to CLL pathogenesis in vivo.
Collapse
|
23
|
Menzel L, Höpken UE, Rehm A. Angiogenesis in Lymph Nodes Is a Critical Regulator of Immune Response and Lymphoma Growth. Front Immunol 2020; 11:591741. [PMID: 33343570 PMCID: PMC7744479 DOI: 10.3389/fimmu.2020.591741] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023] Open
Abstract
Tumor-induced remodeling of the microenvironment in lymph nodes (LNs) includes the formation of blood vessels, which goes beyond the regulation of metabolism, and shaping a survival niche for tumor cells. In contrast to solid tumors, which primarily rely on neo-angiogenesis, hematopoietic malignancies usually grow within pre-vascularized autochthonous niches in secondary lymphatic organs or the bone marrow. The mechanisms of vascular remodeling in expanding LNs during infection-induced responses have been studied in more detail; in contrast, insights into the conditions of lymphoma growth and lodging remain enigmatic. Based on previous murine studies and clinical trials in human, we conclude that there is not a universal LN-specific angiogenic program applicable. Instead, signaling pathways that are tightly connected to autochthonous and infiltrating cell types contribute variably to LN vascular expansion. Inflammation related angiogenesis within LNs relies on dendritic cell derived pro-inflammatory cytokines stimulating vascular endothelial growth factor-A (VEGF-A) expression in fibroblastic reticular cells, which in turn triggers vessel growth. In high-grade B cell lymphoma, angiogenesis correlates with poor prognosis. Lymphoma cells immigrate and grow in LNs and provide pro-angiogenic growth factors themselves. In contrast to infectious stimuli that impact on LN vasculature, they do not trigger the typical inflammatory and hypoxia-related stroma-remodeling cascade. Blood vessels in LNs are unique in selective recruitment of lymphocytes via high endothelial venules (HEVs). The dissemination routes of neoplastic lymphocytes are usually disease stage dependent. Early seeding via the blood stream requires the expression of the homeostatic chemokine receptor CCR7 and of L-selectin, both cooperate to facilitate transmigration of tumor and also of protective tumor-reactive lymphocytes via HEV structures. In this view, the HEV route is not only relevant for lymphoma cell homing, but also for a continuous immunosurveillance. We envision that HEV functional and structural alterations during lymphomagenesis are not only key to vascular remodeling, but also impact on tumor cell accessibility when targeted by T cell-mediated immunotherapies.
Collapse
Affiliation(s)
- Lutz Menzel
- Translational Tumor Immunology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Uta E. Höpken
- Microenvironmental Regulation in Autoimmunity and Cancer, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Armin Rehm
- Translational Tumor Immunology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|
24
|
Skånland SS, Karlsen L, Taskén K. B cell signalling pathways-New targets for precision medicine in chronic lymphocytic leukaemia. Scand J Immunol 2020; 92:e12931. [PMID: 32640099 DOI: 10.1111/sji.12931] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/15/2020] [Accepted: 07/02/2020] [Indexed: 01/16/2023]
Abstract
The B cell receptor (BCR) is a master regulator of B cells, controlling cellular processes such as proliferation, migration and survival. Cell signalling downstream of the BCR is aberrantly activated in the B cell malignancy chronic lymphocytic leukaemia (CLL), supporting the pathophysiology of the disease. This insight has led to development and approval of small molecule inhibitors that target components of the BCR pathway. These advances have greatly improved the management of CLL, but the disease remains incurable. This may partly be explained by the inter-patient heterogeneity of the disease, also when it comes to treatment responses. Precision medicine is therefore required to optimize treatment and move towards a cure. Here, we discuss how the introduction of BCR signalling inhibitors has facilitated the development of functional in vitro assays to guide clinical treatment decisions on use of the same therapeutic agents in individual patients. The cellular responses to these agents can be analysed in high-throughput assays such as dynamic BH3 profiling, phospho flow experiments and drug sensitivity screens to identify predictive biomarkers. This progress exemplifies the positive synergy between basal and translational research needed to optimize patient care.
Collapse
Affiliation(s)
- Sigrid S Skånland
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,K. G. Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Linda Karlsen
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,K. G. Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Kjetil Taskén
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,K. G. Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
25
|
Koch M, Reinartz S, Saggau J, Knittel G, Rosen N, Fedorchenko O, Thelen L, Barthel R, Reinart N, Seeger-Nukpezah T, Reinhardt HC, Hallek M, Nguyen PH. Meta-Analysis Reveals Significant Sex Differences in Chronic Lymphocytic Leukemia Progression in the Eµ-TCL1 Transgenic Mouse Model. Cancers (Basel) 2020; 12:cancers12071980. [PMID: 32698538 PMCID: PMC7409315 DOI: 10.3390/cancers12071980] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/08/2020] [Accepted: 07/15/2020] [Indexed: 02/07/2023] Open
Abstract
The Eµ-TCL1 transgenic mouse model represents the most widely and extensively used animal model for chronic lymphocytic leukemia (CLL). In this report, we performed a meta-analysis of leukemia progression in over 300 individual Eµ-TCL1 transgenic mice and discovered a significantly accelerated disease progression in females compared to males. This difference is also reflected in an aggressive CLL mouse model with additional deletion of Tp53 besides the TCL1 transgene. Moreover, after serial adoptive transplantation of murine CLL cells, female recipients also succumbed to CLL earlier than male recipients. This sex-related disparity in the murine models is markedly contradictory to the human CLL condition. Thus, due to our observation we urge both careful consideration in the experimental design and accurate description of the Eµ-TCL1 transgenic cohorts in future studies.
Collapse
Affiliation(s)
- Maximilian Koch
- University of Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Center for Molecular Medicine Cologne, CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, 50931 Cologne, Germany; (M.K.); (S.R.); (J.S.); (G.K.); (N.R.); (O.F.); (L.T.); (R.B.); (N.R.); (T.S.-N.); (H.C.R.); (M.H.)
| | - Sebastian Reinartz
- University of Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Center for Molecular Medicine Cologne, CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, 50931 Cologne, Germany; (M.K.); (S.R.); (J.S.); (G.K.); (N.R.); (O.F.); (L.T.); (R.B.); (N.R.); (T.S.-N.); (H.C.R.); (M.H.)
| | - Julia Saggau
- University of Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Center for Molecular Medicine Cologne, CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, 50931 Cologne, Germany; (M.K.); (S.R.); (J.S.); (G.K.); (N.R.); (O.F.); (L.T.); (R.B.); (N.R.); (T.S.-N.); (H.C.R.); (M.H.)
| | - Gero Knittel
- University of Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Center for Molecular Medicine Cologne, CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, 50931 Cologne, Germany; (M.K.); (S.R.); (J.S.); (G.K.); (N.R.); (O.F.); (L.T.); (R.B.); (N.R.); (T.S.-N.); (H.C.R.); (M.H.)
| | - Natascha Rosen
- University of Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Center for Molecular Medicine Cologne, CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, 50931 Cologne, Germany; (M.K.); (S.R.); (J.S.); (G.K.); (N.R.); (O.F.); (L.T.); (R.B.); (N.R.); (T.S.-N.); (H.C.R.); (M.H.)
| | - Oleg Fedorchenko
- University of Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Center for Molecular Medicine Cologne, CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, 50931 Cologne, Germany; (M.K.); (S.R.); (J.S.); (G.K.); (N.R.); (O.F.); (L.T.); (R.B.); (N.R.); (T.S.-N.); (H.C.R.); (M.H.)
| | - Lisa Thelen
- University of Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Center for Molecular Medicine Cologne, CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, 50931 Cologne, Germany; (M.K.); (S.R.); (J.S.); (G.K.); (N.R.); (O.F.); (L.T.); (R.B.); (N.R.); (T.S.-N.); (H.C.R.); (M.H.)
| | - Romy Barthel
- University of Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Center for Molecular Medicine Cologne, CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, 50931 Cologne, Germany; (M.K.); (S.R.); (J.S.); (G.K.); (N.R.); (O.F.); (L.T.); (R.B.); (N.R.); (T.S.-N.); (H.C.R.); (M.H.)
| | - Nina Reinart
- University of Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Center for Molecular Medicine Cologne, CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, 50931 Cologne, Germany; (M.K.); (S.R.); (J.S.); (G.K.); (N.R.); (O.F.); (L.T.); (R.B.); (N.R.); (T.S.-N.); (H.C.R.); (M.H.)
| | - Tamina Seeger-Nukpezah
- University of Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Center for Molecular Medicine Cologne, CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, 50931 Cologne, Germany; (M.K.); (S.R.); (J.S.); (G.K.); (N.R.); (O.F.); (L.T.); (R.B.); (N.R.); (T.S.-N.); (H.C.R.); (M.H.)
| | - Hans Christian Reinhardt
- University of Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Center for Molecular Medicine Cologne, CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, 50931 Cologne, Germany; (M.K.); (S.R.); (J.S.); (G.K.); (N.R.); (O.F.); (L.T.); (R.B.); (N.R.); (T.S.-N.); (H.C.R.); (M.H.)
- Clinic for Hematology, West German Cancer Center, University Hospital Essen, Essen, German Cancer Consortium (DKTK), 45147 Essen, Germany
| | - Michael Hallek
- University of Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Center for Molecular Medicine Cologne, CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, 50931 Cologne, Germany; (M.K.); (S.R.); (J.S.); (G.K.); (N.R.); (O.F.); (L.T.); (R.B.); (N.R.); (T.S.-N.); (H.C.R.); (M.H.)
| | - Phuong-Hien Nguyen
- University of Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Center for Molecular Medicine Cologne, CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, 50931 Cologne, Germany; (M.K.); (S.R.); (J.S.); (G.K.); (N.R.); (O.F.); (L.T.); (R.B.); (N.R.); (T.S.-N.); (H.C.R.); (M.H.)
- Correspondence: ; Tel.: +49-221-478-84120; Fax: +49-221-478-84115
| |
Collapse
|
26
|
Barthel R, Fedorchenko O, Velmans T, Rosen N, Nguyen PH, Reinart N, Florin A, Herling M, Hallek M, Fingerle-Rowson G. CD74 is dispensable for development of chronic lymphocytic leukemia in Eµ-TCL1 transgenic mice. Leuk Lymphoma 2020; 61:2799-2810. [PMID: 32667245 DOI: 10.1080/10428194.2020.1791851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
CD74 is a surface protein expressed on immune cells, which acts as receptor for the chemokine macrophage migration inhibitory factor (MIF). Signaling via the MIF/CD74-axis has been reported to be important for the pathogenesis of chronic lymphocytic leukemia (CLL). We wanted to clarify the role of CD74 in MIF-induced signaling/leukemic development. In Eμ-TCL1 transgenic mice, occurrence of the leukemic phenotype was associated with increased surface CD74 expression. Eμ-TCL1+/+Cd74-/- mice showed similar kinetics and clinical features of CLL development as Eμ-TCL1+/+ mice. MIF stimulation of leukemic splenocytes led to AKT activation in a CD74-dependent manner. AKT activation was reduced in Cd74-deficient splenocytes in the presence of the oncogenic TCL1-transgene. Tumor cell apoptosis/proliferation were unaffected in Eμ-TCL1+/+Cd74-/- mice. Our data suggest that the need for active CD74 signaling is overcome in the leukemic context of TCL1-driven CLL, and that CD74 may have a dispensable role for CLL pathogenesis in this model.
Collapse
Affiliation(s)
- Romy Barthel
- University of Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Germany.,CECAD Center of Excellence on 'Cellular Stress Responses in Aging-Associated Diseases', Cologne, Germany.,CMMC Center of Molecular Medicine Cologne, Cologne, Germany
| | - Oleg Fedorchenko
- University of Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Germany.,CECAD Center of Excellence on 'Cellular Stress Responses in Aging-Associated Diseases', Cologne, Germany.,CMMC Center of Molecular Medicine Cologne, Cologne, Germany
| | - Tanja Velmans
- University of Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Germany.,CECAD Center of Excellence on 'Cellular Stress Responses in Aging-Associated Diseases', Cologne, Germany.,CMMC Center of Molecular Medicine Cologne, Cologne, Germany
| | - Natascha Rosen
- University of Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Germany.,CECAD Center of Excellence on 'Cellular Stress Responses in Aging-Associated Diseases', Cologne, Germany.,CMMC Center of Molecular Medicine Cologne, Cologne, Germany
| | - Phuong-Hien Nguyen
- University of Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Germany.,CECAD Center of Excellence on 'Cellular Stress Responses in Aging-Associated Diseases', Cologne, Germany.,CMMC Center of Molecular Medicine Cologne, Cologne, Germany
| | - Nina Reinart
- University of Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Germany.,CECAD Center of Excellence on 'Cellular Stress Responses in Aging-Associated Diseases', Cologne, Germany.,CMMC Center of Molecular Medicine Cologne, Cologne, Germany
| | - Alexandra Florin
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | - Marco Herling
- University of Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Germany.,CECAD Center of Excellence on 'Cellular Stress Responses in Aging-Associated Diseases', Cologne, Germany.,CMMC Center of Molecular Medicine Cologne, Cologne, Germany
| | - Michael Hallek
- University of Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Germany.,CECAD Center of Excellence on 'Cellular Stress Responses in Aging-Associated Diseases', Cologne, Germany.,CMMC Center of Molecular Medicine Cologne, Cologne, Germany
| | - Günter Fingerle-Rowson
- University of Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Germany.,CECAD Center of Excellence on 'Cellular Stress Responses in Aging-Associated Diseases', Cologne, Germany.,CMMC Center of Molecular Medicine Cologne, Cologne, Germany
| |
Collapse
|
27
|
Hallek M. Chronic lymphocytic leukemia: 2020 update on diagnosis, risk stratification and treatment. Am J Hematol 2019; 94:1266-1287. [PMID: 31364186 DOI: 10.1002/ajh.25595] [Citation(s) in RCA: 293] [Impact Index Per Article: 58.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 07/25/2019] [Indexed: 12/14/2022]
Abstract
DISEASE OVERVIEW Chronic lymphocytic leukemia (CLL) is the commonest leukemia in western countries. The disease typically occurs in elderly patients and has a highly variable clinical course. Leukemic transformation is initiated by specific genomic alterations that impair apoptosis of clonal B-cells. DIAGNOSIS The diagnosis is established by blood counts, blood smears, and immunophenotyping of circulating B-lymphocytes, which identify a clonal B-cell population carrying the CD5 antigen, as well as typical B-cell markers. PROGNOSIS The two similar clinical staging systems, Rai and Binet, create prognostic information by using results of physical examination and blood counts. Various biological and genetic markers also have prognostic value. Deletions of the short arm of chromosome 17 (del [17p]) and/or mutations of the TP53 gene, predict resistance to chemoimmunotherapy and a shorter time to progression, with most targeted therapies. A comprehensive, international prognostic score (CLL-IPI) integrates genetic, biological and clinical variables to identify distinct risk groups of CLL patients. THERAPY Only patients with active or symptomatic disease, or with advanced Binet or Rai stages require therapy. When treatment is indicated, several options exist for most CLL patients: a combination of venetoclax with obinutuzumab, ibrutinib monotherapy, or chemoimmunotherapy. For physically fit patients younger than 65 (in particular when presenting with a mutated IGVH gene), chemoimmunotherapy with fludarabine, cyclophosphamide and rituximab remains a standard therapy, since it may have curative potential. At relapse, the initial treatment may be repeated, if the treatment-free interval exceeds 3 years. If the disease relapses earlier, therapy should be changed using an alternative regimen. Patients with a del (17p) or TP53 mutation are a different, high-risk category and should be treated with targeted agents. An allogeneic SCT may be considered in relapsing patients with TP53 mutations or del (17p), or patients that are refractory to inhibitor therapy. FUTURE CHALLENGES Targeted agents (ibrutinib, idelalisib, venetoclax, obinutuzumab) will be increasingly used in combination to allow for short, but potentially definitive therapies of CLL. It remains to be proven that they generate a superior outcome when compared to monotherapies with inhibitors of Bruton tyrosine kinase, which can also yield long-lasting remissions. Moreover, the optimal sequencing of drug combinations is unknown. Therefore, CLL patients should be treated in clinical trials whenever possible.
Collapse
Affiliation(s)
- Michael Hallek
- Department I of Internal MedicineUniversity of Cologne, Center for Integrated Oncology Aachen Bonn Köln Düsseldorf, Center of Excellence on “Cellular Stress Responses in Aging‐Associated Diseases” Köln Germany
| |
Collapse
|
28
|
Hanna BS, Öztürk S, Seiffert M. Beyond bystanders: Myeloid cells in chronic lymphocytic leukemia. Mol Immunol 2019; 110:77-87. [DOI: 10.1016/j.molimm.2017.11.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 11/07/2017] [Accepted: 11/14/2017] [Indexed: 12/31/2022]
|
29
|
Höpken UE, Rehm A. Targeting the Tumor Microenvironment of Leukemia and Lymphoma. Trends Cancer 2019; 5:351-364. [DOI: 10.1016/j.trecan.2019.05.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/29/2019] [Accepted: 05/03/2019] [Indexed: 12/13/2022]
|
30
|
Thurgood LA, Dwyer ES, Lower KM, Chataway TK, Kuss BJ. Altered expression of metabolic pathways in CLL detected by unlabelled quantitative mass spectrometry analysis. Br J Haematol 2019; 185:65-78. [PMID: 30656643 DOI: 10.1111/bjh.15751] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 11/26/2018] [Indexed: 12/27/2022]
Abstract
Chronic lymphocytic leukaemia (CLL) remains the most common incurable malignancy of B cells in the western world. Patient outcomes are heterogeneous and can be difficult to predict with current prognostic markers. Here, we used a quantitative label-free proteomic technique to ascertain differences in the B-cell proteome from healthy donors and CLL patients with either mutated (M-CLL) or unmutated (UM-CLL) IGHV to identify new prognostic markers. In peripheral B-CLL cells, 349 (22%) proteins were differentially expressed between normal B cells and B-CLL cells and 189 (12%) were differentially expressed between M-CLL and UM-CLL. We also examined the proteome of proliferating CLL cells in the lymph nodes, and identified 76 (~8%) differentially expressed proteins between healthy and CLL lymph nodes. B-CLL cells show over-expression of proteins involved in lipid and cholesterol metabolism. A comprehensive lipidomic analysis highlighted large differences in glycolipids and sphingolipids. A shift was observed from the pro-apoptotic lipid ceramide towards the anti-apoptotic/chemoresistant lipid, glucosylceramide, which was more evident in patients with aggressive disease (UM-CLL). This study details a novel quantitative proteomic technique applied for the first time to primary patient samples in CLL and highlights that primary CLL lymphocytes display markers of a metabolic shift towards lipid synthesis and breakdown.
Collapse
Affiliation(s)
- Lauren A Thurgood
- Discipline Molecular Medicine and Pathology, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Eveline S Dwyer
- Discipline Molecular Medicine and Pathology, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Karen M Lower
- Discipline Molecular Medicine and Pathology, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Tim K Chataway
- Flinders Proteomic Facility, Department of Human Physiology, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Bryone J Kuss
- Discipline Molecular Medicine and Pathology, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia.,Haematology, Molecular Medicine and Pathology, SA Pathology, Flinders Medical Centre, Adelaide, South Australia, Australia
| |
Collapse
|
31
|
Giannoni P, Fais F, Cutrona G, Totero DD. Hepatocyte Growth Factor: A Microenvironmental Resource for Leukemic Cell Growth. Int J Mol Sci 2019; 20:ijms20020292. [PMID: 30642077 PMCID: PMC6359660 DOI: 10.3390/ijms20020292] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/07/2019] [Accepted: 01/09/2019] [Indexed: 02/08/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is characterized by the progressive expansion of B lymphocytes CD5+/CD23+ in peripheral blood, lymph-nodes, and bone marrow. The pivotal role played by the microenvironment in disease pathogenesis has become increasingly clear. We demonstrated that bone marrow stromal cells and trabecular bone cells sustain survival of leukemic B cells through the production of hepatocyte growth factor (HGF). Indeed the trans-membrane kinase receptor for HGF, c-MET, is expressed on CLL cells and STAT3 TYR705 or AKT phosphorylation is induced after HGF/c-MET interaction. We have further observed that c-MET is also highly expressed in a peculiar type of cells of the CLL-microenvironment showing nurturing features for the leukemic clone (nurse-like cells: NLCs). Since HGF treatment drives monocytes toward the M2 phenotype and NLCs exhibit features of tumor associated macrophages of type 2 we suggested that HGF, released either by cells of the microenvironment or leukemic cells, exerts a double effect: (i) enhances CLL cells survival and (ii) drives differentiation of monocytes-macrophages to an oriented immune suppressive phenotype. We here discuss how paracrine, but also autocrine production of HGF by malignant cells, may favor leukemic clone expansion and resistance to conventional drug treatments in CLL, as well as in other hematological malignancies. Novel therapeutic approaches aimed to block HGF/c-MET interactions are further proposed.
Collapse
Affiliation(s)
- Paolo Giannoni
- Stem Cell Laboratory, Department of Experimental Medicine, University of Genoa, V. Pastore 3, 16132 Genova, Italy.
| | - Franco Fais
- Molecular Pathology Unit, IRCCS Polyclinic Hospital San Martino, L.go R. Benzi n.10, 16132 Genova, Italy.
| | - Giovanna Cutrona
- Molecular Pathology Unit, IRCCS Polyclinic Hospital San Martino, L.go R. Benzi n.10, 16132 Genova, Italy.
| | - Daniela de Totero
- Molecular Pathology Unit, IRCCS Polyclinic Hospital San Martino, L.go R. Benzi n.10, 16132 Genova, Italy.
| |
Collapse
|
32
|
Roato I, Vitale M. The Uncovered Role of Immune Cells and NK Cells in the Regulation of Bone Metastasis. Front Endocrinol (Lausanne) 2019; 10:145. [PMID: 30930851 PMCID: PMC6423901 DOI: 10.3389/fendo.2019.00145] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/18/2019] [Indexed: 12/17/2022] Open
Abstract
Bone is one of the main metastatic sites of solid tumors like breast, lung, and prostate cancer. Disseminated tumor cells (DTCs) and cancer stem cells (CSCs) represent the main target to counteract bone metastatization. These cells often localize in bone marrow (BM) at level of pre-metastatic niche: they can remain dormant for years or directly grow and create bone lesion, according to the different stimulations received in BM. The immune system in bone marrow is dampened and represents an appealing site for DTCs/CSCs. NK cells have an important role in controlling tumor progression, but their involvement in bone metastasis formation is an interesting and not fully investigated issue. Indeed, whether NK cells can interfere with CSC formation, kill them at the site of primary tumor, during circulation or in the pre-metastic niche needs to be elucidated. This review focuses on different aspects that regulate DTC/CSC life in bone and how NK cells potentially control bone metastasis formation.
Collapse
Affiliation(s)
- Ilaria Roato
- Center for Research and Medical Studies (CeRMS), A.O.U. Città della Salute e della Scienza di Torino, Turin, Italy
- *Correspondence: Ilaria Roato
| | - Massimo Vitale
- UOC Immunologia, IRCCS Ospedale Policlinico San Martino Genova, Genoa, Italy
| |
Collapse
|
33
|
Hallek M. On the architecture of translational research designed to control chronic lymphocytic leukemia. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2018; 2018:1-8. [PMID: 30504285 PMCID: PMC6245981 DOI: 10.1182/asheducation-2018.1.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Chronic lymphocytic leukemia (CLL) has been 1 of the most dynamic fields of clinical research over the last 2 decades. Important advances in understanding the biology of CLL have led to the development of new prognostic and diagnostic tools. Concurrently, several recently approved new agents hold the potential to fundamentally change the management of this leukemia and have started to improve clinical outcomes for patients. This conceptual review summarizes the major recent insights regarding the biology of CLL, the technological advances that have allowed refinement of the prognostication of the clinical course, and the new therapeutic strategies that are currently under investigation to further ameliorate the outcome for patients with CLL.
Collapse
Affiliation(s)
- Michael Hallek
- Department I of Internal Medicine, University of Cologne, Cologne, Germany
| |
Collapse
|
34
|
Hyrenius-Wittsten A, Pilheden M, Sturesson H, Hansson J, Walsh MP, Song G, Kazi JU, Liu J, Ramakrishan R, Garcia-Ruiz C, Nance S, Gupta P, Zhang J, Rönnstrand L, Hultquist A, Downing JR, Lindkvist-Petersson K, Paulsson K, Järås M, Gruber TA, Ma J, Hagström-Andersson AK. De novo activating mutations drive clonal evolution and enhance clonal fitness in KMT2A-rearranged leukemia. Nat Commun 2018; 9:1770. [PMID: 29720585 PMCID: PMC5932012 DOI: 10.1038/s41467-018-04180-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 04/11/2018] [Indexed: 02/07/2023] Open
Abstract
Activating signaling mutations are common in acute leukemia with KMT2A (previously MLL) rearrangements (KMT2A-R). These mutations are often subclonal and their biological impact remains unclear. Using a retroviral acute myeloid mouse leukemia model, we demonstrate that FLT3ITD, FLT3N676K, and NRASG12D accelerate KMT2A-MLLT3 leukemia onset. Further, also subclonal FLT3N676K mutations accelerate disease, possibly by providing stimulatory factors. Herein, we show that one such factor, MIF, promotes survival of mouse KMT2A-MLLT3 leukemia initiating cells. We identify acquired de novo mutations in Braf, Cbl, Kras, and Ptpn11 in KMT2A-MLLT3 leukemia cells that favored clonal expansion. During clonal evolution, we observe serial genetic changes at the KrasG12D locus, consistent with a strong selective advantage of additional KrasG12D. KMT2A-MLLT3 leukemias with signaling mutations enforce Myc and Myb transcriptional modules. Our results provide new insight into the biology of KMT2A-R leukemia with subclonal signaling mutations and highlight the importance of activated signaling as a contributing driver. In acute leukemia with KMT2A rearrangements (KMT2A-R), activating signaling mutations are common. Here, the authors use a retroviral acute myeloid mouse leukemia model to show that subclonal de novo activating mutations drive clonal evolution in acute leukemia with KMT2A-R and enhance clonal fitness.
Collapse
Affiliation(s)
- Axel Hyrenius-Wittsten
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, 221 84, Lund, Sweden
| | - Mattias Pilheden
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, 221 84, Lund, Sweden
| | - Helena Sturesson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, 221 84, Lund, Sweden
| | - Jenny Hansson
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund University, 221 84, Lund, Sweden
| | - Michael P Walsh
- Department of Pathology, St. Jude Children´s Research Hospital, Memphis, TN, 38105, USA
| | - Guangchun Song
- Department of Pathology, St. Jude Children´s Research Hospital, Memphis, TN, 38105, USA
| | - Julhash U Kazi
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 223 63, Lund, Sweden
| | - Jian Liu
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, 221 84, Lund, Sweden
| | - Ramprasad Ramakrishan
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, 221 84, Lund, Sweden
| | - Cristian Garcia-Ruiz
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, 221 84, Lund, Sweden
| | - Stephanie Nance
- Department of Oncology, St. Jude Children´s Research Hospital, Memphis, TN, 38105, USA
| | - Pankaj Gupta
- Department of Computational Biology, St. Jude Children´s Research Hospital, Memphis, TN, 38105, USA
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children´s Research Hospital, Memphis, TN, 38105, USA
| | - Lars Rönnstrand
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 223 63, Lund, Sweden.,Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, 221 84, Lund, Sweden.,Division of Oncology, Skane University Hospital, Lund University, 221 85, Lund, Sweden
| | - Anne Hultquist
- Department of Pathology, Skane University Hospital, Lund University, 221 85, Lund, Sweden
| | - James R Downing
- Department of Pathology, St. Jude Children´s Research Hospital, Memphis, TN, 38105, USA
| | - Karin Lindkvist-Petersson
- Medical Structural Biology, Department of Experimental Medical Science, 221 84 Lund University, Lund, Sweden
| | - Kajsa Paulsson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, 221 84, Lund, Sweden
| | - Marcus Järås
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, 221 84, Lund, Sweden
| | - Tanja A Gruber
- Department of Pathology, St. Jude Children´s Research Hospital, Memphis, TN, 38105, USA.,Department of Oncology, St. Jude Children´s Research Hospital, Memphis, TN, 38105, USA
| | - Jing Ma
- Department of Pathology, St. Jude Children´s Research Hospital, Memphis, TN, 38105, USA
| | - Anna K Hagström-Andersson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, 221 84, Lund, Sweden.
| |
Collapse
|
35
|
Assessment of micro RNAs expression in leukemic cells as prognostic markers in chronic lymphocytic leukemia: micro RNAs can predict survival in a course of the disease. Oncotarget 2018; 9:19136-19146. [PMID: 29721189 PMCID: PMC5922383 DOI: 10.18632/oncotarget.24927] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 03/07/2018] [Indexed: 01/06/2023] Open
Abstract
Numerous genetic alterations predicting prognosis and clinical outcome are revealed recently in chronic lymphocytic leukemia (CLL). Among them the deregulated expression of micro RNAs that can induce tumor growth, or act as tumor suppressors seem to be of great importance. This study aimed to analyze the possible role of chosen micro RNAs as markers of prognosis in patients with CLL. We assessed the expression of miR-21, miR-34a, miR-181a, miR-199a/b and miR-221 in previously separated leukemic cells with the use of qRQ-PCR technique at the moment of diagnosis. The results were then analyzed in regards to presence of prognostic factors, clinical data and the end points like progression free survival (PFS), time to progression (TP) and overall survival time (OS). We detected significant correlations between expression of the analyzed micro RNAs and CLL prognostic markers particularly as far as miR-221 and miR-181a were concerned. The subsequent analysis revealed that high expression of miR-34a and miR-181a as well as low miR-21 expression indicated longer TTP, while miR-221 was predictor of OS. The obtained results prove the role of micro RNAs as CLL prognostic markers, particularly as factors predicting survival in a course of the disease.
Collapse
|
36
|
Abstract
B cell receptor (BCR) signalling is crucial for normal B cell development and adaptive immunity. BCR signalling also supports the survival and growth of malignant B cells in patients with B cell leukaemias or lymphomas. The mechanism of BCR pathway activation in these diseases includes continuous BCR stimulation by microbial antigens or autoantigens present in the tissue microenvironment, activating mutations within the BCR complex or downstream signalling components and ligand-independent tonic BCR signalling. The most established agents targeting BCR signalling are Bruton tyrosine kinase (BTK) inhibitors and PI3K isoform-specific inhibitors, and their introduction into the clinic is rapidly changing how B cell malignancies are treated. B cells and BCR-related kinases, such as BTK, also play a role in the microenvironment of solid tumours, such as squamous cell carcinoma and pancreatic cancer, and therefore targeting B cells or BCR-related kinases may have anticancer activity beyond B cell malignancies.
Collapse
MESH Headings
- Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors
- Antineoplastic Agents/pharmacology
- B-Lymphocytes/metabolism
- B-Lymphocytes/pathology
- Drug Resistance, Neoplasm
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Lymphoma, Mantle-Cell/drug therapy
- Lymphoma, Mantle-Cell/metabolism
- Molecular Targeted Therapy/methods
- Neoplasms/drug therapy
- Neoplasms/metabolism
- Protein Kinase Inhibitors/pharmacology
- Receptors, Antigen, B-Cell/antagonists & inhibitors
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, B-Cell/metabolism
- Signal Transduction/drug effects
- Tumor Microenvironment
Collapse
Affiliation(s)
- Jan A Burger
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Adrian Wiestner
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
37
|
Zhu F, McCaw L, Spaner DE, Gorczynski RM. Targeting the IL-17/IL-6 axis can alter growth of Chronic Lymphocytic Leukemia in vivo/in vitro. Leuk Res 2018; 66:28-38. [PMID: 29353760 DOI: 10.1016/j.leukres.2018.01.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/19/2017] [Accepted: 01/14/2018] [Indexed: 02/07/2023]
Abstract
The tumor microenvironment (TME) is critical to the longevity of tumor B cells in chronic lymphocytic leukemia (CLL). Bone marrow mesenchymal stem cells (BMMSCs) and the cytokines they produce including IL-6 are important components of the TME in CLL. We found BMMSCs supported the survival of CLL cells in vitro through an IL-6 dependent mechanism. IL-17 which induces IL-6 generation in a variety of cells increased production of IL-6 both in CLL cells and BMMSCs in vitro. In a xenograft CLL mouse model, BMMSCs and the culture supernatant of BMMSCs increased engraftment of CLL cells through an IL-6 mediated mechanism with human recombinant IL-6 showing similar effects in vivo. Human recombinant IL-17 treatment also increased CLL engraftment in mice through an IL-6 mediated mechanism. Plasma of CLL patients showed elevated levels of both IL-6 and IL-17 by ELISA compared with healthy controls, with levels of IL-6 linearly correlated with IL-17 levels. CLL patients requiring fludarabine based chemotherapy expressed higher levels of IL-6 and IL-17, while CLL patients with the lowest levels of IgA/IgM had higher levels of IL-6, but not IL-17. These data imply an important role for the IL-17/IL-6 axis in CLL which could be therapeutic targets.
Collapse
Affiliation(s)
- Fang Zhu
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Transplant Research Division, Toronto General Hospital, Toronto, Canada
| | - Lindsay McCaw
- Biology Platform, Sunnybrook Research Institute, Toronto, Canada
| | - David E Spaner
- Biology Platform, Sunnybrook Research Institute, Toronto, Canada; Dept. of Medical Biophysics, University of Toronto, Toronto, Canada; Dept. of Immunology, University of Toronto, Toronto, Canada
| | - Reginald M Gorczynski
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Transplant Research Division, Toronto General Hospital, Toronto, Canada; Dept. of Immunology, University of Toronto, Toronto, Canada.
| |
Collapse
|
38
|
Mayer RL, Schwarzmeier JD, Gerner MC, Bileck A, Mader JC, Meier-Menches SM, Gerner SM, Schmetterer KG, Pukrop T, Reichle A, Slany A, Gerner C. Proteomics and metabolomics identify molecular mechanisms of aging potentially predisposing for chronic lymphocytic leukemia. Mol Cell Proteomics 2017; 17:290-303. [PMID: 29196338 DOI: 10.1074/mcp.ra117.000425] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Indexed: 01/07/2023] Open
Abstract
B cell chronic lymphocytic leukemia (B-CLL), the most common type of leukemia in adults, is still essentially incurable despite the development of novel therapeutic strategies. This reflects the incomplete understanding of the pathophysiology of this disease. A comprehensive proteome analysis of primary human B-CLL cells and B cells from younger as well as elderly healthy donors was performed. For comparison, the chronic B cell leukemia cell line JVM-13 was also included. A principal component analysis comprising 6,945 proteins separated these four groups, placing B cells of aged-matched controls between those of young donors and B-CLL patients, while identifying JVM-13 as poorly related cells. Mass spectrometric proteomics data have been made fully accessible via ProteomeXchange with identifier PXD006570-PXD006572, PXD006576, PXD006578, and PXD006589-PXD006591. Remarkably, B cells from aged controls displayed significant regulation of proteins related to stress management in mitochondria and ROS stress such as DLAT, FIS1, and NDUFAB1, and DNA repair, including RAD9A, MGMT, and XPA. ROS levels were indeed found significantly increased in B cells but not in T cells or monocytes from aged individuals. These alterations may be relevant for tumorigenesis and were observed similarly in B-CLL cells. In B-CLL cells, some remarkable unique features like the loss of tumor suppressor molecules PNN and JARID2, the stress-related serotonin transporter SLC6A4, and high expression of ZNF207, CCDC88A, PIGR and ID3, otherwise associated with stem cell phenotype, were determined. Alterations of metabolic enzymes were another outstanding feature in comparison to normal B cells, indicating increased beta-oxidation of fatty acids and increased consumption of glutamine. Targeted metabolomics assays corroborated these results. The present findings identify a potential proteome signature for immune senescence in addition to previously unrecognized features of B-CLL cells and suggest that aging may be accompanied by cellular reprogramming functionally relevant for predisposing B cells to transform to B-CLL cells.
Collapse
Affiliation(s)
- Rupert L Mayer
- From the ‡Department of Analytical Chemistry, Faculty of Chemistry
| | - Josef D Schwarzmeier
- §Karl Landsteiner Institute for Bioanalytical Oncology, Karl Landsteiner Society, Vienna, Austria
| | - Marlene C Gerner
- ¶Department of Laboratory Medicine, Medical University of Vienna, Austria
| | - Andrea Bileck
- From the ‡Department of Analytical Chemistry, Faculty of Chemistry
| | - Johanna C Mader
- From the ‡Department of Analytical Chemistry, Faculty of Chemistry
| | | | - Samuel M Gerner
- From the ‡Department of Analytical Chemistry, Faculty of Chemistry
| | | | - Tobias Pukrop
- ‖Department of Internal Medicine III, Haematology & Oncology, University Hospital of Regensburg, Regensburg, Germany
| | - Albrecht Reichle
- ‖Department of Internal Medicine III, Haematology & Oncology, University Hospital of Regensburg, Regensburg, Germany
| | - Astrid Slany
- From the ‡Department of Analytical Chemistry, Faculty of Chemistry
| | - Christopher Gerner
- From the ‡Department of Analytical Chemistry, Faculty of Chemistry, .,**Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria
| |
Collapse
|
39
|
Hallek M. Chronic lymphocytic leukemia: 2017 update on diagnosis, risk stratification, and treatment. Am J Hematol 2017; 92:946-965. [PMID: 28782884 DOI: 10.1002/ajh.24826] [Citation(s) in RCA: 193] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 06/15/2017] [Indexed: 12/12/2022]
Abstract
DISEASE OVERVIEW Chronic lymphocytic leukemia (CLL) is the commonest leukemia in western countries. The disease typically occurs in elderly patients and has a highly variable clinical course. Leukemic transformation is initiated by specific genomic alterations that impair apoptosis of clonal B cells. DIAGNOSIS The diagnosis is established by blood counts, blood smears, and immunophenotyping of circulating B lymphocytes, which identify a clonal B-cell population carrying the CD5 antigen and B-cell markers. PROGNOSIS Two prognostic staging systems exist, the Rai and Binet staging systems, which are established by physical examination and blood counts. Various biological and genetic markers also have prognostic value. Deletions of the short arm of chromosome 17 (del(17p)) and/or mutations of the TP53 gene predict resistance to available chemotherapies. A comprehensive prognostic score (CLL-IPI) using genetic, biological, and clinical variables has recently been developed allowing to classify CLL into very distinct risk groups. THERAPY Patients with active or symptomatic disease or with advanced Binet or Rai stages require therapy. For physically fit patients, chemoimmunotherapy with fludarabine, cyclophosphamide, and rituximab remains the current standard therapy. For unfit patients, currently available evidence supports two options for a first-line therapy: chlorambucil combined with an anti-CD20 antibody (obinutuzumab or rituximab or ofatumumab) or a continuous therapy with ibrutinib. At relapse, the initial treatment may be repeated, if the treatment-free interval exceeds 3 years. If the disease relapses earlier, therapy should be changed using alternative agents such as bendamustine (plus rituximab), alemtuzumab, lenalidomide, ofatumumab, ibrutinib, idelalisib, or venetoclax. Patients with a del(17p) or TP53 mutation can be treated with ibrutinib, venetoclax, or a combination of idelalisib and rituximab. An allogeneic SCT may be considered in relapsing patients with TP53 mutations or del(17p) or patients that are refractory to chemoimmunotherapy and the novel inhibitors. FUTURE CHALLENGES The new agents (ibrutinib, idelalisib, venetoclax, and obinutuzumab) hold the potential to significantly improve the outcome of CLL patients. However, their optimal use (in terms of combination, sequence, and duration) remains unknown. Therefore, CLL patients should be treated in clinical trials whenever possible.
Collapse
Affiliation(s)
- Michael Hallek
- Department I of Internal Medicine; Center for Integrated Oncology Köln Bonn, Center of Excellence on “Cellular Stress Responses in Aging-Associated Diseases,” University of Cologne; Kerpener Strasse 62 Köln 50937 Germany
| |
Collapse
|
40
|
Vyas M, Reinartz S, Hoffmann N, Reiners KS, Lieber S, Jansen JM, Wagner U, Müller R, von Strandmann EP. Soluble NKG2D ligands in the ovarian cancer microenvironment are associated with an adverse clinical outcome and decreased memory effector T cells independent of NKG2D downregulation. Oncoimmunology 2017; 6:e1339854. [PMID: 28932639 PMCID: PMC5599084 DOI: 10.1080/2162402x.2017.1339854] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/01/2017] [Accepted: 06/02/2017] [Indexed: 12/12/2022] Open
Abstract
The immune receptor NKG2D is predominantly expressed on NK cells and T cell subsets and confers anti-tumor activity. According to the current paradigm, immune surveillance is counteracted by soluble ligands shed into the microenvironment, which down-regulate NKG2D receptor expression. Here, we analyzed the clinical significance of the soluble NKG2D ligands sMICA and sULBP2 in the malignancy-associated ascites of ovarian cancer. We show that high levels of sMICA and sULBP2 in ascites were associated with a poor prognosis. Ascites inhibited the activation of normal NK cells, which, in contrast to the prevailing notion, was not associated with decreased NKG2D expression. Of note, an inverse correlation of soluble NKG2D ligands with effector memory T cells and a direct correlation with pro-tumorigenic CD163+CD206+ macrophages was observed. Thus, the role of soluble NKG2D ligands within the ovarian cancer microenvironment is more complex than anticipated and does not exclusively function via NKG2D downregulation.
Collapse
Affiliation(s)
- Maulik Vyas
- Experimental Tumor Research, Center for Tumor Biology and Immunology, Clinic for Hematology, Oncology and Immunology, Philipps University, Marburg, Germany
| | - Silke Reinartz
- Clinic for Gynecology, Gynecologic Oncology and Endocrinology, Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| | - Nathalie Hoffmann
- Experimental Tumor Research, Center for Tumor Biology and Immunology, Clinic for Hematology, Oncology and Immunology, Philipps University, Marburg, Germany.,Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| | - Katrin S Reiners
- Experimental Tumor Research, Center for Tumor Biology and Immunology, Clinic for Hematology, Oncology and Immunology, Philipps University, Marburg, Germany
| | - Sonja Lieber
- Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| | - Julia M Jansen
- Clinic for Gynecology, Gynecological Oncology and Gynecological Endocrinology, University Hospital Giessen and Marburg (UKGM), Marburg, Germany
| | - Uwe Wagner
- Clinic for Gynecology, Gynecological Oncology and Gynecological Endocrinology, University Hospital Giessen and Marburg (UKGM), Marburg, Germany
| | - Rolf Müller
- Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| | - Elke Pogge von Strandmann
- Experimental Tumor Research, Center for Tumor Biology and Immunology, Clinic for Hematology, Oncology and Immunology, Philipps University, Marburg, Germany
| |
Collapse
|
41
|
van Attekum MH, Eldering E, Kater AP. Chronic lymphocytic leukemia cells are active participants in microenvironmental cross-talk. Haematologica 2017; 102:1469-1476. [PMID: 28775118 PMCID: PMC5685246 DOI: 10.3324/haematol.2016.142679] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 06/08/2017] [Indexed: 02/06/2023] Open
Abstract
The importance of the tumor microenvironment in chronic lymphocytic leukemia is
widely accepted. Nevertheless, the understanding of the complex interplay
between the various types of bystander cells and chronic lymphocytic leukemia
cells is incomplete. Numerous studies have indicated that bystander cells
provide chronic lymphocytic leukemia-supportive functions, but it has also
become clear that chronic lymphocytic leukemia cells actively engage in the
formation of a supportive tumor microenvironment through several cross-talk
mechanisms. In this review, we describe how chronic lymphocytic leukemia cells
participate in this interplay by inducing migration and tumor-supportive
differentiation of bystander cells. Furthermore, chronic lymphocytic
leukemia-mediated alterations in the interactions between bystander cells are
discussed. Upon bystander cell interaction, chronic lymphocytic leukemia cells
secrete cytokines and chemokines such as migratory factors [chemokine
(C-C motif) ligand 22 and chemokine (CC motif) ligand 2], which result
in further recruitment of T cells but also of monocyte-derived cells. Within the
tumor microenvironment, chronic lymphocytic leukemia cells induce
differentiation towards a tumor-supportive M2 phenotype of monocyte-derived
cells and suppress phagocytosis, but also induce increased numbers of supportive
regulatory T cells. Like other tumor types, the differentiation of stromal cells
towards supportive cancer-associated fibroblasts is critically dependent on
chronic lymphocytic leukemia-derived factors such as exosomes and
platelet-derived growth factor. Lastly, both chronic lymphocytic leukemia and
bystander cells induce a tolerogenic tumor microenvironment; chronic lymphocytic
leukemia-secreted cytokines, such as interleukin-10, suppress cytotoxic T-cell
functions, while chronic lymphocytic leukemia-associated monocyte-derived cells
contribute to suppression of T-cell function by producing the immune checkpoint
factor, programmed cell death-ligand 1. Deeper understanding of the active
involvement and cross-talk of chronic lymphocytic leukemia cells in shaping the
tumor microenvironment may offer novel clues for designing therapeutic
strategies.
Collapse
Affiliation(s)
- Martijn Ha van Attekum
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, the Netherlands.,Department of Hematology, Academic Medical Center, University of Amsterdam, the Netherlands
| | - Eric Eldering
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, the Netherlands.,Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Academic Medical Center, University of Amsterdam, the Netherlands
| | - Arnon P Kater
- Department of Hematology, Academic Medical Center, University of Amsterdam, the Netherlands .,Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Academic Medical Center, University of Amsterdam, the Netherlands
| |
Collapse
|
42
|
Invariant NKT cells contribute to chronic lymphocytic leukemia surveillance and prognosis. Blood 2017; 129:3440-3451. [DOI: 10.1182/blood-2016-11-751065] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 04/12/2017] [Indexed: 12/25/2022] Open
Abstract
Key Points
iNKT cells control CLL progression in both mice and patients and this inversely correlates with CD1d expression by leukemia cells. Human iNKT cells indirectly hinder CLL survival by restraining proleukemia monocyte-derived nurse-like cells.
Collapse
|
43
|
|
44
|
Abdul-Aziz AM, Shafat MS, Mehta TK, Di Palma F, Lawes MJ, Rushworth SA, Bowles KM. MIF-Induced Stromal PKCβ/IL8 Is Essential in Human Acute Myeloid Leukemia. Cancer Res 2016; 77:303-311. [PMID: 27872094 DOI: 10.1158/0008-5472.can-16-1095] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 09/22/2016] [Accepted: 10/21/2016] [Indexed: 11/16/2022]
Abstract
Acute myeloid leukemia (AML) cells exhibit a high level of spontaneous apoptosis when cultured in vitro but have a prolonged survival time in vivo, indicating that tissue microenvironment plays a critical role in promoting AML cell survival. In vitro studies have shown that bone marrow mesenchymal stromal cells (BM-MSC) protect AML blasts from spontaneous and chemotherapy-induced apoptosis. Here, we report a novel interaction between AML blasts and BM-MSCs, which benefits AML proliferation and survival. We initially examined the cytokine profile in cultured human AML compared with AML cultured with BM-MSCs and found that macrophage migration inhibitory factor (MIF) was highly expressed by primary AML, and that IL8 was increased in AML/BM-MSC cocultures. Recombinant MIF increased IL8 expression in BM-MSCs via its receptor CD74. Moreover, the MIF inhibitor ISO-1 inhibited AML-induced IL8 expression by BM-MSCs as well as BM-MSC-induced AML survival. Protein kinase C β (PKCβ) regulated MIF-induced IL8 in BM-MSCs. Finally, targeted IL8 shRNA inhibited BM-MSC-induced AML survival. These results describe a novel, bidirectional, prosurvival mechanism between AML blasts and BM-MSCs. Furthermore, they provide biologic rationale for therapeutic strategies in AML targeting the microenvironment, specifically MIF and IL8. Cancer Res; 77(2); 303-11. ©2016 AACR.
Collapse
Affiliation(s)
- Amina M Abdul-Aziz
- Department of Molecular Haematology, Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Manar S Shafat
- Department of Molecular Haematology, Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Tarang K Mehta
- The Genome Analysis Centre (TGAC), Colney, Norwich, United Kingdom
| | | | - Matthew J Lawes
- Department of Haematology, Norfolk and Norwich University Hospitals NHS Trust, Norwich, United Kingdom
| | - Stuart A Rushworth
- Department of Molecular Haematology, Norwich Medical School, University of East Anglia, Norwich, United Kingdom.
| | - Kristian M Bowles
- Department of Molecular Haematology, Norwich Medical School, University of East Anglia, Norwich, United Kingdom. .,Department of Haematology, Norfolk and Norwich University Hospitals NHS Trust, Norwich, United Kingdom
| |
Collapse
|
45
|
Brocks T, Fedorchenko O, Schliermann N, Stein A, Moll UM, Seegobin S, Dewor M, Hallek M, Marquardt Y, Fietkau K, Heise R, Huth S, Pfister H, Bernhagen J, Bucala R, Baron JM, Fingerle-Rowson G. Macrophage migration inhibitory factor protects from nonmelanoma epidermal tumors by regulating the number of antigen-presenting cells in skin. FASEB J 2016; 31:526-543. [PMID: 27825106 DOI: 10.1096/fj.201600860r] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 10/04/2016] [Indexed: 12/29/2022]
Abstract
The response of the skin to harmful environmental agents is shaped decisively by the status of the immune system. Keratinocytes constitutively express and secrete the chemokine-like mediator, macrophage migration inhibitory factor (MIF), more strongly than dermal fibroblasts, thereby creating a MIF gradient in skin. By using global and epidermis-restricted Mif-knockout (Mif-/- and K14-Cre+/tg; Miffl/fl) mice, we found that MIF both recruits and maintains antigen-presenting cells in the dermis/epidermis. The reduced presence of antigen-presenting cells in the absence of MIF was associated with accelerated and increased formation of nonmelanoma skin tumors during chemical carcinogenesis. Our results demonstrate that MIF is essential for maintaining innate immunity in skin. Loss of keratinocyte-derived MIF leads to a loss of control of epithelial skin tumor formation in chemical skin carcinogenesis, which highlights an unexpected tumor-suppressive activity of MIF in murine skin.-Brocks, T., Fedorchenko, O., Schliermann, N., Stein, A., Moll, U. M., Seegobin, S., Dewor, M., Hallek, M., Marquardt, Y., Fietkau, K., Heise, R., Huth, S., Pfister, H., Bernhagen, J., Bucala, R., Baron, J. M., Fingerle-Rowson, G. Macrophage migration inhibitory factor protects from nonmelanoma epidermal tumors by regulating the number of antigen-presenting cells in skin.
Collapse
Affiliation(s)
- Tania Brocks
- Department I of Internal Medicine, University Hospital Cologne, Cologne, Germany.,Center for Integrated Oncology Köln-Bonn, Cologne, Germany
| | - Oleg Fedorchenko
- Department I of Internal Medicine, University Hospital Cologne, Cologne, Germany.,Center for Integrated Oncology Köln-Bonn, Cologne, Germany
| | - Nicola Schliermann
- Department I of Internal Medicine, University Hospital Cologne, Cologne, Germany.,Center for Integrated Oncology Köln-Bonn, Cologne, Germany
| | - Astrid Stein
- Institute of Pathology and Cytology, University Hospital Cologne, Cologne, Germany
| | - Ute M Moll
- Department of Pathology, Stony Brook University, Stony Brook, New York, USA.,Department of Molecular Oncology, Georg-August University, Göttingen Center of Molecular Biosciences, Ernst-Caspari-Haus, Göttingen, Germany
| | - Seth Seegobin
- Department of Medical and Molecular Genetics, School of Medicine, Guy's Hospital, King's College London, London, United Kingdom
| | - Manfred Dewor
- Institute of Biochemistry and Molecular Cell Biology Rheinisch-Westfälische Technische Hochschule, Aachen, Germany
| | - Michael Hallek
- Department I of Internal Medicine, University Hospital Cologne, Cologne, Germany.,Center for Integrated Oncology Köln-Bonn, Cologne, Germany
| | - Yvonne Marquardt
- Department of Dermatology, Rheinisch-Westfälische Technische Hochschule, Aachen, Germany
| | - Katharina Fietkau
- Department of Dermatology, Rheinisch-Westfälische Technische Hochschule, Aachen, Germany
| | - Ruth Heise
- Department of Dermatology, Rheinisch-Westfälische Technische Hochschule, Aachen, Germany
| | - Sebastian Huth
- Department of Dermatology, Rheinisch-Westfälische Technische Hochschule, Aachen, Germany
| | - Herbert Pfister
- Institute of Virology, University Hospital Cologne, Cologne, Germany
| | - Juergen Bernhagen
- Institute of Biochemistry and Molecular Cell Biology Rheinisch-Westfälische Technische Hochschule, Aachen, Germany.,Department of Vascular Biology, Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians University, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; and
| | - Richard Bucala
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jens M Baron
- Department of Dermatology, Rheinisch-Westfälische Technische Hochschule, Aachen, Germany
| | - Guenter Fingerle-Rowson
- Department I of Internal Medicine, University Hospital Cologne, Cologne, Germany; .,Center for Integrated Oncology Köln-Bonn, Cologne, Germany
| |
Collapse
|
46
|
Nguyen PH, Fedorchenko O, Rosen N, Koch M, Barthel R, Winarski T, Florin A, Wunderlich FT, Reinart N, Hallek M. LYN Kinase in the Tumor Microenvironment Is Essential for the Progression of Chronic Lymphocytic Leukemia. Cancer Cell 2016; 30:610-622. [PMID: 27728807 DOI: 10.1016/j.ccell.2016.09.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 05/16/2016] [Accepted: 09/15/2016] [Indexed: 01/09/2023]
Abstract
Survival of chronic lymphocytic leukemia (CLL) cells strictly depends on the support of an appropriate tumor microenvironment. Here, we demonstrate that LYN kinase is essential for CLL progression. Lyn deficiency results in a significantly reduced CLL burden in vivo. Loss of Lyn within leukemic cells reduces B cell receptor (BCR) signaling including BTK phosphorylation, but surprisingly does not affect leukemic cell expansion. Instead, syngeneic CLL transplantation of CLL cells into Lyn- or Btk-deficient recipients results in a strongly delayed leukemic progression and prolonged survival. Moreover, Lyn deficiency in macrophages hinders nursing functions for CLL cells, which is mediated by direct contact rather than secretion of soluble factors. Taken together, LYN and BTK seem essential for the formation of a microenvironment supporting leukemic growth.
Collapse
MESH Headings
- Animals
- Cell Proliferation/physiology
- Disease Progression
- Gene Expression Regulation, Leukemic
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/enzymology
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Mice
- Signal Transduction
- Tumor Microenvironment
- src-Family Kinases/genetics
- src-Family Kinases/metabolism
Collapse
Affiliation(s)
- Phuong-Hien Nguyen
- Department I of Internal Medicine, University Hospital of Cologne, Center for Integrated Oncology Cologne-Bonn, CECAD Center of Excellence on "Cellular Stress Responses in Aging-Associated Diseases", University of Cologne, 50931 Cologne, Germany
| | - Oleg Fedorchenko
- Department I of Internal Medicine, University Hospital of Cologne, Center for Integrated Oncology Cologne-Bonn, CECAD Center of Excellence on "Cellular Stress Responses in Aging-Associated Diseases", University of Cologne, 50931 Cologne, Germany
| | - Natascha Rosen
- Department I of Internal Medicine, University Hospital of Cologne, Center for Integrated Oncology Cologne-Bonn, CECAD Center of Excellence on "Cellular Stress Responses in Aging-Associated Diseases", University of Cologne, 50931 Cologne, Germany
| | - Maximilian Koch
- Department I of Internal Medicine, University Hospital of Cologne, Center for Integrated Oncology Cologne-Bonn, CECAD Center of Excellence on "Cellular Stress Responses in Aging-Associated Diseases", University of Cologne, 50931 Cologne, Germany
| | - Romy Barthel
- Department I of Internal Medicine, University Hospital of Cologne, Center for Integrated Oncology Cologne-Bonn, CECAD Center of Excellence on "Cellular Stress Responses in Aging-Associated Diseases", University of Cologne, 50931 Cologne, Germany
| | - Tomasz Winarski
- Department I of Internal Medicine, University Hospital of Cologne, Center for Integrated Oncology Cologne-Bonn, CECAD Center of Excellence on "Cellular Stress Responses in Aging-Associated Diseases", University of Cologne, 50931 Cologne, Germany
| | - Alexandra Florin
- Institute of Pathology, University Hospital of Cologne, 50931 Cologne, Germany
| | - F Thomas Wunderlich
- Max Planck Institute for Metabolism Research; Institute for Genetics, University of Cologne, 50931 Cologne, Germany
| | - Nina Reinart
- Department I of Internal Medicine, University Hospital of Cologne, Center for Integrated Oncology Cologne-Bonn, CECAD Center of Excellence on "Cellular Stress Responses in Aging-Associated Diseases", University of Cologne, 50931 Cologne, Germany
| | - Michael Hallek
- Department I of Internal Medicine, University Hospital of Cologne, Center for Integrated Oncology Cologne-Bonn, CECAD Center of Excellence on "Cellular Stress Responses in Aging-Associated Diseases", University of Cologne, 50931 Cologne, Germany.
| |
Collapse
|
47
|
Galletti G, Caligaris-Cappio F, Bertilaccio MTS. B cells and macrophages pursue a common path toward the development and progression of chronic lymphocytic leukemia. Leukemia 2016; 30:2293-2301. [DOI: 10.1038/leu.2016.261] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 08/22/2016] [Accepted: 08/30/2016] [Indexed: 12/30/2022]
|
48
|
Evaluation of the potential therapeutic benefits of macrophage reprogramming in multiple myeloma. Blood 2016; 128:2241-2252. [PMID: 27625360 DOI: 10.1182/blood-2016-01-695395] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 09/04/2016] [Indexed: 12/24/2022] Open
Abstract
Tumor-associated macrophages (TAM) are important components of the multiple myeloma (MM) microenvironment that support malignant plasma cell survival and resistance to therapy. It has been proposed that macrophages (MØ) retain the capacity to change in response to stimuli that can restore their antitumor functions. Here, we investigated several approaches to reprogram MØ as a novel therapeutic strategy in MM. First, we found tumor-limiting and tumor-supporting capabilities for monocyte-derived M1-like MØ and M2-like MØ, respectively, when mixed with MM cells, both in vitro and in vivo. Multicolor confocal microscopy revealed that MM-associated MØ displayed a predominant M2-like phenotype in the bone marrow of MM patient samples, and a high expression of the pro-M2 cytokine macrophage migration inhibitory factor (MIF). To reprogram the protumoral M2-like MØ present in MM toward antitumoral M1-like MØ, we tested the pro-M1 cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) plus blockade of the M2 cytokines macrophage colony-stimulating factor or MIF. The combination of GM-CSF plus the MIF inhibitor 4-iodo-6-phenyl-pyrimidine achieved the best reprogramming responses toward an M1 profile, at both gene and protein expression levels, as well as remarkable tumoricidal effects. Furthermore, this combined treatment elicited MØ-dependent therapeutic responses in MM xenograft mouse models, which were linked to upregulation of M1 and reciprocal downregulation of M2 MØ markers. Our results reveal the therapeutic potential of reprogramming MØ in the context of MM.
Collapse
|
49
|
Polk A, Lu Y, Wang T, Seymour E, Bailey NG, Singer JW, Boonstra PS, Lim MS, Malek S, Wilcox RA. Colony-Stimulating Factor-1 Receptor Is Required for Nurse-like Cell Survival in Chronic Lymphocytic Leukemia. Clin Cancer Res 2016; 22:6118-6128. [PMID: 27334834 DOI: 10.1158/1078-0432.ccr-15-3099] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 05/31/2016] [Accepted: 06/04/2016] [Indexed: 01/08/2023]
Abstract
PURPOSE Monocytes and their progeny are abundant constituents of the tumor microenvironment in lymphoproliferative disorders, including chronic lymphocytic leukemia (CLL). Monocyte-derived cells, including nurse-like cells (NLC) in CLL, promote lymphocyte proliferation and survival, confer resistance to chemotherapy, and are associated with more rapid disease progression. Colony-stimulating factor-1 receptor (CSF-1R) regulates the homeostatic survival of tissue-resident macrophages. Therefore, we sought to determine whether CSF-1R is similarly required for NLC survival. EXPERIMENTAL DESIGN CSF-1R expression by NLC was examined by flow cytometry and IHC. CSF-1R blocking studies were performed using an antagonistic mAb to examine its role in NLC generation and in CLL survival. A rational search strategy was performed to identify a novel tyrosine kinase inhibitor (TKI) targeting CSF-1R. The influence of TKI-mediated CSF-1R inhibition on NLC and CLL viability was examined. RESULTS We demonstrated that the generation and survival of NLC in CLL is dependent upon CSF-1R signaling. CSF-1R blockade is associated with significant depletion of NLC and consequently inhibits CLL B-cell survival. We found that the JAK2/FLT3 inhibitor pacritinib suppresses CSF-1R signaling, thereby preventing the generation and survival of NLC and impairs CLL B-cell viability. CONCLUSIONS CSF-1R is a novel therapeutic target that may be exploited in lymphoproliferative disorders, like CLL, that are dependent upon lymphoma-associated macrophages. Clin Cancer Res; 22(24); 6118-28. ©2016 AACR.
Collapse
Affiliation(s)
- Avery Polk
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, Michigan
| | - Ye Lu
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, Michigan
| | - Tianjiao Wang
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, Michigan
| | - Erlene Seymour
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, Michigan
| | | | | | - Philip S Boonstra
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan
| | - Megan S Lim
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Sami Malek
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, Michigan
| | - Ryan A Wilcox
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
50
|
Ten Hacken E, Burger JA. Microenvironment interactions and B-cell receptor signaling in Chronic Lymphocytic Leukemia: Implications for disease pathogenesis and treatment. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1863:401-413. [PMID: 26193078 PMCID: PMC4715999 DOI: 10.1016/j.bbamcr.2015.07.009] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 07/11/2015] [Accepted: 07/13/2015] [Indexed: 01/01/2023]
Abstract
Chronic Lymphocytic Leukemia (CLL) is a malignancy of mature B lymphocytes which are highly dependent on interactions with the tissue microenvironment for their survival and proliferation. Critical components of the microenvironment are monocyte-derived nurselike cells (NLCs), mesenchymal stromal cells, T cells and NK cells, which communicate with CLL cells through a complex network of adhesion molecules, chemokine receptors, tumor necrosis factor (TNF) family members, and soluble factors. (Auto-) antigens and/or autonomous mechanisms activate the B-cell receptor (BCR) and its downstream signaling cascade in secondary lymphatic tissues, playing a central pathogenetic role in CLL. Novel small molecule inhibitors, including the Bruton's tyrosine kinase (BTK) inhibitor ibrutinib and the phosphoinositide-3-kinase delta (PI3Kδ) inhibitor idelalisib, target BCR signaling and have become the most successful new therapeutics in this disease. We here review the cellular and molecular characteristics of CLL cells, and discuss the cellular components and key pathways involved in the cross-talk with their microenvironment. We also highlight the relevant novel treatment strategies, focusing on immunomodulatory agents and BCR signaling inhibitors and how these treatments disrupt CLL-microenvironment interactions. This article is part of a Special Issue entitled: Tumor Microenvironment Regulation of Cancer Cell Survival, Metastasis, Inflammation, and Immune Surveillance edited by Peter Ruvolo and Gregg L. Semenza.
Collapse
MESH Headings
- B-Lymphocytes/metabolism
- B-Lymphocytes/pathology
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Models, Biological
- Molecular Targeted Therapy
- Protein Kinase Inhibitors/therapeutic use
- Protein Kinases/metabolism
- Receptors, Antigen, B-Cell/metabolism
- Signal Transduction/drug effects
- Tumor Microenvironment
Collapse
Affiliation(s)
- Elisa Ten Hacken
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jan A Burger
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.
| |
Collapse
|