1
|
Mohammed RDS, Piell KM, Maurer MC. Identification of Factor XIII β-Sandwich Residues Mediating Glutamine Substrate Binding and Activation Peptide Cleavage. Thromb Haemost 2024; 124:408-422. [PMID: 38040030 DOI: 10.1055/a-2220-7544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
BACKGROUND Factor XIII (FXIII) forms covalent crosslinks across plasma and cellular substrates and has roles in hemostasis, wound healing, and bone metabolism. FXIII activity is implicated in venous thromboembolism (VTE) and is a target for developing pharmaceuticals, which requires understanding FXIII - substrate interactions. Previous studies proposed the β-sandwich domain of the FXIII A subunit (FXIII-A) exhibits substrate recognition sites. MATERIAL AND METHODS Recombinant FXIII-A proteins (WT, K156E, F157L, R158Q/E, R171Q, and R174E) were generated to identify FXIII-A residues mediating substrate recognition. Proteolytic (FXIII-A*) and non-proteolytic (FXIII-A°) forms were analyzed for activation and crosslinking activities toward physiological substrates using SDS-PAGE and MALDI-TOF MS. RESULTS All FXIII-A* variants displayed reduced crosslinking abilities compared to WT for Fbg αC (233 - 425), fibrin, and actin. FXIII-A* WT activity was greater than A°, suggesting the binding site is more exposed in FXIII-A*. With Fbg αC (233 - 425), FXIII-A* variants R158Q/E, R171Q, and R174E exhibited decreased activities approaching those of FXIII-A°. However, with a peptide substrate, FXIII-A* WT and variants showed similar crosslinking suggesting the recognition site is distant from the catalytic site. Surprisingly, FXIII-A R158E and R171Q displayed slower thrombin activation than WT, potentially due to loss of crucial H-bonding with neighboring activation peptide (AP) residues. CONCLUSION In conclusion, FXIII-A residues K156, F157, R158, R171, and R174 are part of a binding site for physiological substrates [fibrin (α and γ) and actin]. Moreover, R158 and R171 control AP cleavage during thrombin activation. These investigations provide new molecular details on FXIII - substrate interactions that control crosslinking abilities.
Collapse
Affiliation(s)
| | - Kellianne M Piell
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, Kentucky, United States
| | - Muriel C Maurer
- Department of Chemistry, University of Louisville, Louisville, Kentucky, United States
| |
Collapse
|
2
|
Singh S, Pezeshkpoor B, Jamil MA, Dodt J, Sharma A, Ramar V, Ivaskevicius V, Hethershaw E, Philippou H, Pavlova A, Oldenburg J, Biswas A. Heterozygosity in factor XIII genes and the manifestation of mild inherited factor XIII deficiency. J Thromb Haemost 2024; 22:379-393. [PMID: 37832789 DOI: 10.1016/j.jtha.2023.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/15/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023]
Abstract
BACKGROUND The characterization of inherited mild factor XIII deficiency is more imprecise than its rare, inherited severe forms. It is known that heterozygosity at FXIII genetic loci results in mild FXIII deficiency, characterized by circulating FXIII activity levels ranging from 20% to 60%. There exists a gap in information on 1) how genetic heterozygosity renders clinical bleeding manifestations among these individuals and 2) the reversal of unexplained bleeding upon FXIII administration in mild FXIII-deficient individuals. OBJECTIVES To assess the prevalence and burden of mild FXIII deficiency among the apparently healthy German-Caucasian population and correlate it with genetic heterozygosity at FXIII and fibrinogen gene loci. METHODS Peripheral blood was collected from 752 donors selected from the general population with essentially no bleeding complications to ensure asymptomatic predisposition. These were assessed for FXIII and fibrinogen activity, and FXIII and fibrinogen genes were resequenced using next-generation sequencing. For comparison, a retrospective analysis was performed on a cohort of mild inherited FXIII deficiency patients referred to us. RESULTS The prevalence of mild FXIII deficiency was high (∼0.8%) among the screened German-Caucasian population compared with its rare-severe forms. Although no new heterozygous missense variants were found, certain combinations were relatively dominant/prevalent among the mild FXIII-deficient individuals. CONCLUSION This extensive, population-based quasi-experimental approach revealed that the burden of heterozygosity in FXIII and fibrinogen gene loci causes the clinical manifestation of inherited mild FXIII deficiency, resulting in ''unexplained bleeding'' upon provocation.
Collapse
Affiliation(s)
- Sneha Singh
- Institute for Experimental Hematology and Transfusion Medicine, University Hospital of Bonn, Bonn, North-Rheine Westfalen, Germany
| | - Behnaz Pezeshkpoor
- Institute for Experimental Hematology and Transfusion Medicine, University Hospital of Bonn, Bonn, North-Rheine Westfalen, Germany
| | - Muhammad Ahmer Jamil
- Institute for Experimental Hematology and Transfusion Medicine, University Hospital of Bonn, Bonn, North-Rheine Westfalen, Germany
| | | | - Amit Sharma
- Department of Hematology, All India Institute of Medical Sciences, New Delhi, India
| | - Vasanth Ramar
- Institute for Experimental Hematology and Transfusion Medicine, University Hospital of Bonn, Bonn, North-Rheine Westfalen, Germany
| | - Vytautas Ivaskevicius
- Institute for Experimental Hematology and Transfusion Medicine, University Hospital of Bonn, Bonn, North-Rheine Westfalen, Germany
| | - Emma Hethershaw
- Division of Cardiovascular and Diabetes Research, School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Helen Philippou
- Division of Cardiovascular and Diabetes Research, School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Anna Pavlova
- Institute for Experimental Hematology and Transfusion Medicine, University Hospital of Bonn, Bonn, North-Rheine Westfalen, Germany
| | - Johannes Oldenburg
- Institute for Experimental Hematology and Transfusion Medicine, University Hospital of Bonn, Bonn, North-Rheine Westfalen, Germany
| | - Arijit Biswas
- Institute for Experimental Hematology and Transfusion Medicine, University Hospital of Bonn, Bonn, North-Rheine Westfalen, Germany.
| |
Collapse
|
3
|
Ablan FDO, Maurer MC. Fbg αC 389-402 Enhances Factor XIII Cross-Linking in the Fibrinogen αC Region Via Electrostatic and Hydrophobic Interactions. Biochemistry 2023; 62:2170-2181. [PMID: 37410946 PMCID: PMC10583745 DOI: 10.1021/acs.biochem.3c00066] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Coagulation Factor XIII (FXIII) stabilizes blood clots by cross-linking glutamines and lysines in fibrin and other proteins. FXIII activity in the fibrinogen αC region (Fbg αC 221-610) is critical for clot stability and growth. Fbg αC 389-402 is a binding site for thrombin-activated FXIII, (FXIII-A*), with αC E396 promoting FXIII-A* binding and activity in αC. The current study aimed to discover additional residues within Fbg αC 389-402 that accelerate transglutaminase activity toward αC. Electrostatic αC residues (E395, E396, and D390), hydrophobic αC residues (W391 and F394), and residues αC 328-425 were studied by mutations to recombinant Fbg αC 233-425. FXIII activity was monitored through MS-based glycine ethyl ester (GEE) cross-linking and gel-based fluorescence monodansylcadaverine (MDC) cross-linking assays. Truncation mutations 403 Stop (Fbg αC 233-402), 389 Stop (Fbg αC 233-388), and 328 Stop (Fbg αC 233-327) reduced Q237-GEE and MDC cross-linking compared to wild-type (WT). Comparable cross-linking between 389 Stop and 328 Stop showed that FXIII is mainly affected by the loss of Fbg αC 389-402. Substitution mutations E396A, D390A, W391A, and F394A decreased cross-linking relative to WT, whereas E395A, E395S, E395K, and E396D had no effect. Similar FXIII-A* activities were observed for double mutants (D390A, E396A) and (W391A, E396A), relative to D390A and W391A, respectively. In contrast, cross-linking was reduced in (F394A, E396A), relative to F394A. In conclusion, Fbg αC 389-402 boosts FXIII activity in Fbg αC, with D390, W391, and F394 identified as key contributors in enhancing αC cross-linking.
Collapse
Affiliation(s)
- Francis D. O. Ablan
- Department of Chemistry, University of Louisville, Louisville, KY 40292, USA
| | - Muriel C. Maurer
- Department of Chemistry, University of Louisville, Louisville, KY 40292, USA
| |
Collapse
|
4
|
Syed Mohammed RD, Ablan FDO, McCann NM, Hindi MM, Maurer MC. Transglutaminase Activities of Blood Coagulant Factor XIII Are Dependent on the Activation Pathways and on the Substrates. Thromb Haemost 2023; 123:380-392. [PMID: 36473493 PMCID: PMC10719020 DOI: 10.1055/a-1993-4193] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Factor XIII (FXIII) catalyzes formation of γ-glutamyl-ε-lysyl crosslinks between reactive glutamines (Q) and lysines (K). In plasma, FXIII is activated proteolytically (FXIII-A*) by the concerted action of thrombin and Ca2+. Cellular FXIII is activated nonproteolytically (FXIII-A°) by elevation of physiological Ca2+ concentrations. FXIII-A targets plasmatic and cellular substrates, but questions remain on correlating FXIII activation, resultant conformational changes, and crosslinking function to different physiological substrates. To address these issues, the characteristics of FXIII-A* versus FXIII-A° that contribute to transglutaminase activity and substrate specificities were investigated. Crosslinking of lysine mimics into a series of Q-containing substrates were measured using in-gel fluorescence, mass spectrometry, and UV-Vis spectroscopy. Covalent incorporation of fluorescent monodansylcadaverine revealed that FXIII-A* exhibits greater activity than FXIII-A° toward Q residues within Fbg αC (233-425 WT, Q328P Seoul II, and Q328PQ366N) and actin. FXIII-A* and FXIII-A° displayed similar activities toward α2-antiplasmin (α2AP), fibronectin, and Fbg αC (233-388, missing FXIII-binding site αC 389-402). Furthermore, the N-terminal α2AP peptide (1-15) exhibited similar kinetic properties for FXIII-A* and FXIII-A°. MALDI-TOF mass spectrometry assays with glycine ethyl ester and Fbg αC (233-425 WT, αC E396A, and truncated αC (233-388) further documented that FXIII-A* exerts greater benefit from the αC 389-402 binding site than FXIII-A°. Conformational properties of FXIII-A* versus A° are proposed to help promote transglutaminase function toward different substrates. A combination of protein substrate disorder and secondary FXIII-binding site exposure are utilized to control activity and specificity. From these studies, greater understandings of how FXIII-A targets different substrates are achieved.
Collapse
Affiliation(s)
| | | | | | - Mohammed M. Hindi
- Department of Chemistry, University of Louisville, Louisville, KY, USA
| | - Muriel C. Maurer
- Department of Chemistry, University of Louisville, Louisville, KY, USA
| |
Collapse
|
5
|
Javed H, Singh S, Urs SUR, Oldenburg J, Biswas A. Genetic landscape in coagulation factor XIII associated defects – Advances in coagulation and beyond. Blood Rev 2022; 59:101032. [PMID: 36372609 DOI: 10.1016/j.blre.2022.101032] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
Abstract
Coagulation factor XIII (FXIII) acts as a fine fulcrum in blood plasma that maintains the balance between bleeding and thrombosis by covalently crosslinking the pre-formed fibrin clot into an insoluble one that is resistant to premature fibrinolysis. In plasma, FXIII circulates as a pro-transglutaminase complex composed of the dimeric catalytic FXIII-A encoded by the F13A1 gene and dimeric carrier/regulatory FXIII-B subunits encoded by the F13B gene. Growing evidence accumulated over decades of exhaustive research shows that not only does FXIII play major roles in both pathological extremes of hemostasis i.e. bleeding and thrombosis, but that it is, in fact, a pleiotropic protein with physiological roles beyond coagulation. However, the current FXIII genetic-epidemiological literature is overwhelmingly derived from the bleeding pathology associated with its deficiency. In this article we review the current clinical, functional, and molecular understanding of this fascinating multifaceted protein, especially putting into the same perspective its genetic landscape.
Collapse
|
6
|
A novel F13A1 gene mutation (Arg208Pro) in a Chinese patient with factor XIII deficiency. Blood Coagul Fibrinolysis 2022; 33:337-341. [PMID: 35981255 DOI: 10.1097/mbc.0000000000001143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The objective of the study was to analyse a novel F13A1 gene mutation in a Chinese patient with factor XIII (FXIII) deficiency and explore the molecular mechanism. Pedigree investigation, clinical diagnosis, phenotypic and genetic analysis were conducted. The F13A1 gene was amplified by PCR and directly sequenced. Online bioinformatics software was needed to analyse the mutation. A novel mutation c.515G>C (p.Arg208Pro) in exon 4 was found in the proband. Protein Arg208 is conserved highly among homologous species. Bioinformatics software showed that Arg208Pro mutation might affect the protein function. We preliminarily believed the mutation Arg208Pro was responsible for the decrease FXIII level. We reported a novel mutation in the F13A1 gene, which can flesh out the mutant library.
Collapse
|
7
|
King RJ, Schuett K, Tiede C, Jankowski V, John V, Trehan A, Simmons K, Ponnambalam S, Storey RF, Fishwick CWG, McPherson MJ, Tomlinson DC, Ajjan RA. Fibrinogen interaction with complement C3: a potential therapeutic target to reduce thrombosis risk. Haematologica 2021; 106:1616-1623. [PMID: 32354869 PMCID: PMC8168514 DOI: 10.3324/haematol.2019.239558] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Indexed: 12/03/2022] Open
Abstract
Complement C3 binds fibrinogen and compromises fibrin clot lysis, thereby enhancing the risk of thrombosis. We investigated the role of the fibrinogen-C3 interaction as a novel therapeutic target to reduce thrombosis risk by analyzing: (i) consistency in the fibrinolytic properties of C3; (ii) binding sites between fibrinogen and C3; and (iii) modulation of fibrin clot lysis by manipulating fibrinogen-C3 interactions. Purified fibrinogen and C3 from the same individuals (n=24) were used to assess inter-individual variability in the anti-fibrinolytic effects of C3. Microarray screening and molecular modeling evaluated C3 and fibrinogen interaction sites. Novel synthetic conformational proteins, termed affimers, were used to modulate the C3-fibrinogen interaction and fibrinolysis. C3 purified from patients with type 1 diabetes showed enhanced prolongation of fibrinolysis compared with healthy control protein (195±105 and 522±166 s, respectively; P=0.04), with consistent effects but a wider range (5-51% and 5-18% lysis prolongation, respectively). Peptide microarray screening identified two potential C3-fibrinogen interaction sites within the fibrinogen β chain (residues 424-433 and 435-445). One fibrinogen-binding affimer that was isolated displayed sequence identity with C3 in an exposed area of the protein. This affimer abolished C3- induced prolongation of fibrinolysis (728±25.1 s to 632±23.7 s; P=0.005) and showed binding to fibrinogen in the same region that is involved in C3-fibrinogen interactions. Moreover, it shortened plasma clot lysis of patients with diabetes, cardiovascular disease or controls by 7-11%. C3 binds fibrinogen -chain and disruption of the fibrinogen-C3 interaction using affimer proteins enhances fibrinolysis, which represents a potential novel tool to reduce thrombosis in high-risk individuals.
Collapse
Affiliation(s)
- Rhodri J King
- Leeds Institute for Cardiovascular and Metabolic Medicine, Leeds, UK
| | - Katharina Schuett
- Department of Internal Medicine I, University Hospital RWTH Aachen, Germany
| | - Christian Tiede
- Bioscreening Technology Group,School of Molecular and Cellular Biology, University of Leeds, UK
| | - Vera Jankowski
- Institute for Molecular and Cardiovascular Research, Aachen University, Germany
| | - Vicky John
- Leeds Institute for Cardiovascular and Metabolic Medicine, Leeds, UK
| | - Abhi Trehan
- Leeds Institute for Cardiovascular and Metabolic Medicine, Leeds, UK
| | | | | | | | | | - Michael J McPherson
- Bioscreening Technology Group, School of Molecular and Cellular Biology, University of Leeds, UK
| | - Darren C Tomlinson
- Bioscreening Technology Group, School of Molecular and Cellular Biology, University of Leeds, UK
| | - Ramzi A Ajjan
- Leeds Institute for Cardiovascular and Metabolic Medicine, Leeds, UK
| |
Collapse
|
8
|
Ziliotto N, Bernardi F, Piazza F. Hemostasis components in cerebral amyloid angiopathy and Alzheimer's disease. Neurol Sci 2021; 42:3177-3188. [PMID: 34041636 DOI: 10.1007/s10072-021-05327-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/15/2021] [Indexed: 01/17/2023]
Abstract
Increased cerebrovascular amyloid-β (Aβ) deposition represents the main pathogenic mechanisms characterizing Alzheimer's disease (AD) and cerebral amyloid angiopathy (CAA). Whereas an increasing number of studies define the contribution of fibrin(ogen) to neurodegeneration, how other hemostasis factors might be pleiotropically involved in the AD and CAA remains overlooked. Although traditionally regarded as pertaining to hemostasis, these proteins are also modulators of inflammation and angiogenesis, and exert cytoprotective functions. This review discusses the contribution of hemostasis components to Aβ cerebrovascular deposition, which settle the way to endothelial and blood-brain barrier dysfunction, vessel fragility, cerebral bleeding, and the associated cognitive changes. From the primary hemostasis, the process that refers to platelet aggregation, we discuss evidence regarding the von Willebrand factor (vWF) and its regulator ADAMTS13. Then, from the secondary hemostasis, we focus on tissue factor, which triggers the extrinsic coagulation cascade, and on the main inhibitors of coagulation, i.e., tissue factor pathway inhibitor (TFPI), and the components of protein C pathway. Last, from the tertiary hemostasis, we discuss evidence on FXIII, involved in fibrin cross-linking, and on components of fibrinolysis, including tissue-type plasminogen activator (tPA), urokinase-type plasminogen activator (uPA) and its receptor uPA(R), and plasminogen activator inhibitor-1 (PAI-1). Increased knowledge on contributors of Aβ-related disease progression may favor new therapeutic approaches for early modifiable risk factors.
Collapse
Affiliation(s)
- Nicole Ziliotto
- CAA and AD Translational Research and Biomarkers Laboratory, School of Medicine and Surgery, University of Milano - Bicocca, Via Cadore 48, 20900, Monza, Italy.
| | - Francesco Bernardi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Fabrizio Piazza
- CAA and AD Translational Research and Biomarkers Laboratory, School of Medicine and Surgery, University of Milano - Bicocca, Via Cadore 48, 20900, Monza, Italy
| |
Collapse
|
9
|
Functional and Structural Characterization of Nucleic Acid Ligands That Bind to Activated Coagulation Factor XIII. J Clin Med 2021; 10:jcm10040677. [PMID: 33578732 PMCID: PMC7916480 DOI: 10.3390/jcm10040677] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/25/2021] [Accepted: 02/07/2021] [Indexed: 01/04/2023] Open
Abstract
Coagulation factor XIII (FXIII) is a protransglutaminase which plays an important role in clot stabilization and composition by cross-linking the α- and γ-chains of fibrin and increasing the resistance of the clot to mechanical and proteolytic challenges. In this study, we selected six DNA aptamers specific for activated FXIII (FXIIIa) and investigated the functional characterization of FXIIIa after aptamer binding. One of these aptamers, named FA12, efficiently captures FXIIIa even in the presence of zymogenic FXIII subunits. Furthermore, this aptamer inhibits the incorporation of FXIII and α2-antiplasmin (α2AP) into fibrin(ogen) with IC50-values of 38 nM and 17 nM, respectively. In addition to FA12, also another aptamer, FA2, demonstrated significant effects in plasma-based thromboelastometry (rotational thromboelastometry analysis, ROTEM)-analysis where spiking of the aptamers into plasma decreased clot stiffness and elasticity (p < 0.0001). The structure–function correlations determined by combining modeling/docking strategies with quantitative in vitro assays revealed spatial overlap of the FA12 binding site with the binding sites of two FXIII substrates, fibrinogen and α2AP, while FA2 binding sites only overlap those of fibrinogen. Taken together, these features especially render the aptamer FA12 as an interesting candidate molecule for the development of FXIIIa-targeting therapeutic strategies and diagnostic assays.
Collapse
|
10
|
Factor XIII and Fibrin Clot Properties in Acute Venous Thromboembolism. Int J Mol Sci 2021; 22:ijms22041607. [PMID: 33562624 PMCID: PMC7914915 DOI: 10.3390/ijms22041607] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 12/31/2022] Open
Abstract
Coagulation factor XIII (FXIII) is converted by thrombin into its active form, FXIIIa, which crosslinks fibrin fibers, rendering clots more stable and resistant to degradation. FXIII affects fibrin clot structure and function leading to a more prothrombotic phenotype with denser networks, characterizing patients at risk of venous thromboembolism (VTE). Mechanisms regulating FXIII activation and its impact on fibrin structure in patients with acute VTE encompassing pulmonary embolism (PE) or deep vein thrombosis (DVT) are poorly elucidated. Reduced circulating FXIII levels in acute PE were reported over 20 years ago. Similar observations indicating decreased FXIII plasma activity and antigen levels have been made in acute PE and DVT with their subsequent increase after several weeks since the index event. Plasma fibrin clot proteome analysis confirms that clot-bound FXIII amounts associated with plasma FXIII activity are decreased in acute VTE. Reduced FXIII activity has been associated with impaired clot permeability and hypofibrinolysis in acute PE. The current review presents available studies on the role of FXIII in the modulation of fibrin clot properties during acute PE or DVT and following these events. Better understanding of FXIII’s involvement in the pathophysiology of acute VTE might help to improve current therapeutic strategies in patients with acute VTE.
Collapse
|
11
|
Memtsas VP, Arachchillage DRJ, Gorog DA. Role, Laboratory Assessment and Clinical Relevance of Fibrin, Factor XIII and Endogenous Fibrinolysis in Arterial and Venous Thrombosis. Int J Mol Sci 2021; 22:ijms22031472. [PMID: 33540604 PMCID: PMC7867291 DOI: 10.3390/ijms22031472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 02/06/2023] Open
Abstract
Diseases such as myocardial infarction, ischaemic stroke, peripheral vascular disease and venous thromboembolism are major contributors to morbidity and mortality. Procoagulant, anticoagulant and fibrinolytic pathways are finely regulated in healthy individuals and dysregulated procoagulant, anticoagulant and fibrinolytic pathways lead to arterial and venous thrombosis. In this review article, we discuss the (patho)physiological role and laboratory assessment of fibrin, factor XIII and endogenous fibrinolysis, which are key players in the terminal phase of the coagulation cascade and fibrinolysis. Finally, we present the most up-to-date evidence for their involvement in various disease states and assessment of cardiovascular risk.
Collapse
Affiliation(s)
- Vassilios P. Memtsas
- Cardiology Department, East and North Hertfordshire NHS Trust, Stevenage, Hertfordshire SG1 4AB, UK;
| | - Deepa R. J. Arachchillage
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London SW7 2AZ, UK;
- Department of Haematology, Imperial College Healthcare NHS Trust, London W2 1NY, UK
- Department of Haematology, Royal Brompton Hospital, London SW3 6NP, UK
| | - Diana A. Gorog
- Cardiology Department, East and North Hertfordshire NHS Trust, Stevenage, Hertfordshire SG1 4AB, UK;
- School of Life and Medical Sciences, Postgraduate Medical School, University of Hertfordshire, Hertfordshire AL10 9AB, UK
- Faculty of Medicine, National Heart and Lung Institute, Imperial College, London SW3 6LY, UK
- Correspondence: ; Tel.: +44-207-0348841
| |
Collapse
|
12
|
Sawai Y, Yamanaka Y, Nomura S. Clinical Significance of Factor XIII Activity and Monocyte-Derived Microparticles in Cancer Patients. Vasc Health Risk Manag 2020; 16:103-110. [PMID: 32280233 PMCID: PMC7131992 DOI: 10.2147/vhrm.s240500] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/01/2020] [Indexed: 12/13/2022] Open
Abstract
Background The aim was to evaluate factor XIII activity (FXIIIa) and monocyte-derived microparticles (MDMPs) in cancer patients. Methods In total, 138 cancer patients (31 malignant lymphomas, 39 multiple myelomas, and 68 lung cancers) were analyzed. We measured various biomarkers including FXIIIa and MDMPs. Results The values of endothelial activation markers, monocyte chemoattractant peptide (MCP)-1, soluble (s)CD14, and MDMPs were higher in cancer patients than in non-cancerous controls. MCP-1, sCD14, and MDMPs were significantly correlated with FXIIIa in multivariate analysis in cancer patients. In addition, MCP-1, sCD14, and MDMP levels were significantly increased in the high FXIIIa group of patients. Finally, the survival rate of the high FXIIIa group was significantly poor in the Kaplan–Meier analysis. Conclusion These results suggest that abnormal levels of FXIIIa and MDMPs may offer promise as poor prognostic factors in cancer patients.
Collapse
Affiliation(s)
- Yusuke Sawai
- First Department of Internal Medicine, Kansai Medical University, Osaka, Japan
| | - Yuta Yamanaka
- First Department of Internal Medicine, Kansai Medical University, Osaka, Japan
| | - Shosaku Nomura
- First Department of Internal Medicine, Kansai Medical University, Osaka, Japan
| |
Collapse
|
13
|
The Plasma Factor XIII Heterotetrameric Complex Structure: Unexpected Unequal Pairing within a Symmetric Complex. Biomolecules 2019; 9:biom9120765. [PMID: 31766577 PMCID: PMC6995596 DOI: 10.3390/biom9120765] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/15/2019] [Accepted: 11/19/2019] [Indexed: 02/07/2023] Open
Abstract
Factor XIII (FXIII) is a predominant determinant of clot stability, strength, and composition. Plasma FXIII circulates as a pro-transglutaminase with two catalytic A subunits and two carrier-protective B subunits in a heterotetramer (FXIII-A2B2). FXIII-A2 and -B2 subunits are synthesized separately and then assembled in plasma. Following proteolytic activation by thrombin and calcium-mediated dissociation of the B subunits, activated FXIII (FXIIIa) covalently cross links fibrin, promoting clot stability. The zymogen and active states of the FXIII-A subunits have been structurally characterized; however, the structure of FXIII-B subunits and the FXIII-A2B2 complex have remained elusive. Using integrative hybrid approaches including atomic force microscopy, cross-linking mass spectrometry, and computational approaches, we have constructed the first all-atom model of the FXIII-A2B2 complex. We also used molecular dynamics simulations in combination with isothermal titration calorimetry to characterize FXIII-A2B2 assembly, activation, and dissociation. Our data reveal unequal pairing of individual subunit monomers in an otherwise symmetric complex, and suggest this unusual structure is critical for both assembly and activation of this complex. Our findings enhance understanding of mechanisms associating FXIII-A2B2 mutations with disease and have important implications for the rational design of molecules to alter FXIII assembly or activity to reduce bleeding and thrombotic complications.
Collapse
|
14
|
Mouapi KN, Wagner LJ, Stephens CA, Hindi MM, Wilkey DW, Merchant ML, Maurer MC. Evaluating the Effects of Fibrinogen αC Mutations on the Ability of Factor XIII to Crosslink the Reactive αC Glutamines (Q237, Q328, Q366). Thromb Haemost 2019; 119:1048-1057. [PMID: 31055797 DOI: 10.1055/s-0039-1687875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Fibrinogen (Fbg) levels and extent of fibrin polymerization have been associated with various pathological conditions such as cardiovascular disease, arteriosclerosis, and coagulation disorders. Activated factor XIII (FXIIIa) introduces γ-glutamyl-ε-lysinyl isopeptide bonds between reactive glutamines and lysines in the fibrin network to form a blood clot resistant to fibrinolysis. FXIIIa crosslinks the γ-chains and at multiple sites in the αC region of Fbg. Fbg αC contains a FXIII binding site involving αC (389-402) that is located near three glutamines whose reactivities rank Q237 >> Q366 ≈ Q328. Mass spectrometry and two-dimensional heteronuclear single-quantum correlation nuclear magnetic resonance assays were used to probe the anchoring role that αC E396 may play in controlling FXIII function and characterize the effects of Q237 on the reactivities of Q328 and Q366. Studies with αC (233-425) revealed that the E396A mutation does not prevent the transglutaminase function of FXIII A2 or A2B2. Other residues must play a compensatory role in targeting FXIII to αC. Unlike full Fbg, Fbg αC (233-425) did not promote thrombin cleavage of FXIII, an event contributing to activation. With the αC (233-425) E396A mutant, Q237 exhibited slower reactivities compared with αC wild-type (WT) consistent with difficulties in directing this N-terminal segment toward an anchored FXIII interacting at a weaker binding region. Q328 and Q366 became less reactive when Q237 was replaced with inactive N237. Q237 crosslinking is proposed to promote targeting of Q328 and Q366 to the FXIII active site. FXIII thus uses Fbg αC anchoring sites and distinct Q environments to regulate substrate specificity.
Collapse
Affiliation(s)
- Kelly Njine Mouapi
- Chemistry Department, University of Louisville, Louisville, Kentucky, United States
| | - Lucille J Wagner
- Chemistry Department, University of Louisville, Louisville, Kentucky, United States
| | - Chad A Stephens
- Chemistry Department, University of Louisville, Louisville, Kentucky, United States
| | - Mohammed M Hindi
- Chemistry Department, University of Louisville, Louisville, Kentucky, United States
| | - Daniel W Wilkey
- Division of Nephrology and Hypertension, Department of Medicine, University of Louisville, Kentucky, United States
| | - Michael L Merchant
- Division of Nephrology and Hypertension, Department of Medicine, University of Louisville, Kentucky, United States
| | - Muriel C Maurer
- Chemistry Department, University of Louisville, Louisville, Kentucky, United States
| |
Collapse
|
15
|
Mechanical and Biochemical Role of Fibrin Within a Venous Thrombus. Eur J Vasc Endovasc Surg 2018; 55:417-424. [DOI: 10.1016/j.ejvs.2017.12.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 12/03/2017] [Indexed: 12/13/2022]
|
16
|
The interaction between fibrinogen and zymogen FXIII-A2B2 is mediated by fibrinogen residues γ390-396 and the FXIII-B subunits. Blood 2016; 128:1969-1978. [PMID: 27561317 DOI: 10.1182/blood-2016-04-712323] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 08/22/2016] [Indexed: 01/07/2023] Open
Abstract
Coagulation transglutaminase factor XIII (FXIII) exists in circulation as heterotetrameric proenzyme FXIII-A2B2 Effectively all FXIII-A2B2 circulates bound to fibrinogen, and excess FXIII-B2 circulates in plasma. The motifs that mediate interaction of FXIII-A2B2 with fibrinogen have been elusive. We recently detected reduced binding of FXIII-A2B2 to murine fibrinogen that has γ-chain residues 390-396 mutated to alanines (Fibγ390-396A). Here, we evaluated binding features using human components, including recombinant fibrinogen variants, FXIII-A2B2, and isolated FXIII-A2 and -B2 homodimers. FXIII-A2B2 coprecipitated with wild-type (γA/γA), alternatively-spliced (γ'/γ'), and αC-truncated (Aα251) fibrinogens, whereas coprecipitation with human Fibγ390-396A was reduced by 75% (P <0001). Surface plasmon resonance showed γA/γA, γ'/γ', and Aα251 fibrinogens bound FXIII-A2B2 with high affinity (nanomolar); however, Fibγ390-396A did not bind FXIII-A2B2 These data indicate fibrinogen residues γ390-396 comprise the major binding motif for FXIII-A2B2 Compared with γA/γA clots, FXIII-A2B2 activation peptide release was 2.7-fold slower in Fibγ390-396A clots (P < .02). Conversely, activation of recombinant FXIII-A2 (lacking FXIII-B2) was similar in γA/γA and Fibγ390-396A clots, suggesting fibrinogen residues γ390-396 accelerate FXIII-A2B2 activation in a FXIII-B2-dependent mechanism. Recombinant FXIII-B2 bound γA/γA, γ'/γ', and Aα251 with similar affinities as FXIII-A2B2, but did not bind or coprecipitate with Fibγ390-396A FXIII-B2 also coprecipitated with fibrinogen from FXIII-A-deficient mouse and human plasmas. Collectively, these data indicate that FXIII-A2B2 binds fibrinogen residues γ390-396 via the B subunits, and that excess plasma FXIII-B2 is not free, but rather circulates bound to fibrinogen. These findings provide insight into assembly of the fibrinogen/FXIII-A2B2 complex in both physiologic and therapeutic situations.
Collapse
|
17
|
Thomas A, Biswas A, Dodt J, Philippou H, Hethershaw E, Ensikat HJ, Ivaskevicius V, Oldenburg J. Coagulation Factor XIIIA Subunit Missense Mutations Affect Structure and Function at the Various Steps of Factor XIII Action. Hum Mutat 2016; 37:1030-41. [PMID: 27363989 DOI: 10.1002/humu.23041] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 06/06/2016] [Accepted: 06/17/2016] [Indexed: 11/06/2022]
Abstract
Inherited defects of coagulation Factor XIII (FXIII) can be categorized into severe and mild forms based on their genotype and phenotype. Heterozygous mutations occurring in F13A1 and F13B genes causing mild FXIII deficiency have been reported only in the last few years primarily because the mild FXIII deficiency patients are often asymptomatic unless exposed to some kind of a physical trauma. However, unlike mutations causing severe FXIII deficiency, many of these mutations have not been comprehensively characterized based on expression studies. In our current article, we have transiently expressed 16 previously reported missense mutations detected in the F13A1 gene of patients with mild FXIII deficiency and analyzed their respective expression phenotype. Complimentary to expression analysis, we have used in silico analysis to understand and explain some of the in vitro findings. The expression phenotype has been evaluated with a number of expression phenotype determining assays. We observe that the mutations influence different aspects of FXIII function and can be functionally categorized on the basis of their expression phenotype. We identified mutations which even in heterozygous form would have strong impact on the functional status of the protein (namely mutations p.Arg716Gly, p.Arg704Gln, p.Gln602Lys, p.Leu530Pro, p.His343Tyr, p.Pro290Arg, and p.Arg172Gln).
Collapse
Affiliation(s)
- Anne Thomas
- Institute of Experimental Haematology and Transfusion Medicine, University Clinic Bonn, Bonn, Germany
| | - Arijit Biswas
- Institute of Experimental Haematology and Transfusion Medicine, University Clinic Bonn, Bonn, Germany.
| | | | - Helen Philippou
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Emma Hethershaw
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | | | - Vytautas Ivaskevicius
- Institute of Experimental Haematology and Transfusion Medicine, University Clinic Bonn, Bonn, Germany
| | - Johannes Oldenburg
- Institute of Experimental Haematology and Transfusion Medicine, University Clinic Bonn, Bonn, Germany.
| |
Collapse
|
18
|
Abstract
Arterial and venous thromboses are major contributors to coagulation-associated morbidity and mortality. Greater understanding of mechanisms leading to thrombus formation and stability is expected to lead to improved treatment strategies. Factor XIII (FXIII) is a transglutaminase found in plasma and platelets. During thrombosis, activated FXIII cross-links fibrin and promotes thrombus stability. Recent studies have provided new information about FXIII activity during coagulation and its effects on clot composition and function. These findings reveal newly-recognized roles for FXIII in thrombosis. Herein, we review published literature on FXIII biology and effects on fibrin structure and stability, epidemiologic data associating FXIII with thrombosis, and evidence from animal models indicating FXIII has an essential role in determining thrombus stability, composition, and size.
Collapse
Affiliation(s)
- James R Byrnes
- Department of Pathology and Laboratory Medicine, McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Alisa S Wolberg
- Department of Pathology and Laboratory Medicine, McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
19
|
|
20
|
Ranking reactive glutamines in the fibrinogen αC region that are targeted by blood coagulant factor XIII. Blood 2016; 127:2241-8. [PMID: 26951791 DOI: 10.1182/blood-2015-09-672303] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 02/24/2016] [Indexed: 01/09/2023] Open
Abstract
Factor XIIIa (FXIIIa) introduces covalent γ-glutamyl-ε-lysyl crosslinks into the blood clot network. These crosslinks involve both the γ and α chains of fibrin. The C-terminal portion of the fibrin α chain extends into the αC region (210-610). Crosslinks within this region help generate a stiffer clot, which is more resistant to fibrinolysis. Fibrinogen αC (233-425) contains a binding site for FXIIIa and three glutamines Q237, Q328, and Q366 that each participate in physiological crosslinking reactions. Although these glutamines were previously identified, their reactivities toward FXIIIa have not been ranked. Matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometry and nuclear magnetic resonance (NMR) methods were thus used to directly characterize these three glutamines and probe for sources of FXIIIa substrate specificity. Glycine ethyl ester (GEE) and ammonium chloride served as replacements for lysine. Mass spectrometry and 2D heteronuclear single quantum coherence NMR revealed that Q237 is rapidly crosslinked first by FXIIIa followed by Q366 and Q328. Both (15)NH4Cl and (15)N-GEE could be crosslinked to the three glutamines in αC (233-425) with a similar order of reactivity as observed with the MALDI-TOF mass spectrometry assay. NMR studies using the single αC mutants Q237N, Q328N, and Q366N demonstrated that no glutamine is dependent on another to react first in the series. Moreover, the remaining two glutamines of each mutant were both still reactive. Further characterization of Q237, Q328, and Q366 is important because they are located in a fibrinogen region susceptible to physiological truncations and mutation. The current results suggest that these glutamines play distinct roles in fibrin crosslinking and clot architecture.
Collapse
|
21
|
de Jager M, Boot MV, Bol JGJM, Brevé JJP, Jongenelen CAM, Drukarch B, Wilhelmus MMM. The blood clotting Factor XIIIa forms unique complexes with amyloid-beta (Aβ) and colocalizes with deposited Aβ in cerebral amyloid angiopathy. Neuropathol Appl Neurobiol 2015; 42:255-72. [PMID: 25871449 DOI: 10.1111/nan.12244] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 04/09/2015] [Indexed: 12/11/2022]
Abstract
AIMS Cerebral amyloid angiopathy (CAA) is a key pathological hallmark of Alzheimer's disease (AD) characterized by accumulation of amyloid-beta (Aβ) protein in blood vessel walls. CAA impairs vessel functioning, affects blood brain barrier integrity and accelerates cognitive decline of AD patients. Unfortunately, mechanisms underlying Aβ deposition in the vessel wall remain largely unknown. Factor XIIIa (FXIIIa) is a blood-derived transglutaminase crucial in blood coagulation by cross-linking fibrin molecules. Evidence is mounting that blood-derived factors are present in CAA and may play a role in protein deposition in the vessel wall. We therefore investigated whether FXIIIa is present in CAA and if FXIIIa cross-link activity affects Aβ aggregation. METHODS Using immunohistochemistry, we investigated the distribution of FXIIIa, its activator thrombin and in situ FXIIIa activity in CAA in post-mortem AD tissue. We used surface plasmon resonance and Western blot analysis to study binding of FXIIIa to Aβ and the formation of FXIIIa-Aβ complexes, respectively. In addition, we studied cytotoxicity of FXIIIa-Aβ complexes to cerebrovascular cells. RESULTS FXIIIa, thrombin and in situ FXIIIa activity colocalize with the Aβ deposition in CAA. Furthermore, FXIIIa binds to Aβ with a higher binding affinity for Aβ1-42 compared with Aβ1-40 . Moreover, highly stable FXIIIa-Aβ complexes are formed independently of FXIIIa cross-linking activity that protected cerebrovascular cells from Aβ-induced toxicity in vitro. CONCLUSIONS Our data showed that FXIIIa colocalizes with Aβ in CAA and that FXIIIa forms unique protein complexes with Aβ that might play an important role in Aβ deposition and persistence in the vessel wall.
Collapse
Affiliation(s)
- M de Jager
- Department of Anatomy and Neurosciences, Cellular Neuropharmacology Section, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - M V Boot
- Department of Anatomy and Neurosciences, Cellular Neuropharmacology Section, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - J G J M Bol
- Department of Anatomy and Neurosciences, Cellular Neuropharmacology Section, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - J J P Brevé
- Department of Anatomy and Neurosciences, Cellular Neuropharmacology Section, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - C A M Jongenelen
- Department of Anatomy and Neurosciences, Cellular Neuropharmacology Section, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - B Drukarch
- Department of Anatomy and Neurosciences, Cellular Neuropharmacology Section, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - M M M Wilhelmus
- Department of Anatomy and Neurosciences, Cellular Neuropharmacology Section, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
22
|
Eight novel F13A1 gene missense mutations in patients with mild FXIII deficiency: in silico analysis suggests changes in FXIII-A subunit structure/function. Ann Hematol 2014; 93:1665-76. [DOI: 10.1007/s00277-014-2102-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 05/01/2014] [Indexed: 01/10/2023]
|
23
|
Biswas A, Ivaskevicius V, Thomas A, Oldenburg J. Coagulation factor XIII deficiency. Diagnosis, prevalence and management of inherited and acquired forms. Hamostaseologie 2014; 34:160-6. [PMID: 24503678 DOI: 10.5482/hamo-13-08-0046] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 01/28/2014] [Indexed: 11/05/2022] Open
Abstract
The plasma circulating zymogenic coagulation factor XIII (FXIII) is a protransglutaminase, which upon activation by thrombin and calcium cross-links preformed fibrin clots/fibrinolytic inhibitors making them mechanically stable and less susceptible to fibrinolysis. The zymogenic plasma FXIII molecule is a heterotetramer composed of two catalytic FXIII-A and two protective FXIII-B subunits. Factor XIII deficiency resulting from inherited or acquired causes can result in pathological bleeding episodes. A diverse spectrum of mutations have been reported in the F13A1 and F13B genes which cause inherited severe FXIII deficiency. The inherited severe FXIII deficiency, which is a rare coagulation disorder with a prevalence of 1 in 4 million has been the prime focus of clinical and genetic investigations owing to the severity of the bleeding phenotype associated with it. Recently however, with a growing understanding into the pleiotropic roles of FXIII, the fairly frequent milder form of FXIII deficiency caused by heterozygous mutations has become one of the subjects of investigative research. The acquired form of FXIII deficiency is usually caused by generation of autoantibodies or hyperconsumption in other disease states such as disseminated intravascular coagulation. Here, we update the knowledge about the pathophysiology of factor XIII deficiency and its therapeutic options.
Collapse
Affiliation(s)
- A Biswas
- Arijit Biswas Institute of Experimental Haematology and Transfusion Medicine, University Clinic Bonn, Sigmund Freud Str. 25 53127 Bonn, Germany, Tel. +49/(0)228/28 71 94 28, Fax +49/(0)228/28 71 43 20, E-mail:
| | | | | | | |
Collapse
|
24
|
Ariëns RAS. Fibrin(ogen) and thrombotic disease. J Thromb Haemost 2013; 11 Suppl 1:294-305. [PMID: 23809133 DOI: 10.1111/jth.12229] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 03/08/2013] [Indexed: 01/21/2023]
Abstract
Fibrinogen is an abundant plasma protein that, when converted to fibrin by thrombin, provides the main building blocks for the clot. Dys-, a-, and hypo-fibrinogenemias have been variably linked to a normal phenotype, bleeding or even thrombosis. Meanwhile, increased fibrinogen concentrations in the blood have been associated with risk for thrombosis. More recently, studies have focussed on abnormal fibrin structure as a cause for thrombosis. Fibrin clots that have high fiber density and increased resistance to fibrinolysis have been consistently associated with risk for thrombosis. Fibrin structure measurements can (i) provide an overall assessment of hemostatic capacity of a sample, (ii) include effects of thrombin generation and fibrinogen concentrations, (iii) include effects of fibrinogen mutations, polymorphisms, and modifications, and (iv) give an indication of clot mechanical strength and resistance to fibrinolysis. A fibrinogen splice variation of the γ-chain (γ') is discussed as a model for changes in fibrin structure in relation to thrombosis. Results from prospective studies on fibrin structure are awaited. Studies of fibrin formation under flow, interactions of fibrin with blood cells, the mechanical properties of the fibrin clot, and nanoscale/molecular characterization of fibrin formation are likely to expose new causal mechanisms for the role of fibrin in thrombotic disease. Future studies into the causality and mechanisms may lead to new opportunities using fibrin structure in the diagnosis or treatment of thrombosis.
Collapse
Affiliation(s)
- R A S Ariëns
- Division of Cardiovascular and Diabetes Research, Leeds Institute for Genetics, Health and Therapeutics, Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, UK.
| |
Collapse
|
25
|
Abstract
In this issue of Blood, Smith and colleagues report on the functional role of the interaction between these 2 proteins by studying the involved binding sites responsible for clot stabilization.(1)
Collapse
|