1
|
El Hassab MA, Eldehna WM, Hassan GS, Abou-Seri SM. Multi-stage structure-based virtual screening approach combining 3D pharmacophore, docking and molecular dynamic simulation towards the identification of potential selective PARP-1 inhibitors. BMC Chem 2025; 19:30. [PMID: 39893479 PMCID: PMC11786381 DOI: 10.1186/s13065-025-01389-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 01/14/2025] [Indexed: 02/04/2025] Open
Abstract
Presently, humanity is confronted with a range of diseases that have high death rates, especially those linked to cancerous growths. Several enzymes and proteins have been discovered as highly attractive targets for cancer treatment. The PARP family consists of 17 members and plays a crucial role in repairing DNA damage, which enables the survival of cancer cells. PARP-1 and, to a lesser extent, PARP-2 display above 90% activity in response to DNA damage, thereby distinguishing them apart from other members of the PARP family. Elevated levels of PARP-1 were observed in many types of tumor cells, such as breast, lung, ovarian, prostate, and melanomas. In an attempt to provide a future guide for developing selective inhibitors for PARP-1 over PARP-2 to minimize the resulting side effects from PARP-2 inhibitors, we constructed a structure-based virtual screening approach (SBVS). Firstly. A 3D pharmacophore was constructed based on the interaction of the selective inhibitor compound IV. After that, a database of nearly 450,000 phthalimide-containing inhibitors was screened through the validated pharmacophore, and 165 compounds were retrieved. The retrieved compounds were docked into the active site of PARP-1 where only 5 compounds MWGS-1-5 achieved a favorable docking score than the reference IV (-16.8 Kcal/mol). Redocking of the five compounds should have excellent selectivity for PARP-1 over PARP-2, especially compound MWGS-1. Further endorsement via molecular dynamics has proven higher affinity and selectivity for MWGS-1 towards PARP-1 over PARP-2, in which PARP-1- MWGS-1 and PARP-1- MWGS-1 achieved RMSD values of 1.42 and 2.8 Å, respectively.
Collapse
Affiliation(s)
- Mahmoud A El Hassab
- Department of Medicinal Chemistry, Faculty of Pharmacy, King Salman International University (KSIU), South Sinai, Ras Sudr, 46612, Egypt.
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, P.O. Box 33516, Kafrelsheikh, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pharos University in Alexandria, Canal El Mahmoudia St, Alexandria, 21648, Egypt
| | - Ghaneya S Hassan
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
- Pharmaceutical Chemistry Department, School of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Sahar M Abou-Seri
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| |
Collapse
|
2
|
Guo T, Yuan Y, Zou Y, Guo Z, Yang T, Tang M, Ma Z, Fu Z, Bo W, Wang P, Bai P, Wang T, Jia T, Yang J, Chen L. Design, Synthesis, and Pharmacodynamic Evaluation of Highly Selective PARP1 Inhibitors with Brain Penetrance. J Med Chem 2025; 68:1731-1754. [PMID: 39789975 DOI: 10.1021/acs.jmedchem.4c02463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Selective poly(ADP-ribose) polymerase 1 (PARP1) inhibitors not only exhibit antitumor efficacy but also offer the potential to mitigate the toxicities typically associated with broader PARP inhibition. In this study, we designed and synthesized a series of small molecules targeting highly selective PARP1 inhibitors. Among these, T26 demonstrated excellent selectivity to PARP1 along with the capability to effectively cross the blood-brain barrier (BBB). T26 exhibited an IC50 of 0.2 nM against PARP1, with a remarkable 610-fold selectivity over PARP2 and high antiproliferative activity in BRCA mutant MDA-MB-436 cells with an IC50 of 2.6 nM. T26 also displayed excellent oral bioavailability (F = 87.74%) and long half-life (T1/2 = 76.07 h) in mice, supporting once every other day administration. Oral administration of T26 at 0.3 mg/kg and 3 mg/kg resulted in significant tumor growth inhibition in both subcutaneous and intracranial xenograft models of MDA-MB-436, suggesting T26 significant potential for the treatment of breast cancer metastases.
Collapse
Affiliation(s)
- Tao Guo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yongting Yuan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yurong Zou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhongning Guo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tao Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Minghai Tang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ziyan Ma
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhiyuan Fu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Weichen Bo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Peng Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Peng Bai
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Taijin Wang
- Chengdu Zenitar Biomedical Technology Co., Ltd., Chengdu 610041, China
| | - Tao Jia
- Chengdu Zenitar Biomedical Technology Co., Ltd., Chengdu 610041, China
| | - Jianhong Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lijuan Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Chengdu Zenitar Biomedical Technology Co., Ltd., Chengdu 610041, China
| |
Collapse
|
3
|
Shuai Q, Bai X, Li G, Wang L, Chen J, Chen L. Hematopoietic adverse events associated with PARP inhibitors: A FAERS database study. Expert Opin Drug Saf 2024:1-11. [PMID: 39705053 DOI: 10.1080/14740338.2024.2443781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/30/2024] [Accepted: 11/08/2024] [Indexed: 12/21/2024]
Abstract
OBJECTIVES Analyze hematopoietic ADR signals of PARP inhibitors (Olaparib, Niraparib, Rucaparib, Talazoparib) using FAERS data to inform clinical practice. METHODS Extracted ASCII data for these drugs from Q1 2019 to Q2 2024. Employed SMQ and PT for standardization. Screened ADR signals via ROR, PRR, and MHRA method, comparing SMQ ratios. RESULTS Hematopoietic ADRs peaked within 30 days post-treatment, with cytopenia and leukopenia most prevalent. Niraparib showed the highest adverse event count and signal intensity. Olaparib and Talazoparib also indicated strong hematotoxicity. CONCLUSION PARP inhibitors vary in ADR incidence and duration, necessitating personalized treatment plans for optimized safety and rational use.
Collapse
Affiliation(s)
- Qindai Shuai
- Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xuefei Bai
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Gen Li
- Department of Pharmacy, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu, China
| | - Li Wang
- Department of Pharmacy, Chengdu Jinniu District People's Hospital, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University
| | - Jia Chen
- Department of Pharmacy and Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Li Chen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University
- Department of Pharmacy and Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Pharmacology, Faculty of Medicine, University of the Basque Country, UPV/EHU, Leioa, Spain
| |
Collapse
|
4
|
Gao S, Hou Y, Xu Y, Li J, Zhang C, Jiang S, Yu S, Liu L, Li L, Tu W, Yu B, Zhang Y. Discovery of Pyrazolo[1,5,4-de]quinoxalin-2(3 H)-one Derivatives as Highly Potent and Selective PARP1 Inhibitors. J Med Chem 2024; 67:21380-21399. [PMID: 39571073 DOI: 10.1021/acs.jmedchem.4c02276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Poly-ADP-ribose-polymerase 1/2 (PARP1/2) inhibitors have been approved for cancers with homologous recombination deficiency (HRD). However, their narrow therapeutic indexes largely due to hematologic toxicities have limited their clinical usefulness. Developing selective PARP1 inhibitors has emerged as an attractive strategy to achieve equivalent antitumor activity while alleviating the hematological toxicity caused by PARP2 inhibition. Herein, we report the discovery of pyrazolo[1,5,4-de]quinoxalin-2(3H)-one 30 as a novel selective PARP1 inhibitor. 30 formed tighter PARP1-DNA trapping than AZD9574, leading to better potency in inhibiting cancer cell proliferation. 30 achieved tumor regression in the BRCA1-mutated MDA-MB-436 xenograft model and showed synergistic efficacy in combination with carboplatin in the SUM149PT xenograft model. In the rat hematological toxicity study, 30 exhibited minimal impact on hematological parameters at 25 mg/kg, while AZD5305 at 1 mg/kg caused 56.5% reduction of reticulocyte. Taken together, we discovered compound 30 with a therapeutic index superior to that of PARP1 inhibitors AZD5305 and AZD9574 in the preclinical setting.
Collapse
Affiliation(s)
- Shanyun Gao
- Discovery & Early Development, Haihe Biopharma Co., Ltd, Shanghai 201203, China
| | - Yingjie Hou
- Discovery & Early Development, Haihe Biopharma Co., Ltd, Shanghai 201203, China
| | - Yanxiao Xu
- Discovery & Early Development, Haihe Biopharma Co., Ltd, Shanghai 201203, China
| | - Jingjing Li
- Discovery & Early Development, Haihe Biopharma Co., Ltd, Shanghai 201203, China
| | - Chaobo Zhang
- Discovery & Early Development, Haihe Biopharma Co., Ltd, Shanghai 201203, China
| | - Shujuan Jiang
- Discovery & Early Development, Haihe Biopharma Co., Ltd, Shanghai 201203, China
| | - Songda Yu
- Discovery & Early Development, Haihe Biopharma Co., Ltd, Shanghai 201203, China
| | - Lei Liu
- Discovery & Early Development, Haihe Biopharma Co., Ltd, Shanghai 201203, China
| | - Leping Li
- Discovery & Early Development, Haihe Biopharma Co., Ltd, Shanghai 201203, China
| | - Wangyang Tu
- Discovery & Early Development, Haihe Biopharma Co., Ltd, Shanghai 201203, China
| | - Bing Yu
- Discovery & Early Development, Haihe Biopharma Co., Ltd, Shanghai 201203, China
| | - Yixiang Zhang
- Discovery & Early Development, Haihe Biopharma Co., Ltd, Shanghai 201203, China
| |
Collapse
|
5
|
Gong X, Liu C, Tang H, Wu S, Yang Q. Application and research progress of synthetic lethality in the development of anticancer therapeutic drugs. Front Oncol 2024; 14:1460412. [PMID: 39655075 PMCID: PMC11625670 DOI: 10.3389/fonc.2024.1460412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 10/31/2024] [Indexed: 12/12/2024] Open
Abstract
With the tremendous success of the PARP inhibitor olaparib in clinical practice, synthetic lethality has become an important field for the discovery and development of anticancer drugs. More and more synthetic lethality targets have been discovered with the rapid development of biotechnology in recent years. Currently, many drug candidates that were designed and developed on the basis of the concept of synthetic lethality have entered clinical trials. Taking representative synthetic lethal targets Poly ADP-ribose polymerase 1 (PARP1), Werner syndrome helicase (WRN) and protein arginine methyltransferase 5 (PRMT5) as examples, this article briefly discusses the application and research progress of synthetic lethality in the development of anticancer drugs.
Collapse
Affiliation(s)
| | | | | | | | - Qingyun Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
6
|
Alhaddad L, Osipov AN, Leonov S. FLASH Radiotherapy: Benefits, Mechanisms, and Obstacles to Its Clinical Application. Int J Mol Sci 2024; 25:12506. [PMID: 39684218 DOI: 10.3390/ijms252312506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/14/2024] [Accepted: 11/17/2024] [Indexed: 12/18/2024] Open
Abstract
Radiotherapy (RT) has been shown to be a cornerstone of both palliative and curative tumor care. RT has generally been reported to be sharply limited by ionizing radiation (IR)-induced toxicity, thereby constraining the control effect of RT on tumor growth. FLASH-RT is the delivery of ultra-high dose rate (UHDR) several orders of magnitude higher than what is presently used in conventional RT (CONV-RT). The FLASH-RT clinical trials have been designed to examine the UHDR deliverability, the effectiveness of tumor control, the dose tolerance of normal tissue, and the reproducibility of treatment effects across several institutions. Although it is still in its infancy, FLASH-RT has been shown to have potential to rival current RT in terms of safety. Several studies have suggested that the adoption of FLASH-RT is very limited, and the incorporation of this new technique into routine clinical RT will require the use of accurate dosimetry methods and reproducible equipment that enable the reliable and robust measurements of doses and dose rates. The purpose of this review is to highlight the advantages of this technology, the potential mechanisms underpinning the FLASH-RT effect, and the major challenges that need to be tackled in the clinical transfer of FLASH-RT.
Collapse
Affiliation(s)
- Lina Alhaddad
- Department of Environmental Sciences, Faculty of Science, Damascus University, Damascus P.O. Box 30621, Syria
| | - Andreyan N Osipov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow 119991, Russia
- Moscow Center for Advanced Studies, Kulakova Str. 20, Moscow 123592, Russia
- State Research Center-Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency (SRC-FMBC), Moscow 123098, Russia
- CANDLE Synchrotron Research Institute, 31 Acharyan, Yerevan 0040, Armenia
| | - Sergey Leonov
- Moscow Center for Advanced Studies, Kulakova Str. 20, Moscow 123592, Russia
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| |
Collapse
|
7
|
MacGilvary N, Cantor SB. Positioning loss of PARP1 activity as the central toxic event in BRCA-deficient cancer. DNA Repair (Amst) 2024; 144:103775. [PMID: 39461277 DOI: 10.1016/j.dnarep.2024.103775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/05/2024] [Accepted: 10/13/2024] [Indexed: 10/29/2024]
Abstract
The mechanisms by which poly(ADP-ribose) polymerase 1 (PARP1) inhibitors (PARPi)s inflict replication stress and/or DNA damage are potentially numerous. PARPi toxicity could derive from loss of its catalytic activity and/or its physical trapping of PARP1 onto DNA that perturbs not only PARP1 function in DNA repair and DNA replication, but also obstructs compensating pathways. The combined disruption of PARP1 with either of the hereditary breast and ovarian cancer genes, BRCA1 or BRCA2 (BRCA), results in synthetic lethality. This has driven the development of PARP inhibitors as therapies for BRCA-mutant cancers. In this review, we focus on recent findings that highlight loss of PARP1 catalytic activity, rather than PARPi-induced allosteric trapping, as central to PARPi efficacy in BRCA deficient cells. However, we also review findings that PARP-trapping is an effective strategy in other genetic deficiencies. Together, we conclude that the mechanism-of-action of PARP inhibitors is not unilateral; with loss of activity or enhanced trapping differentially killing depending on the genetic context. Therefore, effectively targeting cancer cells requires an intricate understanding of their key underlying vulnerabilities.
Collapse
Affiliation(s)
- Nathan MacGilvary
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Sharon B Cantor
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
8
|
Jessop M, Broadway BJ, Miller K, Guettler S. Regulation of PARP1/2 and the tankyrases: emerging parallels. Biochem J 2024; 481:1097-1123. [PMID: 39178157 DOI: 10.1042/bcj20230230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 08/25/2024]
Abstract
ADP-ribosylation is a prominent and versatile post-translational modification, which regulates a diverse set of cellular processes. Poly-ADP-ribose (PAR) is synthesised by the poly-ADP-ribosyltransferases PARP1, PARP2, tankyrase (TNKS), and tankyrase 2 (TNKS2), all of which are linked to human disease. PARP1/2 inhibitors have entered the clinic to target cancers with deficiencies in DNA damage repair. Conversely, tankyrase inhibitors have continued to face obstacles on their way to clinical use, largely owing to our limited knowledge of their molecular impacts on tankyrase and effector pathways, and linked concerns around their tolerability. Whilst detailed structure-function studies have revealed a comprehensive picture of PARP1/2 regulation, our mechanistic understanding of the tankyrases lags behind, and thereby our appreciation of the molecular consequences of tankyrase inhibition. Despite large differences in their architecture and cellular contexts, recent structure-function work has revealed striking parallels in the regulatory principles that govern these enzymes. This includes low basal activity, activation by intra- or inter-molecular assembly, negative feedback regulation by auto-PARylation, and allosteric communication. Here we compare these poly-ADP-ribosyltransferases and point towards emerging parallels and open questions, whose pursuit will inform future drug development efforts.
Collapse
Affiliation(s)
- Matthew Jessop
- Division of Structural Biology, The Institute of Cancer Research (ICR), London, U.K
- Division of Cancer Biology, The Institute of Cancer Research (ICR), London, U.K
| | - Benjamin J Broadway
- Division of Structural Biology, The Institute of Cancer Research (ICR), London, U.K
- Division of Cancer Biology, The Institute of Cancer Research (ICR), London, U.K
| | - Katy Miller
- Division of Structural Biology, The Institute of Cancer Research (ICR), London, U.K
- Division of Cancer Biology, The Institute of Cancer Research (ICR), London, U.K
| | - Sebastian Guettler
- Division of Structural Biology, The Institute of Cancer Research (ICR), London, U.K
- Division of Cancer Biology, The Institute of Cancer Research (ICR), London, U.K
| |
Collapse
|
9
|
Herencia-Ropero A, Llop-Guevara A, Staniszewska AD, Domènech-Vivó J, García-Galea E, Moles-Fernández A, Pedretti F, Domènech H, Rodríguez O, Guzmán M, Arenas EJ, Verdaguer H, Calero-Nieto FJ, Talbot S, Tobalina L, Leo E, Lau A, Nuciforo P, Dienstmann R, Macarulla T, Arribas J, Díez O, Gutiérrez-Enríquez S, Forment JV, O'Connor MJ, Albertella M, Balmaña J, Serra V. The PARP1 selective inhibitor saruparib (AZD5305) elicits potent and durable antitumor activity in patient-derived BRCA1/2-associated cancer models. Genome Med 2024; 16:107. [PMID: 39187844 PMCID: PMC11348616 DOI: 10.1186/s13073-024-01370-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/26/2024] [Indexed: 08/28/2024] Open
Abstract
BACKGROUND Poly (ADP-ribose) polymerase 1 and 2 (PARP1/2) inhibitors (PARPi) are targeted therapies approved for homologous recombination repair (HRR)-deficient breast, ovarian, pancreatic, and prostate cancers. Since inhibition of PARP1 is sufficient to cause synthetic lethality in tumors with homologous recombination deficiency (HRD), PARP1 selective inhibitors such as saruparib (AZD5305) are being developed. It is expected that selective PARP1 inhibition leads to a safer profile that facilitates its combination with other DNA damage repair inhibitors. Here, we aimed to characterize the antitumor activity of AZD5305 in patient-derived preclinical models compared to the first-generation PARP1/2 inhibitor olaparib and to identify mechanisms of resistance. METHODS Thirteen previously characterized patient-derived tumor xenograft (PDX) models from breast, ovarian, and pancreatic cancer patients harboring germline pathogenic alterations in BRCA1, BRCA2, or PALB2 were used to evaluate the efficacy of AZD5305 alone or in combination with carboplatin or an ataxia telangiectasia and Rad3 related (ATR) inhibitor (ceralasertib) and compared it to the first-generation PARPi olaparib. We performed DNA and RNA sequencing as well as protein-based assays to identify mechanisms of acquired resistance to either PARPi. RESULTS AZD5305 showed superior antitumor activity than the first-generation PARPi in terms of preclinical complete response rate (75% vs. 37%). The median preclinical progression-free survival was significantly longer in the AZD5305-treated group compared to the olaparib-treated group (> 386 days vs. 90 days). Mechanistically, AZD5305 induced more replication stress and genomic instability than the PARP1/2 inhibitor olaparib in PARPi-sensitive tumors. All tumors at progression with either PARPi (39/39) showed increase of HRR functionality by RAD51 foci formation. The most prevalent resistance mechanisms identified were the acquisition of reversion mutations in BRCA1/BRCA2 and the accumulation of hypomorphic BRCA1. AZD5305 did not sensitize PDXs with acquired resistance to olaparib but elicited profound and durable responses when combined with carboplatin or ceralasertib in 3/6 and 5/5 models, respectively. CONCLUSIONS Collectively, these results show that the novel PARP1 selective inhibitor AZD5305 yields a potent antitumor response in PDX models with HRD and delays PARPi resistance alone or in combination with carboplatin or ceralasertib, which supports its use in the clinic as a new therapeutic option.
Collapse
Affiliation(s)
- Andrea Herencia-Ropero
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Carrer Natzaret 115-117, 08035, Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, Barcelona, Spain
| | - Alba Llop-Guevara
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Carrer Natzaret 115-117, 08035, Barcelona, Spain.
| | | | - Joanna Domènech-Vivó
- Hereditary Cancer Genetics Group, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Carrer Natzaret 115-117, 08035, Barcelona, Spain
- Programa de doctorat en Biomedicina, Universitat de Barcelona, Barcelona, Spain
| | - Eduardo García-Galea
- Oncology Data Science Group, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Alejandro Moles-Fernández
- Medicine Genetics Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Department of Clinical and Molecular Genetics, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Flaminia Pedretti
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Carrer Natzaret 115-117, 08035, Barcelona, Spain
| | - Heura Domènech
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Carrer Natzaret 115-117, 08035, Barcelona, Spain
| | - Olga Rodríguez
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Carrer Natzaret 115-117, 08035, Barcelona, Spain
| | - Marta Guzmán
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Carrer Natzaret 115-117, 08035, Barcelona, Spain
| | - Enrique J Arenas
- Growth Factors Group, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Monforte de Lemos, Madrid, Spain
- Epigenetics Group, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Helena Verdaguer
- Preclinical and Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Gastrointestinal and Endocrine Tumor Unit, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | | | | | | | | | - Alan Lau
- Oncology R&D, AstraZeneca, Cambridge, UK
| | - Paolo Nuciforo
- Molecular Oncology Group, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Rodrigo Dienstmann
- Oncology Data Science Group, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Teresa Macarulla
- Preclinical and Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Gastrointestinal and Endocrine Tumor Unit, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Joaquín Arribas
- Growth Factors Group, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Monforte de Lemos, Madrid, Spain
- Departament of Medicine and Life Sciences, Pompeu Fabra University, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies, ICREA, Barcelona, Spain
- Cancer Research Program, The Hospital del Mar Research Institute, Barcelona, Spain
| | - Orland Díez
- Hereditary Cancer Genetics Group, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Carrer Natzaret 115-117, 08035, Barcelona, Spain
- Department of Clinical and Molecular Genetics, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Sara Gutiérrez-Enríquez
- Hereditary Cancer Genetics Group, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Carrer Natzaret 115-117, 08035, Barcelona, Spain
| | | | | | | | - Judith Balmaña
- Hereditary Cancer Genetics Group, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Carrer Natzaret 115-117, 08035, Barcelona, Spain.
- Department of Medical Oncology, Vall d'Hebron Barcelona Hospital Campus, Autonomous University of Barcelona, Barcelona, Spain.
| | - Violeta Serra
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Carrer Natzaret 115-117, 08035, Barcelona, Spain.
| |
Collapse
|
10
|
Frederick MI, Abdesselam D, Clouvel A, Croteau L, Hassan S. Leveraging PARP-1/2 to Target Distant Metastasis. Int J Mol Sci 2024; 25:9032. [PMID: 39201718 PMCID: PMC11354653 DOI: 10.3390/ijms25169032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
Poly (ADP-Ribose) Polymerase (PARP) inhibitors have changed the outcomes and therapeutic strategy for several cancer types. As a targeted therapeutic mainly for patients with BRCA1/2 mutations, PARP inhibitors have commonly been exploited for their capacity to prevent DNA repair. In this review, we discuss the multifaceted roles of PARP-1 and PARP-2 beyond DNA repair, including the impact of PARP-1 on chemokine signalling, immune modulation, and transcriptional regulation of gene expression, particularly in the contexts of angiogenesis and epithelial-to-mesenchymal transition (EMT). We evaluate the pre-clinical role of PARP inhibitors, either as single-agent or combination therapies, to block the metastatic process. Efficacy of PARP inhibitors was demonstrated via DNA repair-dependent and independent mechanisms, including DNA damage, cell migration, invasion, initial colonization at the metastatic site, osteoclastogenesis, and micrometastasis formation. Finally, we summarize the recent clinical advancements of PARP inhibitors in the prevention and progression of distant metastases, with a particular focus on specific metastatic sites and PARP-1 selective inhibitors. Overall, PARP inhibitors have demonstrated great potential in inhibiting the metastatic process, pointing the way for greater use in early cancer settings.
Collapse
Affiliation(s)
- Mallory I. Frederick
- Faculty of Medicine, Université de Montréal, Montreal, QC H3C 3T5, Canada; (M.I.F.); (D.A.); (L.C.)
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), l’Institut de Cancer de Montreal, Montreal, QC H2X 0A9, Canada;
| | - Djihane Abdesselam
- Faculty of Medicine, Université de Montréal, Montreal, QC H3C 3T5, Canada; (M.I.F.); (D.A.); (L.C.)
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), l’Institut de Cancer de Montreal, Montreal, QC H2X 0A9, Canada;
| | - Anna Clouvel
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), l’Institut de Cancer de Montreal, Montreal, QC H2X 0A9, Canada;
| | - Laurent Croteau
- Faculty of Medicine, Université de Montréal, Montreal, QC H3C 3T5, Canada; (M.I.F.); (D.A.); (L.C.)
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), l’Institut de Cancer de Montreal, Montreal, QC H2X 0A9, Canada;
| | - Saima Hassan
- Faculty of Medicine, Université de Montréal, Montreal, QC H3C 3T5, Canada; (M.I.F.); (D.A.); (L.C.)
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), l’Institut de Cancer de Montreal, Montreal, QC H2X 0A9, Canada;
- Division of Surgical Oncology, Department of Surgery, Centre Hospitalier de l’Université de Montréal (CHUM), Montreal, QC H2X 0C1, Canada
| |
Collapse
|
11
|
Li X, Zou L. BRCAness, DNA gaps, and gain and loss of PARP inhibitor-induced synthetic lethality. J Clin Invest 2024; 134:e181062. [PMID: 39007266 PMCID: PMC11245158 DOI: 10.1172/jci181062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024] Open
Abstract
Mutations in the tumor-suppressor genes BRCA1 and BRCA2 resulting in BRCA1/2 deficiency are frequently identified in breast, ovarian, prostate, pancreatic, and other cancers. Poly(ADP-ribose) polymerase (PARP) inhibitors (PARPis) selectively kill BRCA1/2-deficient cancer cells by inducing synthetic lethality, providing an effective biomarker-guided strategy for targeted cancer therapy. However, a substantial fraction of cancer patients carrying BRCA1/2 mutations do not respond to PARPis, and most patients develop resistance to PARPis over time, highlighting a major obstacle to PARPi therapy in the clinic. Recent studies have revealed that changes of specific functional defects of BRCA1/2-deficient cells, particularly their defects in suppressing and protecting single-stranded DNA gaps, contribute to the gain or loss of PARPi-induced synthetic lethality. These findings not only shed light on the mechanism of action of PARPis, but also lead to revised models that explain how PARPis selectively kill BRCA-deficient cancer cells. Furthermore, new mechanistic principles of PARPi sensitivity and resistance have emerged from these studies, generating potentially useful guidelines for predicting the PARPi response and design therapies for overcoming PARPi resistance. In this Review, we will discuss these recent studies and put them in context with the classic views of PARPi-induced synthetic lethality, aiming to stimulate the development of new therapeutic strategies to overcome PARPi resistance and improve PARPi therapy.
Collapse
|
12
|
Zhang Y, Li X, Liu F, Bai X, Liu X, Sun H, Gao C, Lin Y, Xing P, Zhu J, Liu R, Wang Z, Dai J, Shi D. Design of Selective PARP-1 Inhibitors and Antitumor Studies. J Med Chem 2024; 67:8877-8901. [PMID: 38776379 DOI: 10.1021/acs.jmedchem.3c02460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Designing selective PARP-1 inhibitors has become a new strategy for anticancer drug development. By sequence comparison of PARP-1 and PARP-2, we identified a possible selective site (S site) consisting of several different amino acid residues of α-5 helix and D-loop. Targeting this S site, 140 compounds were designed, synthesized, and characterized for their anticancer activities and mechanisms. Compound I16 showed the highest PARP-1 enzyme inhibitory activity (IC50 = 12.38 ± 1.33 nM) and optimal selectivity index over PARP-2 (SI = 155.74). Oral administration of I16 (25 mg/kg) showed high inhibition rates of Hela and SK-OV-3 tumor cell xenograft models, both of which were higher than those of the oral positive drug Olaparib (50 mg/kg). In addition, I16 has an excellent safety profile, without significant toxicity at high oral doses. These findings provide a novel design strategy and chemotype for the development of safe, efficient, and highly selective PARP-1 inhibitors.
Collapse
Affiliation(s)
- Yiting Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xiangqian Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Fang Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xiaoyi Bai
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xiaochun Liu
- Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
| | - Hao Sun
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Chenxia Gao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yuxi Lin
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Pan Xing
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Jiqiang Zhu
- Shandong Linghai Biotechnology Co.Ltd., Jinan 250299, Shandong, P. R. China
| | - Ruihua Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Zemin Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Jiajia Dai
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, Shandong, China
| | - Dayong Shi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Shandong Linghai Biotechnology Co.Ltd., Jinan 250299, Shandong, P. R. China
| |
Collapse
|
13
|
Szántó M, Yélamos J, Bai P. Specific and shared biological functions of PARP2 - is PARP2 really a lil' brother of PARP1? Expert Rev Mol Med 2024; 26:e13. [PMID: 38698556 PMCID: PMC11140550 DOI: 10.1017/erm.2024.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/07/2024] [Accepted: 03/20/2024] [Indexed: 05/05/2024]
Abstract
PARP2, that belongs to the family of ADP-ribosyl transferase enzymes (ART), is a discovery of the millennium, as it was identified in 1999. Although PARP2 was described initially as a DNA repair factor, it is now evident that PARP2 partakes in the regulation or execution of multiple biological processes as inflammation, carcinogenesis and cancer progression, metabolism or oxidative stress-related diseases. Hereby, we review the involvement of PARP2 in these processes with the aim of understanding which processes are specific for PARP2, but not for other members of the ART family. A better understanding of the specific functions of PARP2 in all of these biological processes is crucial for the development of new PARP-centred selective therapies.
Collapse
Affiliation(s)
- Magdolna Szántó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - José Yélamos
- Hospital del Mar Research Institute, Barcelona, Spain
| | - Péter Bai
- HUN-REN-UD Cell Biology and Signaling Research Group, Debrecen, 4032, Hungary
- MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, 4032, Hungary
- Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen 4032, Hungary
| |
Collapse
|
14
|
Muoio D, Laspata N, Dannenberg RL, Curry C, Darkoa-Larbi S, Hedglin M, Uttam S, Fouquerel E. PARP2 promotes Break Induced Replication-mediated telomere fragility in response to replication stress. Nat Commun 2024; 15:2857. [PMID: 38565848 PMCID: PMC10987537 DOI: 10.1038/s41467-024-47222-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 03/22/2024] [Indexed: 04/04/2024] Open
Abstract
PARP2 is a DNA-dependent ADP-ribosyl transferase (ARTs) enzyme with Poly(ADP-ribosyl)ation activity that is triggered by DNA breaks. It plays a role in the Base Excision Repair pathway, where it has overlapping functions with PARP1. However, additional roles for PARP2 have emerged in the response of cells to replication stress. In this study, we demonstrate that PARP2 promotes replication stress-induced telomere fragility and prevents telomere loss following chronic induction of oxidative DNA lesions and BLM helicase depletion. Telomere fragility results from the activity of the break-induced replication pathway (BIR). During this process, PARP2 promotes DNA end resection, strand invasion and BIR-dependent mitotic DNA synthesis by orchestrating POLD3 recruitment and activity. Our study has identified a role for PARP2 in the response to replication stress. This finding may lead to the development of therapeutic approaches that target DNA-dependent ART enzymes, particularly in cancer cells with high levels of replication stress.
Collapse
Affiliation(s)
- Daniela Muoio
- UPMC Hillman Cancer Center, University of Pittsburgh Cancer Institute, Department of Pharmacology and Chemical Biology, Pittsburgh, PA, 15213, USA
| | - Natalie Laspata
- UPMC Hillman Cancer Center, University of Pittsburgh Cancer Institute, Department of Pharmacology and Chemical Biology, Pittsburgh, PA, 15213, USA
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 233S. 10th street, Philadelphia, PA, 19107, USA
| | - Rachel L Dannenberg
- Department of Chemistry, The Pennsylvania State University, University park, State College, PA, 16802, USA
| | - Caroline Curry
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 233S. 10th street, Philadelphia, PA, 19107, USA
| | - Simone Darkoa-Larbi
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 233S. 10th street, Philadelphia, PA, 19107, USA
| | - Mark Hedglin
- Department of Chemistry, The Pennsylvania State University, University park, State College, PA, 16802, USA
| | - Shikhar Uttam
- Department of Computational and Systems Biology, UPMC Hillman Cancer Center, University of Pittsburgh, 5117 Centre Avenue, Pittsburgh, PA, 15213, USA
| | - Elise Fouquerel
- UPMC Hillman Cancer Center, University of Pittsburgh Cancer Institute, Department of Pharmacology and Chemical Biology, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
15
|
Staniszewska AD, Pilger D, Gill SJ, Jamal K, Bohin N, Guzzetti S, Gordon J, Hamm G, Mundin G, Illuzzi G, Pike A, McWilliams L, Maglennon G, Rose J, Hawthorne G, Cortes Gonzalez M, Halldin C, Johnström P, Schou M, Critchlow SE, Fawell S, Johannes JW, Leo E, Davies BR, Cosulich S, Sarkaria JN, O'Connor MJ, Hamerlik P. Preclinical Characterization of AZD9574, a Blood-Brain Barrier Penetrant Inhibitor of PARP1. Clin Cancer Res 2024; 30:1338-1351. [PMID: 37967136 DOI: 10.1158/1078-0432.ccr-23-2094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/04/2023] [Accepted: 11/09/2023] [Indexed: 11/17/2023]
Abstract
PURPOSE We evaluated the properties and activity of AZD9574, a blood-brain barrier (BBB) penetrant selective inhibitor of PARP1, and assessed its efficacy and safety alone and in combination with temozolomide (TMZ) in preclinical models. EXPERIMENTAL DESIGN AZD9574 was interrogated in vitro for selectivity, PARylation inhibition, PARP-DNA trapping, the ability to cross the BBB, and the potential to inhibit cancer cell proliferation. In vivo efficacy was determined using subcutaneous as well as intracranial mouse xenograft models. Mouse, rat, and monkey were used to assess AZD9574 BBB penetration and rat models were used to evaluate potential hematotoxicity for AZD9574 monotherapy and the TMZ combination. RESULTS AZD9574 demonstrated PARP1-selectivity in fluorescence anisotropy, PARylation, and PARP-DNA trapping assays and in vivo experiments demonstrated BBB penetration. AZD9574 showed potent single agent efficacy in preclinical models with homologous recombination repair deficiency in vitro and in vivo. In an O6-methylguanine-DNA methyltransferase (MGMT)-methylated orthotopic glioma model, AZD9574 in combination with TMZ was superior in extending the survival of tumor-bearing mice compared with TMZ alone. CONCLUSIONS The combination of three key features-PARP1 selectivity, PARP1 trapping profile, and high central nervous system penetration in a single molecule-supports the development of AZD9574 as the best-in-class PARP inhibitor for the treatment of primary and secondary brain tumors. As documented by in vitro and in vivo studies, AZD9574 shows robust anticancer efficacy as a single agent as well as in combination with TMZ. AZD9574 is currently in a phase I trial (NCT05417594). See related commentary by Lynce and Lin, p. 1217.
Collapse
Affiliation(s)
| | - Domenic Pilger
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Sonja J Gill
- Oncology Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Kunzah Jamal
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Natacha Bohin
- Oncology Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Sofia Guzzetti
- DMPK, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Jacob Gordon
- Oncology R&D, AstraZeneca, Boston, Massachusetts
| | - Gregory Hamm
- Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Gill Mundin
- DMPK, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Giuditta Illuzzi
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Andy Pike
- DMPK, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Lisa McWilliams
- Discovery Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Gareth Maglennon
- Pathology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Jonathan Rose
- Animal Sciences and Technologies, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Glen Hawthorne
- Integrated Bioanalysis, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | | | - Christer Halldin
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Peter Johnström
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- PET Science Centre at Karolinska Institutet, Precision Medicine and Biosamples, Oncology R&D, Stockholm, Sweden
| | - Magnus Schou
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- PET Science Centre at Karolinska Institutet, Precision Medicine and Biosamples, Oncology R&D, Stockholm, Sweden
| | | | | | | | - Elisabetta Leo
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Barry R Davies
- Projects Group, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Sabina Cosulich
- Projects Group, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | | | - Mark J O'Connor
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Petra Hamerlik
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| |
Collapse
|
16
|
Lynce F, Lin NU. From Serendipity to Intention: Development of Brain-Penetrant PARP1-Selective Inhibitors. Clin Cancer Res 2024; 30:1217-1219. [PMID: 38251977 DOI: 10.1158/1078-0432.ccr-23-3571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/05/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024]
Abstract
Primary and secondary brain tumors cause significant mortality and constitute an important unmet need. The development of AZD9574, a brain-penetrant, PARP1-selective inhibitor with favorable pharmacologic properties and intriguing preclinical activity, has led to an ongoing clinical trial evaluating it alone and in combination with temozolomide or antibody drug conjugates. See related article by Staniszewska et al., p. 1338.
Collapse
Affiliation(s)
- Filipa Lynce
- Division of Breast Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Center for BRCA and Related Genes, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Nancy U Lin
- Division of Breast Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
17
|
Han GH, Kim HR, Yun H, Kim JH, Cho H. Comparison of Adverse Events Between PARP Inhibitors in Patients with Epithelial Ovarian Cancer: A Nationwide Propensity Score Matched Cohort Study. Target Oncol 2024; 19:251-262. [PMID: 38416378 DOI: 10.1007/s11523-024-01037-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2024] [Indexed: 02/29/2024]
Abstract
BACKGROUND Despite improvement in progression-free survival (PFS) with poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi) as maintenance treatment for patients with epithelial ovarian cancer (EOC), a comparative analysis of clinical events of interest (CEIs) of different PARPi is scarce. OBJECTIVE This study aimed to compare the safety of different PARPi in patients with EOC. PATIENTS AND METHODS Through analyzing the Korean National Health Insurance Service from January 2009 to January 2022, this study involved BRCA-mutated, platinum-sensitive patients with EOC treated with olaparib (tablet), niraparib, and olaparib (capsule) as first-line or second-line maintenance treatment. CEIs were identified using International Statistical Classification of Diseases (ICD) 9/10 codes, with additional outcomes being dose modification and persistence. RESULTS In the first-line maintenance treatment [118 niraparib, 104 olaparib (tablet) patients], no significant differences were noted in CEIs, dose reduction, or 6-month discontinuation rate. For second-line maintenance treatment [303 niraparib, 126 olaparib (tablet), and 675 olaparib (capsule) patients], niraparib was associated with a higher risk of hematologic CEIs, particularly anemia, compared with olaparib (tablet) (0.51 [0.26-0.98] and 0.09 [0.01-0.74], respectively), and higher rate of discontinuation rate at 6 months. Of note, patients over 60 years old showed an increased risk of CEIs with niraparib, as indicated by the hazard ratio divergence in restricted cubic spline plots. CONCLUSIONS No differences were observed among the PARPi during first-line maintenance treatment. However, in the second-line maintenance treatment, significant differences were observed in the risk of experiencing CEIs, dose alteration possibilities, and discontinuation of PARPi between niraparib and olaparib (tablets). Moreover, our findings suggest that an age of 60 years may be a critical factor in selecting PARPi to reduce CEI incidence.
Collapse
Affiliation(s)
- Gwan Hee Han
- Department of Obstetrics and Gynecology, Sanggye Paik Hospital, Inje University College of Medicine, Seoul, 01757, Republic of Korea
| | - Hae-Rim Kim
- Department of Statistics, College of Natural Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Hee Yun
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06299, Republic of Korea
| | - Jae-Hoon Kim
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, 03772, Republic of Korea
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Hanbyoul Cho
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, 03772, Republic of Korea.
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| |
Collapse
|
18
|
Chen J, Zhang M, Li K, Duan Y, Zeng J, Li Q, Wang D, Song L, Li Q, Yin R. PARP inhibitor maintenance treatment for newly diagnosed ovarian cancer patients: a real-world study from China. Front Oncol 2024; 14:1336616. [PMID: 38371630 PMCID: PMC10870420 DOI: 10.3389/fonc.2024.1336616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/17/2024] [Indexed: 02/20/2024] Open
Abstract
Purpose This study evaluated the efficacy and safety in a real-world population of epithelial ovarian cancer (EOC) treated with poly (ADP-ribose) polymerase inhibitor (PARPi) as first-line maintenance therapy in the largest gynecologic oncology center in Western China. Methods This study included patients newly diagnosed EOC who received PARPi as first-line maintenance therapy in West China Second University Hospital from August 1, 2018 to September 31, 2022. The primary endpoints were progression-free survival (PFS) and safety evaluated by Common Terminology Criteria for Adverse Events Version 5.0(CTCAE 5.0). The secondary endpoints were overall survival (OS) and prognostic factors influencing the PFS of patients in real world. Results Among the eligible 164 patients, 104 patients received olaparib and 60 patients received niraparib. 100 patients (61.0%) had mutations in breast cancer susceptibility gene (BRCA). 87 patients (53.0%) received primary debulking surgery (PDS) while 77 patients (47.0%) received interval debulking surgery (IDS). 94 patients (94/164, 57.3%) achieved R0 and 39 patients (23.8%) achieved R1 after PDS/IDS. 112 (68.3%) achieved complete response (CR) after first-line chemotherapy, while 49 (29.9%) achieved partial response (PR). The median follow-up time was 17.0 months (95% CI 15.6-18.4), and the median PFS has not been reached yet. Multivariate analysis demonstrated that BRCA mutations and CR/PR after platinum-based chemotherapy were independent factors associated with prolonged PFS. Hematologic toxicity was the most common grade≥3 AE. There were no incidence of myelodysplastic syndromes/acute myelogenous leukemia (MDS/AML). Conclusion Focusing on PARPi as first-line maintenance therapy for patients with EOC, this study represented the largest single-center real-world study in China to date. Two independent factors were identified to prolong the PFS of patients: BRCA mutated type and CR/PR after primary treatment, which should be further confirmed with long-term follow-up and large sample sizes.
Collapse
Affiliation(s)
- Jinghong Chen
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Mengpei Zhang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kemin Li
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuanqiong Duan
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jing Zeng
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qingli Li
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Danqing Wang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Liang Song
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qintong Li
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Rutie Yin
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
19
|
Longoria O, Beije N, de Bono JS. PARP inhibitors for prostate cancer. Semin Oncol 2024; 51:25-35. [PMID: 37783649 DOI: 10.1053/j.seminoncol.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 10/04/2023]
Abstract
Poly(ADP-ribose) polymerase (PARP) inhibitors have transformed the treatment landscape for patients with metastatic castration-resistant prostate cancer (mCRPC) and alterations in DNA damage response genes. This has also led to widespread use of genomic testing in all patients with mCRPC. The current review will give an overview of (1) the current understanding of the interplay between DNA damage response and PARP enzymes; (2) the clinical landscape of PARP inhibitors, including the combination of PARP inhibitors with other agents such as androgen-receptor signaling agents; (3) biomarkers related to PARP inhibitor response and resistance; and (4) considerations for interpreting genomic testing results and treating patients with PARP inhibitors.
Collapse
Affiliation(s)
- Ossian Longoria
- The Institute of Cancer Research, London, United Kingdom; The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom
| | - Nick Beije
- The Institute of Cancer Research, London, United Kingdom; The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom
| | - Johann S de Bono
- The Institute of Cancer Research, London, United Kingdom; The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom.
| |
Collapse
|
20
|
Nelson BE, Meric-Bernstam F. Leveraging TROP2 Antibody-Drug Conjugates in Solid Tumors. Annu Rev Med 2024; 75:31-48. [PMID: 37758237 DOI: 10.1146/annurev-med-071322-065903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Antibody-drug conjugates (ADCs) have become the cornerstone of effective therapeutics in solid and hematological malignancies by harnessing potent cytotoxic payloads with targeted tumoricidal delivery. Since the monumental shift occurred with HER2-targeted ADCs, the discovery of the TROP2 antigen has revolutionized the landscape of ADC development. Moving beyond the traditional ADC design, multiple novel ADCs have successfully shaped and improved survival outcomes in patients with various tumor histologies. Here we review and contrast the clinical impact of the well-known TROP2 ADCs currently in clinical use. We also shed light on upcoming investigational TROP2 ADCs showing promise with novel ADC platforms.
Collapse
Affiliation(s)
- Blessie Elizabeth Nelson
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA;
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA;
| |
Collapse
|
21
|
Bourlon MT, Valdez P, Castro E. Development of PARP inhibitors in advanced prostate cancer. Ther Adv Med Oncol 2024; 16:17588359231221337. [PMID: 38205078 PMCID: PMC10777773 DOI: 10.1177/17588359231221337] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/29/2023] [Indexed: 01/12/2024] Open
Abstract
The relatively high prevalence of alterations in the homologous recombination repair (HRR) pathway described in advanced prostate cancer provides a unique opportunity to develop therapeutic strategies that take advantage of the decreased tumor ability to repair DNA damage. Poly ADP-ribose polymerase (PARP) inhibitors have been demonstrated to improve the outcomes of metastatic castration-resistant prostate cancer (mCRPC) patients with HRR defects, particularly in those with BRCA1/2 alterations. To expand the benefit of PARPi to patients without detectable HRR alterations, multiple studies are addressing potential synergies between PARP inhibition (PARPi) and androgen receptor pathway inhibitors (ARSi), radiation, radioligand therapy, chemotherapy, or immunotherapy, and these strategies are also being evaluated in the hormone-sensitive setting. In this review, we summarize the development of PARPi in prostate cancer, the potential synergies, and combinations being investigated as well as the future directions of PARPi for the management of the disease.
Collapse
Affiliation(s)
- Maria Teresa Bourlon
- Hemato-Oncology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Paola Valdez
- Hemato-Oncology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Elena Castro
- Department of Medical Oncology, Hospital Universitario 12 de Octubre, Av. Cordoba s/n, 28041, Madrid, Spain
| |
Collapse
|
22
|
Chen J, Zhang M, Li K, Duan Y, Lin X, Zhong L, Li Q, Yin R. A real-world study of PARP inhibitors in 75 patients with platinum-sensitive recurrent ovarian cancer from China. Front Oncol 2024; 13:1300199. [PMID: 38260846 PMCID: PMC10800576 DOI: 10.3389/fonc.2023.1300199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/08/2023] [Indexed: 01/24/2024] Open
Abstract
Objective The aim of this study is to assess the efficacy and safety of poly (ADP-ribose) polymerase inhibitor (PARPi) as a maintenance therapy for patients with platinum-sensitive recurrent epithelial ovarian cancer (PSROC) at the largest center of gynecologic oncology in Western China. Patients and methods The efficacy of PARPi was evaluated by progression-free survival (PFS) and overall survival (OS) in this real-world single-center retrospective cohort study conducted at West China Second University Hospital. The safety of PARPi was assessed using Common Terminology Criteria for Adverse Events Version 5.0. Results In this study, we included a total of 75 eligible patients, of which 54 (72.0%) received olaparib and 21 (28.0%) received niraparib. Among these patients, 24 (32.0%) had breast cancer susceptibility gene (BRCA) mutations, 27 (36.0%) achieved complete response after their last platinum-based therapy, and 22 (29.3%) had previously received ≥3rd-line chemotherapy. The median progression-free survival (mPFS) was 19.1 months (95% CI 8.5-29.7), and the median overall survival (mOS) had not been reached. Log-rank analysis revealed that age (<65 years old V.S. ≥65 years old) and previous lines of chemotherapy (2nd-line V.S. 3rd-line V.S. ≥4th-line) were associated with prolonged PFS (P <0.05). However, multivariate COX regression analysis did not identify any independent factors associated with prognosis (P >0.05). The most common grade≥3 adverse events in the olaparib group were anemia, thrombocytopenia, and leukopenia, while in the niraparib group, they were anemia and thrombocytopenia. Conclusion This study confirmed that olaparib and niraparib are effective and tolerate for PSROC in real-world settings. At the follow-up endpoint, no independent prognostic factor associated with prolonged PFS was identified.
Collapse
Affiliation(s)
- Jinghong Chen
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, Sichuan, China
| | - Mengpei Zhang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, Sichuan, China
| | - Kemin Li
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, Sichuan, China
| | - Yuanqiong Duan
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, Sichuan, China
| | - Xiaojuan Lin
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, Sichuan, China
| | - Lan Zhong
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, Sichuan, China
| | - Qintong Li
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, Sichuan, China
| | - Rutie Yin
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
23
|
Fenor de la Maza MD, Pérez Gracia JL, Miñana B, Castro E. PARP inhibitors alone or in combination for prostate cancer. Ther Adv Urol 2024; 16:17562872241272929. [PMID: 39184454 PMCID: PMC11344902 DOI: 10.1177/17562872241272929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 06/20/2024] [Indexed: 08/27/2024] Open
Abstract
DNA repair genomic aberrations in the Homologous Recombination pathway are identifiable in up to 25% of patients with advanced prostate cancer, making them more likely to benefit from treatment with poly (ADP-ribose) polymerase inhibitors (PARPi) alone or in combination with other therapies, particularly when BRCA driver genomic aberrations are documented. Although several clinical trials have demonstrated the efficacy of this approach, the validation of reliable biomarkers predictive of response still needs further improvement to refine patient selection. In this setting, the characterization of resistance mechanisms and the validation of novel biomarkers are critical to maximize clinical benefit and to develop novel treatment combinations to improve outcomes. In this review, we summarize the development of PARPi in prostate cancer as single agent as well as the efficacy of their combination with other drugs, and the future directions for their implementation in the management of advanced prostate cancer.
Collapse
Affiliation(s)
| | | | - Bernardino Miñana
- Department of Urology, Clínica Universidad de Navarra, Madrid, Spain
| | - Elena Castro
- Department of Medical Oncology, Hospital Universitario 12 de octubre, Av. Córdoba s/n, Madrid 28041, Spain
| |
Collapse
|
24
|
Zhou J, Du T, Wang X, Yao H, Deng J, Li Y, Chen X, Sheng L, Ji M, Xu B. Discovery of Quinazoline-2,4(1 H,3 H)-dione Derivatives Containing a Piperizinone Moiety as Potent PARP-1/2 Inhibitors─Design, Synthesis, In Vivo Antitumor Activity, and X-ray Crystal Structure Analysis. J Med Chem 2023; 66:14095-14115. [PMID: 37843892 DOI: 10.1021/acs.jmedchem.3c01152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
PARP-1/2 inhibitors have become an important therapeutic strategy for the treatment of HR-deficient tumors. However, discovery of new inhibitors with an improved and distinct pharmacological file still need enormous explorations. Herein, a series of novel highly potent PARP-1/2 inhibitors bearing an N-substituted piperazinone moiety were achieved. In particular, Cpd36 was identified as a distinct PARP inhibitor, showing remarkable enzymatic activity not only toward PARP-1 (IC50 = 0.94 nM) and PARP-2 (IC50 = 0.87 nM) but also toward PARP-7 (IC50 = 0.21 nM), as well as high selectivity over other PARP isoforms. Furthermore, Cpd36 was orally bioavailable and significantly repressed the tumor growth in both breast cancer and prostate cancer xenograft model. The crystal structures of Cpd36 within PARP-1 and PARP-2 together with the predicted binding mode within PARP-7 revealed its binding features and provided insightful information for further developing highly potent and selective PARP-1 and/or PARP-7 inhibitors.
Collapse
Affiliation(s)
- Jie Zhou
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Tingting Du
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiaoyu Wang
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Haiping Yao
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jialing Deng
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yan Li
- Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiaoguang Chen
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Li Sheng
- Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ming Ji
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Bailing Xu
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
25
|
Luo Z, Zhu B, Xu H, Chen L, Song X, Wang Y, Wang R, Zheng J, Qiu Y, Yang J, Shi Y. Efficacy and safety of olaparib combined with abiraterone in patients with metastatic castration-resistant prostate cancer: a systematic review and meta-analysis of randomized controlled trials. Front Oncol 2023; 13:1265276. [PMID: 37869079 PMCID: PMC10587563 DOI: 10.3389/fonc.2023.1265276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023] Open
Abstract
Background Olaparib has been proven for the treatment of metastatic castration-resistant prostate cancer (mCRPC). This meta-analysis aims to comprehensively evaluate the efficacy and safety of the combination of olaparib and abiraterone in patients with mCRPC. Methods The literature in PubMed, Embase, and Cochrane Library up until April 27, 2023, was systematically searched. In the studies included in this meta-analysis, olaparib combined with abiraterone was compared with abiraterone combined with placebo. Results Two randomized controlled trials involving a total of 938 patients were included. Analysis indicated that olaparib combined with abiraterone significantly prolonged radiographic progression-free survival (rPFS: relative risk [RR] 0.66, 95% confidence interval [CI] 0.55-0.79), time to secondary progression or death (PFS2: hazard ratio [HR] 0.72, 95% CI 0.56-0.93), time to first subsequent therapy or death (TFST: HR 0.75, 95% CI 0.63-0.89), time to second subsequent therapy or death (TSST: HR 0.73, 95% CI 0.58-0.93), and confirmed prostate-specific antigen (PSA) response (RR 1.14, 95% CI 1.05-1.24). However, no statistically significant differences were found in the overall survival (OS: HR 0.87 95% CI 0.70-1.09), objective response rate (ORR: RR 0.97, 95% CI 0.70-1.33), and incidence of total adverse events (RR 1.07, 95% CI 0.94-1.22). A notable detail that the combination of olaparib and abiraterone was associated with an increased incidence of high-grade anemia (RR 7.47, 95% CI 1.36-40.88). Conclusion Olaparib combined with abiraterone is effective for patients with mCRPC. However, combination therapy has treatment-related adverse events compared with monotherapy, and this could be improved in future treatment management. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42023432287.
Collapse
Affiliation(s)
- Zhanyang Luo
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bukun Zhu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hong Xu
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Lixin Chen
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoyun Song
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rui Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jinzhou Zheng
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yunhua Qiu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianfeng Yang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Youyang Shi
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
26
|
Li Q, Qian W, Zhang Y, Hu L, Chen S, Xia Y. A new wave of innovations within the DNA damage response. Signal Transduct Target Ther 2023; 8:338. [PMID: 37679326 PMCID: PMC10485079 DOI: 10.1038/s41392-023-01548-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/01/2023] [Accepted: 06/27/2023] [Indexed: 09/09/2023] Open
Abstract
Genome instability has been identified as one of the enabling hallmarks in cancer. DNA damage response (DDR) network is responsible for maintenance of genome integrity in cells. As cancer cells frequently carry DDR gene deficiencies or suffer from replicative stress, targeting DDR processes could induce excessive DNA damages (or unrepaired DNA) that eventually lead to cell death. Poly (ADP-ribose) polymerase (PARP) inhibitors have brought impressive benefit to patients with breast cancer gene (BRCA) mutation or homologous recombination deficiency (HRD), which proves the concept of synthetic lethality in cancer treatment. Moreover, the other two scenarios of DDR inhibitor application, replication stress and combination with chemo- or radio- therapy, are under active clinical exploration. In this review, we revisited the progress of DDR targeting therapy beyond the launched first-generation PARP inhibitors. Next generation PARP1 selective inhibitors, which could maintain the efficacy while mitigating side effects, may diversify the application scenarios of PARP inhibitor in clinic. Albeit with unavoidable on-mechanism toxicities, several small molecules targeting DNA damage checkpoints (gatekeepers) have shown great promise in preliminary clinical results, which may warrant further evaluations. In addition, inhibitors for other DNA repair pathways (caretakers) are also under active preclinical or clinical development. With these progresses and efforts, we envision that a new wave of innovations within DDR has come of age.
Collapse
Affiliation(s)
- Qi Li
- Domestic Discovery Service Unit, WuXi AppTec, 200131, Shanghai, China
| | - Wenyuan Qian
- Domestic Discovery Service Unit, WuXi AppTec, 200131, Shanghai, China
| | - Yang Zhang
- Domestic Discovery Service Unit, WuXi AppTec, 200131, Shanghai, China
| | - Lihong Hu
- Domestic Discovery Service Unit, WuXi AppTec, 200131, Shanghai, China
| | - Shuhui Chen
- Domestic Discovery Service Unit, WuXi AppTec, 200131, Shanghai, China
| | - Yuanfeng Xia
- Domestic Discovery Service Unit, WuXi AppTec, 200131, Shanghai, China.
| |
Collapse
|
27
|
Simpson D, Ling J, Jing Y, Adamson B. Mapping the Genetic Interaction Network of PARP inhibitor Response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.19.553986. [PMID: 37645833 PMCID: PMC10462155 DOI: 10.1101/2023.08.19.553986] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Genetic interactions have long informed our understanding of the coordinated proteins and pathways that respond to DNA damage in mammalian cells, but systematic interrogation of the genetic network underlying that system has yet to be achieved. Towards this goal, we measured 147,153 pairwise interactions among genes implicated in PARP inhibitor (PARPi) response. Evaluating genetic interactions at this scale, with and without exposure to PARPi, revealed hierarchical organization of the pathways and complexes that maintain genome stability during normal growth and defined changes that occur upon accumulation of DNA lesions due to cytotoxic doses of PARPi. We uncovered unexpected relationships among DNA repair genes, including context-specific buffering interactions between the minimally characterized AUNIP and BRCA1-A complex genes. Our work thus establishes a foundation for mapping differential genetic interactions in mammalian cells and provides a comprehensive resource for future studies of DNA repair and PARP inhibitors.
Collapse
Affiliation(s)
- Danny Simpson
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Jia Ling
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Yangwode Jing
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Britt Adamson
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
28
|
Shiraishi C, Hirai T, Kaneda M, Okamoto A, Kato H, Tanaka K, Kondo E, Ikeda T, Iwamoto T. Factors for the development of anemia in patients with newly introduced olaparib: A retrospective case-control study. Medicine (Baltimore) 2023; 102:e34123. [PMID: 37505180 PMCID: PMC10378826 DOI: 10.1097/md.0000000000034123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 07/29/2023] Open
Abstract
Anemia is the most common dose-limiting toxicity of olaparib. However, few studies have analyzed the clinical features of olaparib-induced anemia. This study investigated the clinical features of olaparib-induced anemia. Additionally, the role of folate or vitamin B12 in olaparib-induced anemia was examined. This retrospective case-control study included patients who received olaparib at Mie University Hospital between January 2018 and December 2020. Data were collected between initiation of olaparib and discontinuation of olaparib or till December 2021. We investigated the development of grade ≥ 3 anemia during olaparib administration for at least 1 year. We examined patients with grade ≥ 3 anemia considering the mean corpuscular volume (MCV), its association with gastrointestinal events and cumulative dose of carboplatin. For the sub-study analysis, data on patients treated with olaparib for ovarian or endometrial cancer were collected to evaluate the Common Terminology Criteria for Adverse Events (CTCAE) or monthly changes in folate or vitamin B12 levels from baseline to 3 months after olaparib initiation. These data were collected between initiation of olaparib and discontinuation of olaparib or till November 2022. Patients with no data on folic acid or vitamin B12 levels were excluded from the sub-study. In the main study, 40 patients were included. Eighteen patients (45%) developed grade ≥ 3 anemia, and all patients discontinued treatment (94%) or reduced olaparib dose (67%) after developing anemia. Among the patients with grade ≥ 3 anemia, 9 (50%) exhibited macrocytic anemia and 15 (83%) had previously received carboplatin. The incidence of grade ≥ 2 dysgeusia was significantly higher in patients with grade ≥ 3 anemia (P = .034). Moreover, the cumulative dose of previously administered carboplatin was higher in patients who had 3 episodes of anemia (P = .102). In sub-study, 12 had data on folic acid and vitamin B12 levels. Sub-study analysis showed that none fulfilled the criteria for deficiency of folate or vitamin B12, while 3 developed grade 3 anemia. This study revealed that olaparib-induced anemia frequently occurs as macrocytic and normocytic erythroblastic anemia without folate or vitamin B12 deficiencies. A high cumulative dose of previously administered carboplatin and dysgeusia may be associated with olaparib-induced anemia.
Collapse
Affiliation(s)
| | | | - Michiko Kaneda
- Department of Obstetrics and Gynecology, Mie University School of Medicine, Mie, Japan
| | | | - Hideo Kato
- Department of Pharmacy, Mie University Hospital, Mie, Japan
| | - Kayo Tanaka
- Department of Obstetrics and Gynecology, Mie University School of Medicine, Mie, Japan
| | - Eiji Kondo
- Department of Obstetrics and Gynecology, Mie University School of Medicine, Mie, Japan
| | - Tomoaki Ikeda
- Department of Obstetrics and Gynecology, Mie University School of Medicine, Mie, Japan
| | - Takuya Iwamoto
- Department of Pharmacy, Mie University Hospital, Mie, Japan
| |
Collapse
|
29
|
Cordani N, Bianchi T, Ammoni LC, Cortinovis DL, Cazzaniga ME, Lissoni AA, Landoni F, Canova S. An Overview of PARP Resistance in Ovarian Cancer from a Molecular and Clinical Perspective. Int J Mol Sci 2023; 24:11890. [PMID: 37569269 PMCID: PMC10418869 DOI: 10.3390/ijms241511890] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/18/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023] Open
Abstract
Epithelial ovarian cancer (EOC), a primarily high-grade serous carcinoma (HGSOC), is one of the major causes of high death-to-incidence ratios of all gynecological cancers. Cytoreductive surgery and platinum-based chemotherapy represent the main treatments for this aggressive disease. Molecular characterization of HGSOC has revealed that up to 50% of cases have a deficiency in the homologous recombination repair (HRR) system, which makes these tumors sensitive to poly ADP-ribose inhibitors (PARP-is). However, drug resistance often occurs and overcoming it represents a big challenge. A number of strategies are under investigation, with the most promising being combinations of PARP-is with antiangiogenetic agents and immune checkpoint inhibitors. Moreover, new drugs targeting different pathways, including the ATR-CHK1-WEE1, the PI3K-AKT and the RAS/RAF/MEK, are under development both in phase I and II-III clinical trials. Nevertheless, there is still a long way to go, and the next few years promise to be exciting.
Collapse
Affiliation(s)
- Nicoletta Cordani
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (T.B.); (L.C.A.); (M.E.C.); (A.A.L.); (F.L.)
| | - Tommaso Bianchi
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (T.B.); (L.C.A.); (M.E.C.); (A.A.L.); (F.L.)
- Clinic of Obstetrics and Gynecology, Fondazione IRCCS San Gerardo dei Tintori, University of Milano-Bicocca, 20900 Monza, Italy
| | - Luca Carlofrancesco Ammoni
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (T.B.); (L.C.A.); (M.E.C.); (A.A.L.); (F.L.)
| | | | - Marina Elena Cazzaniga
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (T.B.); (L.C.A.); (M.E.C.); (A.A.L.); (F.L.)
- Phase 1 Research Centre, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| | - Andrea Alberto Lissoni
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (T.B.); (L.C.A.); (M.E.C.); (A.A.L.); (F.L.)
- Clinic of Obstetrics and Gynecology, Fondazione IRCCS San Gerardo dei Tintori, University of Milano-Bicocca, 20900 Monza, Italy
| | - Fabio Landoni
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (T.B.); (L.C.A.); (M.E.C.); (A.A.L.); (F.L.)
- Clinic of Obstetrics and Gynecology, Fondazione IRCCS San Gerardo dei Tintori, University of Milano-Bicocca, 20900 Monza, Italy
| | - Stefania Canova
- Medical Oncology Unit, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy;
| |
Collapse
|
30
|
Rana M, Thakur A, Kaur C, Pan CH, Lee SB, Liou JP, Nepali K. Prudent tactics to sail the boat of PARP inhibitors as therapeutics for diverse malignancies. Expert Opin Drug Discov 2023; 18:1169-1193. [PMID: 37525475 DOI: 10.1080/17460441.2023.2241818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 07/25/2023] [Indexed: 08/02/2023]
Abstract
INTRODUCTION PARP inhibitors block the DNA-repairing mechanism of PARP and represent a promising class of anti-cancer therapy. The last decade has witnessed FDA approvals of several PARP inhibitors, with some undergoing advanced-stage clinical investigation. Medicinal chemists have invested much effort to expand the structure pool of PARP inhibitors. Issues associated with the use of PARP inhibitors that make their standing disconcerting in the pharmaceutical sector have been addressed via the design of new structural assemblages. AREA COVERED In this review, the authors present a detailed account of the medicinal chemistry campaigns conducted in the recent past for the construction of PARP1/PARP2 inhibitors, PARP1 biased inhibitors, and PARP targeting bifunctional inhibitors as well as PARP targeting degraders (PROTACs). Limitations associated with FDA-approved PARP inhibitors and strategies to outwit the limitations are also discussed. EXPERT OPINION The PARP inhibitory field has been rejuvenated with numerous tractable entries in the last decade. With numerous magic bullets in hand coupled with unfolded tactics to outwit the notoriety of cancer cells developing resistance toward PARP inhibitors, the dominance of PARP inhibitors as a sagacious option of targeted therapy is highly likely to be witnessed soon.
Collapse
Affiliation(s)
- Mandeep Rana
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Amandeep Thakur
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Charanjit Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Chun-Hsu Pan
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical, University, Taipei, Taiwan
| | - Sung-Bau Lee
- Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical, University, Taipei, Taiwan
- Master Program in Clinical Genomics and Proteomics, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Jing Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical, University, Taipei, Taiwan
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical, University, Taipei, Taiwan
| |
Collapse
|
31
|
Pearson ADJ, Federico S, Gatz SA, Ortiz M, Lesa G, Scobie N, Gounaris I, Weiner SL, Weigel B, Unger TJ, Stewart E, Smith M, Slotkin EK, Reaman G, Pappo A, Nysom K, Norga K, McDonough J, Marshall LV, Ludwinski D, Ligas F, Karres D, Kool M, Horner TJ, Henssen A, Heenen D, Hawkins DS, Gore L, Bender JG, Galluzzo S, Fox E, de Rojas T, Davies BR, Chakrabarti J, Carmichael J, Bradford D, Blanc P, Bernardi R, Benchetrit S, Akindele K, Vassal G. Paediatric Strategy Forum for medicinal product development of DNA damage response pathway inhibitors in children and adolescents with cancer: ACCELERATE in collaboration with the European Medicines Agency with participation of the Food and Drug Administration. Eur J Cancer 2023; 190:112950. [PMID: 37441939 DOI: 10.1016/j.ejca.2023.112950] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/09/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023]
Abstract
DNA damage response inhibitors have a potentially important therapeutic role in paediatric cancers; however, their optimal use, including patient selection and combination strategy, remains unknown. Moreover, there is an imbalance between the number of drugs with diverse mechanisms of action and the limited number of paediatric patients available to be enrolled in early-phase trials, so prioritisation and a strategy are essential. While PARP inhibitors targeting homologous recombination-deficient tumours have been used primarily in the treatment of adult cancers with BRCA1/2 mutations, BRCA1/2 mutations occur infrequently in childhood tumours, and therefore, a specific response hypothesis is required. Combinations with targeted radiotherapy, ATR inhibitors, or antibody drug conjugates with DNA topoisomerase I inhibitor-related warheads warrant evaluation. Additional monotherapy trials of PARP inhibitors with the same mechanism of action are not recommended. PARP1-specific inhibitors and PARP inhibitors with very good central nervous system penetration also deserve evaluation. ATR, ATM, DNA-PK, CHK1, WEE1, DNA polymerase theta and PKMYT1 inhibitors are early in paediatric development. There should be an overall coordinated strategy for their development. Therefore, an academia/industry consensus of the relevant biomarkers will be established and a focused meeting on ATR inhibitors (as proof of principle) held. CHK1 inhibitors have demonstrated activity in desmoplastic small round cell tumours and have a potential role in the treatment of other paediatric malignancies, such as neuroblastoma and Ewing sarcoma. Access to CHK1 inhibitors for paediatric clinical trials is a high priority. The three key elements in evaluating these inhibitors in children are (1) innovative trial design (design driven by a clear hypothesis with the intent to further investigate responders and non-responders with detailed retrospective molecular analyses to generate a revised or new hypothesis); (2) biomarker selection and (3) rational combination therapy, which is limited by overlapping toxicity. To maximally benefit children with cancer, investigators should work collaboratively to learn the lessons from the past and apply them to future studies. Plans should be based on the relevant biology, with a focus on simultaneous and parallel research in preclinical and clinical settings, and an overall integrated and collaborative strategy.
Collapse
Affiliation(s)
- Andrew D J Pearson
- ACCELERATE, c/o BLSI, Clos Chapelle-aux-Champs 30, Bte 1.30.30 BE-1200 Brussels, Belgium.
| | - Sara Federico
- St Jude Children's Research Hospital, Memphis, TN, USA
| | - Susanne A Gatz
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Michael Ortiz
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Giovanni Lesa
- Paediatric Medicines Office, Scientific Evidence Generation Department, Human Division, European Medicines Agency (EMA), Amsterdam, the Netherlands
| | | | - Ioannis Gounaris
- Merck Serono Ltd (an affiliate of Merck KGaA, Darmstadt, Germany), Feltham, UK
| | | | | | - T J Unger
- Repare Therapeutics, Cambridge, MA, USA
| | | | | | | | - Gregory Reaman
- US Food and Drug Administration, Silver Springs, MD, USA
| | - Alberto Pappo
- St Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Koen Norga
- Antwerp University Hospital, Antwerp, Belgium; Paediatric Committee of the European Medicines Agency (EMA), Amsterdam, the Netherlands; Federal Agency for Medicines and Health Products, Brussels, Belgium
| | - Joe McDonough
- The Andrew McDonough B+ Foundation, Wilmington, DE, USA
| | - Lynley V Marshall
- The Royal Marsden NHS Foundation Hospital, The Institute of Cancer Research, Sutton, Surrey, UK
| | | | - Franca Ligas
- Paediatric Medicines Office, Scientific Evidence Generation Department, Human Division, European Medicines Agency (EMA), Amsterdam, the Netherlands
| | - Dominik Karres
- Paediatric Medicines Office, Scientific Evidence Generation Department, Human Division, European Medicines Agency (EMA), Amsterdam, the Netherlands
| | - Marcel Kool
- Hopp Children's Cancer Center, Heidelberg, Germany
| | | | | | | | - Douglas S Hawkins
- Seattle Children's Hospital, Seattle, WA, USA; Children's Oncology Group, Seattle, WA, USA
| | - Lia Gore
- Children's Hospital Colorado, Aurora, CO, USA; University of Colorado School of Medicine, Aurora, CO, USA
| | | | | | - Elizabeth Fox
- St Jude Children's Research Hospital, Memphis, TN, USA
| | - Teresa de Rojas
- ACCELERATE, c/o BLSI, Clos Chapelle-aux-Champs 30, Bte 1.30.30 BE-1200 Brussels, Belgium
| | | | | | - Juliet Carmichael
- The Royal Marsden NHS Foundation Hospital, The Institute of Cancer Research, Sutton, Surrey, UK
| | - Diana Bradford
- US Food and Drug Administration, Silver Springs, MD, USA
| | | | - Ronald Bernardi
- Genentech, a Member of the Roche Group, South San Francisco, CA, USA
| | - Sylvie Benchetrit
- National Agency for the Safety of Medicine and Health Products, Paris, France
| | | | - Gilles Vassal
- ACCELERATE, c/o BLSI, Clos Chapelle-aux-Champs 30, Bte 1.30.30 BE-1200 Brussels, Belgium; Gustave Roussy Cancer Centre, Paris, France
| |
Collapse
|
32
|
Jankó L, Tóth E, Laczik M, Rauch B, Janka E, Bálint BL, Bai P. PARP2 poly(ADP-ribosyl)ates nuclear factor erythroid 2-related factor 2 (NRF2) affecting NRF2 subcellular localization. Sci Rep 2023; 13:7869. [PMID: 37188809 DOI: 10.1038/s41598-023-35076-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/12/2023] [Indexed: 05/17/2023] Open
Abstract
PARP2 is a member of the PARP enzyme family. Although, PARP2 plays role in DNA repair, it has regulatory roles in mitochondrial and lipid metabolism, it has pivotal role in bringing about the adverse effects of pharmacological PARP inhibitors. Previously, we showed that the ablation of PARP2 induces oxidative stress and, consequently, mitochondrial fragmentation. In attempt to identify the source of the reactive species we assessed the possible role of a central regulator of cellular antioxidant defense, nuclear factor erythroid 2-related factor 2 (NRF2). The silencing of PARP2 did not alter either the mRNA or the protein expression of NRF2, but changed its subcellular localization, decreasing the proportion of nuclear, active fraction of NRF2. Pharmacological inhibition of PARP2 partially restored the normal localization pattern of NRF2 and in line with that, we showed that NRF2 is PARylated that is absent in the cells in which PARP2 was silenced. Apparently, the PARylation of NRF2 by PARP2 has pivotal role in regulating the subcellular (nuclear) localization of NRF2. The silencing of PARP2 rearranged the expression of genes encoding proteins with antioxidant function, among these a subset of NRF2-dependent genes.
Collapse
Affiliation(s)
- Laura Jankó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem Tér 1., 4032, Debrecen, Hungary
- Center of Excellence, The Hungarian Academy of Sciences, Budapest, Hungary
| | - Emese Tóth
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem Tér 1., 4032, Debrecen, Hungary
- Center of Excellence, The Hungarian Academy of Sciences, Budapest, Hungary
| | - Miklós Laczik
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Boglárka Rauch
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem Tér 1., 4032, Debrecen, Hungary
- Center of Excellence, The Hungarian Academy of Sciences, Budapest, Hungary
| | - Eszter Janka
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Bálint L Bálint
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
- Department of Bioinformatics, Semmelweis University, Tűzoltó Utca 7-9., Budapest, 1094, Hungary
| | - Péter Bai
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem Tér 1., 4032, Debrecen, Hungary.
- Center of Excellence, The Hungarian Academy of Sciences, Budapest, Hungary.
- MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, 4032, Hungary.
- Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary.
- MTA-DE Cell Biology and Signaling Research Group ELKH, Debrecen, Hungary.
| |
Collapse
|
33
|
Hiroki H, Ishii Y, Piao J, Namikawa Y, Masutani M, Honda H, Akahane K, Inukai T, Morio T, Takagi M. Targeting Poly(ADP)ribose polymerase in BCR/ABL1-positive cells. Sci Rep 2023; 13:7588. [PMID: 37165001 PMCID: PMC10172294 DOI: 10.1038/s41598-023-33852-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/20/2023] [Indexed: 05/12/2023] Open
Abstract
BCR/ABL1 causes dysregulated cell proliferation and is responsible for chronic myelogenous leukemia (CML) and Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph1-ALL). In addition to the deregulatory effects of its kinase activity on cell proliferation, BCR/ABL1 induces genomic instability by downregulating BRCA1. PARP inhibitors (PARPi) effectively induce cell death in BRCA-defective cells. Therefore, PARPi are expected to inhibit growth of CML and Ph1-ALL cells showing downregulated expression of BRCA1. Here, we show that PARPi effectively induced cell death in BCR/ABL1 positive cells and suppressed colony forming activity. Prevention of BCR/ABL1-mediated leukemogenesis by PARP inhibition was tested in two in vivo models: wild-type mice that had undergone hematopoietic cell transplantation with BCR/ABL1-transduced cells, and a genetic model constructed by crossing Parp1 knockout mice with BCR/ABL1 transgenic mice. The results showed that a PARPi, olaparib, attenuates BCR/ABL1-mediated leukemogenesis. One possible mechanism underlying PARPi-dependent inhibition of leukemogenesis is increased interferon signaling via activation of the cGAS/STING pathway. This is compatible with the use of interferon as a first-line therapy for CML. Because tyrosine kinase inhibitor (TKI) monotherapy does not completely eradicate leukemic cells in all patients, combined use of PARPi and a TKI is an attractive option that may eradicate CML stem cells.
Collapse
Affiliation(s)
- Haruka Hiroki
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Yushima 1-5-45, Bunkyo-Ku, Tokyo, 113-8519, Japan
| | - Yuko Ishii
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Yushima 1-5-45, Bunkyo-Ku, Tokyo, 113-8519, Japan
| | - Jinhua Piao
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Yushima 1-5-45, Bunkyo-Ku, Tokyo, 113-8519, Japan
| | - Yui Namikawa
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Yushima 1-5-45, Bunkyo-Ku, Tokyo, 113-8519, Japan
| | - Mitsuko Masutani
- Department of Molecular and Genomic Biomedicine, Center for Bioinformatics and Molecular Medicine, Nagasaki University Graduate School of Biomedical Sciences, 852-8523, Nagasaki, Japan
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Hiroaki Honda
- Field of Human Disease Models, Major in Advanced Life Sciences and Medicine, Institute of Laboratory Animals, Tokyo Women's Medical University, Tokyo, Japan
| | - Koshi Akahane
- Department of Pediatrics, School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Takeshi Inukai
- Department of Pediatrics, School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Yushima 1-5-45, Bunkyo-Ku, Tokyo, 113-8519, Japan
| | - Masatoshi Takagi
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Yushima 1-5-45, Bunkyo-Ku, Tokyo, 113-8519, Japan.
| |
Collapse
|
34
|
Antherieu G, Heiblig M, Freyer G, Ghesquieres H, Falandry C. Impact of Age on Poly(ADP-Ribose) Polymerase Inhibitor (PARPi)-Induced Lymphopenia: A Scoping Review of the Literature and Internal Analysis of a Retrospective Database. Drugs Aging 2023; 40:397-405. [PMID: 37081248 PMCID: PMC10118227 DOI: 10.1007/s40266-023-01023-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2023] [Indexed: 04/22/2023]
Abstract
BACKGROUND Poly(ADP-ribose) polymerase inhibitors (PARPi) are increasingly used in oncology; their hematological toxicities affect classically red, platelet and neutrophil lineages, but some opportunistic infections have been reported concomitantly to deep lymphopenias. OBJECTIVE This study was designed to provide an external and internal analysis of the crossed impacts of PARPi and age on lymphopenia risk. PATIENTS AND METHODS A scoping review was performed on the PubMed and Embase databases to assess the reporting of lymphocyte rates in original studies on PARPi treatment for adult patients up to 1 April 2022. A retrospective cohort was extracted from the medical charts of all patients treated for gynecological cancer at our institution from 2015 to 2022 in accordance with ethical regulations. RESULTS The scoping review research strategy retrieved 5840 abstracts; 225 studies were selected for full-text analysis. Lymphopenia was reported in 41.8% of the studies; frequency of all-grade and grade ≥ 3 lymphopenia reached 20.5% and 8.9%, respectively. Grade ≥ 3 lymphopenia was significantly higher in studies including older patients (median age ≥ 60 years vs. < 60 years), at 7.5% vs. 10.3% (p < 0.0001). PARIB-OLD-HCL included 46 patients, 19 of whom were aged < 70 years (median 44 years) and 27 of whom were aged ≥ 70 years (median 79 years); the frequency of all-grade and grade ≥ 3 lymphopenia reached 67% (< 70 years: 63%; ≥ 70 years: 70%) and 13% (< 70 years: 5%; ≥ 70 years: 19%), respectively. CONCLUSION Lymphopenia events were much more frequent in real-life than in previously reported studies, particularly in older patients. Future work is needed to improve patient follow-up and discuss prophylactic strategies.
Collapse
Affiliation(s)
- Gabriel Antherieu
- Department of Hematology, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Pierre-Bénite, France
| | - Maël Heiblig
- Department of Hematology, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Pierre-Bénite, France
| | - Gilles Freyer
- Department of Medical Oncology, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Pierre-Bénite, France
| | - Hervé Ghesquieres
- Department of Hematology, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Pierre-Bénite, France
| | - Claire Falandry
- Geriatric Department of Geriatric Oncology, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Pierre-Bénite, France.
| |
Collapse
|
35
|
Langelier MF, Lin X, Zha S, Pascal JM. Clinical PARP inhibitors allosterically induce PARP2 retention on DNA. SCIENCE ADVANCES 2023; 9:eadf7175. [PMID: 36961901 PMCID: PMC10038340 DOI: 10.1126/sciadv.adf7175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
PARP1 and PARP2 detect DNA breaks, which activates their catalytic production of poly(ADP-ribose) that recruits repair factors and contributes to PARP1/2 release from DNA. PARP inhibitors (PARPi) are used in cancer treatment and target PARP1/2 catalytic activity, interfering with repair and increasing PARP1/2 persistence on DNA damage. In addition, certain PARPi exert allosteric effects that increase PARP1 retention on DNA. However, no clinical PARPi exhibit this allosteric behavior toward PARP1. In contrast, we show that certain clinical PARPi exhibit an allosteric effect that retains PARP2 on DNA breaks in a manner that depends on communication between the catalytic and DNA binding regions. Using a PARP2 mutant that mimics an allosteric inhibitor effect, we observed increased PARP2 retention at cellular damage sites. The PARPi AZD5305 also exhibited a clear reverse allosteric effect on PARP2. Our results can help explain the toxicity of clinical PARPi and suggest ways to improve PARPi moving forward.
Collapse
Affiliation(s)
- Marie-France Langelier
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Xiaohui Lin
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032, USA
| | - Shan Zha
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032, USA
| | - John M. Pascal
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| |
Collapse
|
36
|
Lerksuthirat T, Chitphuk S, Stitchantrakul W, Dejsuphong D, Malik AA, Nantasenamat C. PARP1pred: a web server for screening the bioactivity of inhibitors against DNA repair enzyme PARP-1. EXCLI JOURNAL 2023; 22:84-107. [PMID: 36814851 PMCID: PMC9939779 DOI: 10.17179/excli2022-5602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/23/2022] [Indexed: 02/24/2023]
Abstract
Cancer is the leading cause of death worldwide, resulting in the mortality of more than 10 million people in 2020, according to Global Cancer Statistics 2020. A potential cancer therapy involves targeting the DNA repair process by inhibiting PARP-1. In this study, classification models were constructed using a non-redundant set of 2018 PARP-1 inhibitors. Briefly, compounds were described by 12 fingerprint types and built using the random forest algorithm concomitant with various sampling approaches. Results indicated that PubChem with an oversampling approach yielded the best performance, with a Matthews correlation coefficient > 0.7 while also affording interpretable molecular features. Moreover, feature importance, as determined from the Gini index, revealed that the aromatic/cyclic/heterocyclic moiety, nitrogen-containing fingerprints, and the ether/aldehyde/alcohol moiety were important for PARP-1 inhibition. Finally, our predictive model was deployed as a web application called PARP1pred and is publicly available at https://parp1pred.streamlitapp.com, allowing users to predict the biological activity of query compounds using their SMILES notation as the input. It is anticipated that the model described herein will aid in the discovery of effective PARP-1 inhibitors.
Collapse
Affiliation(s)
- Tassanee Lerksuthirat
- Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand,*To whom correspondence should be addressed: Tassanee Lerksuthirat, Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand, E-mail:
| | - Sermsiri Chitphuk
- Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Wasana Stitchantrakul
- Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Donniphat Dejsuphong
- Program in Translational Medicine, Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan 10540, Thailand
| | - Aijaz Ahmad Malik
- Center of Excellence in Computational Molecular Biology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | | |
Collapse
|
37
|
Ren J, Quan X, Liu Y, Li J, Zhang X, Li Z, Zhang X. Synthesis and in vitro biological evaluation of 3-ethyl-1,5-naphthyridin-2(1H)-one derivatives as potent PARP-1 selective inhibitors and PARP-1 DNA trappers. Bioorg Med Chem Lett 2022; 78:129046. [PMID: 36343904 DOI: 10.1016/j.bmcl.2022.129046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/20/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
Inhibition of poly (ADP-ribose) polymerase (PARP) has been applied with great success in the clinical treatment of homologous recombination-deficient malignancy. Recent study demonstrated that not only PARP-1 inhibition but also DNA trapping contributes to the efficacy in BRCA mutant tumors and the toxicities results from the poor selectivity of PARP-1 over PARP-2 as well as their DNA trapping. Herein, a series of 3-ethyl-1,5-naphthyridin-2(1H)-one derivatives (7a-7l, 8a-8n) were synthesized and identified as PARP-1 selective inhibitors and PARP-1 DNA trappers. Among them, compound 8m was found to be highly potent and selective. It inhibited PARP-1 activity and BRCA mutant DLD-1 cell activity with IC50 values of 0.49 nM and 4.82 nM, and the in vitro DNA trapping efficacy of compound 8m was 1.85 nM. Compared with AZD5305, compound 8m significantly improved the selectivity of PARP-1 over PARP-2 as well. Compound 8m was>1000-fold selective for PARP-1 DNA trapping over PARP-2.
Collapse
Affiliation(s)
- Junkang Ren
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, China; R &D Center, Nanjing Sanhome Pharmaceutical Co. Ltd., Nanjing, Jiangsu 211135, China
| | - Xu Quan
- R &D Center, Nanjing Sanhome Pharmaceutical Co. Ltd., Nanjing, Jiangsu 211135, China
| | - Ying Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, China; R &D Center, Nanjing Sanhome Pharmaceutical Co. Ltd., Nanjing, Jiangsu 211135, China
| | - Jiani Li
- R &D Center, Nanjing Sanhome Pharmaceutical Co. Ltd., Nanjing, Jiangsu 211135, China
| | - Xiaoyu Zhang
- R &D Center, Nanjing Sanhome Pharmaceutical Co. Ltd., Nanjing, Jiangsu 211135, China
| | - Zhiyu Li
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, China.
| | - Xiaomeng Zhang
- R &D Center, Nanjing Sanhome Pharmaceutical Co. Ltd., Nanjing, Jiangsu 211135, China.
| |
Collapse
|
38
|
Illuzzi G, Staniszewska AD, Gill SJ, Pike A, McWilliams L, Critchlow SE, Cronin A, Fawell S, Hawthorne G, Jamal K, Johannes J, Leonard E, Macdonald R, Maglennon G, Nikkilä J, O'Connor MJ, Smith A, Southgate H, Wilson J, Yates J, Cosulich S, Leo E. Preclinical Characterization of AZD5305, A Next-Generation, Highly Selective PARP1 Inhibitor and Trapper. Clin Cancer Res 2022; 28:4724-4736. [PMID: 35929986 PMCID: PMC9623235 DOI: 10.1158/1078-0432.ccr-22-0301] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/29/2022] [Accepted: 08/02/2022] [Indexed: 01/24/2023]
Abstract
PURPOSE We hypothesized that inhibition and trapping of PARP1 alone would be sufficient to achieve antitumor activity. In particular, we aimed to achieve selectivity over PARP2, which has been shown to play a role in the survival of hematopoietic/stem progenitor cells in animal models. We developed AZD5305 with the aim of achieving improved clinical efficacy and wider therapeutic window. This next-generation PARP inhibitor (PARPi) could provide a paradigm shift in clinical outcomes achieved by first-generation PARPi, particularly in combination. EXPERIMENTAL DESIGN AZD5305 was tested in vitro for PARylation inhibition, PARP-DNA trapping, and antiproliferative abilities. In vivo efficacy was determined in mouse xenograft and PDX models. The potential for hematologic toxicity was evaluated in rat models, as monotherapy and combination. RESULTS AZD5305 is a highly potent and selective inhibitor of PARP1 with 500-fold selectivity for PARP1 over PARP2. AZD5305 inhibits growth in cells with deficiencies in DNA repair, with minimal/no effects in other cells. Unlike first-generation PARPi, AZD5305 has minimal effects on hematologic parameters in a rat pre-clinical model at predicted clinically efficacious exposures. Animal models treated with AZD5305 at doses ≥0.1 mg/kg once daily achieved greater depth of tumor regression compared to olaparib 100 mg/kg once daily, and longer duration of response. CONCLUSIONS AZD5305 potently and selectively inhibits PARP1 resulting in excellent antiproliferative activity and unprecedented selectivity for DNA repair deficient versus proficient cells. These data confirm the hypothesis that targeting only PARP1 can retain the therapeutic benefit of nonselective PARPi, while reducing potential for hematotoxicity. AZD5305 is currently in phase I trials (NCT04644068).
Collapse
Affiliation(s)
- Giuditta Illuzzi
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | | | - Sonja J. Gill
- Oncology Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Andy Pike
- DMPK, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Lisa McWilliams
- Discovery Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | | | - Anna Cronin
- Oncology Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | | | - Glen Hawthorne
- Integrated Bioanalysis, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Kunzah Jamal
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | | | - Emilyanne Leonard
- Discovery Bioanalysis Europe, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Ruth Macdonald
- Animal Sciences and Technologies, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Gareth Maglennon
- Oncology Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Jenni Nikkilä
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Mark J. O'Connor
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Aaron Smith
- DMPK, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | | | - Joanne Wilson
- DMPK, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - James Yates
- DMPK, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Sabina Cosulich
- Projects Group, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Elisabetta Leo
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| |
Collapse
|
39
|
Li S, Wang L, Wang Y, Zhang C, Hong Z, Han Z. The synthetic lethality of targeting cell cycle checkpoints and PARPs in cancer treatment. J Hematol Oncol 2022; 15:147. [PMID: 36253861 PMCID: PMC9578258 DOI: 10.1186/s13045-022-01360-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/30/2022] [Indexed: 11/17/2022] Open
Abstract
Continuous cell division is a hallmark of cancer, and the underlying mechanism is tumor genomics instability. Cell cycle checkpoints are critical for enabling an orderly cell cycle and maintaining genome stability during cell division. Based on their distinct functions in cell cycle control, cell cycle checkpoints are classified into two groups: DNA damage checkpoints and DNA replication stress checkpoints. The DNA damage checkpoints (ATM-CHK2-p53) primarily monitor genetic errors and arrest cell cycle progression to facilitate DNA repair. Unfortunately, genes involved in DNA damage checkpoints are frequently mutated in human malignancies. In contrast, genes associated with DNA replication stress checkpoints (ATR-CHK1-WEE1) are rarely mutated in tumors, and cancer cells are highly dependent on these genes to prevent replication catastrophe and secure genome integrity. At present, poly (ADP-ribose) polymerase inhibitors (PARPi) operate through “synthetic lethality” mechanism with mutant DNA repair pathways genes in cancer cells. However, an increasing number of patients are acquiring PARP inhibitor resistance after prolonged treatment. Recent work suggests that a combination therapy of targeting cell cycle checkpoints and PARPs act synergistically to increase the number of DNA errors, compromise the DNA repair machinery, and disrupt the cell cycle, thereby increasing the death rate of cancer cells with DNA repair deficiency or PARP inhibitor resistance. We highlight a combinational strategy involving PARP inhibitors and inhibition of two major cell cycle checkpoint pathways, ATM-CHK2-TP53 and ATR-CHK1-WEE1. The biological functions, resistance mechanisms against PARP inhibitors, advances in preclinical research, and clinical trials are also reviewed.
Collapse
Affiliation(s)
- Shuangying Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Liangliang Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yuanyuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Changyi Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Zhenya Hong
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Zhiqiang Han
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
40
|
Kurgina TA, Moor NA, Kutuzov MM, Lavrik OI. The HPF1-dependent histone PARylation catalyzed by PARP2 is specifically stimulated by an incised AP site-containing BER DNA intermediate. DNA Repair (Amst) 2022; 120:103423. [DOI: 10.1016/j.dnarep.2022.103423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 11/03/2022]
|
41
|
Mehra N, Fizazi K, de Bono JS, Barthélémy P, Dorff T, Stirling A, Machiels JP, Bimbatti D, Kilari D, Dumez H, Buttigliero C, van Oort IM, Castro E, Chen HC, Di Santo N, DeAnnuntis L, Healy CG, Scagliotti GV. Talazoparib, a Poly(ADP-ribose) Polymerase Inhibitor, for Metastatic Castration-resistant Prostate Cancer and DNA Damage Response Alterations: TALAPRO-1 Safety Analyses. Oncologist 2022; 27:e783-e795. [PMID: 36124924 PMCID: PMC9526483 DOI: 10.1093/oncolo/oyac172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/01/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The phase II TALAPRO-1 study (NCT03148795) demonstrated durable antitumor activity in men with heavily pretreated metastatic castration-resistant prostate cancer (mCRPC). Here, we detail the safety profile of talazoparib. PATIENTS AND METHODS Men received talazoparib 1 mg/day (moderate renal impairment 0.75 mg/day) orally until radiographic progression, unacceptable toxicity, investigator decision, consent withdrawal, or death. Adverse events (AEs) were evaluated: incidence, severity, timing, duration, potential overlap of selected AEs, dose modifications/discontinuations due to AEs, and new clinically significant changes in laboratory values and vital signs. RESULTS In the safety population (N = 127; median age 69.0 years), 95.3% (121/127) experienced all-cause treatment-emergent adverse events (TEAEs). Most common were anemia (48.8% [62/127]), nausea (33.1% [42/127]), decreased appetite (28.3% [36/127]), and asthenia (23.6% [30/127]). Nonhematologic TEAEs were generally grades 1 and 2. No grade 5 TEAEs or deaths were treatment-related. Hematologic TEAEs typically occurred during the first 4-5 months of treatment. The median duration of grade 3-4 anemia, neutropenia, and thrombocytopenia was limited to 7-12 days. No grade 4 events of anemia or neutropenia occurred. Neither BRCA status nor alteration origin significantly impacted the safety profile. The median (range) treatment duration was 6.1 (0.4-24.9) months; treatment duration did not impact the incidence of anemia. Only 3 of the 15 (11.8% [15/127]) permanent treatment discontinuations were due to hematologic TEAEs (thrombocytopenia 1.6% [2/127]; leukopenia 0.8% [1/127]). CONCLUSION Common TEAEs associated with talazoparib could be managed through dose modifications/supportive care. Demonstrated efficacy and a manageable safety profile support continued evaluation of talazoparib in mCRPC. CLINICALTRIALS.GOV IDENTIFIER NCT03148795.
Collapse
Affiliation(s)
- Niven Mehra
- Corresponding author: Niven Mehra, MD, Department of Medical Oncology, Radboud University Medical Center, Postbus 9101, 6500 HB, Nijmegen (HP452), Geert Grooteplein Zuid 8 (route 452), The Netherlands. Tel: +31 24 3610354; Fax: +31 24 3615025;
| | - Karim Fizazi
- Institut Gustave Roussy, University of Paris-Saclay, Villejuif, France
| | - Johann S de Bono
- The Institute of Cancer Research and The Royal Marsden Hospital, London, UK
| | - Philippe Barthélémy
- Medical Oncology, Institut de Cancérologie Strasbourg Europe, Strasbourg, France
| | - Tanya Dorff
- Medical Oncology & Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | | | - Jean-Pascal Machiels
- Medical Oncology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
- Medical Oncology, Université catholique de Louvain (UCLouvain), Belgium
| | - Davide Bimbatti
- Medical Oncology 1 Unit, Department of Oncology, Istituto Oncologico Veneto IOV IRCCS, Padova, Italy
| | - Deepak Kilari
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Herlinde Dumez
- Department of General Medical Oncology, University Hospitals Leuven, Leuven Cancer Institute, and Laboratory of Experimental Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Consuelo Buttigliero
- Department of Oncology, University of Turin, San Luigi Gonzaga Hospital, Orbassano, Turin, Italy
| | - Inge M van Oort
- Department of Urology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Elena Castro
- Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | | | | | | | | | - Giorgio V Scagliotti
- Department of Oncology, University of Turin, San Luigi Gonzaga Hospital, Orbassano, Turin, Italy
| |
Collapse
|
42
|
Hageman E, Che PP, Dahele M, Slotman BJ, Sminia P. Radiobiological Aspects of FLASH Radiotherapy. Biomolecules 2022; 12:biom12101376. [PMID: 36291585 PMCID: PMC9599153 DOI: 10.3390/biom12101376] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Radiotherapy (RT) is one of the primary treatment modalities for cancer patients. The clinical use of RT requires a balance to be struck between tumor effect and the risk of toxicity. Sparing normal tissue is the cornerstone of reducing toxicity. Advances in physical targeting and dose-shaping technology have helped to achieve this. FLASH RT is a promising, novel treatment technique that seeks to exploit a potential normal tissue-sparing effect of ultra-high dose rate irradiation. A significant body of in vitro and in vivo data has highlighted a decrease in acute and late radiation toxicities, while preserving the radiation effect in tumor cells. The underlying biological mechanisms of FLASH RT, however, remain unclear. Three main mechanisms have been hypothesized to account for this differential FLASH RT effect between the tumor and healthy tissue: the oxygen depletion, the DNA damage, and the immune-mediated hypothesis. These hypotheses and molecular mechanisms have been evaluated both in vitro and in vivo. Furthermore, the effect of ultra-high dose rate radiation with extremely short delivery times on the dynamic tumor microenvironment involving circulating blood cells and immune cells in humans is essentially unknown. Therefore, while there is great interest in FLASH RT as a means of targeting tumors with the promise of an increased therapeutic ratio, evidence of a generalized FLASH effect in humans and data to show that FLASH in humans is safe and at least effective against tumors as standard photon RT is currently lacking. FLASH RT needs further preclinical investigation and well-designed in-human studies before it can be introduced into clinical practice.
Collapse
Affiliation(s)
- Eline Hageman
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Radiation Oncology, Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, 1081 HV Amsterdam, The Netherlands
| | - Pei-Pei Che
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Radiation Oncology, Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, 1081 HV Amsterdam, The Netherlands
| | - Max Dahele
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Radiation Oncology, Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Ben J. Slotman
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Radiation Oncology, Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Peter Sminia
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Radiation Oncology, Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, 1081 HV Amsterdam, The Netherlands
- Correspondence:
| |
Collapse
|
43
|
Revisiting PARP2 and PARP1 trapping through quantitative live-cell imaging. Biochem Soc Trans 2022; 50:1169-1177. [PMID: 35959996 DOI: 10.1042/bst20220366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/15/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022]
Abstract
Poly (ADP-ribose) polymerase-1 (PARP1) and 2 (PARP2) are two DNA damage-induced poly (ADP-ribose) (PAR) polymerases in cells and are the targets of PARP inhibitors used for cancer therapy. Strand breaks recruit and activate PARP1 and 2, which rapidly generate PAR from NAD+. PAR promotes the recruitment of other repair factors, relaxes chromatin, and has a role in DNA repair, transcription regulation, and RNA biology. Four PARP1/2 dual inhibitors are currently used to treat BRCA-deficient breast, ovarian, prostate, and pancreatic cancers. In addition to blocking the enzymatic activity of PARP1 and 2, clinical PARP inhibitors extend the appearance of PARP1 and PARP2 on chromatin after damage, termed trapping. Loss of PARP1 confers resistance to PARP inhibitors, suggesting an essential role of trapping in cancer therapy. Yet, whether the persistent PARP1 and 2 foci at the DNA damage sites are caused by the retention of the same molecules or by the continual exchange of different molecules remains unknown. Here, we discuss recent results from quantitative live-cell imaging studies focusing on PARP1 and PARP2's distinct DNA substrate specificities and modes of recruitment and trapping with implications for cancer therapy and on-target toxicities of PARP inhibitors.
Collapse
|
44
|
Li P, Lei Y, Qi J, Liu W, Yao K. Functional roles of ADP-ribosylation writers, readers and erasers. Front Cell Dev Biol 2022; 10:941356. [PMID: 36035988 PMCID: PMC9404506 DOI: 10.3389/fcell.2022.941356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
ADP-ribosylation is a reversible post-translational modification (PTM) tightly regulated by the dynamic interplay between its writers, readers and erasers. As an intricate and versatile PTM, ADP-ribosylation plays critical roles in various physiological and pathological processes. In this review, we discuss the major players involved in the ADP-ribosylation cycle, which may facilitate the investigation of the ADP-ribosylation function and contribute to the understanding and treatment of ADP-ribosylation associated disease.
Collapse
|
45
|
Shu Y, Ding Y, He X, Liu Y, Wu P, Zhang Q. Hematological toxicities in PARP inhibitors: A real-world study using FDA adverse event reporting system (FAERS) database. Cancer Med 2022; 12:3365-3375. [PMID: 35871395 PMCID: PMC9939145 DOI: 10.1002/cam4.5062] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/22/2022] [Accepted: 07/13/2022] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE Poly ADP-ribose polymerase inhibitors (PARPis) have significantly improved clinical effects in gynecological oncology. However, PARPis could also induce severe organ system toxicities, including the hematological system. Our study aimed to extensively characterize the hematological toxicities of PARPis based on the real-world data. METHODS Disproportionality analysis was used to evaluate the association between PARPis and hematotoxicity adverse events. Data were extracted from the US FDA Adverse Event Reporting System (FAERS) database between January 2015 and September 2021. The characteristics of PARPi-associated hematological toxicities, and the onset time and fatality proportion were further analyzed. RESULTS Out of 24,045 adverse events reports, 4088 hematotoxicity reports (17.00%) were analyzed, with a median age of 64.95 (interquartile range [IQR] 51-71) years. All PARPis were detected with positive safety signals of hematological toxicities in four detection methods. Unexpected significant adverse events such as lymphadenopathy, lymphoedema, and metastases to lymph nodes might also occur. The median time-to-onset was 28 (IQR 10-101) days and the fatality proportion of hematological toxicities with PARPis was 8.76%, with a statistical difference in different PARPis. CONCLUSION Hematological toxicities caused by PARPis preferred to occur early and might result in serious outcomes. Early identification and response to the PARPi-related hematological toxicities were important and further basic research were needed to confirm the mechanism of results in this study.
Collapse
Affiliation(s)
- Yamin Shu
- Department of Pharmacy, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yufeng Ding
- Department of Pharmacy, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xucheng He
- Department of Pharmacy, Pengzhou Second People's HospitalPengzhouChina
| | - Yanxin Liu
- Department of Pharmacy, Pengzhou People's HospitalPengzhouChina
| | - Pan Wu
- Department of Pharmacy, Qionglai Maternal & Child Health and Family Planning Service CenterQionglaiChina
| | - Qilin Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
46
|
Zhou Y, Zhao S, Wu T, Zhang H. Comparison of Adverse Reactions Caused by Olaparib for Different Indications. Front Pharmacol 2022; 13:968163. [PMID: 35910367 PMCID: PMC9326361 DOI: 10.3389/fphar.2022.968163] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: Meta-analysis of safety of Olaparib in the treatment of different indications. Methods: The databases of PubMed, The Cochrane Library, EMbase, CNKI, WanFang Data and VIP were searched by computer to collect the research on the indications and the incidence of adverse reactions caused by Olaparib for different cancer types. The search time was from the establishment of the database to May 2022. After two researchers independently screened the literature, extracted the data and evaluated the bias risk included in the study, we used RevMan 5.4 software for meta-analysis. Results: A total of 14 studies were included, with a total sample size of 5119 cases. By meta-analysis, the adverse reactions of Olaparib in the treatment of pancreatic cancer, breast cancer and ovarian cancer were compared. In adverse reactions of any grade, the results showed that fatigue (RR = 1.58, 95% CI [1.20–2.07], p = 0.001) was the most serious in the treatment of pancreatic cancer with Olaparib. Anemia (RR = 2.94, 95% CI [1.97–4.39], p < 0.00001), neutropenia (RR = 1.37, 95% CI [0.80–2.33], p = 0.25), nausea (RR = 1.93, 95% CI [1.61–2.32], p < 0.00001) and vomiting (RR = 1.96, 95% CI [1.59–2.41], p < 0.00001) were the most severe in ovarian cancer. In adverse reactions of grade 3 or above, fatigue (RR = 3.44, 95% CI [1.48–7.98], p = 0.004) and vomiting (RR = 1.09, 95% CI [0.42–2.81], p = 0.86) were the most serious adverse reactions in the treatment of breast cancer with Olaparib. Anemia (RR = 9.74, 95% CI [2.75–34.47], p = 0.0004), neutropenia (RR = 1.33, 95% CI [0.87–2.02], p = 0.19) and nausea (RR = 2.94, 95% CI [1.18–7.32], p = 0.02) were the most severe in ovarian cancer. In addition, the incidence of decreased white blood cell count and hepatotoxicity in the treatment of breast cancer, and the incidence of decreased platelet count, constipation and abdominal pain in the treatment of ovarian cancer were higher than those in pancreatic cancer. Conclusion: Current evidence showed that the risk of adverse reactions of Olaparib in the treatment of different indications is different, and specific analysis and treatment should be carried out for different cancer types. Due to the limitation of the quantity and quality of the included studies, the above conclusions need to be verified by more high-quality studies.
Collapse
Affiliation(s)
- Yujing Zhou
- Department of Nuclear Medicine, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shengwen Zhao
- Department of Radiology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| | - Tong Wu
- Department of Radiology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| | - Han Zhang
- Department of Nuclear Medicine, Harbin Medical University Cancer Hospital, Harbin, China
- *Correspondence: Han Zhang,
| |
Collapse
|
47
|
Du T, Zhang Z, Zhou J, Sheng L, Yao H, Ji M, Xu B, Chen X. A Novel PARP Inhibitor YHP-836 For the Treatment of BRCA-Deficiency Cancers. Front Pharmacol 2022; 13:865085. [PMID: 35910366 PMCID: PMC9326368 DOI: 10.3389/fphar.2022.865085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
PARP inhibitors have clinically demonstrated good antitumor activity in patients with BRCA mutations. Here, we described YHP-836, a novel PARP inhibitor, YHP-836 demonstrated excellent inhibitory activity for both PARP1 and PARP2 enzymes. It also allosterically regulated PARP1 and PARP2 via DNA trapping. YHP-836 showed cytotoxicity in tumor cell lines with BRCA mutations and induced cell cycle arrest in the G2/M phase. YHP-836 also sensitized tumor cells to chemotherapy agents in vitro. Oral administration of YHP-836 elicited remarkable antitumor activity either as a single agent or in combination with chemotherapy agents in vivo. These results indicated that YHP-836 is a well-defined PARP inhibitor.
Collapse
Affiliation(s)
- Tingting Du
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhihui Zhang
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Zhou
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Sheng
- Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haiping Yao
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ming Ji
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Ming Ji, ; Bailing Xu, ; Xiaoguang Chen,
| | - Bailing Xu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Ming Ji, ; Bailing Xu, ; Xiaoguang Chen,
| | - Xiaoguang Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Ming Ji, ; Bailing Xu, ; Xiaoguang Chen,
| |
Collapse
|
48
|
Roubaud G, Özgüroğlu M, Penel N, Matsubara N, Mehra N, Kolinsky MP, Procopio G, Feyerabend S, Joung JY, Gravis G, Nishimura K, Gedye C, Padua C, Shore N, Thiery-Vuillemin A, Saad F, van Alphen R, Carducci MA, Desai C, Brickel N, Poehlein C, Del Rosario P, Fizazi K. Olaparib tolerability and common adverse-event management in patients with metastatic castration-resistant prostate cancer: Further analyses from the PROfound study. Eur J Cancer 2022; 170:73-84. [PMID: 35598359 DOI: 10.1016/j.ejca.2022.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/24/2022] [Accepted: 04/01/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Based on PROfound, olaparib is approved for patients with metastatic castration-resistant prostate cancer following disease progression on at least enzalutamide or abiraterone and who carry relevant alterations in DNA repair genes. To facilitate continued olaparib treatment as long as the patient derives benefit, we describe further safety assessments from PROfound focusing on the four most common adverse events (AEs) and events of special interest. METHODS Patients were randomized (2:1) to olaparib tablets (300 mg bid) or control (enzalutamide or abiraterone) until disease progression or unacceptable toxicity. Safety was assessed through AE reporting and laboratory assessments. Safety data were also collected from all patients in the control group who experienced radiographic disease progression and subsequently crossed over to olaparib treatment. RESULTS 256 patients received olaparib and 130 control. Incidence rates for the four most commonly occurring AEs in the olaparib group (all-causality) were anaemia 50%, nausea 43%, fatigue/asthenia 42% and decreased appetite 31%. All were mostly Grade 1 and 2 and all peaked within the first 2 months of treatment as the events were managed where appropriate, primarily with dose interruptions or dose reductions. The extent of bone metastases at baseline or prior taxane use was not associated with the rate of anaemia. Pneumonitis was reported in 2% and 1.5% of patients in the olaparib and control groups, respectively, and one patient (0.4%) in the olaparib group experienced an event of MDS/AML after a 30-day follow-up period. Venous thromboembolic events occurred in 8% of olaparib and 3% of control patients. CONCLUSIONS The four most common AEs observed in PROfound were generally manageable without the need for treatment discontinuation, allowing patients to remain on treatment for as long as they were deriving clinical benefit. CLINICALTRIALS gov registration number: NCT02987543.
Collapse
Affiliation(s)
- Guilhem Roubaud
- Department of Medical Oncology, Institut Bergonié, Bordeaux, France.
| | - Mustafa Özgüroğlu
- Department of Internal Medicine, Division of Medical Oncology, Cerrahpaşa School of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Nicolas Penel
- Lille University and Centre Oscar Lambret, Lille, France
| | | | - Niven Mehra
- Radboud University Medical Center, Nijmegen, the Netherlands
| | - Michael P Kolinsky
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, Alberta, Canada
| | - Giuseppe Procopio
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | | | - Jae Young Joung
- Center for Prostate Cancer, National Cancer Center, Goyang, South Korea
| | | | - Kazuo Nishimura
- Department of Urology, Osaka International Cancer Institute, Osaka, Japan
| | | | | | - Neal Shore
- Carolina Urologic Research Center, Myrtle Beach, SC, USA
| | | | - Fred Saad
- Centre Hospitalier de L'Universite de Montreal, Montreal, Canada
| | | | | | | | | | | | | | - Karim Fizazi
- Department of Cancer Medicine, Institut Gustave Roussy, University of Paris Saclay, Villejuif, France
| |
Collapse
|
49
|
Pu C, Tong Y, Liu Y, Lan S, Wang S, Yan G, Zhang H, Luo D, Ma X, Yu S, Huang Q, Deng R, Li R. Selective degradation of PARP2 by PROTACs via recruiting DCAF16 for triple-negative breast cancer. Eur J Med Chem 2022; 236:114321. [DOI: 10.1016/j.ejmech.2022.114321] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/13/2022] [Accepted: 03/23/2022] [Indexed: 02/07/2023]
|
50
|
Lin X, Jiang W, Rudolph J, Lee BJ, Luger K, Zha S. PARP inhibitors trap PARP2 and alter the mode of recruitment of PARP2 at DNA damage sites. Nucleic Acids Res 2022; 50:3958-3973. [PMID: 35349716 PMCID: PMC9023293 DOI: 10.1093/nar/gkac188] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/24/2022] [Accepted: 03/23/2022] [Indexed: 12/11/2022] Open
Abstract
Dual-inhibitors of PARP1 and PARP2 are promising anti-cancer drugs. In addition to blocking PARP1&2 enzymatic activity, PARP inhibitors also extend the lifetime of DNA damage-induced PARP1&2 foci, termed trapping. Trapping is important for the therapeutic effects of PARP inhibitors. Using live-cell imaging, we found that PARP inhibitors cause persistent PARP2 foci by switching the mode of PARP2 recruitment from a predominantly PARP1- and PAR-dependent rapid exchange to a WGR domain-mediated stalling of PARP2 on DNA. Specifically, PARP1-deletion markedly reduces but does not abolish PARP2 foci. The residual PARP2 foci in PARP1-deficient cells are DNA-dependent and abrogated by the R140A mutation in the WGR domain. Yet, PARP2-R140A forms normal foci in PARP1-proficient cells. In PARP1-deficient cells, PARP inhibitors - niraparib, talazoparib, and, to a lesser extent, olaparib - enhance PARP2 foci by preventing PARP2 exchange. This trapping of PARP2 is independent of auto-PARylation and is abolished by the R140A mutation in the WGR domain and the H415A mutation in the catalytic domain. Taken together, we found that PARP inhibitors trap PARP2 by physically stalling PARP2 on DNA via the WGR-DNA interaction while suppressing the PARP1- and PAR-dependent rapid exchange of PARP2.
Collapse
Affiliation(s)
- Xiaohui Lin
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY10032, USA
| | - Wenxia Jiang
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY10032, USA
| | - Johannes Rudolph
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO80309, USA
| | - Brian J Lee
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY10032, USA
| | - Karolin Luger
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO80309, USA
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO80309, USA
| | - Shan Zha
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY10032, USA
- Department of Pathology and Cell Biology, Herbert Irvine Comprehensive Cancer Center, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY10032, USA
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, Department of Pediatrics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY10032, USA
- Department of Immunology and Microbiology, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY10032, USA
| |
Collapse
|