1
|
Khodaee F, Zandie R, Edelman ER. Multimodal Learning for Mapping the Genotype-Phenotype Dynamics. RESEARCH SQUARE 2024:rs.3.rs-4355413. [PMID: 38798675 PMCID: PMC11118704 DOI: 10.21203/rs.3.rs-4355413/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
How complex phenotypes emerge from intricate gene expression patterns is a fundamental question in biology. Quantitative characterization of this relationship, however, is challenging due to the vast combinatorial possibilities and dynamic interplay between genotype and phenotype landscapes. Integrating high-content genotyping approaches such as single-cell RNA sequencing and advanced learning methods such as language models offers an opportunity for dissecting this complex relationship. Here, we present a computational integrated genetics framework designed to analyze and interpret the high-dimensional landscape of genotypes and their associated phenotypes simultaneously. We applied this approach to develop a multimodal foundation model to explore the genotype-phenotype relationship manifold for human transcriptomics at the cellular level. Analyzing this joint manifold showed a refined resolution of cellular heterogeneity, enhanced precision in phenotype annotating, and uncovered potential cross-tissue biomarkers that are undetectable through conventional gene expression analysis alone. Moreover, our results revealed that the gene networks are characterized by scale-free patterns and show context-dependent gene-gene interactions, both of which result in significant variations in the topology of the gene network, particularly evident during aging. Finally, utilizing contextualized embeddings, we investigated gene polyfunctionality which illustrates the multifaceted roles that genes play in different biological processes, and demonstrated that for VWF gene in endothelial cells. Overall, this study advances our understanding of the dynamic interplay between gene expression and phenotypic manifestation and demonstrates the potential of integrated genetics in uncovering new dimensions of cellular function and complexity.
Collapse
Affiliation(s)
- Farhan Khodaee
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, 02139, MA, USA
| | - Rohola Zandie
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, 02139, MA, USA
| | - Elazer R. Edelman
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, 02139, MA, USA
- Department of Medicine (Cardiovascular Medicine), Brigham and Women’s Hospital, Boston, 02115, MA, USA
| |
Collapse
|
2
|
Danckwardt S, Trégouët DA, Castoldi E. Post-transcriptional control of haemostatic genes: mechanisms and emerging therapeutic concepts in thrombo-inflammatory disorders. Cardiovasc Res 2023; 119:1624-1640. [PMID: 36943786 PMCID: PMC10325701 DOI: 10.1093/cvr/cvad046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/20/2022] [Accepted: 01/05/2023] [Indexed: 03/23/2023] Open
Abstract
The haemostatic system is pivotal to maintaining vascular integrity. Multiple components involved in blood coagulation have central functions in inflammation and immunity. A derailed haemostasis is common in prevalent pathologies such as sepsis, cardiovascular disorders, and lately, COVID-19. Physiological mechanisms limit the deleterious consequences of a hyperactivated haemostatic system through adaptive changes in gene expression. While this is mainly regulated at the level of transcription, co- and posttranscriptional mechanisms are increasingly perceived as central hubs governing multiple facets of the haemostatic system. This layer of regulation modulates the biogenesis of haemostatic components, for example in situations of increased turnover and demand. However, they can also be 'hijacked' in disease processes, thereby perpetuating and even causally entertaining associated pathologies. This review summarizes examples and emerging concepts that illustrate the importance of posttranscriptional mechanisms in haemostatic control and crosstalk with the immune system. It also discusses how such regulatory principles can be used to usher in new therapeutic concepts to combat global medical threats such as sepsis or cardiovascular disorders.
Collapse
Affiliation(s)
- Sven Danckwardt
- Centre for Thrombosis and Hemostasis (CTH), University Medical Centre
Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- German Centre for Cardiovascular Research (DZHK),
Berlin, Germany
- Posttranscriptional Gene Regulation, University Medical Centre
Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- Institute for Clinical Chemistry and Laboratory Medicine, University
Medical Centre Mainz, Langenbeckstr. 1, 55131
Mainz, Germany
- Center for Healthy Aging (CHA), Mainz,
Germany
| | - David-Alexandre Trégouët
- INSERM, Bordeaux Population Health Research Center, UMR 1219, Department of
Molecular Epidemiology of Vascular and Brain Disorders (ELEANOR), University of
Bordeaux, Bordeaux, France
| | - Elisabetta Castoldi
- Department of Biochemistry, Cardiovascular Research Institute Maastricht
(CARIM), Maastricht University, Universiteitsingel 50, 6229
ER Maastricht, The Netherlands
| |
Collapse
|
3
|
Zhou LY, Zhang S, Li LY, Yang GY, Zeng L. Optimization of mammalian expression vector by cis-regulatory element combinations. Mol Genet Genomics 2023:10.1007/s00438-023-02042-0. [PMID: 37318628 DOI: 10.1007/s00438-023-02042-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/31/2023] [Indexed: 06/16/2023]
Abstract
The regulation of gene expression in mammalian cells by combining various cis-regulatory features has rarely been discussed. In this study, we constructed expression vectors containing various combinations of regulatory elements to examine the regulation of gene expression by different combinations of cis-regulatory elements. The effects of four promoters (CMV promoter, PGK promoter, Polr2a promoter, and EF-1α core promoter), two enhancers (CMV enhancer and SV40 enhancer), two introns (EF-1α intron A and hybrid intron), two terminators (CYC1 terminator and TEF terminator), and their different combinations on downstream gene expression were compared in various mammalian cells using fluorescence microscopy to observe fluorescence, quantitative real-time PCR (qRT-PCR), and western blot. The receptor binding domain (RBD) sequence from severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) spike protein was used to replace the eGFP sequence in the expression vector and the RBD expression was detected by qRT-PCR and western blot. The results showed that protein expression can be regulated by optimizing the combination of cis-acting elements. The vector with the CMV enhancer, EF-1α core promoter, and TEF terminator was found to express approximately threefold higher eGFP than the unmodified vector in different animal cells, as well as 2.63-fold higher recombinant RBD protein than the original vector in HEK-293T cells. Moreover, we suggest that combinations of multiple regulatory elements capable of regulating gene expression do not necessarily exhibit synergistic effects to enhance expression further. Overall, our findings provide insights into biological applications that require the regulation of gene expression and will help to optimize expression vectors for biosynthesis and other fields. Additionally, we provide valuable insights into the production of RBD proteins, which may aid in developing reagents for diagnosis and treatment during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Lu-Yu Zhou
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, People's Republic of China
- Key Laboratory of Animal Biochemistry and Nutrition, Henan Agricultural University, Ministry of Agriculture and Rural Affairs, Zhengzhou, 450046, Henan, People's Republic of China
- Key Laboratory of Animal Growth and Development, The Education Department of Henan Province, Zhengzhou, 450046, Henan, People's Republic of China
| | - Shuang Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, People's Republic of China
- Key Laboratory of Animal Biochemistry and Nutrition, Henan Agricultural University, Ministry of Agriculture and Rural Affairs, Zhengzhou, 450046, Henan, People's Republic of China
- Key Laboratory of Animal Growth and Development, The Education Department of Henan Province, Zhengzhou, 450046, Henan, People's Republic of China
| | - Li-Yun Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, People's Republic of China
- Key Laboratory of Animal Biochemistry and Nutrition, Henan Agricultural University, Ministry of Agriculture and Rural Affairs, Zhengzhou, 450046, Henan, People's Republic of China
- Key Laboratory of Animal Growth and Development, The Education Department of Henan Province, Zhengzhou, 450046, Henan, People's Republic of China
| | - Guo-Yu Yang
- Key Laboratory of Animal Biochemistry and Nutrition, Henan Agricultural University, Ministry of Agriculture and Rural Affairs, Zhengzhou, 450046, Henan, People's Republic of China
- Key Laboratory of Animal Growth and Development, The Education Department of Henan Province, Zhengzhou, 450046, Henan, People's Republic of China
| | - Lei Zeng
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, People's Republic of China.
- Key Laboratory of Animal Biochemistry and Nutrition, Henan Agricultural University, Ministry of Agriculture and Rural Affairs, Zhengzhou, 450046, Henan, People's Republic of China.
- Key Laboratory of Animal Growth and Development, The Education Department of Henan Province, Zhengzhou, 450046, Henan, People's Republic of China.
| |
Collapse
|
4
|
Ng CJ, Liu A, Venkataraman S, Ashworth KJ, Baker CD, O'Rourke R, Vibhakar R, Jones KL, Di Paola J. Single-cell transcriptional analysis of human endothelial colony-forming cells from patients with low VWF levels. Blood 2022; 139:2240-2251. [PMID: 35143643 PMCID: PMC8990376 DOI: 10.1182/blood.2021010683] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 07/21/2021] [Indexed: 11/20/2022] Open
Abstract
von Willebrand factor (VWF) plays a key role in normal hemostasis, and deficiencies of VWF lead to clinically significant bleeding. We sought to identify novel modifiers of VWF levels in endothelial colony-forming cells (ECFCs) using single-cell RNA sequencing (scRNA-seq). ECFCs were isolated from patients with low VWF levels (plasma VWF antigen levels between 30 and 50 IU/dL) and from healthy controls. Human umbilical vein endothelial cells were used as an additional control cell line. Cells were characterized for their Weibel Palade body (WPB) content and VWF release. scRNA-seq of all cell lines was performed to evaluate for gene expression heterogeneity and for candidate modifiers of VWF regulation. Candidate modifiers identified by scRNA-seq were further characterized with small-interfering RNA (siRNA) experiments to evaluate for effects on VWF. We observed that ECFCs derived from patients with low VWF demonstrated alterations in baseline WPB metrics and exhibit impaired VWF release. scRNA-seq analyses of these endothelial cells revealed overall decreased VWF transcription, mosaicism of VWF expression, and genes that are differentially expressed in low VWF ECFCs and control endothelial cells (control ECs). An siRNA screen of potential VWF modifiers provided further evidence of regulatory candidates, and 1 such candidate, FLI1, alters the transcriptional activity of VWF. In conclusion, ECFCs from individuals with low VWF demonstrate alterations in their baseline VWF packaging and release compared with control ECs. scRNA-seq revealed alterations in VWF transcription, and siRNA screening identified multiple candidate regulators of VWF.
Collapse
Affiliation(s)
- Christopher J Ng
- Department of Pediatrics, University of Colorado and Children's Hospital Colorado, Aurora, CO
- University of Colorado, Anschutz Medical Campus, Aurora, CO
| | - Alice Liu
- Department of Pediatrics, University of Colorado and Children's Hospital Colorado, Aurora, CO
- University of Colorado, Anschutz Medical Campus, Aurora, CO
| | - Sujatha Venkataraman
- Department of Pediatrics, University of Colorado and Children's Hospital Colorado, Aurora, CO
- University of Colorado, Anschutz Medical Campus, Aurora, CO
| | - Katrina J Ashworth
- Division of Hematology Oncology, Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO; and
| | - Christopher D Baker
- Department of Pediatrics, University of Colorado and Children's Hospital Colorado, Aurora, CO
- University of Colorado, Anschutz Medical Campus, Aurora, CO
| | - Rebecca O'Rourke
- Department of Pediatrics, University of Colorado and Children's Hospital Colorado, Aurora, CO
- University of Colorado, Anschutz Medical Campus, Aurora, CO
| | - Rajeev Vibhakar
- Department of Pediatrics, University of Colorado and Children's Hospital Colorado, Aurora, CO
- University of Colorado, Anschutz Medical Campus, Aurora, CO
| | - Kenneth L Jones
- Department of Cell Biology and
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Jorge Di Paola
- Division of Hematology Oncology, Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO; and
| |
Collapse
|
5
|
Genome-wide analysis of JAZ family genes expression patterns during fig (Ficus carica L.) fruit development and in response to hormone treatment. BMC Genomics 2022; 23:170. [PMID: 35236292 PMCID: PMC8889711 DOI: 10.1186/s12864-022-08420-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 02/25/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Jasmonate-ZIM domain (JAZ) repressors negatively regulate signal transduction of jasmonates, which regulate plant development and immunity. However, no comprehensive analysis of the JAZ gene family members has been done in the common fig (Ficus carica L.) during fruit development and hormonal treatment. RESULTS In this study, 10 non-redundant fig JAZ family genes (FcJAZs) distributed on 7 chromosomes were identified in the fig genome. Phylogenetic and structural analysis showed that FcJAZ genes can be grouped into 5 classes. All the classes contained relatively complete TIFY and Jas domains. Yeast two hybrid (Y2H) results showed that all FcJAZs proteins may interact with the identified transcription factor, FcMYC2. Tissue-specific expression analysis showed that FcJAZs were highly expressed in the female flowers and roots. Expression patterns of FcJAZs during the fruit development were analyzed by RNA-Seq and qRT-PCR. The findings showed that, most FcJAZs were significantly downregulated from stage 3 to 5 in the female flower, whereas downregulation of these genes was observed in the fruit peel from stage 4 to 5. Weighted-gene co-expression network analysis (WGCNA) showed the expression pattern of FcJAZs was correlated with hormone signal transduction and plant-pathogen interaction. Putative cis-elements analysis of FcJAZs and expression patterns of FcJAZs which respond to hormone treatments revealed that FcJAZs may regulate fig fruit development by modulating the effect of ethylene or gibberellin. CONCLUSIONS This study provides a comprehensive analysis of the FcJAZ family members and provides information on FcJAZs contributions and their role in regulating the common fig fruit development.
Collapse
|
6
|
Vogel M, Weigand JE, Kluge B, Grez M, Suess B. A small, portable RNA device for the control of exon skipping in mammalian cells. Nucleic Acids Res 2019; 46:e48. [PMID: 29420816 PMCID: PMC5934650 DOI: 10.1093/nar/gky062] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 01/29/2018] [Indexed: 12/17/2022] Open
Abstract
Splicing is an essential and highly regulated process in mammalian cells. We developed a synthetic riboswitch that efficiently controls alternative splicing of a cassette exon in response to the small molecule ligand tetracycline. The riboswitch was designed to control the accessibility of the 3' splice site by placing the latter inside the closing stem of a conformationally controlled tetracycline aptamer. In the presence of tetracycline, the cassette exon is skipped, whereas it is included in the ligand's absence. The design allows for an easy, context-independent integration of the regulatory device into any gene of interest. Portability of the device was shown through its functionality in four different systems: a synthetic minigene, a reporter gene and two endogenous genes. Furthermore, riboswitch functionality to control cellular signaling cascades was demonstrated by using it to specifically induce cell death through the conditionally controlled expression of CD20, which is a target in cancer therapy.
Collapse
Affiliation(s)
- Marc Vogel
- Department of Biology, Technical University Darmstadt, Schnittspahnstr. 10, 64287 Darmstadt, Germany
| | - Julia E Weigand
- Department of Biology, Technical University Darmstadt, Schnittspahnstr. 10, 64287 Darmstadt, Germany
| | - Britta Kluge
- Department of Biology, Technical University Darmstadt, Schnittspahnstr. 10, 64287 Darmstadt, Germany
| | - Manuel Grez
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Paul-Ehrlich-Str. 42-44, 60596 Frankfurt/M, Germany
| | - Beatrix Suess
- Department of Biology, Technical University Darmstadt, Schnittspahnstr. 10, 64287 Darmstadt, Germany
| |
Collapse
|
7
|
Randi AM, Smith KE, Castaman G. von Willebrand factor regulation of blood vessel formation. Blood 2018; 132:132-140. [PMID: 29866817 PMCID: PMC6182264 DOI: 10.1182/blood-2018-01-769018] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 04/18/2018] [Indexed: 02/06/2023] Open
Abstract
Several important physiological processes, from permeability to inflammation to hemostasis, take place at the vessel wall and are regulated by endothelial cells (ECs). Thus, proteins that have been identified as regulators of one process are increasingly found to be involved in other vascular functions. Such is the case for von Willebrand factor (VWF), a large glycoprotein best known for its critical role in hemostasis. In vitro and in vivo studies have shown that lack of VWF causes enhanced vascularization, both constitutively and following ischemia. This evidence is supported by studies on blood outgrowth EC (BOEC) from patients with lack of VWF synthesis (type 3 von Willebrand disease [VWD]). The molecular pathways are likely to involve VWF binding partners, such as integrin αvβ3, and components of Weibel-Palade bodies, such as angiopoietin-2 and galectin-3, whose storage is regulated by VWF; these converge on the master regulator of angiogenesis and endothelial homeostasis, vascular endothelial growth factor signaling. Recent studies suggest that the roles of VWF may be tissue specific. The ability of VWF to regulate angiogenesis has clinical implications for a subset of VWD patients with severe, intractable gastrointestinal bleeding resulting from vascular malformations. In this article, we review the evidence showing that VWF is involved in blood vessel formation, discuss the role of VWF high-molecular-weight multimers in regulating angiogenesis, and review the value of studies on BOEC in developing a precision medicine approach to validate novel treatments for angiodysplasia in congenital VWD and acquired von Willebrand syndrome.
Collapse
Affiliation(s)
- Anna M Randi
- Vascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom; and
| | - Koval E Smith
- Vascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom; and
| | - Giancarlo Castaman
- Center for Bleeding Disorders and Coagulation, Department of Oncology, Careggi University Hospital, Florence, Italy
| |
Collapse
|
8
|
Abstract
During differentiation of CD4+CD8+ double-positive (DP) thymocytes into the CD4-CD8+ single-positive (CD8SP) thymocytes committed to the cytotoxic T cell lineage, Cd8a transcription is temporally terminated after positive selection and is subsequently reinitiated, a process known as coreceptor reversal. Despite the identification of a transcriptional enhancer in the Cd8a gene that directs reporter transgene expression specifically in CD8SP thymocytes, the molecular mechanisms controlling reactivation of the Cd8a gene are not fully understood. Here, we show that, after positive selection, hCD2 reporter expression from the Cd8a locus, which was generated by insertion of hCD2 cDNA into the first exon of the Cd8a gene, requires the incorporation of intron sequences into the hCD2 transcript. The presence of polyadenylation signals after hCD2 cDNA inhibited hCD2 expression in mature CD8+ T cells, whereas hCD2 expression in DP thymocytes recapitulated the Cd8a expression. Incorporation of the endogenous short intron structure and heterologous intron structure of the Cd4 locus restored hCD2 expression in mature CD8+ T cells in a variegated manner. Interestingly, stage-specific DNA demethylation was impaired in Cd8a reporter alleles that failed to express hCD2 in CD8+ T cells, and intron sequences lacking RNA splicing signals still restored hCD2 expression. These observations indicate that "intron-mediated enhancement" is involved in a stage-specific reactivation of the Cd8a locus harboring hCD2 cDNA. However, the Cd8a gene was transcribed in mature CD8+ T cells, albeit at a lower level, from a mutant Cd8a locus lacking intron structures, suggesting that protein-coding sequences in transcripts affect sensitivity to intron-mediated enhancement.
Collapse
|
9
|
Shaul O. How introns enhance gene expression. Int J Biochem Cell Biol 2017; 91:145-155. [PMID: 28673892 DOI: 10.1016/j.biocel.2017.06.016] [Citation(s) in RCA: 236] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 06/26/2017] [Accepted: 06/30/2017] [Indexed: 01/18/2023]
Abstract
In many eukaryotes, including mammals, plants, yeast, and insects, introns can increase gene expression without functioning as a binding site for transcription factors. This phenomenon was termed 'intron-mediated enhancement'. Introns can increase transcript levels by affecting the rate of transcription, nuclear export, and transcript stability. Moreover, introns can also increase the efficiency of mRNA translation. This review discusses the current knowledge about these processes. The role of splicing in IME and the significance of intron position relative to the sites of transcription and translation initiation are elaborated. Particular emphasis is placed on the question why different introns, present at the same location of the same genes and spliced at a similar high efficiency, can have very different impacts on expression - from almost no effect to considerable stimulation. This situation can be at least partly accounted for by the identification of splicing-unrelated intronic elements with a special ability to enhance mRNA accumulation or translational efficiency. The many factors that could lead to the large variation observed between the impact of introns in different genes and experimental systems are highlighted. It is suggested that there is no sole, definite answer to the question "how do introns enhance gene expression". Rather, each intron-gene combination might undergo its own unique mixture of processes that lead to the perceptible outcome.
Collapse
Affiliation(s)
- Orit Shaul
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW Von Willebrand factor (VWF) is a large multidomain, multimeric glycoprotein that plays an essential role in regulating the balance between blood clotting and bleeding. Aberrant VWF regulation can lead to a spectrum of diseases extending from bleeding disorders [Von Willebrand disease (VWD)] to aberrant thrombotic thrombocytopenic purpura (TTP). Understanding the biology of VWF expression and secretion is essential for developing novel targeted therapies for VWF-related hemostasis disorders. RECENT FINDINGS A number of recent elegant in-vitro and in-vivo studies will be highlighted, including the discovery of intronic splicing in the VWF gene, microRNA-regulated VWF gene expression, and syntaxin binding protein and autophagy mediated VWF secretion. Compared with the already established critical role of VWF in VWD and TTP pathophysiology, additional clinical studies have clarified and reinforced the association of elevated plasma levels of VWF with an increased risk of stroke, myocardial infarction, venous thrombosis, and diabetic thrombotic complications. Moreover, experimental mouse models of ischemic stroke and myocardial infarction have further supported VWF as a potential therapeutic target. SUMMARY VWF biosynthesis, maturation, and secretion is a complex process, which mandates tight regulation. Significant progress has been made in our understandings of VWF expression and secretion and its association with thrombotic diseases, contributing to the development of novel targeting VWF drugs for prevention and treatment of deficient and enhanced hemostasis.
Collapse
Affiliation(s)
- Yaozu Xiang
- aYale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, New Haven, Connecticut, USA bSchool of Life Sciences and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai, China
| | | |
Collapse
|
11
|
Yuan L, Chan GC, Beeler D, Janes L, Spokes KC, Dharaneeswaran H, Mojiri A, Adams WJ, Sciuto T, Garcia-Cardeña G, Molema G, Kang PM, Jahroudi N, Marsden PA, Dvorak A, Regan ER, Aird WC. A role of stochastic phenotype switching in generating mosaic endothelial cell heterogeneity. Nat Commun 2016; 7:10160. [PMID: 26744078 PMCID: PMC5154372 DOI: 10.1038/ncomms10160] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 11/10/2015] [Indexed: 01/20/2023] Open
Abstract
Previous studies have shown that biological noise may drive dynamic phenotypic mosaicism in isogenic unicellular organisms. However, there is no evidence for a similar mechanism operating in metazoans. Here we show that the endothelial-restricted gene, von Willebrand factor (VWF), is expressed in a mosaic pattern in the capillaries of many vascular beds and in the aorta. In capillaries, the mosaicism is dynamically regulated, with VWF switching between ON and OFF states during the lifetime of the animal. Clonal analysis of cultured endothelial cells reveals that dynamic mosaic heterogeneity is controlled by a low-barrier, noise-sensitive bistable switch that involves random transitions in the DNA methylation status of the VWF promoter. Finally, the hearts of VWF-null mice demonstrate an abnormal endothelial phenotype as well as cardiac dysfunction. Together, these findings suggest a novel stochastic phenotype switching strategy for adaptive homoeostasis in the adult vasculature.
Collapse
Affiliation(s)
- Lei Yuan
- Center for Vascular Biology Research, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA.,Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA
| | - Gary C Chan
- Center for Vascular Biology Research, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA.,Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA
| | - David Beeler
- Center for Vascular Biology Research, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA.,Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA
| | - Lauren Janes
- Center for Vascular Biology Research, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA.,Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA
| | - Katherine C Spokes
- Center for Vascular Biology Research, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA.,Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA
| | - Harita Dharaneeswaran
- Center for Vascular Biology Research, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA.,Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA
| | - Anahita Mojiri
- Department of Medicine, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - William J Adams
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA
| | - Tracey Sciuto
- Center for Vascular Biology Research, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA.,Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA
| | - Guillermo Garcia-Cardeña
- Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02215, USA
| | - Grietje Molema
- Department of Pathology and Medical Biology, Medical Biology Section, University Medical Center Groningen, University of Groningen, 9700 AB Groningen, The Netherlands
| | - Peter M Kang
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA.,Cardiovascular Institute, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA
| | - Nadia Jahroudi
- Department of Medicine, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Philip A Marsden
- Department of Medicine, University of Toronto, Toronto, Ontario M5G 2C4, Canada.,St. Michaels's Hospital, Toronto, Ontario M5B 1W8, Canada
| | - Ann Dvorak
- Center for Vascular Biology Research, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA.,Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA
| | - Erzsébet Ravasz Regan
- Center for Vascular Biology Research, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA.,Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA
| | - William C Aird
- Center for Vascular Biology Research, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA.,Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA
| |
Collapse
|
12
|
Dharaneeswaran H, Abid MR, Yuan L, Dupuis D, Beeler D, Spokes KC, Janes L, Sciuto T, Kang PM, Jaminet SCS, Dvorak A, Grant MA, Regan ER, Aird WC. FOXO1-mediated activation of Akt plays a critical role in vascular homeostasis. Circ Res 2014; 115:238-251. [PMID: 24874427 DOI: 10.1161/circresaha.115.303227] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Forkhead box-O transcription factors (FoxOs) transduce a wide range of extracellular signals, resulting in changes in cell survival, cell cycle progression, and several cell type-specific responses. FoxO1 is expressed in many cell types, including endothelial cells (ECs). Previous studies have shown that Foxo1 knockout in mice results in embryonic lethality at E11 because of impaired vascular development. In contrast, somatic deletion of Foxo1 is associated with hyperproliferation of ECs. Thus, the precise role of FoxO1 in the endothelium remains enigmatic. OBJECTIVE To determine the effect of endothelial-specific knockout and overexpression of FoxO1 on vascular homeostasis. METHODS AND RESULTS We show that EC-specific disruption of Foxo1 in mice phenocopies the full knockout. Although endothelial expression of FoxO1 rescued otherwise Foxo1-null animals, overexpression of constitutively active FoxO1 resulted in increased EC size, occlusion of capillaries, elevated peripheral resistance, heart failure, and death. Knockdown of FoxO1 in ECs resulted in marked inhibition of basal and vascular endothelial growth factor-induced Akt-mammalian target of rapamycin complex 1 (mTORC1) signaling. CONCLUSIONS Our findings suggest that in mice, endothelial expression of FoxO1 is both necessary and sufficient for embryonic development. Moreover, FoxO1-mediated feedback activation of Akt maintains growth factor responsive Akt/mTORC1 activity within a homeostatic range.
Collapse
Affiliation(s)
- Harita Dharaneeswaran
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Boston MA 02215
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston MA 02215
| | - Md Ruhul Abid
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Boston MA 02215
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston MA 02215
- Warren Alpert Medical School of Brown University, Cardiovascular Research Center, Rhode Island Hospital, Providence, RI 02903
| | - Lei Yuan
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Boston MA 02215
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston MA 02215
| | - Dylan Dupuis
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Boston MA 02215
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston MA 02215
| | - David Beeler
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Boston MA 02215
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston MA 02215
| | - Katherine C Spokes
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Boston MA 02215
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston MA 02215
| | - Lauren Janes
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Boston MA 02215
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston MA 02215
| | - Tracey Sciuto
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Boston MA 02215
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston MA 02215
| | - Peter M Kang
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston MA 02215
| | - Shou-Ching S Jaminet
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Boston MA 02215
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston MA 02215
| | - Ann Dvorak
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Boston MA 02215
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston MA 02215
| | - Marianne A Grant
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Boston MA 02215
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston MA 02215
| | - Erzsébet Ravasz Regan
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Boston MA 02215
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston MA 02215
| | - William C Aird
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Boston MA 02215
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston MA 02215
| |
Collapse
|
13
|
Cruickshank MN, Oshlack A, Theda C, Davis PG, Martino D, Sheehan P, Dai Y, Saffery R, Doyle LW, Craig JM. Analysis of epigenetic changes in survivors of preterm birth reveals the effect of gestational age and evidence for a long term legacy. Genome Med 2013; 5:96. [PMID: 24134860 PMCID: PMC3978871 DOI: 10.1186/gm500] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 09/26/2013] [Indexed: 02/08/2023] Open
Abstract
Background Preterm birth confers a high risk of adverse long term health outcomes for survivors, yet the underlying molecular mechanisms are unclear. We hypothesized that effects of preterm birth can be mediated through measurable epigenomic changes throughout development. We therefore used a longitudinal birth cohort to measure the epigenetic mark of DNA methylation at birth and 18 years comparing survivors of extremely preterm birth with infants born at term. Methods Using 12 extreme preterm birth cases and 12 matched, term controls, we extracted DNA from archived neonatal blood spots and blood collected in a similar way at 18 years of age. DNA methylation was measured at 347,789 autosomal locations throughout the genome using Infinium HM450 arrays. Representative methylation differences were confirmed by Sequenom MassArray EpiTYPER. Results At birth we found 1,555 sites with significant differences in methylation between term and preterm babies. At 18 years of age, these differences had largely resolved, suggesting that DNA methylation differences at birth are mainly driven by factors relating to gestational age, such as cell composition and/or maturity. Using matched longitudinal samples, we found evidence for an epigenetic legacy associated with preterm birth, identifying persistent methylation differences at ten genomic loci. Longitudinal comparisons of DNA methylation at birth and 18 years uncovered a significant overlap between sites that were differentially-methylated at birth and those that changed with age. However, we note that overlapping sites may either differ in the same (300/1,555) or opposite (431/1,555) direction during gestation and aging respectively. Conclusions We present evidence for widespread methylation differences between extreme preterm and term infants at birth that are largely resolved by 18 years of age. These results are consistent with methylation changes associated with blood cell development, cellular composition, immune induction and age at these time points. Finally, we identified ten probes significantly associated with preterm individuals and with greater than 5% methylation discordance at birth and 18 years that may reflect a long term epigenetic legacy of preterm birth.
Collapse
Affiliation(s)
- Mark N Cruickshank
- Early Life Epigenetics Group, Murdoch Childrens Research Institute (MCRI), Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, Australia ; Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, Australia ; Present address: Telethon Institute for Child Health Research, University of Western Australia, 100 Roberts Road, Subiaco, WA 6008, Australia
| | - Alicia Oshlack
- Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, Australia ; Bioinformatics Group, MCRI, Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, Australia
| | - Christiane Theda
- Early Life Epigenetics Group, Murdoch Childrens Research Institute (MCRI), Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, Australia ; Neonatal Services, Royal Women's Hospital, Parkville, Victoria 3052, Australia ; Department of Obstetrics and Gynaecology, University of Melbourne, Royal Women's Hospital, Parkville, Victoria 3052, Australia
| | - Peter G Davis
- Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, Australia ; Neonatal Services, Royal Women's Hospital, Parkville, Victoria 3052, Australia ; Department of Obstetrics and Gynaecology, University of Melbourne, Royal Women's Hospital, Parkville, Victoria 3052, Australia
| | - David Martino
- Cancer and Developmental Epigenetics Group, MCRI, Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, Australia
| | - Penelope Sheehan
- Department of Obstetrics and Gynaecology, University of Melbourne, Royal Women's Hospital, Parkville, Victoria 3052, Australia
| | - Yun Dai
- Early Life Epigenetics Group, Murdoch Childrens Research Institute (MCRI), Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, Australia
| | - Richard Saffery
- Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, Australia ; Cancer and Developmental Epigenetics Group, MCRI, Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, Australia
| | - Lex W Doyle
- Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, Australia ; Neonatal Services, Royal Women's Hospital, Parkville, Victoria 3052, Australia ; Department of Obstetrics and Gynaecology, University of Melbourne, Royal Women's Hospital, Parkville, Victoria 3052, Australia
| | - Jeffrey M Craig
- Early Life Epigenetics Group, Murdoch Childrens Research Institute (MCRI), Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, Australia ; Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, Australia
| |
Collapse
|
14
|
Abstract
In this issue of Blood, Yuan et al provide evidence that processing of the first intronic sequence within the von Willebrand factor (vWF) gene facilitates expression by endothelial cells regardless of the source of the intron, while intron processing is irrelevant for vWF expression by megakaryocytes.(1)
Collapse
|