1
|
Borrill R, Poulton K, Wynn R. Immunology of cord blood T-cells favors augmented disease response during clinical pediatric stem cell transplantation for acute leukemia. Front Pediatr 2023; 11:1232281. [PMID: 37780051 PMCID: PMC10534014 DOI: 10.3389/fped.2023.1232281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/22/2023] [Indexed: 10/03/2023] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) has been an important and efficacious treatment for acute leukemia in children for over 60 years. It works primarily through the graft-vs.-leukemia (GVL) effect, in which donor T-cells and other immune cells act to eliminate residual leukemia. Cord blood is an alternative source of stem cells for transplantation, with distinct biological and immunological characteristics. Retrospective clinical studies report superior relapse rates with cord blood transplantation (CBT), when compared to other stem cell sources, particularly for patients with high-risk leukemia. Xenograft models also support the superiority of cord blood T-cells in eradicating malignancy, when compared to those derived from peripheral blood. Conversely, CBT has historically been associated with an increased risk of transplant-related mortality (TRM) and morbidity, particularly from infection. Here we discuss clinical aspects of CBT, the unique immunology of cord blood T-cells, their role in the GVL effect and future methods to maximize their utility in cellular therapies for leukemia, honing and harnessing their antitumor properties whilst managing the risks of TRM.
Collapse
Affiliation(s)
- Roisin Borrill
- Blood and Marrow Transplant Unit, Royal Manchester Children’s Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, School of Biological Sciences, Lydia Becker Institute of Immunology and Inflammation, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Kay Poulton
- Transplantation Laboratory, Manchester University NHS Foundation Trust, Manchester, United Kingdom
- Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Robert Wynn
- Blood and Marrow Transplant Unit, Royal Manchester Children’s Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom
- Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
2
|
Senjo H, Harada S, Kubota SI, Tanaka Y, Tateno T, Zhang Z, Okada S, Chen X, Kikuchi R, Miyashita N, Onozawa M, Goto H, Endo T, Hasegawa Y, Ohigashi H, Ara T, Hasegawa Y, Murakami M, Teshima T, Hashimoto D. Calcineurin inhibitor inhibits tolerance induction by suppressing terminal exhaustion of donor T cells after allo-HCT. Blood 2023; 142:477-492. [PMID: 37216687 DOI: 10.1182/blood.2023019875] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/11/2023] [Accepted: 05/05/2023] [Indexed: 05/24/2023] Open
Abstract
Calcineurin inhibitor-based graft-versus-host disease (GVHD) prophylaxis is standard in allogeneic hematopoietic stem cell transplantation (HCT) but fails to induce long-term tolerance without chronic GVHD (cGVHD) in a considerable number of patients. In this study, we addressed this long-standing question in mouse models of HCT. After HCT, alloreactive donor T cells rapidly differentiated into PD-1+ TIGIT+ terminally exhausted T cells (terminal Tex). GVHD prophylaxis with cyclosporine (CSP) suppressed donor T-cell expression of TOX, a master regulator to promote differentiation of transitory exhausted T cells (transitory Tex), expressing both inhibitory receptors and effector molecules, into terminal Tex, and inhibited tolerance induction. Adoptive transfer of transitory Tex, but not terminal Tex, into secondary recipients developed cGVHD. Transitory Tex maintained alloreactivity and thus PD-1 blockade restored graft-versus-leukemia (GVL) activity of transitory Tex and not terminal Tex. In conclusion, CSP inhibits tolerance induction by suppressing the terminal exhaustion of donor T cells, while maintaining GVL effects to suppress leukemia relapse.
Collapse
Affiliation(s)
- Hajime Senjo
- Department of Hematology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shinpei Harada
- Department of Hematology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shimpei I Kubota
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yuki Tanaka
- Group of Quantum Immunology, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Takahiro Tateno
- Department of Hematology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Zixuan Zhang
- Department of Hematology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Satomi Okada
- Department of Hematology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Xuanzhong Chen
- Department of Hematology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Ryo Kikuchi
- Department of Hematology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Naoki Miyashita
- Department of Hematology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masahiro Onozawa
- Department of Hematology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hideki Goto
- Department of Hematology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Tomoyuki Endo
- Department of Hematology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yuta Hasegawa
- Department of Hematology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroyuki Ohigashi
- Department of Hematology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Takahide Ara
- Department of Hematology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yoshinori Hasegawa
- Department of Applied Genomics, Kazusa DNA Research Institute, Chiba, Japan
| | - Masaaki Murakami
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Group of Quantum Immunology, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan
- Division of Molecular Neuroimmunology, Department of Homeostatic Regulation, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Aichi, Japan
- Division of Biological Response Analysis, Institute for Vaccine Research and Development, Hokkaido University, Sapporo, Japan
| | - Takanori Teshima
- Department of Hematology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Daigo Hashimoto
- Department of Hematology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
3
|
Khandelwal P, Lounder DT, Bartlett A, Haberman Y, Jegga AG, Ghandikota S, Koo J, Luebbering N, Leino D, Abdullah S, Loveless M, Minar P, Lake K, Litts B, Karns R, Nelson AS, Denson LA, Davies SM. Transcriptome analysis in acute gastrointestinal graft- versus host disease reveals a unique signature in children and shared biology with pediatric inflammatory bowel disease. Haematologica 2023; 108:1803-1816. [PMID: 36727399 PMCID: PMC10316272 DOI: 10.3324/haematol.2022.282035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
We performed transcriptomic analyses on freshly frozen (n=21) and paraffin-embedded (n=35) gastrointestinal (GI) biopsies from children with and without acute acute GI graft-versus-host disease (GvHD) to study differential gene expressions. We identified 164 significant genes, 141 upregulated and 23 downregulated, in acute GvHD from freshy frozen biopsies. CHI3L1 was the top differentially expressed gene in acute GvHD, involved in macrophage recruitment and bacterial adhesion. Mitochondrial genes were among the top downregulated genes. Immune deconvolution identified a macrophage cellular signature. Weighted gene co-expression network analysis showed enrichment of genes in the ERK1/2 cascade. Transcriptome data from 206 ulcerative colitis (UC) patients were included to uncover genes and pathways shared between GvHD and UC. Comparison with the UC transcriptome showed both shared and distinct pathways. Both UC and GvHD transcriptomes shared an innate antimicrobial signature and FCγ1RA/CD64 was upregulated in both acute GvHD (log-fold increase 1.7, P=0.001) and UC. Upregulation of the ERK1/2 cascade pathway was specific to GvHD. We performed additional experiments to confirm transcriptomics. Firstly, we examined phosphorylation of ERK (pERK) by immunohistochemistry on GI biopsies (acute GvHD n=10, no GvHD n=10). pERK staining was increased in acute GvHD biopsies compared to biopsies without acute GvHD (P=0.001). Secondly, plasma CD64, measured by enzyme-linked immunsorbant assay (n=85) was elevated in acute GI GvHD (P<0.001) compared with those without and was elevated in GVHD compared with inflammatory bowel disease (n=47) (P<0.001), confirming the upregulated expression seen in the transcriptome.
Collapse
Affiliation(s)
- Pooja Khandelwal
- Division of Bone Marrow Transplant and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH 45229.
| | - Dana T Lounder
- Division of Bone Marrow Transplant and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH 45229
| | - Allison Bartlett
- Division of Bone Marrow Transplant and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH 45229
| | - Yael Haberman
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH 45229; Division of Gastroenterology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229; Sheba Medical Center, Hashomer, affiliated with the Aviv University, Israel 52620
| | - Anil G Jegga
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH 45229; Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Sudhir Ghandikota
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH 45229; Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Jane Koo
- Division of Bone Marrow Transplant and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH 45229
| | - Nathan Luebbering
- Division of Bone Marrow Transplant and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH 45229
| | - Daniel Leino
- Department of Pathology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Sheyar Abdullah
- Division of Bone Marrow Transplant and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH 45229
| | - Michaela Loveless
- Division of Bone Marrow Transplant and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH 45229
| | - Phillip Minar
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH 45229; Division of Gastroenterology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Kelly Lake
- Division of Bone Marrow Transplant and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH 45229
| | - Bridget Litts
- Division of Bone Marrow Transplant and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH 45229
| | - Rebekah Karns
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH 45229; Division of Gastroenterology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Adam S Nelson
- Division of Bone Marrow Transplant and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH 45229
| | - Lee A Denson
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH 45229; Division of Gastroenterology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Stella M Davies
- Division of Bone Marrow Transplant and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH 45229
| |
Collapse
|
4
|
Tan X, Qi C, Zhao X, Sun L, Wu M, Sun W, Gu L, Wang F, Feng H, Huang X, Xie B, Shi Z, Xie P, Wu M, Zhang Y, Chen G. ERK Inhibition Promotes Engraftment of Allografts by Reprogramming T-Cell Metabolism. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206768. [PMID: 37013935 DOI: 10.1002/advs.202206768] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/15/2023] [Indexed: 06/04/2023]
Abstract
Extracellular regulated protein kinases (ERK) signaling is a master regulator of cell behavior, life, and fate. Although ERK pathway is shown to be involved in T-cell activation, little is known about its role in the development of allograft rejection. Here, it is reported that ERK signaling pathway is activated in allograft-infiltrating T cells. On the basis of surface plasmon resonance technology, lycorine is identified as an ERK-specific inhibitor. ERK inhibition by lycorine significantly prolongs allograft survival in a stringent mouse cardiac allotransplant model. As compared to untreated mice, lycorine-treated mice show a decrease in the number and activation of allograft-infiltrated T cells. It is further confirmed that lycorine-treated mouse and human T cells are less responsive to stimulation in vitro, as indicated by their low proliferative rates and decreased cytokine production. Mechanistic studies reveal that T cells treated with lycorine exhibit mitochondrial dysfunction, resulting in metabolic reprogramming upon stimulation. Transcriptome analysis of lycorine-treated T cells reveals an enrichment in a series of downregulated terms related to immune response, the mitogen-activated protein kinase cascade, and metabolic processes. These findings offer new insights into the development of immunosuppressive agents by targeting the ERK pathway involved in T-cell activation and allograft rejection.
Collapse
Affiliation(s)
- Xiaosheng Tan
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei Province, 430030, P. R. China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
- NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
| | - Changxing Qi
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, P. R. China
| | - Xiangli Zhao
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei Province, 430030, P. R. China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
- NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
| | - Lingjuan Sun
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei Province, 430030, P. R. China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
- NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
| | - Mi Wu
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, P. R. China
| | - Weiguang Sun
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, P. R. China
| | - Lianghu Gu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, P. R. China
| | - Fengqing Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, P. R. China
| | - Hao Feng
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei Province, 430030, P. R. China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
- NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
| | - Xia Huang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei Province, 430030, P. R. China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
- NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
| | - Bin Xie
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei Province, 430030, P. R. China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
- NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
| | - Zhengyi Shi
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, P. R. China
| | - Peiling Xie
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei Province, 430030, P. R. China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
- NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
| | - Meng Wu
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei Province, 430030, P. R. China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
- NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, P. R. China
| | - Gang Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei Province, 430030, P. R. China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
- NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
| |
Collapse
|
5
|
Dual inhibition of the MEK/ERK and PI3K/AKT pathways prevents pulmonary GVHD suppressing perivenulitis and bronchiolitis. Blood Adv 2022; 7:106-121. [PMID: 35468620 PMCID: PMC9830178 DOI: 10.1182/bloodadvances.2021006678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/18/2022] [Accepted: 04/18/2022] [Indexed: 01/18/2023] Open
Abstract
Patients with pulmonary graft-versus-host disease (pGVHD) have a poor prognosis after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Furthermore, pGVHD pathogenesis is not fully elucidated in humans, and currently available immunosuppressants are inadequately effective. We performed pathologic evaluation of lung specimens from 45 allo-HSCT recipients with pGVHD who underwent lung transplantation. Patient pathology was characterized by bronchiolitis and subpleural perivascular inflammation, with B-cell, monocyte, and T-cell accumulation around bronchioles. Bronchiolitis, perivascular inflammation, and peribronchial macrophage aggregation were also identified in a murine pGVHD model after transplant of bone marrow cells and splenocytes from C57BL/6 to B10.BR mice. Among mitogen-activated protein kinase kinase (MEK) inhibitors, cobimetinib, but not trametinib, improved survival rates. Cobimetinib attenuated bronchiolitis, improved airway resistance and lung compliance in the mice, and suppressed activation of B cells and tumor necrosis factor α production by monocytes in vitro; these features were not suppressed by trametinib or tacrolimus. Furthermore, cobimetinib suppressed activation of phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) signaling, resulting in B-cell and monocyte suppression. Dual inhibition of the MEK/extracellular signal-regulated kinase (ERK) and PI3K/AKT pathways using a combination of trametinib and the PI3K inhibitor taselisib strongly suppressed B-cell activation in vitro and improved mouse survival rates compared with vehicle or monotherapy with trametinib or taselisib. Imaging mass cytometry of human pGVHD revealed that T cells around bronchioles were positive for phosphorylated ERK, whereas B cells were positive for phosphorylated AKT. Thus, perivascular inflammation and bronchiolitis mediated by activation of the MEK/ERK and PI3K/AKT pathways are essential for pGVHD and represent a potential novel therapeutic target in humans.
Collapse
|
6
|
Yeh AC, Varelias A, Reddy A, Barone SM, Olver SD, Chilson K, Onstad LE, Ensbey KS, Henden AS, Samson L, Jaeger CA, Bi T, Dahlman KB, Kim TK, Zhang P, Degli-Esposti MA, Newell EW, Jagasia MH, Irish JM, Lee SJ, Hill GR. CMV exposure drives long-term CD57+ CD4 memory T-cell inflation following allogeneic stem cell transplant. Blood 2021; 138:2874-2885. [PMID: 34115118 PMCID: PMC8718626 DOI: 10.1182/blood.2020009492] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 05/22/2021] [Indexed: 01/01/2023] Open
Abstract
Donor and recipient cytomegalovirus (CMV) serostatus correlate with transplant-related mortality that is associated with reduced survival following allogeneic stem cell transplant (SCT). Prior epidemiologic studies have suggested that CMV seronegative recipients (R-) receiving a CMV-seropositive graft (D+) experience inferior outcomes compared with other serostatus combinations, an observation that appears independent of viral reactivation. We therefore investigated the hypothesis that prior donor CMV exposure irreversibly modifies immunologic function after SCT. We identified a CD4+/CD57+/CD27- T-cell subset that was differentially expressed between D+ and D- transplants and validated results with 120 patient samples. This T-cell subset represents an average of 2.9% (D-/R-), 18% (D-/R+), 12% (D+/R-), and 19.6% (D+/R+) (P < .0001) of the total CD4+ T-cell compartment and stably persists for at least several years post-SCT. Even in the absence of CMV reactivation post-SCT, D+/R- transplants displayed a significant enrichment of these cells compared with D-/R- transplants (P = .0078). These are effector memory cells (CCR7-/CD45RA+/-) that express T-bet, Eomesodermin, granzyme B, secrete Th1 cytokines, and are enriched in CMV-specific T cells. These cells are associated with decreased T-cell receptor diversity (P < .0001) and reduced proportions of major histocompatibility class (MHC) II expressing classical monocytes (P < .0001), myeloid (P = .024), and plasmacytoid dendritic cells (P = .0014). These data describe a highly expanded CD4+ T-cell population and putative mechanisms by which prior donor or recipient CMV exposure may create a lasting immunologic imprint following SCT, providing a rationale for using D- grafts for R- transplant recipients.
Collapse
Affiliation(s)
- Albert C Yeh
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA
| | - Antiopi Varelias
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Facuty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | | | - Sierra M Barone
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN
| | - Stuart D Olver
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Kate Chilson
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Lynn E Onstad
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Kathleen S Ensbey
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Andrea S Henden
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Luke Samson
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Carla A Jaeger
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Timothy Bi
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Kimberly B Dahlman
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN; and
| | - Tae Kon Kim
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN; and
| | - Ping Zhang
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Mariapia A Degli-Esposti
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Evan W Newell
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Madan H Jagasia
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN; and
| | - Jonathan M Irish
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN
| | - Stephanie J Lee
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA
| | - Geoffrey R Hill
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA
| |
Collapse
|
7
|
Braun LM, Zeiser R. Kinase Inhibition as Treatment for Acute and Chronic Graft- Versus-Host Disease. Front Immunol 2021; 12:760199. [PMID: 34868001 PMCID: PMC8635802 DOI: 10.3389/fimmu.2021.760199] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/28/2021] [Indexed: 01/25/2023] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HCT) is a potentially curative therapy for patients suffering from hematological malignancies via the donor immune system driven graft-versus-leukemia effect. However, the therapy is mainly limited by severe acute and chronic graft-versus-host disease (GvHD), both being life-threatening complications after allo-HCT. GvHD develops when donor T cells do not only recognize remaining tumor cells as foreign, but also the recipient’s tissue, leading to a severe inflammatory disease. Typical GvHD target organs include the skin, liver and intestinal tract. Currently all approved strategies for GvHD treatment are immunosuppressive therapies, with the first-line therapy being glucocorticoids. However, therapeutic options for glucocorticoid-refractory patients are still limited. Novel therapeutic approaches, which reduce GvHD severity while preserving GvL activity, are urgently needed. Targeting kinase activity with small molecule inhibitors has shown promising results in preclinical animal models and clinical trials. Well-studied kinase targets in GvHD include Rho-associated coiled-coil-containing kinase 2 (ROCK2), spleen tyrosine kinase (SYK), Bruton’s tyrosine kinase (BTK) and interleukin-2-inducible T-cell kinase (ITK) to control B- and T-cell activation in acute and chronic GvHD. Janus Kinase 1 (JAK1) and 2 (JAK2) are among the most intensively studied kinases in GvHD due to their importance in cytokine production and inflammatory cell activation and migration. Here, we discuss the role of kinase inhibition as novel treatment strategies for acute and chronic GvHD after allo-HCT.
Collapse
Affiliation(s)
- Lukas M Braun
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Robert Zeiser
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Comprehensive Cancer Center Freiburg (CCCF), University of Freiburg, Freiburg, Germany.,Centre for Biological Signalling Studies (BIOSS) and Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany
| |
Collapse
|
8
|
Itamura H, Shindo T, Muranushi H, Kitaura K, Okada S, Shin-I T, Suzuki R, Takaori-Kondo A, Kimura S. Pharmacological MEK inhibition promotes polyclonal T-cell reconstitution and suppresses xenogeneic GVHD. Cell Immunol 2021; 367:104410. [PMID: 34274730 DOI: 10.1016/j.cellimm.2021.104410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 07/04/2021] [Accepted: 07/07/2021] [Indexed: 11/21/2022]
Abstract
Rapid immune reconstitution without developing graft-versus-host disease (GVHD) is required for the success of allogeneic hematopoietic stem cell transplantation. Here, we analyzed the effects of pharmacological MEK inhibition on human polyclonal T-cell reconstitution in a humanized mouse GVHD model utilizing deep sequencing-based T-cell receptor (TCR) repertoire analysis. GVHD mice exhibited a skewed TCR repertoire with a common clone within target organs. The MEK inhibitor trametinib ameliorated GVHD and enabled engraftment of diverse T-cell clones. Furthermore, trametinib also ameliorated GVHD sparing diverse T cell repertoire, even when it was given from day 15 through 28. Although tacrolimus also reduced development of GVHD, it disturbed diverse T cell reconstitution and resulted in skewed TCR repertoire. Thus, trametinib not only suppresses GVHD-inducing T cells but also promotes human T cell reconstitution in vivo, providing a novel rationale for translational studies targeting human GVHD.
Collapse
Affiliation(s)
- Hidekazu Itamura
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Takero Shindo
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan; Department of Hematology/Oncology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Hiroyuki Muranushi
- Department of Hematology/Oncology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | - Seiji Okada
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | | | - Ryuji Suzuki
- Repertoire Genesis Inc., Ibaraki, Japan; Department of Clinical Immunology, Clinical Research Center for Allergy and Rheumatology, Sagamihara National Hospital, Sagamihara, Japan
| | - Akifumi Takaori-Kondo
- Department of Hematology/Oncology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shinya Kimura
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| |
Collapse
|
9
|
Phosphorylated ERK1/2 in CD4 T cells is associated with acute GVHD in allogeneic hematopoietic stem cell transplantation. Blood Adv 2021; 4:667-671. [PMID: 32078679 DOI: 10.1182/bloodadvances.2019000343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 01/15/2020] [Indexed: 11/20/2022] Open
Abstract
To diagnose graft-versus-host disease (GVHD) after allogeneic hematopoietic stem cell transplantation (allo-HSCT) is sometimes difficult. We showed previously that MEK inhibitors selectively suppress murine GVHD while retaining antiviral and antitumor immunity. Here, we asked whether the RAS/MEK/ERK pathway is activated in human allo-HSCT recipients with GVHD, and whether the phosphorylated ERK1/2 can be a biomarker of GVHD. Peripheral blood was sequentially collected from 20 allo-HSCT recipients: 1 bone marrow transplant, 7 peripheral blood stem cell transplants (PBSCT), and 12 cord blood transplants. Ten of the 20 allo-HSCT recipients developed GVHD, and phosphorylation of ERK1/2 in T and B cells was analyzed by flow cytometry. Occurrence of acute GVHD was associated with phosphorylation of ERK1/2 in CD4+ T cells at day 30 (P < .001), which was suppressed by ex vivo exposure to a MEK inhibitor trametinib at clinically achievable concentrations. In particular, ERK1/2 was phosphorylated preferentially in naive/central memory CD4+ T cells. Notably, phosphorylation of ERK1/2 fell as GVHD improved. These results suggest that phosphorylation status of ERK1/2 in peripheral blood CD4+ T cells may be a future biomarker for diagnosing human GVHD, and the potential efficacy of MEK inhibitors against human GVHD.
Collapse
|
10
|
Luo L, Chen Y, Chen X, Zheng Y, Zhou V, Yu M, Burns R, Zhu W, Fu G, Felix JC, Hartley C, Damnernsawad A, Zhang J, Wen R, Drobyski WR, Gao C, Wang D. Kras-Deficient T Cells Attenuate Graft-versus-Host Disease but Retain Graft-versus-Leukemia Activity. THE JOURNAL OF IMMUNOLOGY 2020; 205:3480-3490. [PMID: 33158956 DOI: 10.4049/jimmunol.2000006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 10/08/2020] [Indexed: 12/24/2022]
Abstract
Acute graft-versus-host disease (aGVHD) is one major serious complication that is induced by alloreactive donor T cells recognizing host Ags and limits the success of allogeneic hematopoietic stem cell transplantation. In the current studies, we identified a critical role of Kras in regulating alloreactive T cell function during aGVHD. Kras deletion in donor T cells dramatically reduced aGVHD mortality and severity in an MHC-mismatched allogeneic hematopoietic stem cell transplantation mouse model but largely maintained the antitumor capacity. Kras-deficient CD4 and CD8 T cells exhibited impaired TCR-induced activation of the ERK pathway. Kras deficiency altered TCR-induced gene expression profiles, including the reduced expression of various inflammatory cytokines and chemokines. Moreover, Kras deficiency inhibited IL-6-mediated Th17 cell differentiation and impaired IL-6-induced ERK activation and gene expression in CD4 T cells. These findings support Kras as a novel and effective therapeutic target for aGVHD.
Collapse
Affiliation(s)
- Lan Luo
- Blood Research Institute, Versiti, Milwaukee, WI 53226.,Department of Hematology, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Yuhong Chen
- Blood Research Institute, Versiti, Milwaukee, WI 53226
| | - Xiao Chen
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Yongwei Zheng
- Blood Research Institute, Versiti, Milwaukee, WI 53226
| | - Vivian Zhou
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Mei Yu
- Blood Research Institute, Versiti, Milwaukee, WI 53226
| | - Robert Burns
- Blood Research Institute, Versiti, Milwaukee, WI 53226
| | - Wen Zhu
- Blood Research Institute, Versiti, Milwaukee, WI 53226.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Guoping Fu
- Blood Research Institute, Versiti, Milwaukee, WI 53226
| | - Juan C Felix
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226; and
| | - Christopher Hartley
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226; and
| | - Alisa Damnernsawad
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706
| | - Jing Zhang
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706
| | - Renren Wen
- Blood Research Institute, Versiti, Milwaukee, WI 53226
| | | | - Chunji Gao
- Department of Hematology, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Demin Wang
- Blood Research Institute, Versiti, Milwaukee, WI 53226; .,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226
| |
Collapse
|
11
|
Saidu NEB, Bonini C, Dickinson A, Grce M, Inngjerdingen M, Koehl U, Toubert A, Zeiser R, Galimberti S. New Approaches for the Treatment of Chronic Graft-Versus-Host Disease: Current Status and Future Directions. Front Immunol 2020; 11:578314. [PMID: 33162993 PMCID: PMC7583636 DOI: 10.3389/fimmu.2020.578314] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/18/2020] [Indexed: 12/15/2022] Open
Abstract
Chronic graft-versus-host disease (cGvHD) is a severe complication of allogeneic hematopoietic stem cell transplantation that affects various organs leading to a reduced quality of life. The condition often requires enduring immunosuppressive therapy, which can also lead to the development of severe side effects. Several approaches including small molecule inhibitors, antibodies, cytokines, and cellular therapies are now being developed for the treatment of cGvHD, and some of these therapies have been or are currently tested in clinical trials. In this review, we discuss these emerging therapies with particular emphasis on tyrosine kinase inhibitors (TKIs). TKIs are a class of compounds that inhibits tyrosine kinases, thereby preventing the dissemination of growth signals and activation of key cellular proteins that are involved in cell growth and division. Because they have been shown to inhibit key kinases in both B cells and T cells that are involved in the pathophysiology of cGvHD, TKIs present new promising therapeutic approaches. Ibrutinib, a Bruton tyrosine kinase (Btk) inhibitor, has recently been approved by the Food and Drug Administration (FDA) in the United States for the treatment of adult patients with cGvHD after failure of first-line of systemic therapy. Also, Janus Associated Kinases (JAK1 and JAK2) inhibitors, such as itacitinib (JAK1) and ruxolitinib (JAK1 and 2), are promising in the treatment of cGvHD. Herein, we present the current status and future directions of the use of these new drugs with particular spotlight on their targeting of specific intracellular signal transduction cascades important for cGvHD, in order to shed some light on their possible mode of actions.
Collapse
Affiliation(s)
- Nathaniel Edward Bennett Saidu
- Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
- Department of Pharmacology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Chiara Bonini
- Experimental Hematology Unit, San Raffaele Scientific Institute, Milano, Italy
| | - Anne Dickinson
- Haematological Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Magdalena Grce
- Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
| | - Marit Inngjerdingen
- Department of Pharmacology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Ulrike Koehl
- Faculty of Medicine, Institute of Clinical Immunology, University Leipzig and Fraunhofer IZI, Leipzig, Germany
| | - Antoine Toubert
- Université de Paris, Institut de Recherche Saint Louis, EMiLy, Inserm U1160, Paris, France
- Laboratoire d'Immunologie et d`Histocompatibilité, AP-HP, Hopital Saint-Louis, Paris, France
| | - Robert Zeiser
- Department of Hematology, Oncology and Stem Cell Transplantation, Freiburg University Medical Center, Faculty of Medicine, Freiburg, Germany
| | - Sara Galimberti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
12
|
The MEK Inhibitor Trametinib Suppresses Major Histocompatibility Antigen-mismatched Rejection Following Pancreatic Islet Transplantation. Transplant Direct 2020; 6:e591. [PMID: 32851124 PMCID: PMC7423917 DOI: 10.1097/txd.0000000000001045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 06/19/2020] [Accepted: 07/04/2020] [Indexed: 11/26/2022] Open
Abstract
Background. Potential adverse effects, such as functional impairment of islets, render conventional immunosuppressive drugs unsuitable for use in islet transplantation. In addition, as a single therapy, they cannot prolong islet allograft survival. Here, we investigated the utility of the mitogen-activated protein kinase inhibitor trametinib and asked whether it ameliorates acute rejection of transplanted islets without the need for conventional immunosuppressants. Methods. Islets from fully major histocompatibility complex-mismatched BALB/c mice were transplanted into streptozotocin-induced diabetic C57BL/6 mice via the portal vein. These mice received trametinib or vehicle (orally) for 28 days. Isolated islets from BALB/c mice were incubated in vitro with different concentrations of trametinib to determine viability and function. Results. Trametinib (0.1 and 0.3 mg/kg) prolonged graft survival significantly (P = 0.0007 and P = 0.005, respectively) when compared with vehicle. Histologic analyses revealed that cellular infiltration of the graft by lymphocytes was inhibited significantly on day 7 (P < 0.05). In addition, trametinib suppressed functional differentiation of naive CD4+ T cells in recipients. Expression of mRNA encoding inflammatory cytokines interleukin (IL)-2, tumor necrosis factor α, and interferon γ in recipients treated with trametinib was also inhibited (P < 0.001, P < 0.05, and P < 0.01, respectively). Trametinib also increased production of IL-4 and IL-10 (P < 0.05 and P = 0.20, respectively). In vitro, islets incubated with different concentrations of trametinib exhibited no harmful effects with respect to viability and function. Conclusions. Trametinib delayed islet graft rejection by inhibiting functional differentiation of naive CD4+ T cells and regulating inflammatory cytokines. Trametinib might be a promising candidate for maintenance immunosuppressive therapy after allogeneic islet transplantation.
Collapse
|
13
|
Hesterberg RS, Beatty MS, Han Y, Fernandez MR, Akuffo AA, Goodheart WE, Yang C, Chang S, Colin CM, Alontaga AY, McDaniel JM, Mailloux AW, Billington JMR, Yue L, Russell S, Gillies RJ, Yun SY, Ayaz M, Lawrence NJ, Lawrence HR, Yu XZ, Fu J, Darville LN, Koomen JM, Ren X, Messina J, Jiang K, Garrett TJ, Rajadhyaksha AM, Cleveland JL, Epling-Burnette PK. Cereblon harnesses Myc-dependent bioenergetics and activity of CD8+ T lymphocytes. Blood 2020; 136:857-870. [PMID: 32403132 PMCID: PMC7426646 DOI: 10.1182/blood.2019003257] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 04/20/2020] [Indexed: 01/08/2023] Open
Abstract
Immunomodulatory drugs, such as thalidomide and related compounds, potentiate T-cell effector functions. Cereblon (CRBN), a substrate receptor of the DDB1-cullin-RING E3 ubiquitin ligase complex, is the only molecular target for this drug class, where drug-induced, ubiquitin-dependent degradation of known "neosubstrates," such as IKAROS, AIOLOS, and CK1α, accounts for their biological activity. Far less clear is whether these CRBN E3 ligase-modulating compounds disrupt the endogenous functions of CRBN. We report that CRBN functions in a feedback loop that harnesses antigen-specific CD8+ T-cell effector responses. Specifically, Crbn deficiency in murine CD8+ T cells augments their central metabolism manifested as elevated bioenergetics, with supraphysiological levels of polyamines, secondary to enhanced glucose and amino acid transport, and with increased expression of metabolic enzymes, including the polyamine biosynthetic enzyme ornithine decarboxylase. Treatment with CRBN-modulating compounds similarly augments central metabolism of human CD8+ T cells. Notably, the metabolic control of CD8+ T cells by modulating compounds or Crbn deficiency is linked to increased and sustained expression of the master metabolic regulator MYC. Finally, Crbn-deficient T cells have augmented antigen-specific cytolytic activity vs melanoma tumor cells, ex vivo and in vivo, and drive accelerated and highly aggressive graft-versus-host disease. Therefore, CRBN functions to harness the activation of CD8+ T cells, and this phenotype can be exploited by treatment with drugs.
Collapse
Affiliation(s)
- Rebecca S Hesterberg
- Department of Immunology, Moffitt Cancer Center and Research Institute, Tampa, FL
- Cancer Biology PhD Program, University of South Florida, Tampa, FL
| | - Matthew S Beatty
- Department of Immunology, Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Ying Han
- Department of Immunology, Moffitt Cancer Center and Research Institute, Tampa, FL
- Department of Immunology, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Mario R Fernandez
- Department of Tumor Biology, Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Afua A Akuffo
- Department of Immunology, Moffitt Cancer Center and Research Institute, Tampa, FL
- Cancer Biology PhD Program, University of South Florida, Tampa, FL
| | - William E Goodheart
- Department of Immunology, Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Chunying Yang
- Department of Tumor Biology, Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Shiun Chang
- Department of Immunology, Moffitt Cancer Center and Research Institute, Tampa, FL
- Cancer Biology PhD Program, University of South Florida, Tampa, FL
| | - Christelle M Colin
- Department of Immunology, Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Aileen Y Alontaga
- Department of Immunology, Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Jessica M McDaniel
- Department of Immunology, Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Adam W Mailloux
- Department of Immunology, Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Julia M R Billington
- Department of Immunology, Moffitt Cancer Center and Research Institute, Tampa, FL
- Cancer Biology PhD Program, University of South Florida, Tampa, FL
| | - Lanzhu Yue
- Department of Immunology, Moffitt Cancer Center and Research Institute, Tampa, FL
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Shonagh Russell
- Cancer Biology PhD Program, University of South Florida, Tampa, FL
- Department of Cancer Physiology
| | | | | | | | - Nicholas J Lawrence
- Department of Drug Discovery, Moffitt Cancer Center and Research Institute, Tampa, FL
| | | | - Xue-Zhong Yu
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC
| | - Jianing Fu
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC
| | | | - John M Koomen
- Proteomics and Metabolomics Core
- Department of Molecular Oncology, and
| | - Xiubao Ren
- Department of Immunology, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Jane Messina
- Department of Anatomic Pathology and Cutaneous Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Kun Jiang
- Department of Anatomic Pathology and Cutaneous Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Timothy J Garrett
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL; and
| | - Anjali M Rajadhyaksha
- Pediatric Neurology, Pediatrics, Weill Family Brain and Mind Research Institute, and
- Graduate Program in Neuroscience, Weill Cornell Medical College, Cornell University, Cornell, NY
| | - John L Cleveland
- Department of Tumor Biology, Moffitt Cancer Center and Research Institute, Tampa, FL
| | | |
Collapse
|
14
|
Baumann D, Hägele T, Mochayedi J, Drebant J, Vent C, Blobner S, Noll JH, Nickel I, Schumacher C, Boos SL, Daniel AS, Wendler S, Volkmar M, Strobel O, Offringa R. Proimmunogenic impact of MEK inhibition synergizes with agonist anti-CD40 immunostimulatory antibodies in tumor therapy. Nat Commun 2020; 11:2176. [PMID: 32358491 PMCID: PMC7195409 DOI: 10.1038/s41467-020-15979-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 04/03/2020] [Indexed: 12/21/2022] Open
Abstract
Cancer types with lower mutational load and a non-permissive tumor microenvironment are intrinsically resistant to immune checkpoint blockade. While the combination of cytostatic drugs and immunostimulatory antibodies constitutes an attractive concept for overcoming this refractoriness, suppression of immune cell function by cytostatic drugs may limit therapeutic efficacy. Here we show that targeted inhibition of mitogen-activated protein kinase (MAPK) kinase (MEK) does not impair dendritic cell-mediated T cell priming and activation. Accordingly, combining MEK inhibitors (MEKi) with agonist antibodies (Abs) targeting the immunostimulatory CD40 receptor results in potent synergistic antitumor efficacy. Detailed analysis of the mechanism of action of MEKi shows that this drug exerts multiple pro-immunogenic effects, including the suppression of M2-type macrophages, myeloid derived suppressor cells and T-regulatory cells. The combination of MEK inhibition with agonist anti-CD40 Ab is therefore a promising therapeutic concept, especially for the treatment of mutant Kras-driven tumors such as pancreatic ductal adenocarcinoma. Immune checkpoint inhibitors have limited efficacy in tumors with lower mutational burden and non-permissive microenvironment. Here, the authors show that combining MEK inhibition with an agonist anti-CD40 immunostimulatory antibody improves antitumor treatment by inducing immunogenic changes in the tumor microenvironment.
Collapse
Affiliation(s)
- Daniel Baumann
- Department of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center Heidelberg, Heidelberg, Baden-Wuerttemberg, 69120, Germany.,Department of Surgery, Heidelberg University Hospital, Heidelberg, Baden-Wuerttemberg, 69120, Germany
| | - Tanja Hägele
- Department of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center Heidelberg, Heidelberg, Baden-Wuerttemberg, 69120, Germany
| | - Julian Mochayedi
- Department of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center Heidelberg, Heidelberg, Baden-Wuerttemberg, 69120, Germany
| | - Jennifer Drebant
- Department of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center Heidelberg, Heidelberg, Baden-Wuerttemberg, 69120, Germany
| | - Caroline Vent
- Department of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center Heidelberg, Heidelberg, Baden-Wuerttemberg, 69120, Germany.,Department of Surgery, Heidelberg University Hospital, Heidelberg, Baden-Wuerttemberg, 69120, Germany
| | - Sven Blobner
- Department of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center Heidelberg, Heidelberg, Baden-Wuerttemberg, 69120, Germany
| | - Julia Han Noll
- Department of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center Heidelberg, Heidelberg, Baden-Wuerttemberg, 69120, Germany
| | - Irena Nickel
- Department of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center Heidelberg, Heidelberg, Baden-Wuerttemberg, 69120, Germany
| | - Corinna Schumacher
- Department of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center Heidelberg, Heidelberg, Baden-Wuerttemberg, 69120, Germany
| | - Sophie Luise Boos
- Department of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center Heidelberg, Heidelberg, Baden-Wuerttemberg, 69120, Germany.,Department of Oncogenic signaling pathways of colorectal/pancreatic cancer, Ludwig-Maximilians-Universitaet, Munich, Bavaria, 80539, Germany
| | - Aline Sophie Daniel
- Department of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center Heidelberg, Heidelberg, Baden-Wuerttemberg, 69120, Germany
| | - Susann Wendler
- Department of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center Heidelberg, Heidelberg, Baden-Wuerttemberg, 69120, Germany.,Department of Surgery, Heidelberg University Hospital, Heidelberg, Baden-Wuerttemberg, 69120, Germany
| | - Michael Volkmar
- Department of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center Heidelberg, Heidelberg, Baden-Wuerttemberg, 69120, Germany.,Department of Surgery, Heidelberg University Hospital, Heidelberg, Baden-Wuerttemberg, 69120, Germany
| | - Oliver Strobel
- Department of Surgery, Heidelberg University Hospital, Heidelberg, Baden-Wuerttemberg, 69120, Germany
| | - Rienk Offringa
- Department of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center Heidelberg, Heidelberg, Baden-Wuerttemberg, 69120, Germany. .,Department of Surgery, Heidelberg University Hospital, Heidelberg, Baden-Wuerttemberg, 69120, Germany.
| |
Collapse
|
15
|
Snyder KJ, Zitzer NC, Gao Y, Choe HK, Sell NE, Neidemire-Colley L, Ignaci A, Kale C, Devine RD, Abad MG, Pietrzak M, Wang M, Lin H, Zhang YW, Behbehani GK, Jackman JE, Garzon R, Vaddi K, Baiocchi RA, Ranganathan P. PRMT5 regulates T cell interferon response and is a target for acute graft-versus-host disease. JCI Insight 2020; 5:131099. [PMID: 32191634 DOI: 10.1172/jci.insight.131099] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 03/16/2020] [Indexed: 01/09/2023] Open
Abstract
Acute graft-versus-host disease (aGVHD) is a T cell-mediated immunological disorder and the leading cause of nonrelapse mortality in patients who receive allogeneic hematopoietic cell transplants. Based on recent observations that protein arginine methyltransferase 5 (PRMT5) and arginine methylation are upregulated in activated memory T cells, we hypothesized that PRMT5 is involved in the pathogenesis of aGVHD. Here, we show that PRMT5 expression and enzymatic activity were upregulated in activated T cells in vitro and in T cells from mice developing aGVHD after allogeneic transplant. PRMT5 expression was also upregulated in T cells of patients who developed aGVHD after allogeneic hematopoietic cell transplant compared with those who did not develop aGVHD. PRMT5 inhibition using a selective small-molecule inhibitor (C220) substantially reduced mouse and human allogeneic T cell proliferation and inflammatory IFN-γ and IL-17 cytokine production. Administration of PRMT5 small-molecule inhibitors substantially improves survival, reducing disease incidence and clinical severity in mouse models of aGVHD without adversely affecting engraftment. Importantly, we show that PRMT5 inhibition retained the beneficial graft-versus-leukemia effect by maintaining cytotoxic CD8+ T cell responses. Mechanistically, we show that PRMT5 inhibition potently reduced STAT1 phosphorylation as well as transcription of proinflammatory genes, including interferon-stimulated genes and IL-17. Additionally, PRMT5 inhibition deregulates the cell cycle in activated T cells and disrupts signaling by affecting ERK1/2 phosphorylation. Thus, we have identified PRMT5 as a regulator of T cell responses and as a therapeutic target in aGVHD.
Collapse
Affiliation(s)
- Katiri J Snyder
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center
| | - Nina C Zitzer
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center
| | - Yandi Gao
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center
| | - Hannah K Choe
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center
| | - Natalie E Sell
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center
| | | | - Anora Ignaci
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center
| | - Charuta Kale
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center
| | - Raymond D Devine
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center
| | | | - Maciej Pietrzak
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio, USA
| | - Min Wang
- Prelude Therapeutics, Wilmington, Delaware, USA
| | - Hong Lin
- Prelude Therapeutics, Wilmington, Delaware, USA
| | | | - Gregory K Behbehani
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center
| | | | - Ramiro Garzon
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center
| | - Kris Vaddi
- Prelude Therapeutics, Wilmington, Delaware, USA
| | - Robert A Baiocchi
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center
| | - Parvathi Ranganathan
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center
| |
Collapse
|
16
|
Hamarsheh S, Osswald L, Saller BS, Unger S, De Feo D, Vinnakota JM, Konantz M, Uhl FM, Becker H, Lübbert M, Shoumariyeh K, Schürch C, Andrieux G, Venhoff N, Schmitt-Graeff A, Duquesne S, Pfeifer D, Cooper MA, Lengerke C, Boerries M, Duyster J, Niemeyer CM, Erlacher M, Blazar BR, Becher B, Groß O, Brummer T, Zeiser R. Oncogenic Kras G12D causes myeloproliferation via NLRP3 inflammasome activation. Nat Commun 2020; 11:1659. [PMID: 32246016 PMCID: PMC7125138 DOI: 10.1038/s41467-020-15497-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 03/11/2020] [Indexed: 12/03/2022] Open
Abstract
Oncogenic Ras mutations occur in various leukemias. It was unclear if, besides the direct transforming effect via constant RAS/MEK/ERK signaling, an inflammation-related effect of KRAS contributes to the disease. Here, we identify a functional link between oncogenic KrasG12D and NLRP3 inflammasome activation in murine and human cells. Mice expressing active KrasG12D in the hematopoietic system developed myeloproliferation and cytopenia, which is reversed in KrasG12D mice lacking NLRP3 in the hematopoietic system. Therapeutic IL-1-receptor blockade or NLRP3-inhibition reduces myeloproliferation and improves hematopoiesis. Mechanistically, KrasG12D-RAC1 activation induces reactive oxygen species (ROS) production causing NLRP3 inflammasome-activation. In agreement with our observations in mice, patient-derived myeloid leukemia cells exhibit KRAS/RAC1/ROS/NLRP3/IL-1β axis activity. Our findings indicate that oncogenic KRAS not only act via its canonical oncogenic driver function, but also enhances the activation of the pro-inflammatory RAC1/ROS/NLRP3/IL-1β axis. This paves the way for a therapeutic approach based on immune modulation via NLRP3 blockade in KRAS-mutant myeloid malignancies.
Collapse
Affiliation(s)
- Shaima'a Hamarsheh
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Lena Osswald
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Benedikt S Saller
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Institute of Neuropathology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Susanne Unger
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Donatella De Feo
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Janaki Manoja Vinnakota
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Martina Konantz
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Franziska M Uhl
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Heiko Becker
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michael Lübbert
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Khalid Shoumariyeh
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christoph Schürch
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Geoffroy Andrieux
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nils Venhoff
- Clinic for Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Sandra Duquesne
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dietmar Pfeifer
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Matthew A Cooper
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Claudia Lengerke
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Comprehensive Cancer Centre Freiburg (CCCF), University of Freiburg, Freiburg, Germany
| | - Justus Duyster
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Comprehensive Cancer Centre Freiburg (CCCF), University of Freiburg, Freiburg, Germany
| | - Charlotte M Niemeyer
- German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Comprehensive Cancer Centre Freiburg (CCCF), University of Freiburg, Freiburg, Germany
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Miriam Erlacher
- German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Comprehensive Cancer Centre Freiburg (CCCF), University of Freiburg, Freiburg, Germany
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bruce R Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Burkard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Olaf Groß
- Institute of Neuropathology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Centre for Biological Signalling Studies (BIOSS) and Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany
| | - Tilman Brummer
- German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Comprehensive Cancer Centre Freiburg (CCCF), University of Freiburg, Freiburg, Germany
- Institute of Molecular Medicine and Cell Research (IMMZ), Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Freiburg, Germany
| | - Robert Zeiser
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Comprehensive Cancer Centre Freiburg (CCCF), University of Freiburg, Freiburg, Germany.
- Centre for Biological Signalling Studies (BIOSS) and Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany.
| |
Collapse
|
17
|
Takahagi A, Shindo T, Chen-Yoshikawa TF, Yoshizawa A, Gochi F, Miyamoto E, Saito M, Tanaka S, Motoyama H, Aoyama A, Takaori-Kondo A, Date H. Trametinib Attenuates Delayed Rejection and Preserves Thymic Function in Rat Lung Transplantation. Am J Respir Cell Mol Biol 2020; 61:355-366. [PMID: 30849233 DOI: 10.1165/rcmb.2018-0188oc] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Delayed immunological rejection after human lung transplantation causes chronic lung allograft dysfunction, which is associated with high mortality. Delayed rejection may be attributable to indirect alloantigen presentation by host antigen-presenting cells; however, its pathophysiology is not fully understood. The mitogen-activated protein kinase pathway is activated in T cells upon stimulation, and we previously showed that the MEK inhibitor, trametinib, suppresses graft-versus-host disease after murine bone marrow transplantation. We investigated whether trametinib suppresses graft rejection after two types of rat lung transplantation and analyzed its immunological mode of action. Major histocompatibility complex-mismatched transplantation from brown Norway rats into Lewis rats and minor histocompatibility antigen-mismatched transplantation from Fischer 344 rats into Lewis rats were performed. Cyclosporine (CsA) and/or trametinib were administered alone or consecutively. Acute and delayed rejection, lymphocyte infiltration, and pulmonary function were evaluated. Administration of trametinib after CsA suppressed delayed rejection, reduced inflammatory cell infiltration and fibrosis within the graft, and preserved pulmonary functions at Day 28. Trametinib suppressed functional differentiation of T and B cells in the periphery but preserved thymic T cell differentiation. Donor B cells within the graft disappeared by Day 14, indicating that delayed graft rejection at Day 28 was mainly due to indirect presentation by host antigen-presenting cells. Finally, trametinib administration without CsA preconditioning suppressed rejection after minor histocompatibility antigen-mismatched transplantation. Trametinib attenuates delayed rejection upon major histocompatibility complex-mismatched transplantation by suppressing indirect presentation and is a promising candidate to treat chronic lung allograft dysfunction in humans.
Collapse
Affiliation(s)
| | - Takero Shindo
- Department of Hematology/Oncology, Kyoto University Graduate School of Medicine, Kyoto, Japan; and
| | | | - Akihiko Yoshizawa
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | | | | | | | | | | | | | - Akifumi Takaori-Kondo
- Department of Hematology/Oncology, Kyoto University Graduate School of Medicine, Kyoto, Japan; and
| | | |
Collapse
|
18
|
MEK inhibition suppresses B regulatory cells and augments anti-tumor immunity. PLoS One 2019; 14:e0224600. [PMID: 31671149 PMCID: PMC6822709 DOI: 10.1371/journal.pone.0224600] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 09/29/2019] [Indexed: 12/20/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) kinase (MEK) is an integral component of the RAS pathway and a therapeutic target in RAS-driven cancers. Although tumor responses to MEK inhibition are rarely durable, MEK inhibitors have shown substantial activity and durable tumor regressions when combined with systemic immunotherapies in preclinical models of RAS-driven tumors. MEK inhibitors have been shown to potentiate anti-tumor T cell immunity, but little is known about the effects of MEK inhibition on other immune subsets, including B cells. We show here that treatment with a MEK inhibitor reduces B regulatory cells (Bregs) in vitro, and reduces the number of Bregs in tumor draining lymph nodes in a colorectal cancer model in vivo. MEK inhibition does not impede anti-tumor humoral immunity, and B cells contribute meaningfully to anti-tumor immunity in the context of MEK inhibitor therapy. Treatment with a MEK inhibitor is associated with improved T cell infiltration and an enhanced response to anti-PD1 immunotherapy. Together these data indicate that MEK inhibition may reduce Bregs while sparing anti-tumor B cell function, resulting in enhanced anti-tumor immunity.
Collapse
|
19
|
Zeiser R. Advances in understanding the pathogenesis of graft-versus-host disease. Br J Haematol 2019; 187:563-572. [PMID: 31588560 DOI: 10.1111/bjh.16190] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/17/2019] [Accepted: 08/19/2019] [Indexed: 01/04/2023]
Abstract
Acute graft-versus-host disease (GVHD) remains a major complication after allogeneic haematopoietic stem cell transplantation (allo-HSCT). The emergence of different immuno-prophylaxis strategies, such as post-transplant cyclophosphamide or anti-thymocyteglobulin has reduced the incidence of acute GVHD in recent years. The biology of the acute GVHD we observe in the clinic may change due to the use of novel immuno-stimulatory agents, including immune checkpoint inhibitors or anti-neoplastic immune-modifiers, like lenalidomide, given before or after allo-HSCT. Here we discuss the recent advances in our understanding of acute GVHD with a focus on early events of the disease, including tissue damaging factors, innate immune cells, costimulatory pathways, immune cell signalling, immuno-regulatory cell types, biomarkers of GVHD and regenerative approaches. New insight in the pathogenesis of acute GVHD has revealed the role of pro-inflammatory intracellular signalling, defects in intestinal tissue regeneration and anti-bacterial defence, as well as a reduced diversity of the microbiome, which will be the basis for the development of novel therapies.
Collapse
Affiliation(s)
- Robert Zeiser
- Department of Haematology, Oncology and Stem Cell Transplantation, Faculty of Medicine, Freiburg University Medical Centre, Freiburg, Germany
| |
Collapse
|
20
|
Zeiser R. Biology-driven developments in the therapy of acute graft-versus-host disease. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2018; 2018:236-241. [PMID: 30504316 PMCID: PMC6245989 DOI: 10.1182/asheducation-2018.1.236] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Allogeneic hematopoietic cell transplantation is a potentially curative treatment of different hematological malignancies. A major life-threatening complication is acute graft-versus-host disease (GVHD), in particular when the disease becomes steroid refractory. Based on the detection of pathogenic cytokines, chemokines, and T-cell subsets in individuals developing GVHD or experimental GVHD models, different therapeutic strategies have been developed. A potential cause why targeting individual receptors can lack efficacy could be that multiple cytokines, danger signals, and chemokine that have redundant functions are released during GVHD. To overcome this redundancy, novel strategies that do not target individual surface molecules like chemokine receptors, integrins, and cytokine receptors, but instead inhibit signaling pathways downstream of these molecules, have been tested in preclinical GVHD models and are currently being tested in clinical GVHD trials. Another important development is tissue regenerative approaches that promote healing of GVHD-related tissue damage as well as strategies that rely on microbiota modifications. These approaches are promising because they act very differently from conventional immunosuppression, instead aiming at reinstalling tissue homeostasis and microbiome diversity. This review discusses major novel developments in GVHD therapy that are based on a better understanding of GVHD biology, the repurposing of novel kinase inhibitors, microbiome modification strategies, and tissue-regenerative approaches.
Collapse
Affiliation(s)
- Robert Zeiser
- Department of Hematology, Oncology and Stem Cell Transplantation, Faculty of Medicine, Freiburg University Medical Center, Freiburg, Germany
| |
Collapse
|
21
|
Kagoya Y, Nakatsugawa M, Saso K, Guo T, Anczurowski M, Wang CH, Butler MO, Arrowsmith CH, Hirano N. DOT1L inhibition attenuates graft-versus-host disease by allogeneic T cells in adoptive immunotherapy models. Nat Commun 2018; 9:1915. [PMID: 29765028 PMCID: PMC5954061 DOI: 10.1038/s41467-018-04262-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 04/11/2018] [Indexed: 12/24/2022] Open
Abstract
Adoptive T-cell therapy is a promising therapeutic approach for cancer patients. The use of allogeneic T-cell grafts will improve its applicability and versatility provided that inherent allogeneic responses are controlled. T-cell activation is finely regulated by multiple signaling molecules that are transcriptionally controlled by epigenetic mechanisms. Here we report that inhibiting DOT1L, a histone H3-lysine 79 methyltransferase, alleviates allogeneic T-cell responses. DOT1L inhibition reduces miR-181a expression, which in turn increases the ERK phosphatase DUSP6 expression and selectively ameliorates low-avidity T-cell responses through globally suppressing T-cell activation-induced gene expression alterations. The inhibition of DOT1L or DUSP6 overexpression in T cells attenuates the development of graft-versus-host disease, while retaining potent antitumor activity in xenogeneic and allogeneic adoptive immunotherapy models. These results suggest that DOT1L inhibition may enable the safe and effective use of allogeneic antitumor T cells by suppressing unwanted immunological reactions in adoptive immunotherapy.
Collapse
Affiliation(s)
- Yuki Kagoya
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 2M9, Canada
| | - Munehide Nakatsugawa
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 2M9, Canada
| | - Kayoko Saso
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 2M9, Canada
| | - Tingxi Guo
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 2M9, Canada.,Department of Immunology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Mark Anczurowski
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 2M9, Canada.,Department of Immunology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Chung-Hsi Wang
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 2M9, Canada.,Department of Immunology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Marcus O Butler
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 2M9, Canada.,Department of Immunology, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Department of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium and Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 1L7, Canada.,Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 2M9, Canada
| | - Naoto Hirano
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 2M9, Canada. .,Department of Immunology, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
22
|
Chae YK, Galvez C, Anker JF, Iams WT, Bhave M. Cancer immunotherapy in a neglected population: The current use and future of T-cell-mediated checkpoint inhibitors in organ transplant patients. Cancer Treat Rev 2017; 63:116-121. [PMID: 29276997 DOI: 10.1016/j.ctrv.2017.12.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/04/2017] [Accepted: 12/06/2017] [Indexed: 12/22/2022]
Abstract
Although the indications for immune checkpoint inhibitors continue to grow, organ transplant recipients with advanced malignancies have been largely excluded from clinical trials testing the safety and efficacy of these therapies given their need for chronic immunosuppression and the risk of allograft rejection. With the rapid growth of transplant medicine and the increased risk of malignancy associated with chronic immunosuppression, it is critical that we systematically analyze the available data describing immune checkpoint blockade in the organ transplant population. Herein we provide a current and comprehensive review of cases in which immune checkpoint blockade was used on organ transplant recipients. Furthermore, we discuss the differences in efficacy and risk of allograft rejection between CTLA-4 and PD-1 inhibitors and make recommendations based on the limited available clinical data. We also discuss the future of immune checkpoint blockade in this subpopulation and explore the emerging data of promising combination therapies with mTOR, BRAF/MEK, and BTK/ITK inhibitors. Further clinical experience and larger clinical trials involving immune checkpoint inhibitors, whether as monotherapies or combinatorial therapies, will help develop regimens that optimize anti-tumor response and minimize the risk of allograft rejection in organ transplant patients.
Collapse
Affiliation(s)
- Young Kwang Chae
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA.
| | - Carlos Galvez
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jonathan F Anker
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Wade T Iams
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Manali Bhave
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
23
|
Affiliation(s)
- Robert Zeiser
- From the Department of Hematology, Oncology, and Stem Cell Transplantation, Faculty of Medicine, Freiburg University Medical Center, Freiburg, Germany (R.Z.); and the Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis (B.R.B.)
| | - Bruce R Blazar
- From the Department of Hematology, Oncology, and Stem Cell Transplantation, Faculty of Medicine, Freiburg University Medical Center, Freiburg, Germany (R.Z.); and the Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis (B.R.B.)
| |
Collapse
|
24
|
Abstract
The age of personalized medicine continues to evolve within clinical oncology with the arsenal available to clinicians in a variety of malignancies expanding at an exponential rate. The development and advancement of molecular treatment modalities, including targeted therapy and immune checkpoint blockade, continue to flourish. Treatment with targeted therapy (BRAF, MEK, and other small molecule inhibitors) can be associated with swift disease control and high response rates, but limited durability when used as monotherapy. Conversely, treatment with immune checkpoint blockade monotherapy regimens (anti-cytotoxic T-lymphocyte antigen 4 and anti-programmed cell death protein 1/programmed cell death protein 1 ligand) tends to have lower response rates than that observed with BRAF-targeted therapy, although these treatments may offer long-term durable disease control. With the advent of these forms of therapy, there was interest early on in empirically combining targeted therapy with immune checkpoint blockade with the hopes of preserving high response rates and adding durability; however, there is now strong scientific rationale for combining these forms of therapy-and early evidence of synergy in preclinical models of melanoma. Clinical trials combining these strategies are ongoing, and mature data regarding response rates and durability are not yet available. Synergy may ultimately be apparent; however, it has also become clear that complexities exist regarding toxicity when combining these therapies. Nonetheless, this increased appreciation of the complex interplay between oncogenic mutations and antitumor immunity has opened up tremendous opportunities for studying targeted agents and immunotherapy in combination, which extends far beyond melanoma to other solid tumors and also to hematologic malignancies.
Collapse
|
25
|
Targeted Therapy and Immunosuppression in the Tumor Microenvironment. Trends Cancer 2016; 3:19-27. [PMID: 28718424 DOI: 10.1016/j.trecan.2016.11.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 11/21/2016] [Accepted: 11/28/2016] [Indexed: 02/08/2023]
Abstract
Small-molecule inhibitors offer great promise for targeting pathways that are specifically deregulated in different tumors. However, such 'targeted' therapies also elicit poorly understood effects on protective antitumor immunity. Given the emerging relevance of immunotherapies that boost pre-existing T cell responses, understanding how different immune cells are affected by small-molecule inhibitors could lead to more-effective interventions, alone or combined with immunotherapy. This review discusses the growing array of activities elicited by multiple 'targeted' inhibitors on antitumor immunity, underscoring the complex effects resulting from diverse activities on different immune cell types in vivo, and the need to conduct mechanistic research that identifies drugs performing well not only in immunocompromised mice but also in the presence of spontaneous or therapeutic antitumor immunity.
Collapse
|
26
|
Zwang NA, Zhang R, Germana S, Fan MY, Hastings WD, Cao A, Turka LA. Selective Sparing of Human Tregs by Pharmacologic Inhibitors of the Phosphatidylinositol 3-Kinase and MEK Pathways. Am J Transplant 2016; 16:2624-38. [PMID: 27017850 PMCID: PMC5007157 DOI: 10.1111/ajt.13805] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 02/29/2016] [Accepted: 03/20/2016] [Indexed: 01/25/2023]
Abstract
Phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase/extracellular signal-regulated (MEK) signaling are central to the survival and proliferation of many cell types. Multiple lines of investigation in murine models have shown that control of the PI3K pathway is particularly important for regulatory T cell (Treg) stability and function. PI3K and MEK inhibitors are being introduced into the clinic, and we hypothesized that pharmacologic inhibition of PI3K, and possibly MEK, in mixed cultures of human mononuclear cells would preferentially affect CD4(+) and CD8(+) lymphocytes compared with Tregs. We tested this hypothesis using four readouts: proliferation, activation, functional suppression, and signaling. Results showed that Tregs were less susceptible to inhibition by both δ and α isoform-specific PI3K inhibitors and by an MEK inhibitor compared with their conventional CD4(+) and CD8(+) counterparts. These studies suggest less functional reliance on PI3K and MEK signaling in Tregs compared with conventional CD4(+) and CD8(+) lymphocytes. Therefore, the PI3K and MEK pathways are attractive pharmacologic targets for transplantation and treatment of autoimmunity.
Collapse
Affiliation(s)
- N. A. Zwang
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA
- Massachusetts General Hospital/Brigham and Women’s Hospital Nephrology Joint Fellowship Program, Boston, MA
| | - R. Zhang
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA
| | - S. Germana
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA
| | - M. Y. Fan
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA
| | | | - A. Cao
- Novartis Pharmaceuticals, Cambridge, MA
| | - L. A. Turka
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA
| |
Collapse
|
27
|
Itamura H, Shindo T, Tawara I, Kubota Y, Kariya R, Okada S, Komanduri KV, Kimura S. The MEK inhibitor trametinib separates murine graft-versus-host disease from graft-versus-tumor effects. JCI Insight 2016; 1:e86331. [PMID: 27699218 DOI: 10.1172/jci.insight.86331] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The efficacy of allogeneic hematopoietic stem cell transplantation for hematologic malignancies is limited by the difficulty in suppressing graft-versus-host disease (GVHD) without compromising graft-versus-tumor (GVT) effects. We previously showed that RAS/MEK/ERK signaling depends on memory differentiation in human T cells, which confers susceptibility to selective inhibition of naive T cells. Actually, antineoplastic MEK inhibitors selectively suppress alloreactive T cells, sparing virus-specific T cells in vitro. Here, we show that trametinib, a MEK inhibitor clinically approved for melanoma, suppresses GVHD safely without affecting GVT effects in vivo. Trametinib prolonged survival of GVHD mice and attenuated GVHD symptoms and pathology in the gut and skin. It inhibited ERK1/2 phosphorylation and expansion of donor T cells, sparing Tregs and B cells. Although high-dose trametinib inhibited myeloid cell engraftment, low-dose trametinib suppressed GVHD without severe adverse events. Notably, trametinib facilitated the survival of mice transplanted with allogeneic T cells and P815 tumor cells with no residual P815 cells observed in the livers and spleens, whereas tacrolimus resulted in P815 expansion. These results confirm that trametinib selectively suppresses GVHD-inducing T cells while sparing antitumor T cells in vivo, which makes it a promising candidate for translational studies aimed at preventing or treating GVHD.
Collapse
Affiliation(s)
- Hidekazu Itamura
- Department of Hematology, Respiratory Medicine and Oncology, Saga University School of Medicine, Saga, Japan
| | - Takero Shindo
- Department of Hematology, Respiratory Medicine and Oncology, Saga University School of Medicine, Saga, Japan
| | - Isao Tawara
- Department of Hematology/Oncology, Mie University School of Medicine, Tsu, Japan
| | - Yasushi Kubota
- Department of Hematology, Respiratory Medicine and Oncology, Saga University School of Medicine, Saga, Japan
| | - Ryusho Kariya
- Division of Hematopoiesis, Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | - Seiji Okada
- Division of Hematopoiesis, Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | - Krishna V Komanduri
- Adult Stem Cell Transplant Program and Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Shinya Kimura
- Department of Hematology, Respiratory Medicine and Oncology, Saga University School of Medicine, Saga, Japan
| |
Collapse
|
28
|
Teshima T, Reddy P, Zeiser R. Reprint of: Acute Graft-versus-Host Disease: Novel Biological Insights. Biol Blood Marrow Transplant 2016; 22:S3-8. [PMID: 26899274 DOI: 10.1016/j.bbmt.2016.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 10/01/2015] [Indexed: 12/13/2022]
Abstract
Graft-versus-host disease (GVHD) continues to be a leading cause of morbidity and mortality after allogeneic hematopoietic stem cell transplantation. Recent insights into intestinal homeostasis and uncovering of new pathways and targets have greatly reconciled our understanding of GVHD pathophysiology and will reshape contemporary GVHD prophylaxis and treatment. Gastrointestinal (GI) GVHD is the major cause of mortality. Emerging data indicate that intestinal stem cells (ISCs) and their niche Paneth cells are targeted, resulting in dysregulation of the intestinal homeostasis and microbial ecology. The microbiota and their metabolites shape the immune system and intestinal homeostasis, and they may alter host susceptibility to GVHD. Protection of the ISC niche system and modification of the intestinal microbiota and metabolome to restore intestinal homeostasis may, thus, represent a novel approach to modulate GVHD and infection. Damage to the intestine plays a central role in amplifying systemic GVHD by propagating a proinflammatory cytokine milieu. Molecular targeting to inhibit kinase signaling may be a promising approach to treat GVHD, ideally via targeting the redundant effect of multiple cytokines on immune cells and enterocytes. In this review, we discuss insights on the biology of GI GVHD, interaction of microflora and metabolome with the hosts, identification of potential new target organs, and identification and targeting of novel T cell-signaling pathways. Better understanding of GVHD biology will, thus, pave a way to develop novel treatment strategies with great clinical benefits.
Collapse
Affiliation(s)
- Takanori Teshima
- Department of Hematology, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
| | - Pavan Reddy
- Department of Internal Medicine, University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan
| | - Robert Zeiser
- Department of Hematology and Oncology, Freiburg University Medical Center, Albert-Ludwigs-University, Freiburg, Germany
| |
Collapse
|
29
|
Allegrezza MJ, Rutkowski MR, Stephen TL, Svoronos N, Tesone AJ, Perales-Puchalt A, Nguyen JM, Sarmin F, Sheen MR, Jeng EK, Tchou J, Wong HC, Fiering SN, Conejo-Garcia JR. IL15 Agonists Overcome the Immunosuppressive Effects of MEK Inhibitors. Cancer Res 2016; 76:2561-72. [PMID: 26980764 DOI: 10.1158/0008-5472.can-15-2808] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 03/01/2016] [Indexed: 11/16/2022]
Abstract
Many signal transduction inhibitors are being developed for cancer therapy target pathways that are also important for the proper function of antitumor lymphocytes, possibly weakening their therapeutic effects. Here we show that most inhibitors targeting multiple signaling pathways have especially strong negative effects on T-cell activation at their active doses on cancer cells. In particular, we found that recently approved MEK inhibitors displayed potent suppressive effects on T cells in vitro However, these effects could be attenuated by certain cytokines that can be administered to cancer patients. Among them, clinically available IL15 superagonists, which can activate PI3K selectively in T lymphocytes, synergized with MEK inhibitors in vivo to elicit potent and durable antitumor responses, including by a vaccine-like effect that generated resistance to tumor rechallenge. Our work identifies a clinically actionable approach to overcome the T-cell-suppressive effects of MEK inhibitors and illustrates how to reconcile the deficiencies of signal transduction inhibitors, which impede desired immunologic effects in vivo Cancer Res; 76(9); 2561-72. ©2016 AACR.
Collapse
Affiliation(s)
- Michael J Allegrezza
- Tumor Microenvironment and Metastasis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Melanie R Rutkowski
- Tumor Microenvironment and Metastasis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Tom L Stephen
- Tumor Microenvironment and Metastasis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Nikolaos Svoronos
- Tumor Microenvironment and Metastasis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Amelia J Tesone
- Tumor Microenvironment and Metastasis, The Wistar Institute, Philadelphia, Pennsylvania
| | | | - Jenny M Nguyen
- Tumor Microenvironment and Metastasis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Fahmida Sarmin
- Tumor Microenvironment and Metastasis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Mee R Sheen
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Emily K Jeng
- Research & Development, Altor BioScience Corporation, Miramar, Florida
| | - Julia Tchou
- Department of Surgery, University of Pennsylvania, Philadelphia, Pennsylvania. Rena Rowan Breast Center, University of Pennsylvania, Philadelphia, Pennsylvania. Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hing C Wong
- Research & Development, Altor BioScience Corporation, Miramar, Florida
| | - Steven N Fiering
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Jose R Conejo-Garcia
- Tumor Microenvironment and Metastasis, The Wistar Institute, Philadelphia, Pennsylvania.
| |
Collapse
|
30
|
Ebert PJR, Cheung J, Yang Y, McNamara E, Hong R, Moskalenko M, Gould SE, Maecker H, Irving BA, Kim JM, Belvin M, Mellman I. MAP Kinase Inhibition Promotes T Cell and Anti-tumor Activity in Combination with PD-L1 Checkpoint Blockade. Immunity 2016; 44:609-621. [PMID: 26944201 DOI: 10.1016/j.immuni.2016.01.024] [Citation(s) in RCA: 528] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 01/26/2016] [Accepted: 01/29/2016] [Indexed: 12/11/2022]
Abstract
Targeted inhibition of mitogen-activated protein kinase (MAPK) kinase (MEK) can induce regression of tumors bearing activating mutations in the Ras pathway but rarely leads to tumor eradication. Although combining MEK inhibition with T-cell-directed immunotherapy might lead to more durable efficacy, T cell responses are themselves at least partially dependent on MEK activity. We show here that MEK inhibition did profoundly block naive CD8(+) T cell priming in tumor-bearing mice, but actually increased the number of effector-phenotype antigen-specific CD8(+) T cells within the tumor. MEK inhibition protected tumor-infiltrating CD8(+) T cells from death driven by chronic TCR stimulation while sparing cytotoxic activity. Combining MEK inhibition with anti-programmed death-ligand 1 (PD-L1) resulted in synergistic and durable tumor regression even where either agent alone was only modestly effective. Thus, despite the central importance of the MAP kinase pathway in some aspects of T cell function, MEK-targeted agents can be compatible with T-cell-dependent immunotherapy.
Collapse
Affiliation(s)
| | - Jeanne Cheung
- Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Yagai Yang
- Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Erin McNamara
- Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Rebecca Hong
- Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | | | | | | | - Bryan A Irving
- Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jeong M Kim
- Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Marcia Belvin
- Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Ira Mellman
- Genentech, 1 DNA Way, South San Francisco, CA 94080, USA.
| |
Collapse
|
31
|
Apostolova P, Zeiser R. The role of danger signals and ectonucleotidases in acute graft-versus-host disease. Hum Immunol 2016; 77:1037-1047. [PMID: 26902992 DOI: 10.1016/j.humimm.2016.02.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 02/09/2016] [Accepted: 02/18/2016] [Indexed: 12/28/2022]
Abstract
Allogeneic hematopoietic cell transplantation (allo-HCT) represents the only curative treatment approach for many patients with benign or malignant diseases of the hematopoietic system. However, post-transplant morbidity and mortality are significantly increased by the development of acute graft-versus-host disease (GvHD). While alloreactive T cells act as the main cellular mediator of the GvH reaction, recent evidence suggests a critical role of the innate immune system in the early stages of GvHD initiation. Danger-associated molecular patterns released from the intracellular space as well as from the extracellular matrix activate antigen-presenting cells and set pro-inflammatory pathways in motion. This review gives an overview about danger signals representing therapeutic targets with a clinical perspective with a particular focus on extracellular nucleotides and ectonucleotidases.
Collapse
Affiliation(s)
- Petya Apostolova
- Department of Hematology, Oncology and Stem Cell Transplantation, Freiburg University Medical Center, Albert-Ludwigs-University, Freiburg, Germany.
| | - Robert Zeiser
- Department of Hematology, Oncology and Stem Cell Transplantation, Freiburg University Medical Center, Albert-Ludwigs-University, Freiburg, Germany.
| |
Collapse
|
32
|
Abstract
The past several years can be considered a renaissance era in the treatment of metastatic melanoma. Following a 30-year stretch in which oncologists barely put a dent in a very grim overall survival (OS) rate for these patients, things have rapidly changed course with the recent approval of three new melanoma drugs by the FDA. Both oncogene-targeted therapy and immune checkpoint blockade approaches have shown remarkable efficacy in a subset of melanoma patients and have clearly been game-changers in terms of clinical impact. However, most patients still succumb to their disease, and thus, there remains an urgent need to improve upon current therapies. Fortunately, innovations in molecular medicine have led to many silent gains that have greatly increased our understanding of the nature of cancer biology as well as the complex interactions between tumors and the immune system. They have also allowed for the first time a detailed understanding of an individual patient's cancer at the genomic and proteomic level. This information is now starting to be employed at all stages of cancer treatment, including diagnosis, choice of drug therapy, treatment monitoring, and analysis of resistance mechanisms upon recurrence. This new era of personalized medicine will foreseeably lead to paradigm shifts in immunotherapeutic treatment approaches such as individualized cancer vaccines and adoptive transfer of genetically modified T cells. Advances in xenograft technology will also allow for the testing of drug combinations using in vivo models, a truly necessary development as the number of new drugs needing to be tested is predicted to skyrocket in the coming years. This chapter will provide an overview of recent technological developments in cancer research, and how they are expected to impact future diagnosis, monitoring, and development of novel treatments for metastatic melanoma.
Collapse
Affiliation(s)
| | | | | | - Patrick Hwu
- University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Gregory Lizée
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
33
|
Lieske NV, Tonby K, Kvale D, Dyrhol-Riise AM, Tasken K. Targeting Tuberculosis and HIV Infection-Specific Regulatory T Cells with MEK/ERK Signaling Pathway Inhibitors. PLoS One 2015; 10:e0141903. [PMID: 26544592 PMCID: PMC4636186 DOI: 10.1371/journal.pone.0141903] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Accepted: 10/14/2015] [Indexed: 02/02/2023] Open
Abstract
Human regulatory T cells (Tregs) are essential in maintaining immunological tolerance and suppress effector T cells. Tregs are commonly up-regulated in chronic infectious diseases such as tuberculosis (TB) and human immunodeficiency virus (HIV) infection and thereby hamper disease-specific immune responses and eradication of pathogens. The MEK/ERK signaling pathway is involved in regulation of the FoxP3 transcription factor, which directs a lineage-specific transcriptional program to define Tregs and control their suppressive function. Here, we aimed to target activation of disease-specific Tregs by inhibition of the MEK/ERK signaling pathway based on the hypothesis that this would improve anti-HIV and anti-TB immunity. Stimulation of T cells from untreated TB (n = 12) and HIV (n = 8) patients with disease-specific antigens in vitro in the presence of the MEK inhibitor (MEKI) trametinib (GSK1120212) resulted in significant down-regulation of both FoxP3 levels (MFI) and fractions of resting (CD45RA+FoxP3+) and activated (CD45RA−FoxP3++) Tregs. MEKI also reduced the levels of specific T effector cells expressing the pro-inflammatory cytokines (IFN-γ, TNF-α and IL-2) in both HIV and TB patients. In conclusion, MEKIs modulate disease antigen-specific Treg activation and may have potential application in new treatment strategies in chronic infectious diseases where reduction of Treg activity would be favorable. Whether MEKIs can be used in current HIV or TB therapy regimens needs to be further investigated.
Collapse
Affiliation(s)
- Nora V. Lieske
- Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo, Oslo, Norway
| | - Kristian Tonby
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
| | - Dag Kvale
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
- Kristian Gerhard Jebsen Inflammation Research Centre, University of Oslo, Oslo, Norway
| | - Anne M. Dyrhol-Riise
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
- Kristian Gerhard Jebsen Inflammation Research Centre, University of Oslo, Oslo, Norway
| | - Kjetil Tasken
- Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo, Oslo, Norway
- Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
- Kristian Gerhard Jebsen Inflammation Research Centre, University of Oslo, Oslo, Norway
- Biotechnology Centre, University of Oslo, Oslo, Norway
- * E-mail:
| |
Collapse
|
34
|
Teshima T, Reddy P, Zeiser R. Acute Graft-versus-Host Disease: Novel Biological Insights. Biol Blood Marrow Transplant 2015; 22:11-6. [PMID: 26453971 DOI: 10.1016/j.bbmt.2015.10.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 10/01/2015] [Indexed: 12/22/2022]
Abstract
Graft-versus-host disease (GVHD) continues to be a leading cause of morbidity and mortality after allogeneic hematopoietic stem cell transplantation. Recent insights into intestinal homeostasis and uncovering of new pathways and targets have greatly reconciled our understanding of GVHD pathophysiology and will reshape contemporary GVHD prophylaxis and treatment. Gastrointestinal (GI) GVHD is the major cause of mortality. Emerging data indicate that intestinal stem cells (ISCs) and their niche Paneth cells are targeted, resulting in dysregulation of the intestinal homeostasis and microbial ecology. The microbiota and their metabolites shape the immune system and intestinal homeostasis, and they may alter host susceptibility to GVHD. Protection of the ISC niche system and modification of the intestinal microbiota and metabolome to restore intestinal homeostasis may, thus, represent a novel approach to modulate GVHD and infection. Damage to the intestine plays a central role in amplifying systemic GVHD by propagating a proinflammatory cytokine milieu. Molecular targeting to inhibit kinase signaling may be a promising approach to treat GVHD, ideally via targeting the redundant effect of multiple cytokines on immune cells and enterocytes. In this review, we discuss insights on the biology of GI GVHD, interaction of microflora and metabolome with the hosts, identification of potential new target organs, and identification and targeting of novel T cell-signaling pathways. Better understanding of GVHD biology will, thus, pave a way to develop novel treatment strategies with great clinical benefits.
Collapse
Affiliation(s)
- Takanori Teshima
- Department of Hematology, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
| | - Pavan Reddy
- Department of Internal Medicine, University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan
| | - Robert Zeiser
- Department of Hematology and Oncology, Freiburg University Medical Center, Albert-Ludwigs-University, Freiburg, Germany
| |
Collapse
|
35
|
Abstract
The diagnosis and risk stratification of acute myeloid leukemia (AML) primarily rely on morphologic analysis and assessment of karyotype by chromosome banding analysis. For decades, standard AML induction therapy has utilized the combination of anthracyclines and cytarabine. Despite the use of postremission therapy, less than half of patients with AML will be cured of their disease. Allogeneic hematopoietic stem cell transplantation combines cytoreductive chemotherapy with adoptive immunotherapy and may cure patients who fail chemotherapy alone. Recent advances in next-generation sequencing have yielded important insights into the molecular landscape of AML with normal karyotype. Integrated prognostic models incorporating somatic mutation analyses may outperform prediction based on conventional clinical and cytogenetic factors alone. We review the evolution of risk profiling of AML from the cytogenetic to molecular era and describe the implications for AML diagnosis and postremission therapy.
Collapse
Affiliation(s)
- Krishna V Komanduri
- Adult Stem Cell Transplant Program and Department of Medicine, University of Miami Sylvester Cancer Center, Miami, Florida 33136;
| | - Ross L Levine
- Human Oncology and Pathogenesis Program and Leukemia Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10065;
| |
Collapse
|
36
|
Reuben A, Austin-Breneman J, Wargo JA, Cooper ZA. Raising the bar: optimizing combinations of targeted therapy and immunotherapy. ANNALS OF TRANSLATIONAL MEDICINE 2015; 3:272. [PMID: 26605318 PMCID: PMC4630548 DOI: 10.3978/j.issn.2305-5839.2015.10.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
37
|
Sanlorenzo M, Vujic I, Moy A, Quaglino P, Fierro MT, Gammaitoni L, Carnevale-Schianca F, Aglietta M, Sangiolo D. Synergy of molecular targeted approaches and immunotherapy in melanoma: preclinical basis and clinical perspectives. Expert Opin Biol Ther 2015. [DOI: 10.1517/14712598.2015.1069272] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
38
|
Antonia SJ, Larkin J, Ascierto PA. Immuno-oncology Combinations: A Review of Clinical Experience and Future Prospects. Clin Cancer Res 2014; 20:6258-68. [DOI: 10.1158/1078-0432.ccr-14-1457] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
39
|
Abstract
PURPOSE OF REVIEW BRAF and NRAS mutations can exert an oncogenic effect and are a target for novel therapeutic strategies. Selective MEK inhibitors inhibit growth and induce cell death in BRAF and NRAS mutated melanoma cell lines. The first MEK inhibitor (trametinib) has recently been approved for the treatment of BRAF-mutated metastatic melanoma not previously treated with BRAF inhibitors and several more are in clinical development. RECENT FINDINGS MEK inhibition is associated with improved response rate, progression-free survival, and overall survival in patients with BRAF-mutated metastatic melanoma. Less clinical benefit has been observed in patients previously treated with a BRAF inhibitor compared with BRAF-inhibitor-naïve patients. Data also suggest clinical activity in patients with NRAS-mutated melanoma. Combination therapy with a BRAF inhibitor may improve the efficacy and reduce BRAF-inhibition-associated side effects. SUMMARY MEK inhibitors represent a new treatment option in BRAF and NRAS mutated melanoma. As monotherapy, MEK inhibitors appear to provide minimal benefit in patients previously treated with a BRAF inhibitor, so they should be reserved for BRAF-inhibitor-naïve patients. Combined BRAF and MEK inhibition seems to provide a greater benefit than BRAF inhibitor monotherapy. MEK inhibition has also shown efficacy in NRAS-mutated patients, for whom there is no specific targeted therapy.
Collapse
|
40
|
Vella LJ, Andrews MC, Behren A, Cebon J, Woods K. Immune consequences of kinase inhibitors in development, undergoing clinical trials and in current use in melanoma treatment. Expert Rev Clin Immunol 2014; 10:1107-23. [PMID: 24939732 DOI: 10.1586/1744666x.2014.929943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Metastatic malignant melanoma is a frequently fatal cancer. In recent years substantial therapeutic progress has occurred with the development of targeted kinase inhibitors and immunotherapeutics. Targeted therapies often result in rapid clinical benefit however responses are seldom durable. Immune therapies can result in durable disease control but responses may not be immediate. Optimal cancer therapy requires both rapid and durable cancer control and this can likely best be achieved by combining targeted therapies with immunotherapeutics. To achieve this, a detailed understanding of the immune consequences of the various kinase inhibitors, in development, clinical trial and currently used to treat melanoma is required.
Collapse
Affiliation(s)
- Laura J Vella
- Ludwig Institute for Cancer Research, Melbourne-Austin Branch, Cancer Immuno-biology Laboratory, Heidelberg, VIC 3084, Australia
| | | | | | | | | |
Collapse
|
41
|
The evolving art of hematopoietic stem cell transplantation: translational research in post-transplant immune reconstitution and immunosuppression. Immunol Res 2013; 57:140-50. [DOI: 10.1007/s12026-013-8461-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
42
|
Cooper ZA, Frederick DT, Juneja VR, Sullivan RJ, Lawrence DP, Piris A, Sharpe AH, Fisher DE, Flaherty KT, Wargo JA. BRAF inhibition is associated with increased clonality in tumor-infiltrating lymphocytes. Oncoimmunology 2013; 2:e26615. [PMID: 24251082 PMCID: PMC3827093 DOI: 10.4161/onci.26615] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 09/24/2013] [Accepted: 09/26/2013] [Indexed: 11/19/2022] Open
Abstract
There have been significant advances with regard to BRAF-targeted therapies against metastatic melanoma. However, the majority of patients receiving BRAF inhibitors (BRAFi) manifest disease progression within a year. We have recently shown that melanoma patients treated with BRAFi exhibit an increase in melanoma-associated antigens and in CD8+ tumor-infiltrating lymphocytes in response to therapy. To characterize such a T-cell infiltrate, we analyzed the complementarity-determining region 3 (CDR3) of rearranged T-cell receptor (TCR) β chain-coding genes in tumor biopsies obtained before the initiation of BRAFi and 10-14 d later. We observed an increase in the clonality of tumor-infiltrating lymphocytes in 7 of 8 patients receiving BRAFi, with a statistically significant 21% aggregate increase in clonality. Over 80% of individual T-cell clones detected after initiation of BRAFi treatment were new clones. Interestingly, the comparison of tumor infiltrates with clinical responses revealed that patients who had a high proportion of pre-existing dominant clones after the administration of BRAFi responded better to therapy than patients who had a low proportion of such pre-existing dominant clones following BRAFi. These data suggest that although the inhibition of BRAF in melanoma patients results in tumor infiltration by new lymphocytes, the response to treatment appears to be related to the presence of a pre-existing population of tumor-infiltrating T-cell clones.
Collapse
Affiliation(s)
- Zachary A Cooper
- Department of Surgical Oncology; University of Texas MD Anderson Cancer Center; Houston, TX USA ; Department of Genomic Medicine; University of Texas MD Anderson Cancer Center; Houston, TX USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
|