1
|
Ryu S, Kim KA, Kim J, Lee DH, Bae YS, Lee H, Kim BC, Kim HY. The protective roles of integrin α4β7 and Amphiregulin-expressing innate lymphoid cells in lupus nephritis. Cell Mol Immunol 2024; 21:723-737. [PMID: 38806623 PMCID: PMC11214630 DOI: 10.1038/s41423-024-01178-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 04/27/2024] [Indexed: 05/30/2024] Open
Abstract
Type 2 innate lymphoid cells (ILC2s) have emerged as key regulators of the immune response in renal inflammatory diseases such as lupus nephritis. However, the mechanisms underlying ILC2 adhesion and migration in the kidney remain poorly understood. Here, we revealed the critical role of integrin α4β7 in mediating renal ILC2 adhesion and function. We found that integrin α4β7 enables the retention of ILC2s in the kidney by binding to VCAM-1, E-cadherin, or fibronectin on structural cells. Moreover, integrin α4β7 knockdown reduced the production of the reparative cytokine amphiregulin (Areg) by ILC2s. In lupus nephritis, TLR7/9 signaling within the kidney microenvironment downregulates integrin α4β7 expression, leading to decreased Areg production and promoting the egress of ILC2s. Notably, IL-33 treatment upregulated integrin α4β7 and Areg expression in ILC2s, thereby enhancing survival and reducing inflammation in lupus nephritis. Together, these findings highlight the potential of targeting ILC2 adhesion as a therapeutic strategy for autoimmune kidney diseases.
Collapse
Affiliation(s)
- Seungwon Ryu
- Department of Microbiology, Gachon University College of Medicine, Incheon, 21999, South Korea
| | - Kyung Ah Kim
- Department of Nano-Bioengineering, Incheon National University, Incheon, 22012, South Korea
| | - Jinwoo Kim
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Dong Hun Lee
- Department of Dermatology, Seoul National University College of Medicine, Seoul, 03080, South Korea
- Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, South Korea
- Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, 03080, South Korea
| | - Yong-Soo Bae
- Department of Biological Sciences, SRC Center for Immune Research on Non-lymphoid Organs, Sungkyunkwan University, Suwon, 16419, South Korea
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Hajeong Lee
- Division of Nephrology, Department of Internal Medicine, Seoul National University Hospital and Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Byoung Choul Kim
- Department of Nano-Bioengineering, Incheon National University, Incheon, 22012, South Korea
| | - Hye Young Kim
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea.
- Department of Biological Sciences, SRC Center for Immune Research on Non-lymphoid Organs, Sungkyunkwan University, Suwon, 16419, South Korea.
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul National University College of Medicine, Seoul, 03080, South Korea.
| |
Collapse
|
2
|
Liu HY, Giraud A, Seignez C, Ahl D, Guo F, Sedin J, Walden T, Oh JH, van Pijkeren JP, Holm L, Roos S, Bertilsson S, Phillipson M. Distinct B cell subsets in Peyer's patches convey probiotic effects by Limosilactobacillus reuteri. MICROBIOME 2021; 9:198. [PMID: 34602091 PMCID: PMC8487498 DOI: 10.1186/s40168-021-01128-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 07/01/2021] [Indexed: 05/02/2023]
Abstract
BACKGROUND Intestinal Peyer's patches (PPs) form unique niches for bacteria-immune cell interactions that direct host immunity and shape the microbiome. Here we investigate how peroral administration of probiotic bacterium Limosilactobacillus reuteri R2LC affects B lymphocytes and IgA induction in the PPs, as well as the downstream consequences on intestinal microbiota and susceptibility to inflammation. RESULTS The B cells of PPs were separated by size to circumvent activation-dependent cell identification biases due to dynamic expression of markers, which resulted in two phenotypically, transcriptionally, and spatially distinct subsets: small IgD+/GL7-/S1PR1+/Bcl6, CCR6-expressing pre-germinal center (GC)-like B cells with innate-like functions located subepithelially, and large GL7+/S1PR1-/Ki67+/Bcl6, CD69-expressing B cells with strong metabolic activity found in the GC. Peroral L. reuteri administration expanded both B cell subsets and enhanced the innate-like properties of pre-GC-like B cells while retaining them in the sub-epithelial compartment by increased sphingosine-1-phosphate/S1PR1 signaling. Furthermore, L. reuteri promoted GC-like B cell differentiation, which involved expansion of the GC area and autocrine TGFβ-1 activation. Consequently, PD-1-T follicular helper cell-dependent IgA induction and production was increased by L. reuteri, which shifted the intestinal microbiome and protected against dextran-sulfate-sodium induced colitis and dysbiosis. CONCLUSIONS The Peyer's patches sense, enhance and transmit probiotic signals by increasing the numbers and effector functions of distinct B cell subsets, resulting in increased IgA production, altered intestinal microbiota, and protection against inflammation. Video abstract.
Collapse
Affiliation(s)
- Hao-Yu Liu
- Laboratory of Animal Physiology and Molecular Nutrition, College of Animal Science and Technology, Yangzhou University, 225009 Yangzhou, PR China
- Department of Medical Cell Biology, Uppsala University, PO box 571, 75123 Uppsala, Sweden
| | - Antoine Giraud
- Department of Medical Cell Biology, Uppsala University, PO box 571, 75123 Uppsala, Sweden
| | - Cedric Seignez
- Department of Medical Cell Biology, Uppsala University, PO box 571, 75123 Uppsala, Sweden
| | - David Ahl
- Department of Medical Cell Biology, Uppsala University, PO box 571, 75123 Uppsala, Sweden
| | - Feilong Guo
- Department of Medical Cell Biology, Uppsala University, PO box 571, 75123 Uppsala, Sweden
| | - John Sedin
- Department of Medical Cell Biology, Uppsala University, PO box 571, 75123 Uppsala, Sweden
| | - Tomas Walden
- Department of Medical Cell Biology, Uppsala University, PO box 571, 75123 Uppsala, Sweden
| | - Jee-Hwan Oh
- Department of Food Science, University of Wisconsin-Madison, Madison, WI 53706 USA
| | | | - Lena Holm
- Department of Medical Cell Biology, Uppsala University, PO box 571, 75123 Uppsala, Sweden
| | - Stefan Roos
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
| | - Stefan Bertilsson
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, 75651 Uppsala, Sweden
- Science for Life Laboratory, 75237 Uppsala, Sweden
| | - Mia Phillipson
- Department of Medical Cell Biology, Uppsala University, PO box 571, 75123 Uppsala, Sweden
- Science for Life Laboratory, 75237 Uppsala, Sweden
| |
Collapse
|
3
|
Andreev-Andrievskiy AA, Zinovkin RA, Mashkin MA, Frolova OY, Kazaishvili YG, Scherbakova VS, Rudoy BA, Nesterenko VG. Gene Expression Pattern of Peyer's Patch Lymphocytes Exposed to Kagocel Suggests Pattern-Recognition Receptors Mediate Its Action. Front Pharmacol 2021; 12:679511. [PMID: 34413772 PMCID: PMC8369352 DOI: 10.3389/fphar.2021.679511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/16/2021] [Indexed: 12/21/2022] Open
Abstract
Kagocel is a synthetic carboxymethylcellulose derivative copolymerized with gossypol. Clinical data evidence its safety and efficiency for the treatment of flu and other viral infections via enhancement of interferon production. The gut-associated lymphoid tissue seems a likely site of kagocel action. The study was aimed to investigate the molecular mechanisms of its action using murine Peyer’s patches lymphocytes as a test system and the cytokines production and gene expression patterns as the primary outcomes. The Peyer’s patches lymphocytes isolated from BALB/c mice were stimulated with concanavalin A, or, to mimic viral infection, with a combination of concanavalin A and TLR3 ligand poly I:C. After 24 h of stimulation the cells were treated with saline, 30, 100, or 300 μg/ml of kagocel, or, as positive controls, 300 μg/ml oats b-D-glucan or 300 μg/ml lentinan. After 24 and 72 h of incubation with these drugs cytokines production was analyzed with ELISA and gene expression pattern was investigated using nCounter Inflammation panel chips followed by bioinformatics analysis. Expression of genes involved in the inflammatory response, antiviral defense, lymphocytes survival and proliferation (C1qa, C2, C3, Ccl21a, Il11, Il1b, Il23a, Il5, Ltb4r2, Alox15, Pla2g4a, Ptger1, Mapkapk5, Hras, Ifna1, Tlr2, Mrc1, Mx2) was upregulated in kagocel-treated Peyer’s patches lymphocytes. A list of plausible transcription factors (CEBPs, IRF, NFκB, RXR, Stat, Tead4, and ZSCAN) and master-regulators has been identified (cIAP, CIKS, dock9, MEKK1, FXR, IKK, IRAK, TRAF, dsRNA:TLR3:TRIF). The changes in gene expression pattern and the outcomes of bioinformatics analysis suggest that pattern recognition receptors, TLRs and dectin-1, are the key mediators of kagocel immunomodulatory action, with the possible involvement of interferon autocrine loop. The genes upregulated with kagocel include diverse components of the innate immune defense system.
Collapse
Affiliation(s)
- Alexander A Andreev-Andrievskiy
- Biology Faculty, M.V. Lomonosov Moscow State University, Moscow, Russia.,MSU Institute for Mitoengineering, Moscow, Russia.,Institute of Biomedical Problems RAS, Moscow, Russia
| | - Roman A Zinovkin
- MSU Institute for Mitoengineering, Moscow, Russia.,A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Mikhail A Mashkin
- MSU Institute for Mitoengineering, Moscow, Russia.,Institute of Biomedical Problems RAS, Moscow, Russia
| | | | - Yuriy G Kazaishvili
- N.F. Gamaleya Federal Research Centre of Epidemiology and Microbiology, Moscow, Russia
| | | | - Boris A Rudoy
- N.F. Gamaleya Federal Research Centre of Epidemiology and Microbiology, Moscow, Russia
| | - Vladimir G Nesterenko
- N.F. Gamaleya Federal Research Centre of Epidemiology and Microbiology, Moscow, Russia
| |
Collapse
|
4
|
Singh A, Dhume K, Tejero JD, Strutt TM, McKinstry KK. CD122-targetted IL-2 signals cause acute and selective apoptosis of B cells in Peyer's Patches. Sci Rep 2020; 10:12668. [PMID: 32728053 PMCID: PMC7391758 DOI: 10.1038/s41598-020-69632-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023] Open
Abstract
Interleukin-2 (IL-2) has both pro- and anti-inflammatory properties that have been harnessed clinically and that are used experimentally to modulate leukocyte subsets in vivo. In mice, the bioavailability and half-life of IL-2 in vivo can be increased by complexing recombinant IL-2 with different clones of anti-IL-2 monoclonal antibodies that differentially target the cytokine to cells expressing different kinds of IL-2 receptors. While the impacts of systemic IL-2: anti-IL-2 antibody complex (IL-2C) administration are well-defined in the spleen and peripheral lymph nodes, how immune cells in the gut and gut-associated lymphoid tissues respond to IL-2C is not well characterized. Here, we analyze how major leukocyte populations in these tissues respond to IL-2C. We find that IL-2C targeting cells expressing IL-2 receptor beta cause an acute decrease in cellularity of Peyer's Patches while cell numbers in the lamina propria and intraepithelial lymphocytes are unaffected. Cell contraction in Peyer's Patches is associated with the apoptosis of multiple B cell subsets. Our results are important to consider for understanding off-target impacts of IL-2C regimes in experimental models and for considering how IL-2 may contribute to the etiology or severity of gut-associated conditions such as Crohn's Disease.
Collapse
Affiliation(s)
- Ayushi Singh
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | - Kunal Dhume
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | - Joanne D Tejero
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | - Tara M Strutt
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA.,NanoScience Technology Center, University of Central Florida, Orlando, USA
| | - K Kai McKinstry
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA. .,NanoScience Technology Center, University of Central Florida, Orlando, USA.
| |
Collapse
|
5
|
Firinci B, Caglar O, Karadeniz E, Ahiskalioglu A, Demirci T, Aydin MD. Mysterious effects of olfactory pathway lesions on intestinal immunodeficiency targeting Peyer's patches: The first experimental study. Med Hypotheses 2019; 125:31-36. [PMID: 30902148 DOI: 10.1016/j.mehy.2019.02.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/05/2019] [Accepted: 02/09/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Although olfaction has been considered as important neuroimmunomodulatory foundation, there is no satisfying analytical information between neurohistomorphological features olfactory networks and intestinal immune system hardwares. We studied if the olfactory bulb lesions (OBL) may rely on histopathological features of intestinal lymphatic Peyer's patches in an animal model. METHODS Thirty-two rats were grouped as control (Group I, n = 8), SHAM (Group II, n = 7) and OBL (Group III, n = 17) respectively; and followed eight weeks and animals were decapitated. The olfactory bulbs and intestines were extracted. Specimens stained with hematoxylin/eosin and GFAP methods and analyzed Stereologically to evaluate volume loss of olfactory bulbs and Peyer's patches volumes (PV) of intestines per cubic millimeter and compared with each other's statistically. RESULTS The mean olfactory bulbs volumes were estimated as 3.65 ± 0.32/mm3 in group I, 3.12 ± 0.20/mm3 in group II and 2.21 ± 0.15/mm3 in group III (p < 0.0005 Group III vs. I and II). The mean of PV were estimated as; (9 ± 2) × 106 µm3/cm3 in Group-I, (12 ± 3) × 106 µm3/cm3 in Group-II; and (23 ± 4) × 106 µm3/cm3 in group-III (p < 0.005 Group II vs. I, p < 0.0005 Group III vs. I-II). CONCLUSIONS OBL could rely on intestinal immunodeficiency causing by olfaction loss induced denervation injury of Peyer's patches.
Collapse
Affiliation(s)
- Binali Firinci
- Ataturk University, Medical Faculty, Department of Pediatric Surgery, Erzurum, Turkey
| | - Ozgur Caglar
- Ataturk University, Medical Faculty, Department of Pediatric Surgery, Erzurum, Turkey
| | - Erdem Karadeniz
- Ataturk University, Medical Faculty, Department of General Surgery, Erzurum, Turkey
| | - Ali Ahiskalioglu
- Ataturk University, Medical Faculty, Department of Anesthesiology and Reanimation, Erzurum, Turkey
| | - Tuba Demirci
- Ataturk University, Medical Faculty, Department of Histology, Erzurum, Turkey
| | - Mehmet Dumlu Aydin
- Ataturk University, Medical Faculty, Department of Neurosurgery, Erzurum, Turkey.
| |
Collapse
|
6
|
Hua X, Vijay R, Channappanavar R, Athmer J, Meyerholz DK, Pagedar N, Tilley S, Perlman S. Nasal priming by a murine coronavirus provides protective immunity against lethal heterologous virus pneumonia. JCI Insight 2018; 3:99025. [PMID: 29875310 DOI: 10.1172/jci.insight.99025] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 04/19/2018] [Indexed: 12/28/2022] Open
Abstract
The nasal mucosa is an important component of mucosal immunity. Immunogenic particles in inspired air are known to activate the local nasal mucosal immune system and can lead to sinonasal inflammation; however, little is known about the effect of this activation on the lung immune environment. Here, we showed that nasal inoculation of murine coronavirus (CoV) in the absence of direct lung infection primes the lung immune environment by recruiting activated monocytes (Ly6C+ inflammatory monocytes) and NK cells into the lungs. Unlike infiltration of these cells into directly infected lungs, a process that requires type I IFN signaling, nasally induced infiltration of Ly6C+ inflammatory monocytes into the lungs is IFN-I independent. These activated macrophages ingested antigen and migrated to pulmonary lymph nodes, and enhanced both innate and adaptive immunity after heterologous virus infection. Clinically, such nasal-only inoculation of MHV-1 failed to cause pneumonia but significantly reduced mortality and morbidity of lethal pneumonia caused by severe acute respiratory syndrome CoV (SARS-CoV) or influenza A virus. Together, the data indicate that the nose and upper airway remotely prime the lung immunity to protect the lungs from direct viral infections.
Collapse
Affiliation(s)
- Xiaoyang Hua
- Department of Otolaryngology-Head and Neck Surgery
| | - Rahul Vijay
- Interdisciplinary Program in Immunology.,Department of Microbiology and Immunology, and
| | | | | | | | | | - Stephen Tilley
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Stanley Perlman
- Interdisciplinary Program in Immunology.,Department of Microbiology and Immunology, and
| |
Collapse
|