1
|
Weijler AM, Wekerle T. Combining Treg Therapy With Donor Bone Marrow Transplantation: Experimental Progress and Clinical Perspective. Transplantation 2024; 108:1100-1108. [PMID: 37789519 DOI: 10.1097/tp.0000000000004814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Donor-specific tolerance remains a goal in transplantation because it could improve graft survival and reduce morbidity. Cotransplantation of donor hematopoietic cells to achieve chimerism is a promising approach for tolerance induction, which was successfully tested in clinical trials. However, current protocols are associated with side effects related to the myelosuppressive recipient conditioning, which makes it difficult to introduce them as standard therapy. More recently, adoptive cell therapy with polyclonal or donor-specific regulatory T cells (Treg) proved safe and feasible in several transplant trials, but it is unclear whether it can induce tolerance on its own. The combination of both approaches-Treg therapy and hematopoietic cell transplantation-leads to chimerism and tolerance without myelosuppressive treatment in murine models. Treg therapy promotes engraftment of allogeneic hematopoietic cells, reducing conditioning requirements and enhancing regulatory mechanisms maintaining tolerance. This review discusses possible modes of action of transferred Treg in experimental chimerism models and describes translational efforts investigating the potent synergy of Treg and chimerism.
Collapse
Affiliation(s)
- Anna Marianne Weijler
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
2
|
Rostami T, Rostami MR, Mirhosseini AH, Mohammadi S, Nikbakht M, Alemi H, Khavandgar N, Rad S, Janbabai G, Mousavi SA, Kiumarsi A, Kasaeian A. Graft failure after allogeneic hematopoietic stem cell transplantation in pediatric patients with acute leukemia: autologous reconstitution or second transplant? Stem Cell Res Ther 2024; 15:111. [PMID: 38644499 PMCID: PMC11034046 DOI: 10.1186/s13287-024-03726-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 04/10/2024] [Indexed: 04/23/2024] Open
Abstract
BACKGROUND Graft failure (GF) is a rare but serious complication after allogeneic hematopoietic stem cell transplantation (HSCT). Prevention of graft failure remains the most advisable approach as there is no clear recommendation for the best strategies for reversing this complication. Administration of growth factor, additional hematopoietic progenitor boost, or a salvage HSCT are current modalities recommended for the treatment of GF. Autologous recovery without evidence of disease relapse occurs rarely in patients with GF, and in the absence of autologous recovery, further salvage transplantation following a second conditioning regimen is a potential treatment option that offers the best chances of long-term disease-free survival. The preconditioning regimens of second HSCT have a significant impact on engraftment and outcome, however, currently there is no consensus on optimal conditioning regimen for second HSCT in patients who have developed GF. Furthermore, a second transplant from a different donor or the same donor is still a matter of debate. OBSERVATIONS We present our experience in managing pediatric patients with acute leukemia who encountered graft failure following stem cell transplantation. CONCLUSIONS AND RELEVANCE Although a second transplantation is almost the only salvage method, we illustrate that some pediatric patients with acute leukemia who experience graft failure after an allogeneic stem cell transplant using Myeloablative conditioning (MAC) regimen may achieve long-term disease-free survival through autologous hematopoiesis recovery.
Collapse
Affiliation(s)
- Tahereh Rostami
- Hematologic Malignancies Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Rostami
- Hematologic Malignancies Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Mirhosseini
- Department of Internal Medicine, School of Medicine, Imam Ali Hospital, Alborz University of Medical Sciences, Alborz, Iran
| | - Saeed Mohammadi
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Nikbakht
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Hematology, Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Hediyeh Alemi
- Hematology, Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Naghmeh Khavandgar
- Hematology, Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Soroush Rad
- Hematology, Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghasem Janbabai
- Hematologic Malignancies Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Seied Asadollah Mousavi
- Hematology, Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Azadeh Kiumarsi
- Hematologic Malignancies Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Pediatrics, School of Medicine, Childrens Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Amir Kasaeian
- Hematology, Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
- Clinical Research Development Unit, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Mengrelis K, Muckenhuber M, Wekerle T. Chimerism-based Tolerance Induction in Clinical Transplantation: Its Foundations and Mechanisms. Transplantation 2023; 107:2473-2485. [PMID: 37046378 DOI: 10.1097/tp.0000000000004589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Hematopoietic chimerism remains the most promising strategy to bring transplantation tolerance into clinical routine. The concept of chimerism-based tolerance aims to extend the recipient's mechanisms of self-tolerance (ie, clonal deletion, anergy, and regulation) to include the tolerization of donor antigens that are introduced through the cotransplantation of donor hematopoietic cells. For this to be successful, donor hematopoietic cells need to engraft in the recipient at least temporarily. Three pioneering clinical trials inducing chimerism-based tolerance in kidney transplantation have been published to date. Within this review, we discuss the mechanisms of tolerance that are associated with the specific therapeutic protocols of each trial. Recent data highlight the importance of regulation as a mechanism that maintains tolerance. Insufficient regulatory mechanisms are also a likely explanation for situations of tolerance failure despite persisting donor chimerism. After decades of preclinical development of chimerism protocols, mechanistic data from clinical trials have recently become increasingly important. Better understanding of the required mechanisms for tolerance to be induced in humans will be a key to design more reliable and less invasive chimerism protocols in the future.
Collapse
Affiliation(s)
- Konstantinos Mengrelis
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | | | | |
Collapse
|
4
|
Truscott J, Guan X, Fury H, Atagozli T, Metwali A, Liu W, Li Y, Li RW, Elliott DE, Blazar BR, Ince MN. After Bone Marrow Transplantation, the Cell-Intrinsic Th2 Pathway Promotes Recipient T Lymphocyte Survival and Regulates Graft-versus-Host Disease. Immunohorizons 2023; 7:442-455. [PMID: 37294277 PMCID: PMC10580113 DOI: 10.4049/immunohorizons.2300021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 06/10/2023] Open
Abstract
Recipient T cells can aggravate or regulate lethal and devastating graft-versus-host disease (GVHD) after bone marrow transplantation (BMT). In this context, we have shown before that intestinal immune conditioning with helminths is associated with survival of recipient T cells and Th2 pathway-dependent regulation of GVHD. We investigated the mechanism of survival of recipient T cells and their contribution to GVHD pathogenesis in this helminth infection and BMT model after myeloablative preparation with total body irradiation in mice. Our results indicate that the helminth-induced Th2 pathway directly promotes the survival of recipient T cells after total body irradiation. Th2 cells also directly stimulate recipient T cells to produce TGF-β, which is required to regulate donor T cell-mediated immune attack of GVHD and can thereby contribute to recipient T cell survival after BMT. Moreover, we show that recipient T cells, conditioned to produce Th2 cytokines and TGF-β after helminth infection, are fundamentally necessary for GVHD regulation. Taken together, reprogrammed or immune-conditioned recipient T cells after helminth infection are crucial elements of Th2- and TGF-β-dependent regulation of GVHD after BMT, and their survival is dependent on cell-intrinsic Th2 signaling.
Collapse
Affiliation(s)
- Jamie Truscott
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Xiaoqun Guan
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA
- Veterans Administration Medical Center, Iowa City, IA
| | - Hope Fury
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA
- Veterans Administration Medical Center, Iowa City, IA
| | - Tyler Atagozli
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA
- Veterans Administration Medical Center, Iowa City, IA
| | - Ahmed Metwali
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA
- Veterans Administration Medical Center, Iowa City, IA
| | - Weiren Liu
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA
- Veterans Administration Medical Center, Iowa City, IA
| | - Yue Li
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA
- Veterans Administration Medical Center, Iowa City, IA
| | - Robert W. Li
- Animal Parasitic Diseases Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD
| | - David E. Elliott
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA
- Veterans Administration Medical Center, Iowa City, IA
- Holden Comprehensive Cancer Center, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Bruce R. Blazar
- Division of Blood and Marrow Transplantation & Cellular Therapy, Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | - M. Nedim Ince
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA
- Veterans Administration Medical Center, Iowa City, IA
- Holden Comprehensive Cancer Center, Carver College of Medicine, University of Iowa, Iowa City, IA
| |
Collapse
|
5
|
Chen J, Liu J, Huang H. Lkb1 loss in regulatory T cells leads to dysregulation of hematopoietic stem cell expansion and differentiation in bone marrow. FEBS Open Bio 2023; 13:270-278. [PMID: 36515008 PMCID: PMC9900093 DOI: 10.1002/2211-5463.13536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/07/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
The tumor suppressor Lkb1 is known to regulate the expression of forkhead box P3 (Foxp3), thereby maintaining the levels of Foxp3+ regulatory T cells (Treg) that play a crucial role in self-tolerance. However, the effect of Lkb1 in Treg on hematopoietic stem cells (HSCs) in the bone marrow (BM) remains obscure. Here, we demonstrated that conditional deletion of Lkb1 in Treg causes loss of Treg in the BM, which leads to failure of HSC homeostasis and the abnormal expansion. Moreover, the loss of BM Treg results in dysregulation of other developing progenitors/stem cell populations, leading to the defective differentiation of T cells and B cells. In addition, HSC from the BM with Treg loss exhibited poor engraftment efficiency, indicating that loss of Treg leads to irreversible impairment of HSC. Collectively, these results demonstrated the essential role of Lkb1 in Treg for maintaining HSC homeostasis and differentiation in mice. These findings provide insight into the mechanisms of HSC regulation and guidance for a strategy to improve the outcomes and reduce complications of HSC transplantation.
Collapse
Affiliation(s)
- Jiadi Chen
- Clinical LaboratoryFujian Medical University Union HospitalFuzhouChina
| | - Jingru Liu
- Central LaboratoryFujian Medical University Union HospitalFuzhouChina
| | - Huifang Huang
- Central LaboratoryFujian Medical University Union HospitalFuzhouChina
| |
Collapse
|
6
|
Xie YX, Ma LM, Ren RR, Tian WW, Wang T. RETRACTED: The impact of second-donor lymphocyte infusion on secondary graft failure after allogeneic hematopoietic stem cell transplantation through activation of Foxp3 and regulatory T cells. Cytotherapy 2022; 24:923-930. [PMID: 35365413 DOI: 10.1016/j.jcyt.2022.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/06/2022] [Accepted: 02/13/2022] [Indexed: 11/18/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). The Editor of Cytotherapy has retracted this article. The article duplicates significant parts of a paper that had already appeared in Transplantation and Cellular Therapy, Volume 28, Issue 3, 2022, Pages 152.e1-152.e7, https://doi.org/10.1016/j.jtct.2021.12.017 In accordance with Committee on Publication Ethics (COPE) and Elsevier's policies, the authors have been contacted. After considering the author's response, the decision has been made to retract the paper. Redundant publications overweigh the relative importance of published findings and distort the academic record of the authors. One of the conditions of submission of a paper for publication is therefore that authors declare explicitly that the paper has not been previously published and is not under consideration for publication elsewhere. As such this article represents a misuse of the scientific publishing system. The scientific community takes a very strong view on this matter and apologies are offered to readers of the journal that this was not detected during the submission process.
Collapse
Affiliation(s)
- Yun-Xia Xie
- Department of Hematology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Liang-Ming Ma
- Department of Hematology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Rui-Rui Ren
- Department of Hematology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Wei-Wei Tian
- Department of Hematology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Tao Wang
- Department of Hematology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
7
|
Ren RR, Ma LM, Xie YX, Tian WW, Wang T. Effect of donor lymphocyte infusion from two types of donors on Mixed Chimerism with Secondary Graft Failure after allogeneic haematopoietic stem cell transplantation. Transplant Cell Ther 2021; 28:152.e1-152.e7. [PMID: 34973501 DOI: 10.1016/j.jtct.2021.12.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/21/2021] [Accepted: 12/23/2021] [Indexed: 02/03/2023]
Abstract
Mixed chimerism (MC) and secondary graft failure (SGF) with recipient-or donor-type chimerism is a major obstacle in allogeneic hematopoietic stem cell transpl- antation (HSCT). Donor lymphocyte infusion(DLI) can eradicate minimal residual disease or be used to rescue a hematologic relapse, being able to induce durable remissions after HSCT.This study aimed to analyse the efficacy and immune mecha- nism of DLI from the original and alternative donor for patients of mixed donor chimerism with SGF . The alternative donor refers to the candidate relative donor who did not initially provide stem cells include HLA-matched sibling donor(MSD) or HLA- haploidentical donor (HID). We conducted a retrospective study of 246 patients with a median age of 37 (9-58) years who were regularly detected MC, complete donor chimera (CC) and regulatory T cells (Treg). The median diagnosis time of SGF was 69 (39-141) days after transplantation . Sixteen patients of SGF received DLI from the alternative donor, including 3 patients who chose DLI from the original donor with no initial response and 13 patients who directly chose DLI from the alternative donor. Sixteen patients with SGF exsisted mixed chimerism synchronously and the rate calculated overall chimerism of MC was 63% (range, 42%-85%) after transplantation. The proportion of Treg decreased significantly in SGF patients from a median of (2.66% ±0.80%) to (0.93%±0.57%) at a time point after transplantation (p=0.02).The DLI of the alternative donor in 14 patients achieved complete response and MC gradually convert to CC state, simultaneously there was significant increase in the Treg fraction [SGF vs CR: (0.93% ± 0.57%) vs (3.61%±0.82%), p=0.01)].For the clinical nonres- ponders from two types of donor there was no significant change in MC and Treg cells. The OS and DFS at 2 years after DLI were 69.7%±3.19 % and 61.3%±4.80%, respectively. DLI from the alternative donor may be an effective treatment for MC with SGF and the mechanism is closely related to the activation of Treg cells level.
Collapse
Affiliation(s)
- Rui-Rui Ren
- Department of Hematology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Liang-Ming Ma
- Department of Hematology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Yun-Xia Xie
- Department of Hematology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Wei-Wei Tian
- Department of Hematology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Tao Wang
- Department of Hematology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
8
|
Hirai T, Ramos TL, Lin PY, Simonetta F, Su LL, Picton LK, Baker J, Lin JX, Li P, Seo K, Lohmeyer JK, Bolivar-Wagers S, Mavers M, Leonard WJ, Blazar BR, Garcia KC, Negrin RS. Selective expansion of regulatory T cells using an orthogonal IL-2/IL-2 receptor system facilitates transplantation tolerance. J Clin Invest 2021; 131:139991. [PMID: 33855972 DOI: 10.1172/jci139991] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 02/23/2021] [Indexed: 12/14/2022] Open
Abstract
Adoptive transfer of Tregs has been shown to improve alloengraftment in animal models. However, it is technically challenging to expand Tregs ex vivo for the purpose of infusing large numbers of cells in the clinic. We demonstrate an innovative approach to engineering an orthogonal IL-2/IL-2 receptor (IL-2R) pair, the parts of which selectively interact with each other, transmitting native IL-2 signals, but do not interact with the natural IL-2 or IL-2R counterparts, thereby enabling selective stimulation of target cells in vivo. Here, we introduced this orthogonal IL-2R into Tregs. Upon adoptive transfer in a murine mixed hematopoietic chimerism model, orthogonal IL-2 injection significantly promoted orthogonal IL-2R+Foxp3GFP+CD4+ cell proliferation without increasing other T cell subsets and facilitated donor hematopoietic cell engraftment followed by acceptance of heart allografts. Our data indicate that selective target cell stimulation enabled by the engineered orthogonal cytokine receptor improves Treg potential for the induction of organ transplantation tolerance.
Collapse
Affiliation(s)
- Toshihito Hirai
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University, Stanford, California, USA.,Department of Urology, Tokyo Women's Medical University, Tokyo, Japan
| | - Teresa L Ramos
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University, Stanford, California, USA
| | - Po-Yu Lin
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University, Stanford, California, USA
| | - Federico Simonetta
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University, Stanford, California, USA
| | - Leon L Su
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Lora K Picton
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Jeanette Baker
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University, Stanford, California, USA
| | - Jian-Xin Lin
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Peng Li
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Kinya Seo
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| | - Juliane K Lohmeyer
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University, Stanford, California, USA
| | - Sara Bolivar-Wagers
- Division of Blood and Marrow Transplantation, Department of Pediatrics and the Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Melissa Mavers
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University, Stanford, California, USA.,Division of Pediatric Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Lucile Packard Children's Hospital, Stanford University, Stanford, California, USA
| | - Warren J Leonard
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Bruce R Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics and the Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - K Christopher Garcia
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Robert S Negrin
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University, Stanford, California, USA
| |
Collapse
|
9
|
Imamura M. Impaired Hematopoiesis after Allogeneic Hematopoietic Stem Cell Transplantation: Its Pathogenesis and Potential Treatments. HEMATO 2021. [DOI: 10.3390/hemato2010002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
Impaired hematopoiesis is a serious complication after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Bone marrow aplasia and peripheral cytopenias arise from primary and secondary graft failure or primary and secondary poor graft function. Chimerism analysis is useful to discriminate these conditions. By determining the pathogenesis of impaired hematopoiesis, a timely and appropriate treatment can be performed. Hematopoietic system principally consists of hematopoietic stem cells and bone marrow microenvironment termed niches. Abnormality in hematopoietic stem and progenitor cells and/or abnormality in the relevant niches give rise to hematological diseases. Allo-HSCT is intended to cure each hematological disease, replacing abnormal hematopoietic stem cells and bone marrow niches with hematopoietic stem cells and bone marrow niches derived from normal donors. Therefore, treatment for graft failure and poor graft function after allo-HSCT is required to proceed based on determining the pathogenesis of impaired hematopoiesis. Recent progress in this area suggests promising treatment manipulations for graft failure and poor graft function.
Collapse
|
10
|
Mancusi A, Piccinelli S, Velardi A, Pierini A. CD4 +FOXP3 + Regulatory T Cell Therapies in HLA Haploidentical Hematopoietic Transplantation. Front Immunol 2019; 10:2901. [PMID: 31921162 PMCID: PMC6927932 DOI: 10.3389/fimmu.2019.02901] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/26/2019] [Indexed: 12/11/2022] Open
Abstract
Since their discovery CD4+FOXP3+ regulatory T cells (Tregs) represented a promising tool to induce tolerance in allogeneic hematopoietic cell transplantation. Preclinical models proved that adoptive transfer of Tregs or the use of compounds that can favor their function in vivo are effective for prevention and treatment of graft-vs.-host disease (GvHD). Following these findings, Treg-based therapies have been employed in clinical trials. Adoptive immunotherapy with Tregs effectively prevents GvHD induced by alloreactive T cells in the setting of one HLA haplotype mismatched hematopoietic transplantation. The absence of post transplant pharmacologic immunosuppression unleashes T-cell mediated graft-vs.-tumor (GvT) effect, which results in an unprecedented, almost complete control of leukemia relapse in this setting. In the present review, we will report preclinical studies and clinical trials that demonstrate Treg ability to promote donor engraftment, protect from GvHD and improve GvT effect. We will also discuss new strategies to further enhance in vivo efficacy of Treg-based therapies.
Collapse
Affiliation(s)
- Antonella Mancusi
- Hematology and Clinical Immunology and Bone Marrow Transplant Program, Department of Medicine, University of Perugia, Perugia, Italy
| | - Sara Piccinelli
- Hematology and Clinical Immunology and Bone Marrow Transplant Program, Department of Medicine, University of Perugia, Perugia, Italy
| | - Andrea Velardi
- Hematology and Clinical Immunology and Bone Marrow Transplant Program, Department of Medicine, University of Perugia, Perugia, Italy
| | - Antonio Pierini
- Hematology and Clinical Immunology and Bone Marrow Transplant Program, Department of Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
11
|
Alvarez M, Simonetta F, Baker J, Pierini A, Wenokur AS, Morrison AR, Murphy WJ, Negrin RS. Regulation of murine NK cell exhaustion through the activation of the DNA damage repair pathway. JCI Insight 2019; 5:127729. [PMID: 31211693 DOI: 10.1172/jci.insight.127729] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
NK cell exhaustion (NCE) due to sustained proliferation results in impaired NK cell function with loss of cytokine production and lytic activity. Using murine models of chronic NK cell stimulation, we have identified a phenotypic signature of NCE characterized by up-regulation of the terminal differentiation marker KLRG1 and by down-regulation of eomesodermin and the activating receptor NKG2D. Chronic stimulation of mice lacking NKG2D resulted in minimized NCE compared to control mice, thus identifying NKG2D as a crucial mediator of NCE. NKG2D internalization and downregulations on NK cells has been previously observed in the presence of tumor cells with high expression of NKG2D ligands (NKG2DL) due to the activation of the DNA damage repair pathways. Interestingly, our study revealed that during NK cell activation there is an increase of MULT1, and NKG2DL, that correlates with an induction of DNA damage. Treatment with the ATM DNA damage repair pathway inhibitor KU55933 (KU) during activation reduced NCE by improving expression of activation markers and genes involved in cell survival, by sustaining NKG2D expression and by preserving cell functionality. Importantly, NK cells expanded ex vivo in the presence of KU displayed increased anti-tumor efficacy in both NKG2D-dependent and -independent mouse models. Collectively, these data demonstrate that NCE is caused by DNA damage and regulated, at least in part, by NKG2D. Further, the prevention of NCE is a promising strategy to improve NK cell-based immunotherapy.
Collapse
Affiliation(s)
- Maite Alvarez
- Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, California, USA
| | - Federico Simonetta
- Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, California, USA
| | - Jeanette Baker
- Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, California, USA
| | - Antonio Pierini
- Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, California, USA
| | - Arielle S Wenokur
- Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, California, USA
| | - Alyssa R Morrison
- Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, California, USA
| | - William J Murphy
- Department of Dermatology and Internal Medicine, University of California, Davis, Sacramento, California, USA
| | - Robert S Negrin
- Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
12
|
Jin C, Li Y, Xia J, Li Y, Chen M, Hu Z, Mapara MY, Li W, Yang Y. CXCR4 blockade improves leukemia eradication by allogeneic lymphocyte infusion. Am J Hematol 2018; 93:786-793. [PMID: 29603337 DOI: 10.1002/ajh.25099] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 03/26/2018] [Indexed: 12/13/2022]
Abstract
Persistent low levels of disease in bone marrow, an immunoprivileged tissue, are responsible for relapse following allogeneic hematopoietic cell transplantation. Using mouse models carrying primary human acute lymphoblast leukemia derived from MLL-AF9-overexpressing human hematopoietic stem cells, we demonstrate that allogeneic lymphocyte infusion (ALI)-mediated graft-vs.-leukemia effects selectively spare leukemia cells in the bone marrow. The resistance of leukemia cells to ALI within bone marrow is due to the immunosuppressive status of the tissue, as ALI achieved a significantly increased complete remission rate when leukemia cells were dislodged from bone marrow by treatment with a CXCR4 antagonist AMD3100. Adoptive transfer experiments confirmed that the frequency of leukemia-initiating cells in bone marrow was significantly decreased in the recipients treated with ALI plus AMD3100 compared to those receiving ALI only. These findings indicate that the immunoprivileged nature of bone marrow is largely responsible for relapse after immunotherapies, and that treatment with AMD3100 may offer a clinically-practical approach to improving the outcome of adoptive allogeneic cell therapy.
Collapse
Affiliation(s)
- Chun‐Hui Jin
- The First Hospital, Institute of Immunology and International Center of Future Science of Jilin UniversityChangchun China
- Columbia Center for Translational Immunology, Department of MedicineColumbia University College of Physicians and SurgeonsNew York
| | - Yang Li
- The First Hospital, Institute of Immunology and International Center of Future Science of Jilin UniversityChangchun China
- Columbia Center for Translational Immunology, Department of MedicineColumbia University College of Physicians and SurgeonsNew York
| | - Jinxing Xia
- Columbia Center for Translational Immunology, Department of MedicineColumbia University College of Physicians and SurgeonsNew York
| | - Yuying Li
- The First Hospital, Institute of Immunology and International Center of Future Science of Jilin UniversityChangchun China
- Columbia Center for Translational Immunology, Department of MedicineColumbia University College of Physicians and SurgeonsNew York
| | - Mo Chen
- The First Hospital, Institute of Immunology and International Center of Future Science of Jilin UniversityChangchun China
- Columbia Center for Translational Immunology, Department of MedicineColumbia University College of Physicians and SurgeonsNew York
| | - Zheng Hu
- The First Hospital, Institute of Immunology and International Center of Future Science of Jilin UniversityChangchun China
| | - Markus Y. Mapara
- Columbia Center for Translational Immunology, Department of MedicineColumbia University College of Physicians and SurgeonsNew York
| | - Wei Li
- The First Hospital, Institute of Immunology and International Center of Future Science of Jilin UniversityChangchun China
| | - Yong‐Guang Yang
- The First Hospital, Institute of Immunology and International Center of Future Science of Jilin UniversityChangchun China
- Columbia Center for Translational Immunology, Department of MedicineColumbia University College of Physicians and SurgeonsNew York
| |
Collapse
|
13
|
Successful outcomes of second hematopoietic stem cell transplantation with total nodal irradiation and ATG conditioning for graft failure in adult patients with severe aplastic anemia. Bone Marrow Transplant 2018; 53:1270-1277. [PMID: 29563590 DOI: 10.1038/s41409-018-0154-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 02/04/2018] [Accepted: 02/09/2018] [Indexed: 11/08/2022]
Abstract
Data regarding the optimal approach for second allogeneic hematopoietic stem cell transplantation (HSCT) after graft failure (GF) in acquired severe aplastic anemia (SAA) are still limited and heterogeneous. We examined 24 patients who underwent second HLA-matched sibling donor (MSD) peripheral blood HSCT for GF. The reconditioning regimen (TNI-750/ATG) consisted of a single dose of total nodal irradiation (TNI, 750 cGy) and antithymocyte globulin (ATG; Thymoglobulin®, 1.25 mg/kg/day for 3 days). All but one patient achieved successful engraftment of neutrophils (median 12 days, range 5-21) and platelets (median 15 days, range 9-316). Two patients with subsequent secondary GF achieved successful engraftment after a third HSCT from the same MSD. After a median follow-up of 57.4 months (range, 11.2-155.2), the 5-year overall survival and failure-free survival were 95.7% (95% confidence interval [CI] 87.7-100%) and 87.5% (95% CI 75.2-100%), respectively. One patient developed grade II acute graft-versus-host disease (GVHD), and the 2-year cumulative incidence of chronic GVHD was 23.5% (95% CI 8.1-43.5%). This study demonstrated successful outcomes following a second MSD HSCT in SAA after GF, and the results suggest TNI-750/ATG is a feasible reconditioning option. Future studies with larger cohorts will validate our results.
Collapse
|
14
|
Chhabra A, Ring AM, Weiskopf K, Schnorr PJ, Gordon S, Le AC, Kwon HS, Ring NG, Volkmer J, Ho PY, Tseng S, Weissman IL, Shizuru JA. Hematopoietic stem cell transplantation in immunocompetent hosts without radiation or chemotherapy. Sci Transl Med 2017; 8:351ra105. [PMID: 27510901 DOI: 10.1126/scitranslmed.aae0501] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 07/15/2016] [Indexed: 01/22/2023]
Abstract
Hematopoietic stem cell (HSC) transplantation can cure diverse diseases of the blood system, including hematologic malignancies, anemias, and autoimmune disorders. However, patients must undergo toxic conditioning regimens that use chemotherapy and/or radiation to eliminate host HSCs and enable donor HSC engraftment. Previous studies have shown that anti-c-Kit monoclonal antibodies deplete HSCs from bone marrow niches, allowing donor HSC engraftment in immunodeficient mice. We show that host HSC clearance is dependent on Fc-mediated antibody effector functions, and enhancing effector activity through blockade of CD47, a myeloid-specific immune checkpoint, extends anti-c-Kit conditioning to fully immunocompetent mice. The combined treatment leads to elimination of >99% of host HSCs and robust multilineage blood reconstitution after HSC transplantation. This targeted conditioning regimen that uses only biologic agents has the potential to transform the practice of HSC transplantation and enable its use in a wider spectrum of patients.
Collapse
Affiliation(s)
- Akanksha Chhabra
- Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Aaron M Ring
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA. Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA. Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kipp Weiskopf
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA. Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA. Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Peter John Schnorr
- Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sydney Gordon
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA. Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA. Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alan C Le
- Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Hye-Sook Kwon
- Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nan Guo Ring
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA. Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA. Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jens Volkmer
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA. Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA. Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Po Yi Ho
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA. Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA. Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Serena Tseng
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA. Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA. Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Irving L Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA. Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA. Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA. Department of Pathology, Stanford University Medical Center, Stanford, CA 94305, USA
| | - Judith A Shizuru
- Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, CA 94305, USA. Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA. Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
15
|
Positive Cytotoxic Crossmatch Predicts Delayed Neutrophil Engraftment in Allogeneic Hematopoietic Cell Transplantation from HLA-Mismatched Related Donors. Biol Blood Marrow Transplant 2017; 23:1895-1902. [DOI: 10.1016/j.bbmt.2017.06.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 06/28/2017] [Indexed: 02/08/2023]
|
16
|
Masouridi-Levrat S, Simonetta F, Chalandon Y. Immunological Basis of Bone Marrow Failure after Allogeneic Hematopoietic Stem Cell Transplantation. Front Immunol 2016; 7:362. [PMID: 27695456 PMCID: PMC5025429 DOI: 10.3389/fimmu.2016.00362] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/02/2016] [Indexed: 12/12/2022] Open
Abstract
Bone marrow failure (BMF) syndromes are severe complications of allogeneic hematopoietic stem cell transplantation (allo-HSCT). In this paper, we distinguish two different entities, the graft failure (GF) and the poor graft function (PGF), and we review the current understanding of the interactions between the immune and hematopoietic compartments in these conditions. We first discuss how GF occurs as the result of classical alloreactive immune responses mediated by residual host cellular and humoral immunity persisting after conditioning and prevented by host and donor regulatory T cells. We next summarize the current knowledge about the contribution of inflammatory mediators to the development of PGF. In situations of chronic inflammation complicating allo-HSCT, such as graft-versus-host disease or infections, PGF seems to be essentially the result of a sustained impairment of hematopoietic stem cells (HSC) self-renewal and proliferation caused by inflammatory mediators, such as interferon-γ (IFN-γ) and tumor necrosis factor-α, and of induction of apoptosis through the Fas/Fas ligand pathway. Interestingly, the production of inflammatory molecules leads to a non-MHC restricted, bystander inhibition of hematopoiesis, therefore, representing a promising target for immunological interventions. Finally, we discuss immune-mediated impairment of bone marrow microenvironment as a potential mechanism hampering hematopoietic recovery. Better understanding of immunological mechanisms responsible for BMF syndromes after allo-HSCT may lead to the development of more efficient immunotherapeutic interventions.
Collapse
Affiliation(s)
- Stavroula Masouridi-Levrat
- Division of Hematology, Department of Medical Specialties, Faculty of Medicine, Geneva University Hospitals, University of Geneva , Geneva , Switzerland
| | - Federico Simonetta
- Division of Hematology, Department of Medical Specialties, Faculty of Medicine, Geneva University Hospitals, University of Geneva , Geneva , Switzerland
| | - Yves Chalandon
- Division of Hematology, Department of Medical Specialties, Faculty of Medicine, Geneva University Hospitals, University of Geneva , Geneva , Switzerland
| |
Collapse
|
17
|
Skuljec J, Cabanski M, Surdziel E, Lachmann N, Brennig S, Pul R, Jirmo AC, Habener A, Visic J, Dalüge K, Hennig C, Moritz T, Happle C, Hansen G. Monocyte/macrophage lineage commitment and distribution are affected by the lack of regulatory T cells in scurfy mice. Eur J Immunol 2016; 46:1656-68. [DOI: 10.1002/eji.201546200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 03/07/2016] [Accepted: 04/26/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Jelena Skuljec
- Department of Pediatric Pneumology, Allergology and Neonatology; Hannover Medical School; Hannover Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH); Member of the German Center for Lung Research (DZL); Hannover Germany
| | - Maciej Cabanski
- Department of Pediatric Pneumology, Allergology and Neonatology; Hannover Medical School; Hannover Germany
| | - Ewa Surdziel
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation; Hannover Medical School; Hannover Germany
| | - Nico Lachmann
- Reprogramming and Gene Therapy Group, REBIRTH Cluster of Excellence; Hannover Medical School; Hannover Germany
- Institute of Experimental Hematology, Hannover Medical School; Hannover Germany
| | - Sebastian Brennig
- Reprogramming and Gene Therapy Group, REBIRTH Cluster of Excellence; Hannover Medical School; Hannover Germany
- Institute of Experimental Hematology, Hannover Medical School; Hannover Germany
| | - Refik Pul
- Department of Neurology; Hannover Medical School; Hannover Germany
| | - Adan C. Jirmo
- Department of Pediatric Pneumology, Allergology and Neonatology; Hannover Medical School; Hannover Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH); Member of the German Center for Lung Research (DZL); Hannover Germany
| | - Anika Habener
- Department of Pediatric Pneumology, Allergology and Neonatology; Hannover Medical School; Hannover Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH); Member of the German Center for Lung Research (DZL); Hannover Germany
| | - Julia Visic
- Department of Pediatric Pneumology, Allergology and Neonatology; Hannover Medical School; Hannover Germany
| | - Kathleen Dalüge
- Department of Pediatric Pneumology, Allergology and Neonatology; Hannover Medical School; Hannover Germany
| | - Christian Hennig
- Department of Pediatric Pneumology, Allergology and Neonatology; Hannover Medical School; Hannover Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH); Member of the German Center for Lung Research (DZL); Hannover Germany
| | - Thomas Moritz
- Reprogramming and Gene Therapy Group, REBIRTH Cluster of Excellence; Hannover Medical School; Hannover Germany
- Institute of Experimental Hematology, Hannover Medical School; Hannover Germany
| | - Christine Happle
- Department of Pediatric Pneumology, Allergology and Neonatology; Hannover Medical School; Hannover Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH); Member of the German Center for Lung Research (DZL); Hannover Germany
| | - Gesine Hansen
- Department of Pediatric Pneumology, Allergology and Neonatology; Hannover Medical School; Hannover Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH); Member of the German Center for Lung Research (DZL); Hannover Germany
| |
Collapse
|
18
|
Pedroza-Pacheco I, Shah D, Domogala A, Luevano M, Blundell M, Jackson N, Thrasher A, Madrigal A, Saudemont A. Regulatory T cells inhibit CD34+ cell differentiation into NK cells by blocking their proliferation. Sci Rep 2016; 6:22097. [PMID: 26915707 PMCID: PMC4768165 DOI: 10.1038/srep22097] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 02/08/2016] [Indexed: 02/05/2023] Open
Abstract
Graft versus Host Disease (GvHD) remains one of the main complications after hematopoietic stem cell transplantation (HSCT). Due to their ability to suppress effector cells, regulatory T cells (Tregs) have been proposed as a cellular therapy to prevent GvHD, however they also inhibit the functions of natural killer (NK) cells, key effectors of the Graft versus Leukemia effect. In this study, we have explored whether a Tregs therapy will also impact on NK cell differentiation. Using an in vitro model of hematopoietic stem cell (HSC) differentiation into NK cells, we found that activated Tregs led to a 90% reduction in NK cell numbers when added at the time of commitment to the NK cell lineage. This effect was contact dependent and was reversible upon Tregs depletion. The few NK cells that developed in these cultures were mature and exhibited normal functions. Furthermore, adoptive transfer of activated Tregs in rag(-/-) γc(-/-) mice abrogated HSC differentiation into NK cells thus confirming our in vitro findings. Collectively, these results demonstrate for the first time that activated Tregs can inhibit NK cell differentiation from HSC under specific conditions.
Collapse
Affiliation(s)
- Isabela Pedroza-Pacheco
- Anthony Nolan Research Institute and University College London, Royal Free Campus, Pond Street, London NW3 2QG, UK
| | - Divya Shah
- Anthony Nolan Research Institute and University College London, Royal Free Campus, Pond Street, London NW3 2QG, UK
| | - Anna Domogala
- Anthony Nolan Research Institute and University College London, Royal Free Campus, Pond Street, London NW3 2QG, UK
| | - Martha Luevano
- Anthony Nolan Research Institute and University College London, Royal Free Campus, Pond Street, London NW3 2QG, UK
| | - Michael Blundell
- Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Nicola Jackson
- Anthony Nolan Research Institute and University College London, Royal Free Campus, Pond Street, London NW3 2QG, UK
| | - Adrian Thrasher
- Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Alejandro Madrigal
- Anthony Nolan Research Institute and University College London, Royal Free Campus, Pond Street, London NW3 2QG, UK
| | - Aurore Saudemont
- Anthony Nolan Research Institute and University College London, Royal Free Campus, Pond Street, London NW3 2QG, UK
| |
Collapse
|
19
|
Di Rosa F, Gebhardt T. Bone Marrow T Cells and the Integrated Functions of Recirculating and Tissue-Resident Memory T Cells. Front Immunol 2016; 7:51. [PMID: 26909081 PMCID: PMC4754413 DOI: 10.3389/fimmu.2016.00051] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/01/2016] [Indexed: 12/15/2022] Open
Abstract
Changes in T cell trafficking accompany the naive to memory T cell antigen-driven differentiation, which remains an incompletely defined developmental step. Upon priming, each naive T cell encounters essential signals – i.e., antigen, co-stimuli and cytokines – in a secondary lymphoid organ; nevertheless, its daughter effector and memory T cells recirculate and receive further signals during their migration through various lymphoid and non-lymphoid organs. These additional signals from tissue microenvironments have an impact on immune response features, including T cell effector function, expansion and contraction, memory differentiation, long-term maintenance, and recruitment upon antigenic rechallenge into local and/or systemic responses. The critical role of T cell trafficking in providing efficient T cell memory has long been a focus of interest. It is now well recognized that naive and memory T cells have different migratory pathways, and that memory T cells are heterogeneous with respect to their trafficking. We and others have observed that, long time after priming, memory T cells are preferentially found in certain niches such as the bone marrow (BM) or at the skin/mucosal site of pathogen entry, even in the absence of residual antigen. The different underlying mechanisms and peculiarities of resulting immunity are currently under study. In this review, we summarize key findings on BM and tissue-resident memory (TRM) T cells and revisit some issues in memory T cell maintenance within such niches. Moreover, we discuss BM seeding by memory T cells in the context of migration patterns and protective functions of either recirculating or TRM T cells.
Collapse
Affiliation(s)
- Francesca Di Rosa
- Institute of Molecular Biology and Pathology, Consiglio Nazionale delle Ricerche, c/o Department of Molecular Medicine Sapienza University , Rome , Italy
| | - Thomas Gebhardt
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne , Melbourne, VIC , Australia
| |
Collapse
|
20
|
NK Cell and CD4+FoxP3+ Regulatory T Cell Based Therapies for Hematopoietic Stem Cell Engraftment. Stem Cells Int 2016; 2016:9025835. [PMID: 26880996 PMCID: PMC4736409 DOI: 10.1155/2016/9025835] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 10/22/2015] [Indexed: 11/18/2022] Open
Abstract
Allogeneic hematopoietic cell transplantation (HCT) is a powerful therapy to treat multiple hematological diseases. The intensive conditioning regimens used to allow for donor hematopoietic stem cell (HSC) engraftment are often associated with severe toxicity, delayed immune reconstitution, life-threatening infections, and thus higher relapse rates. Additionally, due to the high incidence of graft versus host disease (GvHD), HCT protocols have evolved to prevent such disease that has a detrimental impact on antitumor and antiviral responses. Here, we analyzed the role of host T and natural killer (NK) cells in the rejection of donor HSC engraftment as well as the impact of donor regulatory T cells (Treg) and NK cells on HSC engraftment. We review some of the current strategies that utilize NK or Treg to improve allogeneic HCT therapy in order to accomplish better HSC engraftment and immune reconstitution and achieve a lower incidence of cancer relapse, opportunistic infections, and GvHD.
Collapse
|
21
|
Regulators help new immigrants settle down? Blood 2014; 123:2754-6. [PMID: 24786456 DOI: 10.1182/blood-2014-03-562173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this issue of Blood, Müller et al showed, using a nonmyeloablative conditioning regimen consisting of total lymphoid irradiation (TLI) and anti-T-cell globulin (ATG), that donor long-term hematopoietic stem cell (LT-HSC) engraftment requires the presence of host regulatory T cells that promote host HSC cycling, which could potentially provide bone marrow niches to donor HSCs.
Collapse
|