1
|
Chen T, Li J, Wei X, Yao H, Zhu L, Liu J, Liu Y, Wang P, Feng Y, Gao S, Liu H, Wang L, Zhao L, Gao L, Zhang C, Gao L, Zhang X, Kong P. Efficiency and Toxicity of Imatinib Mesylate Combined with Atorvastatin Calcium in the Treatment of Steroid-Refractory Chronic Graft-versus-Host Disease: A Single-Center, Prospective, Single-Arm, Open-Label Study. Acta Haematol 2024; 147:499-510. [PMID: 38232716 DOI: 10.1159/000536174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 12/26/2023] [Indexed: 01/19/2024]
Abstract
INTRODUCTION Steroid-refractory cGVHD (SR-cGVHD) presents new great challenges for treatment. We have reported that imatinib monotherapy was effective to SR-cGVHD, but the CR rate was not satisfactory and the benefit was not showed specific to some target organs, previously. Imatinib and statin drugs have been recognized to regulate T-cell function, statins also have been demonstrated endothelia protection, but whether this combination therapy was able to improve the efficacy remains unknown. Therefore, we designed this prospective, single-arm, open-label trial to investigate the efficacy of imatinib-based combination therapy in the treatment of SR-cGVHD for the first time. METHODS Sixty SR-cGVHD patients were entered into this trial to investigate the combination of imatinib mesylate and atorvastatin calcium for the treatment of SR-cGVHD. The primary endpoint included the overall response rate (ORR) after 6 months of combined treatment. The secondary endpoints included an evaluation of survival, changes in T-cell subsets, and adverse events. RESULTS At baseline, 45% (27/60) of patients had moderate cGVHD, and 55.0% (33/60) of patients had severe cGVHD. At the 6-month follow-up, a clinical response was achieved in 70.0% of patients, and a complete response (CR) was achieved in 26.7%. A total of 11.7% (7/60) of patients stopped immunosuppressive therapy at this point. After 6 months of treatment, the ORR rates of the liver, skin, eyes, and oral cavity were 80.6%, 78.1%, 61.5%, and 60.9%, respectively, with the liver also having the highest CR of 58.1%. The patients with moderate cGVHD had a better CR rate than those with severe cGVHD (55.6% vs. 3.0%, p < 0.0001). The overall survival in patients with ORR was improved (p = 0.0106). Lung involvement is an independent risk factor to affected ORR achievement (p = 0.021, HR = 0.335, 95% CI: 0.133-0.847), and the dosage of steroids was reduced in ORR patients. In clinical response patients, the ratio of CD8+ T cells (p = 0.0117) and Th17 cells (p = 0.0171) decreased, while the number of Treg cells (p = 0.0147) increased after 3 months. The most common adverse events were edema, nausea, and neutropenia, which were 13.3%, 11.7%, and 11.7%, respectively. CONCLUSION Combination treatment with imatinib mesylate and atorvastatin calcium was effective in treating SR-cGVHD and significantly decreased target organ injury, especially liver damage, indicating that T-cell regulatory function may play an important role in this process.
Collapse
Affiliation(s)
- Ting Chen
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing, China
| | - JiaLi Li
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing, China
| | - Xiao Wei
- Department of Endocrinology, The General Hospital of Western Theater Command PLA, Sichuan, China
| | - Han Yao
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing, China
| | - LiDan Zhu
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing, China
| | - Jia Liu
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing, China
| | - YuQing Liu
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing, China
| | - Ping Wang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing, China
| | - YiMei Feng
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing, China
| | - ShiChun Gao
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing, China
| | - HuanFeng Liu
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing, China
| | - Lu Wang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing, China
| | - Lu Zhao
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing, China
| | - Li Gao
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing, China
| | - Cheng Zhang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing, China
| | - Lei Gao
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing, China
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing, China
| | - PeiYan Kong
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing, China
| |
Collapse
|
2
|
Hong J, Fraebel J, Yang Y, Tkacyk E, Kitko C, Kim TK. Understanding and treatment of cutaneous graft-versus-host-disease. Bone Marrow Transplant 2023; 58:1298-1313. [PMID: 37730800 DOI: 10.1038/s41409-023-02109-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/28/2023] [Accepted: 09/08/2023] [Indexed: 09/22/2023]
Abstract
The skin is the outermost mechanical barrier where dynamic immune reactions take place and is the most commonly affected site in both acute and chronic graft-versus-host disease (GVHD). If not properly treated, pain and pruritis resulting from cutaneous GVHD can increase the risk of secondary infection due to erosions, ulcerations, and damage of underlying tissues. Furthermore, resulting disfiguration can cause distress and significantly impact patients' quality of life. Thus, a deeper understanding of skin-specific findings of GVHD is needed. This review will highlight some promising results of recent pre-clinical studies on the pathophysiology of skin GVHD and summarize the diagnostic and staging/grading procedures according to the clinical manifestations of skin GVHD. In addition, we will summarize outcomes of various GVHD treatments, including skin-specific response rates.
Collapse
Affiliation(s)
- Junshik Hong
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Johnathan Fraebel
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yenny Yang
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eric Tkacyk
- Veterans Affairs Tennessee Valley Health Care, Nashville, TN, USA
- Department of Dermatology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Carrie Kitko
- Monroe Carell Jr Children's Hospital, Vanderbilt Division of Pediatric Hematology-Oncology, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - Tae Kon Kim
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Veterans Affairs Tennessee Valley Health Care, Nashville, TN, USA.
- Vanderbilt-Ingram Cancer Center, Nashville, TN, USA.
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
3
|
Claveau JS, LeBlanc R, Ahmad I, Delisle JS, Cohen S, Kiss T, Bambace NM, Bernard L, Lachance S, Roy DC, Sauvageau G, Veilleux O, Roy J. Bortezomib Maintenance After Allogeneic Transplantation in Newly Diagnosed Myeloma Patients Results in Decreased Incidence and Severity of Chronic GVHD. Transplant Cell Ther 2023; 29:44.e1-44.e9. [PMID: 36334654 DOI: 10.1016/j.jtct.2022.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/11/2022] [Accepted: 10/26/2022] [Indexed: 11/05/2022]
Abstract
Allogeneic hematopoietic cell transplantation (HCT) has curative potential in myeloma but remains hampered by high rates of relapse and chronic graft-versus-host disease (GVHD). We hypothesized that bortezomib (BTZ) as maintenance therapy after allo HCT could not only decrease the incidence of relapse but also the incidence and severity of chronic GVHD. The primary endpoint of this study was to determine whether BTZ maintenance decreases the incidence and severity of chronic GVHD using National Institutes of Health (NIH) criteria. The secondary endpoints were to determine the immunosuppression burden, organ involvement and survival (overall survival, progression-free survival) in patients either receiving or not receiving BTZ. In this retrospective study, we compared the outcome of 46 myeloma patients who received BTZ after upfront tandem auto-allo HCT between 2008 and 2020 to 61 patients without maintenance. We explored the impact of BTZ maintenance on incidence and severity of chronic GVHD using the 2014 NIH criteria. At 2 years, incidences of overall (61.2% versus 83.6%; P = .001), and moderate/severe chronic GVHD (44.5% versus 77.0%; P = .001) were significantly lower in BTZ recipients who had less mouth (43% versus 67%; P = .018) and eyes (9% versus 41%; P = .001) involvement at initial diagnosis. We report a lower use of systemic steroids (45.1% versus 76.4%; P < .001), mycophenolate mofetil (15.5% versus 28.2%; P = .031) and tacrolimus (34.5% versus 70.6%; P < .001) in BTZ recipients. Probability of being alive and off systemic immunosuppressants at 3 years was 77% in BTZ recipients and 56% in controls (P = .046). To date, there is no difference in survival between both groups. In summary, BTZ maintenance improved incidence and severity of chronic GVHD and should be considered as a valid option in myeloma patients receiving upfront tandem auto-allo HCT.
Collapse
Affiliation(s)
- Jean-Sébastien Claveau
- Division of Hematology, Oncology and Transplantation, Institut Universitaire d'Hémato-Oncologie et de Thérapie Cellulaire, Hôpital Maisonneuve-Rosemont, Université de Montréal, Montréal, Québec, Canada.
| | - Richard LeBlanc
- Division of Hematology, Oncology and Transplantation, Institut Universitaire d'Hémato-Oncologie et de Thérapie Cellulaire, Hôpital Maisonneuve-Rosemont, Université de Montréal, Montréal, Québec, Canada
| | - Imran Ahmad
- Division of Hematology, Oncology and Transplantation, Institut Universitaire d'Hémato-Oncologie et de Thérapie Cellulaire, Hôpital Maisonneuve-Rosemont, Université de Montréal, Montréal, Québec, Canada
| | - Jean-Sébastien Delisle
- Division of Hematology, Oncology and Transplantation, Institut Universitaire d'Hémato-Oncologie et de Thérapie Cellulaire, Hôpital Maisonneuve-Rosemont, Université de Montréal, Montréal, Québec, Canada
| | - Sandra Cohen
- Division of Hematology, Oncology and Transplantation, Institut Universitaire d'Hémato-Oncologie et de Thérapie Cellulaire, Hôpital Maisonneuve-Rosemont, Université de Montréal, Montréal, Québec, Canada
| | - Thomas Kiss
- Division of Hematology, Oncology and Transplantation, Institut Universitaire d'Hémato-Oncologie et de Thérapie Cellulaire, Hôpital Maisonneuve-Rosemont, Université de Montréal, Montréal, Québec, Canada
| | - Nadia M Bambace
- Division of Hematology, Oncology and Transplantation, Institut Universitaire d'Hémato-Oncologie et de Thérapie Cellulaire, Hôpital Maisonneuve-Rosemont, Université de Montréal, Montréal, Québec, Canada
| | - Léa Bernard
- Division of Hematology, Oncology and Transplantation, Institut Universitaire d'Hémato-Oncologie et de Thérapie Cellulaire, Hôpital Maisonneuve-Rosemont, Université de Montréal, Montréal, Québec, Canada
| | - Silvy Lachance
- Division of Hematology, Oncology and Transplantation, Institut Universitaire d'Hémato-Oncologie et de Thérapie Cellulaire, Hôpital Maisonneuve-Rosemont, Université de Montréal, Montréal, Québec, Canada
| | - Denis Claude Roy
- Division of Hematology, Oncology and Transplantation, Institut Universitaire d'Hémato-Oncologie et de Thérapie Cellulaire, Hôpital Maisonneuve-Rosemont, Université de Montréal, Montréal, Québec, Canada
| | - Guy Sauvageau
- Division of Hematology, Oncology and Transplantation, Institut Universitaire d'Hémato-Oncologie et de Thérapie Cellulaire, Hôpital Maisonneuve-Rosemont, Université de Montréal, Montréal, Québec, Canada
| | - Olivier Veilleux
- Division of Hematology, Oncology and Transplantation, Institut Universitaire d'Hémato-Oncologie et de Thérapie Cellulaire, Hôpital Maisonneuve-Rosemont, Université de Montréal, Montréal, Québec, Canada
| | - Jean Roy
- Division of Hematology, Oncology and Transplantation, Institut Universitaire d'Hémato-Oncologie et de Thérapie Cellulaire, Hôpital Maisonneuve-Rosemont, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
4
|
Kurya AU, Aliyu U, Tudu AI, Usman A, Yusuf M, Gupta S, Ali A, Gulfishan M, Singh SK, Hussain I, Abubakar MG. Graft-versus-host disease: Therapeutic prospects of improving the long-term post-transplant outcomes. TRANSPLANTATION REPORTS 2022. [DOI: 10.1016/j.tpr.2022.100107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
5
|
Thoreau B, Chaigne B, Mouthon L. Role of B-Cell in the Pathogenesis of Systemic Sclerosis. Front Immunol 2022; 13:933468. [PMID: 35903091 PMCID: PMC9315392 DOI: 10.3389/fimmu.2022.933468] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/06/2022] [Indexed: 11/29/2022] Open
Abstract
Systemic sclerosis (SSc) is a rare multisystem autoimmune disease, characterized by fibrosis, vasculopathy, and autoimmunity. Recent advances have highlighted the significant implications of B-cells in SSc. B-cells are present in affected organs, their subpopulations are disrupted, and they display an activated phenotype, and the regulatory capacities of B-cells are impaired, as illustrated by the decrease in the IL-10+ producing B-cell subpopulation or the inhibitory membrane co-receptor density. Recent multi-omics evidence highlights the role of B-cells mainly in the early stage of SSc and preferentially during severe organ involvement. This dysregulated homeostasis partly explains the synthesis of anti-endothelial cell autoantibodies (AECAs) or anti-fibroblast autoantibodies (AFAs), proinflammatory or profibrotic cytokines (interleukin-6 and transforming growth factor-β) produced by B and plasma cells. That is associated with cell-to-cell interactions with endothelial cells, fibroblasts, vascular smooth muscle cells, and other immune cells, altogether leading to cell activation and proliferation, cell resistance to apoptosis, the impairment of regulatory mechanisms, and causing fibrosis of several organs encountered in the SSc. Finally, alongside these exploratory data, treatments targeting B-cells, through their depletion by cytotoxicity (anti-CD20 monoclonal antibody), or the cytokines produced by the B-cell, or their costimulation molecules, seem interesting, probably in certain profiles of early patients with severe organic damage.
Collapse
Affiliation(s)
- Benjamin Thoreau
- Department of Internal Medicine, National Referral Center for Rare Systemic Autoimmune Diseases, Cochin Hospital, AP‐HP, CEDEX 14, Paris, France
- Université Paris Cité, Paris, France
- INSERM U1016, Cochin Institute, CNRS UMR 8104, Université Paris Cité, Paris, France
| | - Benjamin Chaigne
- Department of Internal Medicine, National Referral Center for Rare Systemic Autoimmune Diseases, Cochin Hospital, AP‐HP, CEDEX 14, Paris, France
- Université Paris Cité, Paris, France
- INSERM U1016, Cochin Institute, CNRS UMR 8104, Université Paris Cité, Paris, France
| | - Luc Mouthon
- Department of Internal Medicine, National Referral Center for Rare Systemic Autoimmune Diseases, Cochin Hospital, AP‐HP, CEDEX 14, Paris, France
- Université Paris Cité, Paris, France
- INSERM U1016, Cochin Institute, CNRS UMR 8104, Université Paris Cité, Paris, France
- *Correspondence: Luc Mouthon,
| |
Collapse
|
6
|
Sobkowiak-Sobierajska A, Lindemans C, Sykora T, Wachowiak J, Dalle JH, Bonig H, Gennery A, Lawitschka A. Management of Chronic Graft-vs.-Host Disease in Children and Adolescents With ALL: Present Status and Model for a Personalised Management Plan. Front Pediatr 2022; 10:808103. [PMID: 35252060 PMCID: PMC8894895 DOI: 10.3389/fped.2022.808103] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/24/2022] [Indexed: 12/18/2022] Open
Abstract
Herein we review current practice regarding the management of chronic graft-vs.-host disease (cGvHD) in paediatric patients after allogeneic haematopoietic stem cell transplantation (HSCT) for acute lymphoblastic leukaemia (ALL). Topics covered include: (i) the epidemiology of cGvHD; (ii) an overview of advances in our understanding cGvHD pathogenesis; (iii) current knowledge regarding risk factors for cGvHD and prevention strategies complemented by biomarkers; (iii) the paediatric aspects of the 2014 National Institutes for Health-defined diagnosis and grading of cGvHD; and (iv) current options for cGvHD treatment. We cover topical therapy and newly approved tyrosine kinase inhibitors, emphasising the use of immunomodulatory approaches in the context of the delicate counterbalance between immunosuppression and immune reconstitution as well as risks of relapse and infectious complications. We examine real-world approaches of response assessment and tapering schedules of treatment. Furthermore, we report on the optimal timepoints for therapeutic interventions and changes in relation to immune reconstitution and risk of relapse/infection. Additionally, we review the different options for anti-infectious prophylaxis. Finally, we put forth a theory of a holistic view of paediatric cGvHD and its associated manifestations and propose a checklist for individualised risk evaluation with aggregated considerations including site-specific cGvHD evaluation with attention to each individual's GvHD history, previous medical history, comorbidities, and personal tolerance and psychosocial circumstances. To complement this checklist, we present a treatment algorithm using representative patients to inform the personalised management plans for patients with cGvHD after HSCT for ALL who are at high risk of relapse.
Collapse
Affiliation(s)
| | - Caroline Lindemans
- Department of Pediatrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Pediatric Blood and Bone Marrow Transplantation, Princess Máxima Center, Utrecht, Netherlands
| | - Tomas Sykora
- Department of Pediatric Hematology and Oncology - Haematopoietic Stem Cell Transplantation Unit, National Institute of Children's Diseases and Medical Faculty, Comenius University, Bratislava, Slovakia
| | - Jacek Wachowiak
- Department of Pediatric Oncology, Hematology and Transplantology, Poznan University of Medical Sciences, Poznan, Poland
| | - Jean-Hugues Dalle
- Hematology and Immunology Department, Robert-Debré Hospital, Assistance Publique-Hôpitaux de Paris and University of Paris, Paris, France
| | - Halvard Bonig
- Goethe University Medical Center, Institute of Transfusion Medicine and Immunohematology, and German Red Cross Blood Center Frankfurt, Frankfurt, Germany
| | - Andrew Gennery
- Medical School, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Anita Lawitschka
- Stem Cell Transplantation Unit, St. Anna Children's Hospital, Medical University Vienna, Vienna, Austria.,St. Anna Children's Cancer Research Institute, Vienna, Austria
| |
Collapse
|
7
|
Khuat LT, Vick LV, Choi E, Dunai C, Merleev AA, Maverakis E, Blazar BR, Monjazeb AM, Murphy WJ. Mechanisms by Which Obesity Promotes Acute Graft- Versus-Host Disease in Mice. Front Immunol 2021; 12:752484. [PMID: 34707616 PMCID: PMC8542879 DOI: 10.3389/fimmu.2021.752484] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/17/2021] [Indexed: 02/02/2023] Open
Abstract
The efficacy of allogeneic hematopoietic stem cell transplantation (allo-HSCT) is limited by the occurrence of acute and chronic graft-versus-host disease (GVHD). We have recently demonstrated that obesity results in exacerbated acute gastrointestinal GVHD in both mouse models and clinical outcomes due to increased pro-inflammatory cytokine responses and microbiota alterations. We therefore wanted to delineate the role of the various parameters in obesity, adiposity, effects of high-fat (HF) diet, and the role of microbiome on GVHD pathogenesis, by taking advantage of a mouse strain resistant to diet-induced obesity (DIO). Female BALB/c mice are resistant to DIO phenotype with approximately 50% becoming DIO under HF diets. The DIO-susceptible recipients rapidly succumb to acute gut GVHD, whereas the DIO-resistant recipient littermates, which do not become obese, are partially protected from GVHD, indicating that being on HF diet alone contributes to but is not the primary driver of GVHD. Microbiome assessment revealed restricted diversity in both cohorts of mice, but coprophagy normalizes the microbiota in mice housed together. We then individually housed DIO-resistant, DIO-susceptible, and lean control mice. Notably, each of the individually housed groups demonstrates marked restricted diversity that has been shown to occur from the stress of single housing. Despite the restricted microbiome diversity, the GVHD pathogenesis profile remains consistent in the group-housed mice, with the lean control single-housed mice exhibiting no acute GVHD and DIO-resistant recipients showing again partial protection. These results demonstrate that the deleterious effects of obesity on acute gut GVHD are critically dependent on adiposity with the HF diet also playing a lesser role, and the microbiome alterations with obesity instead appear to fuel ongoing acute GVHD processes.
Collapse
Affiliation(s)
- Lam T. Khuat
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA, United States
| | - Logan V. Vick
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA, United States
| | - Eunju Choi
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Cordelia Dunai
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA, United States
| | - Alexander A. Merleev
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA, United States
| | - Emanual Maverakis
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA, United States
| | - Bruce R. Blazar
- Masonic Cancer Center and Division of Blood & Marrow Transplant & Cellular Therapy, Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| | - Arta M. Monjazeb
- Department of Radiation Oncology, School of Medicine, University of California, Davis, Sacramento, CA, United States
| | - William J. Murphy
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA, United States
- Department of Internal Medicine, School of Medicine, University of California, Davis, Sacramento, CA, United States
| |
Collapse
|
8
|
Delayed administration of ixazomib modifies the immune response and prevents chronic graft-versus-host disease. Bone Marrow Transplant 2021; 56:3049-3058. [PMID: 34556806 PMCID: PMC8636253 DOI: 10.1038/s41409-021-01452-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/09/2021] [Accepted: 08/25/2021] [Indexed: 11/08/2022]
Abstract
In this study, we aimed to modify the immune response in the long term after allogeneic bone marrow transplantation (allo-BMT) by using the proteasome inhibitor ixazomib (IXZ) at the late stages of the post-transplant period. This approach facilitated the immune reconstitution after transplantation. IXZ significantly prolonged survival and decreased the risk of chronic graft-versus-host disease (cGvHD) in two different murine models without hampering the graft-versus-leukemia (GvL) effect, as confirmed by bioluminescence assays. Remarkably, the use of IXZ was related to an increase of regulatory T cells both in peripheral blood and in the GvHD target organs and a decrease of effector donor T cells. Regarding B cells, IXZ treated mice had faster recovery of B cells in PB and of pre-pro-B cells in the bone marrow. Mice receiving ixazomib had a lower number of neutrophils in the GvHD target organs as compared to the vehicle group. In summary, delayed administration of IXZ ameliorated cGvHD while preserving GvL and promoted a pro-tolerogenic immune response after allo-BMT.
Collapse
|
9
|
Pidala J, Kitko C, Lee SJ, Carpenter P, Cuvelier GDE, Holtan S, Flowers ME, Cutler C, Jagasia M, Gooley T, Palmer J, Randolph T, Levine JE, Ayuk F, Dignan F, Schoemans H, Tkaczyk E, Farhadfar N, Lawitschka A, Schultz KR, Martin PJ, Sarantopoulos S, Inamoto Y, Socie G, Wolff D, Blazar B, Greinix H, Paczesny S, Pavletic S, Hill G. National Institutes of Health Consensus Development Project on Criteria for Clinical Trials in Chronic Graft-versus-Host Disease: IIb. The 2020 Preemptive Therapy Working Group Report. Transplant Cell Ther 2021; 27:632-641. [PMID: 33836313 PMCID: PMC8934187 DOI: 10.1016/j.jtct.2021.03.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 03/30/2021] [Indexed: 11/27/2022]
Abstract
Chronic graft-versus-host disease (GVHD) commonly occurs after allogeneic hematopoietic cell transplantation (HCT) despite standard prophylactic immune suppression. Intensified universal prophylaxis approaches are effective but risk possible overtreatment and may interfere with the graft-versus-malignancy immune response. Here we summarize conceptual and practical considerations regarding preemptive therapy of chronic GVHD, namely interventions applied after HCT based on evidence that the risk of developing chronic GVHD is higher than previously appreciated. This risk may be anticipated by clinical factors or risk assignment biomarkers or may be indicated by early signs and symptoms of chronic GVHD that do not fully meet National Institutes of Health diagnostic criteria. However, truly preemptive, individualized, and targeted chronic GVHD therapies currently do not exist. In this report, we (1) review current knowledge regarding clinical risk factors for chronic GVHD, (2) review what is known about chronic GVHD risk assignment biomarkers, (3) examine how chronic GVHD pathogenesis intersects with available targeted therapeutic agents, and (4) summarize considerations for preemptive therapy for chronic GVHD, emphasizing trial development, including trial design and statistical considerations. We conclude that robust risk assignment models that accurately predict chronic GVHD after HCT and early-phase preemptive therapy trials represent the most urgent priorities for advancing this novel area of research.
Collapse
Affiliation(s)
- Joseph Pidala
- Blood and Marrow Transplantation and Cellular Immunotherapy, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
| | - Carrie Kitko
- Division of Pediatric Hematology/Oncology, Dpeartment of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Stephanie J Lee
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Paul Carpenter
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | | | - Shernan Holtan
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Mary E Flowers
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Corey Cutler
- Division of Stem Cell Transplantation and Cellular Therapy, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Madan Jagasia
- Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Ted Gooley
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Joycelynne Palmer
- Division of Biostatistics, Department of Computational and Quantitative Medicine, City of Hope, Duarte, California
| | - Tim Randolph
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - John E Levine
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Francis Ayuk
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fiona Dignan
- Department of Clinical Haematology, Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Helene Schoemans
- Department of Hematology, University Hospitals Leuven and Department of Public Health, KU Leuven, Leuven, Belgium
| | - Eric Tkaczyk
- Department of Veterans Affairs and Departments of Dermatology and Biomedical Engineering, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Nosha Farhadfar
- Division of Hematology and Oncology, Department of Medicine, University of Florida, Gainesville, Florida
| | - Anita Lawitschka
- Stem Cell Transplantation Unit, St Anna Children's Hospital, Medical University of Vienna, Vienna, Austria; Children's Cancer Research Institute, Vienna, Austria
| | - Kirk R Schultz
- Pediatric Hematology/Oncology/BMT, BC Children's Hospital, Vancouver, British Columbia, Canada
| | - Paul J Martin
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Stefanie Sarantopoulos
- Division of Hematological Malignancies and Cellular Therapy, Duke Cancer Institute, Duke University Department of Medicine, Durham, North Carolina
| | - Yoshihiro Inamoto
- Department of Hematopoietic Stem Cell Transplantation, National Cancer Center Hospital, Tokyo, Japan
| | - Gerard Socie
- Hematology and Bone Marrow Transplant Department, AP-HP Saint Louis Hospital and University of Paris, Paris, France
| | - Daniel Wolff
- Department of Internal Medicine III, University Hospital of Regensburg, Regensburg, Germany
| | - Bruce Blazar
- Department of Pediatrics, Division of Blood & Marrow Transplantation & Cellular Therapy, University of Minnesota, Minneapolis, Minnesota
| | - Hildegard Greinix
- Clinical Division of Hematology, Medical University of Graz, Graz, Austria
| | - Sophie Paczesny
- Department of Microbiology and Immunology and Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina
| | - Steven Pavletic
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Geoffrey Hill
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| |
Collapse
|
10
|
Khuat LT, Le CT, Pai CCS, Shields-Cutler RR, Holtan SG, Rashidi A, Parker SL, Knights D, Luna JI, Dunai C, Wang Z, Sturgill IR, Stoffel KM, Merleev AA, More SK, Maverakis E, Raybould HE, Chen M, Canter RJ, Monjazeb AM, Dave M, Ferrara JLM, Levine JE, Longo DL, Abedi M, Blazar BR, Murphy WJ. Obesity induces gut microbiota alterations and augments acute graft-versus-host disease after allogeneic stem cell transplantation. Sci Transl Med 2021; 12:12/571/eaay7713. [PMID: 33239390 DOI: 10.1126/scitranslmed.aay7713] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 01/22/2020] [Accepted: 06/02/2020] [Indexed: 12/22/2022]
Abstract
The efficacy of allogeneic hematopoietic stem cell transplantation (allo-HSCT) is limited by acute and chronic graft-versus-host disease (GVHD). The impact of obesity on allo-HSCT outcomes is poorly understood. Here, we report that obesity had a negative and selective impact on acute gut GVHD after allo-HSCT in mice with diet-induced obesity (DIO). These animals exhibited increased gut permeability, endotoxin translocation across the gut, and radiation-induced gastrointestinal damage after allo-HSCT. After allo-HSCT, both male and female DIO mouse recipients showed increased proinflammatory cytokine production and expression of the GVHD marker ST2 (IL-33R) and MHC class II molecules; they also exhibited decreased survival associated with acute severe gut GVHD. This rapid-onset, obesity-associated gut GVHD depended on donor CD4+ T cells and occurred even with a minor MHC mismatch between donor and recipient animals. Retrospective analysis of clinical cohorts receiving allo-HSCT transplants from unrelated donors revealed that recipients with a high body mass index (BMI, >30) had reduced survival and higher serum ST2 concentrations compared with nonobese transplant recipients. Assessment of both DIO mice and allo-HSCT recipients with a high BMI revealed reduced gut microbiota diversity and decreased Clostridiaceae abundance. Prophylactic antibiotic treatment protected DIO mouse recipients from endotoxin translocation across the gut and increased inflammatory cytokine production, as well as gut pathology and mortality, but did not protect against later development of chronic skin GVHD. These results suggest that obesity-induced alterations of the gut microbiota may affect GVHD after allo-HSCT in DIO mice, which could be ameliorated by prophylactic antibiotic treatment.
Collapse
Affiliation(s)
- Lam T Khuat
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Catherine T Le
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Chien-Chun Steven Pai
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | | | - Shernan G Holtan
- Blood and Marrow Transplant Program, University of Minnesota, Minneapolis, MN 55455, USA
| | - Armin Rashidi
- Blood and Marrow Transplant Program, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sarah L Parker
- Department of Internal Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Dan Knights
- Department of Computer Science and Engineering, Biotechnology Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jesus I Luna
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Cordelia Dunai
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Ziming Wang
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Ian R Sturgill
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Kevin M Stoffel
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Alexander A Merleev
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Shyam K More
- Division of Gastroenterology, Department of Internal Medicine, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Emanual Maverakis
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Helen E Raybould
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Mingyi Chen
- Department of Pathology and Laboratory Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Robert J Canter
- Division of Surgical Oncology, Department of Surgery, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Arta M Monjazeb
- Department of Radiation Oncology, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Maneesh Dave
- Division of Gastroenterology, Department of Internal Medicine, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - James L M Ferrara
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - John E Levine
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Dan L Longo
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Mehrdad Abedi
- Department of Internal Medicine, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Bruce R Blazar
- Masonic Cancer Center and Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - William J Murphy
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA. .,Department of Internal Medicine, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| |
Collapse
|
11
|
Diversity, localization, and (patho)physiology of mature lymphocyte populations in the bone marrow. Blood 2021; 137:3015-3026. [PMID: 33684935 DOI: 10.1182/blood.2020007592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 02/25/2021] [Indexed: 02/07/2023] Open
Abstract
The bone marrow (BM) is responsible for generating and maintaining lifelong output of blood and immune cells. In addition to its key hematopoietic function, the BM acts as an important lymphoid organ, hosting a large variety of mature lymphocyte populations, including B cells, T cells, natural killer T cells, and innate lymphoid cells. Many of these cell types are thought to visit the BM only transiently, but for others, like plasma cells and memory T cells, the BM provides supportive niches that promote their long-term survival. Interestingly, accumulating evidence points toward an important role for mature lymphocytes in the regulation of hematopoietic stem cells (HSCs) and hematopoiesis in health and disease. In this review, we describe the diversity, migration, localization, and function of mature lymphocyte populations in murine and human BM, focusing on their role in immunity and hematopoiesis. We also address how various BM lymphocyte subsets contribute to the development of aplastic anemia and immune thrombocytopenia, illustrating the complexity of these BM disorders and the underlying similarities and differences in their disease pathophysiology. Finally, we summarize the interactions between mature lymphocytes and BM resident cells in HSC transplantation and graft-versus-host disease. A better understanding of the mechanisms by which mature lymphocyte populations regulate BM function will likely improve future therapies for patients with benign and malignant hematologic disorders.
Collapse
|
12
|
Rodriguez N, Lee J, Flynn L, Murray F, Devlin SM, Soto C, Cho C, Dahi P, Giralt S, Perales MA, Sauter C, Ponce DM. Oral Proteasome Inhibitor Ixazomib for Switch-Maintenance Prophylaxis of Recurrent or Late Acute and Chronic Graft-versus-Host Disease after Day 100 in Allogeneic Stem Cell Transplantation. Transplant Cell Ther 2021; 27:920.e1-920.e9. [PMID: 34029766 DOI: 10.1016/j.jtct.2021.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/03/2021] [Accepted: 05/11/2021] [Indexed: 10/21/2022]
Abstract
Graft-versus-host disease (GVHD) is a frequent complication in the first year after allogeneic stem cell transplantation (allo-HCT). Recipients of reduced-intensity (RI) or nonmyeloablative (NMA) conditioning combined with calcineurin inhibitor (CNI)-based GVHD prophylaxis frequently develop GVHD in the context of immunosuppression taper. Ixazomib is an oral proteasome inhibitor with a wide safety profile that has demonstrated immunomodulatory properties, inhibition of pro-inflammatory cytokines, and anti-tumor activity. We hypothesized that switch-maintenance GVHD prophylaxis using ixazomib would facilitate CNI taper without increased GVHD frequency and severity while maintaining graft-versus-tumor (GVT) effect and an acceptable safety profile. We conducted an open-label, prospective, single-center pilot study in patients with hematologic malignancies who received an RI or NMA conditioning and CNI-based GVHD prophylaxis that were within day 100 to 150 after HCT (n = 18). Patients were treated with ixazomib once weekly on a 28-day cycle (3 weeks on, 1 week off). Treatment was safe; most adverse events were grade 1 or 2, with cytopenia and elevation in transaminases the most common. Five patients were removed from the study because of toxicity or side effects. Only 5 of 18 patients developed GVHD during the study, and its severity was driven by acute manifestations while chronic involvement was mild. The cumulative incidence of grade II-IV acute and chronic GVHD at 1-year after HCT was 33% (95% confidence interval [CI], 13-55). No patients died during the study, and only 1 had malignant relapse. An additional patient relapsed after completion of the study but within 1 year after HCT. The probability of progression-free survival and GVHD-free/relapse-free survival (composite endpoint) at 1 year were 89% (95% CI, 75-100) and 78% (95% CI, 61-100), respectively. Immune reconstitution analysis showed a rapid and sustained recovery in T-cell subpopulations and B cell reconstitution, and vaccine response in a subset of patients demonstrated continuing or de novo positive protective antibody titers. This study demonstrated low incidence of recurrent and late acute and chronic GVHD within 1 year after HCT possible associated with switch-maintenance GVHD prophylaxis using ixazomib. This approach allowed for CNI taper while preserving GVT effect, without aggravating GVHD. Our findings support further development of this approach and provide a proof-of-concept for switch-maintenance GVHD prophylaxis.
Collapse
Affiliation(s)
- Natasia Rodriguez
- Department of Medicine, Adult Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jasme Lee
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lisa Flynn
- Department of Medicine, Adult Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Fiona Murray
- Department of Medicine, Adult Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sean M Devlin
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Cristina Soto
- Department of Medicine, Adult Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Christina Cho
- Department of Medicine, Adult Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, New York; Weill Cornell Medical College, New York, New York
| | - Parastoo Dahi
- Department of Medicine, Adult Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, New York; Weill Cornell Medical College, New York, New York
| | - Sergio Giralt
- Department of Medicine, Adult Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, New York; Weill Cornell Medical College, New York, New York
| | - Miguel-Angel Perales
- Department of Medicine, Adult Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, New York; Weill Cornell Medical College, New York, New York
| | - Craig Sauter
- Department of Medicine, Adult Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, New York; Weill Cornell Medical College, New York, New York
| | - Doris M Ponce
- Department of Medicine, Adult Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, New York; Weill Cornell Medical College, New York, New York.
| |
Collapse
|
13
|
Hill GR, Betts BC, Tkachev V, Kean LS, Blazar BR. Current Concepts and Advances in Graft-Versus-Host Disease Immunology. Annu Rev Immunol 2021; 39:19-49. [PMID: 33428454 PMCID: PMC8085043 DOI: 10.1146/annurev-immunol-102119-073227] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Worldwide, each year over 30,000 patients undergo an allogeneic hema-topoietic stem cell transplantation with the intent to cure high-risk hematologic malignancy, immunodeficiency, metabolic disease, or a life-threatening bone marrow failure syndrome. Despite substantial advances in donor selection and conditioning regimens and greater availability of allograft sources, transplant recipients still endure the morbidity and mortality of graft-versus-host disease (GVHD). Herein, we identify key aspects of acute and chronic GVHD pathophysiology, including host/donor cell effectors, gut dysbiosis, immune system and cytokine imbalance, and the interface between inflammation and tissue fibrosis. In particular, we also summarize the translational application of this heightened understanding of immune dysregulation in the design of novel therapies to prevent and treat GVHD.
Collapse
Affiliation(s)
- Geoffrey R Hill
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA;
- Division of Medical Oncology University of Washington, Seattle, Washington 98109, USA
| | - Brian C Betts
- Division of Hematology, Oncology, and Blood and Marrow Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Victor Tkachev
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; ,
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02215, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Leslie S Kean
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; ,
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02215, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Bruce R Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota 55455, USA;
| |
Collapse
|
14
|
Saidu NEB, Bonini C, Dickinson A, Grce M, Inngjerdingen M, Koehl U, Toubert A, Zeiser R, Galimberti S. New Approaches for the Treatment of Chronic Graft-Versus-Host Disease: Current Status and Future Directions. Front Immunol 2020; 11:578314. [PMID: 33162993 PMCID: PMC7583636 DOI: 10.3389/fimmu.2020.578314] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/18/2020] [Indexed: 12/15/2022] Open
Abstract
Chronic graft-versus-host disease (cGvHD) is a severe complication of allogeneic hematopoietic stem cell transplantation that affects various organs leading to a reduced quality of life. The condition often requires enduring immunosuppressive therapy, which can also lead to the development of severe side effects. Several approaches including small molecule inhibitors, antibodies, cytokines, and cellular therapies are now being developed for the treatment of cGvHD, and some of these therapies have been or are currently tested in clinical trials. In this review, we discuss these emerging therapies with particular emphasis on tyrosine kinase inhibitors (TKIs). TKIs are a class of compounds that inhibits tyrosine kinases, thereby preventing the dissemination of growth signals and activation of key cellular proteins that are involved in cell growth and division. Because they have been shown to inhibit key kinases in both B cells and T cells that are involved in the pathophysiology of cGvHD, TKIs present new promising therapeutic approaches. Ibrutinib, a Bruton tyrosine kinase (Btk) inhibitor, has recently been approved by the Food and Drug Administration (FDA) in the United States for the treatment of adult patients with cGvHD after failure of first-line of systemic therapy. Also, Janus Associated Kinases (JAK1 and JAK2) inhibitors, such as itacitinib (JAK1) and ruxolitinib (JAK1 and 2), are promising in the treatment of cGvHD. Herein, we present the current status and future directions of the use of these new drugs with particular spotlight on their targeting of specific intracellular signal transduction cascades important for cGvHD, in order to shed some light on their possible mode of actions.
Collapse
Affiliation(s)
- Nathaniel Edward Bennett Saidu
- Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
- Department of Pharmacology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Chiara Bonini
- Experimental Hematology Unit, San Raffaele Scientific Institute, Milano, Italy
| | - Anne Dickinson
- Haematological Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Magdalena Grce
- Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
| | - Marit Inngjerdingen
- Department of Pharmacology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Ulrike Koehl
- Faculty of Medicine, Institute of Clinical Immunology, University Leipzig and Fraunhofer IZI, Leipzig, Germany
| | - Antoine Toubert
- Université de Paris, Institut de Recherche Saint Louis, EMiLy, Inserm U1160, Paris, France
- Laboratoire d'Immunologie et d`Histocompatibilité, AP-HP, Hopital Saint-Louis, Paris, France
| | - Robert Zeiser
- Department of Hematology, Oncology and Stem Cell Transplantation, Freiburg University Medical Center, Faculty of Medicine, Freiburg, Germany
| | - Sara Galimberti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
15
|
Chhabra S, Visotcky A, Pasquini MC, Zhu F, Tang X, Zhang MJ, Thompson R, Abedin S, D'Souza A, Dhakal B, Drobyski WR, Fenske TS, Jerkins JH, Douglas Rizzo J, Runaas L, Saber W, Shah NN, Shaw BE, Horowitz MM, Hari PN, Hamadani M. Ixazomib for Chronic Graft-versus-Host Disease Prophylaxis following Allogeneic Hematopoietic Cell Transplantation. Biol Blood Marrow Transplant 2020; 26:1876-1885. [PMID: 32653622 PMCID: PMC7571859 DOI: 10.1016/j.bbmt.2020.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/12/2020] [Accepted: 07/02/2020] [Indexed: 11/16/2022]
Abstract
Chronic graft-versus-host disease (cGVHD) is major cause of morbidity and mortality following allogeneic hematopoietic cell transplantation (HCT). Ixazomib is an oral, second-generation, proteasome inhibitor that has been shown in preclinical models to prevent GVHD. We conducted a phase I/II trial in 57 patients to evaluate the safety and efficacy of ixazomib administration for cGVHD prophylaxis in patients undergoing allogeneic HCT. Oral ixazomib was administered on a weekly basis for a total of 4 doses, beginning days +60 through +90, to recipients of matched related donor (MRD, n = 25) or matched unrelated donor (MUD, n = 26) allogeneic HCT in phase II portion of the study, once the recommended phase II dose of 4 mg was identified in phase I (n = 6). All patients received peripheral blood graft and standard GVHD prophylaxis of tacrolimus and methotrexate. Ixazomib administration was safe and well tolerated, with thrombocytopenia, leukopenia, gastrointestinal complaints, and fatigue the most common adverse events (>10%). In phase II (n = 51), the cumulative incidence of cGVHD at 1 year was 36% (95% confidence interval [CI], 19% to 54%) in the MRD cohort and 39% (95% CI, 21% to 56%) in the MUD cohort. One-year cumulative incidence of nonrelapse mortality (NRM) and relapse was 0% and 20% (95% CI, 8% to 36%) in the MRD cohort, respectively. In the MUD cohort, the respective NRM and relapse rates were 4% (0% to 16%) and 34% (17% to 52%). The outcomes on the study were compared post hoc with contemporaneous matched Center for International Blood and Marrow Transplant Research (CIBMTR) controls. This post hoc analysis showed no significant improvement in cGVHD rates in both the MRD (hazard ratio [HR] = 0.85, P = .64) or MUD cohorts (HR = 0.68, P = .26) on the study compared with CIBMTR controls. B cell activating factor plasma levels were significantly higher after ixazomib dosing in those who remained cGVHD free compared with those developed cGVHD. This study shows that the novel strategy of short-course oral ixazomib following allogeneic HCT is safe but did not demonstrate significant improvement in cGVHD incidence in recipients of MRD and MUD transplantation compared with matched CIBMTR controls. This study is registered at www.clinicaltrials.gov as NCT02250300.
Collapse
Affiliation(s)
- Saurabh Chhabra
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin; Blood and Marrow Transplant & Cellular Therapy Program, Froedtert & Medical College of Wisconsin, Milwaukee, Wisconsin; Center for International Blood and Marrow Transplant Research, Milwaukee Campus, Milwaukee, Wisconsin
| | - Alexis Visotcky
- Department of Biostatistics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Marcelo C Pasquini
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin; Blood and Marrow Transplant & Cellular Therapy Program, Froedtert & Medical College of Wisconsin, Milwaukee, Wisconsin; Center for International Blood and Marrow Transplant Research, Milwaukee Campus, Milwaukee, Wisconsin
| | - Fenlu Zhu
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin; Blood and Marrow Transplant & Cellular Therapy Program, Froedtert & Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Xiaoying Tang
- Center for International Blood and Marrow Transplant Research, Milwaukee Campus, Milwaukee, Wisconsin; Department of Biostatistics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Mei-Jie Zhang
- Center for International Blood and Marrow Transplant Research, Milwaukee Campus, Milwaukee, Wisconsin; Department of Biostatistics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Robert Thompson
- Center for International Blood and Marrow Transplant Research, Milwaukee Campus, Milwaukee, Wisconsin
| | - Sameem Abedin
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin; Blood and Marrow Transplant & Cellular Therapy Program, Froedtert & Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Anita D'Souza
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin; Blood and Marrow Transplant & Cellular Therapy Program, Froedtert & Medical College of Wisconsin, Milwaukee, Wisconsin; Center for International Blood and Marrow Transplant Research, Milwaukee Campus, Milwaukee, Wisconsin
| | - Binod Dhakal
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin; Blood and Marrow Transplant & Cellular Therapy Program, Froedtert & Medical College of Wisconsin, Milwaukee, Wisconsin
| | - William R Drobyski
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin; Blood and Marrow Transplant & Cellular Therapy Program, Froedtert & Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Timothy S Fenske
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin; Blood and Marrow Transplant & Cellular Therapy Program, Froedtert & Medical College of Wisconsin, Milwaukee, Wisconsin
| | - James H Jerkins
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin; Blood and Marrow Transplant & Cellular Therapy Program, Froedtert & Medical College of Wisconsin, Milwaukee, Wisconsin
| | - J Douglas Rizzo
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin; Blood and Marrow Transplant & Cellular Therapy Program, Froedtert & Medical College of Wisconsin, Milwaukee, Wisconsin; Center for International Blood and Marrow Transplant Research, Milwaukee Campus, Milwaukee, Wisconsin
| | - Lyndsey Runaas
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin; Blood and Marrow Transplant & Cellular Therapy Program, Froedtert & Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Wael Saber
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin; Blood and Marrow Transplant & Cellular Therapy Program, Froedtert & Medical College of Wisconsin, Milwaukee, Wisconsin; Center for International Blood and Marrow Transplant Research, Milwaukee Campus, Milwaukee, Wisconsin
| | - Nirav N Shah
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin; Blood and Marrow Transplant & Cellular Therapy Program, Froedtert & Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Bronwen E Shaw
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin; Blood and Marrow Transplant & Cellular Therapy Program, Froedtert & Medical College of Wisconsin, Milwaukee, Wisconsin; Center for International Blood and Marrow Transplant Research, Milwaukee Campus, Milwaukee, Wisconsin
| | - Mary M Horowitz
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin; Blood and Marrow Transplant & Cellular Therapy Program, Froedtert & Medical College of Wisconsin, Milwaukee, Wisconsin; Center for International Blood and Marrow Transplant Research, Milwaukee Campus, Milwaukee, Wisconsin
| | - Parameswaran N Hari
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin; Blood and Marrow Transplant & Cellular Therapy Program, Froedtert & Medical College of Wisconsin, Milwaukee, Wisconsin; Center for International Blood and Marrow Transplant Research, Milwaukee Campus, Milwaukee, Wisconsin
| | - Mehdi Hamadani
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin; Blood and Marrow Transplant & Cellular Therapy Program, Froedtert & Medical College of Wisconsin, Milwaukee, Wisconsin; Center for International Blood and Marrow Transplant Research, Milwaukee Campus, Milwaukee, Wisconsin.
| |
Collapse
|
16
|
Prospective phase 2 trial of ixazomib after nonmyeloablative haploidentical peripheral blood stem cell transplant. Blood Adv 2020; 4:3669-3676. [PMID: 32777064 DOI: 10.1182/bloodadvances.2020001958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/28/2020] [Indexed: 11/20/2022] Open
Abstract
Proteasome inhibition results in extensive immunomodulatory effects that augment natural killer cell cytotoxicity and inhibit aspects of T-cell, B-cell, and dendritic cell function. We performed a phase 2 study that examined the effects of ixazomib for graft-versus-host disease (GVHD) prophylaxis (up to 12 cycles) with posttransplant cyclophosphamide and tacrolimus after standard nonmyeloablative haploidentical donor transplantation (HIDT). Ixazomib was started on day +5 (4 mg on days 1, 8, and 15 of a 28-day cycle), with dose reductions allowed in future cycles for toxicity. All patients received peripheral blood stem cells. Twenty-five patients were enrolled with a median age of 62 years (range, 35-77 years) who had acute leukemia (4), myelodysplastic syndrome (7), non-Hodgkin lymphoma/Hodgkin lymphoma/chronic lymphocytic leukemia (8), and myeloma (6). The hematopoietic cell transplant comorbidity index was ≥3 in 68% of the patients. After a median follow-up of 33.5 months, the cumulative incidence of relapse/progression at 1 year was 24% and 44% at 3 years, which failed to meet the statistically predefined goal of decreasing 1-year risk of relapse. Engraftment occurred in all patients with no secondary graft failure, and 3-year nonrelapse mortality (NRM) was 12%. Cumulative incidence of grade 3 to 4 acute GVHD was 8%, whereas moderate-to-severe chronic GVHD occurred in 19%. Nineteen patients survive with an estimated 1-year overall survival (OS) of 84% and 3-year OS of 74%. Hematologic and cutaneous toxicities were common but manageable. The substitution of ixazomib for mycophenolate mofetil (MMF) post-HIDT results in reliable engraftment, comparable rates of clinically significant GVHD, relapse and NRM, and favorable OS. This trial was registered at www.clinicaltrials.gov as # NCT02169791.
Collapse
|
17
|
Dissecting the biology of allogeneic HSCT to enhance the GvT effect whilst minimizing GvHD. Nat Rev Clin Oncol 2020; 17:475-492. [PMID: 32313224 DOI: 10.1038/s41571-020-0356-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2020] [Indexed: 12/12/2022]
Abstract
Allogeneic haematopoietic stem cell transplantation (allo-HSCT) was the first successful therapy for patients with haematological malignancies, predominantly owing to graft-versus-tumour (GvT) effects. Dramatic methodological changes, designed to expand eligibility for allo-HSCT to older patients and/or those with comorbidities, have led to the use of reduced-intensity conditioning regimens, in parallel with more aggressive immunosuppression to better control graft-versus-host disease (GvHD). Consequently, disease relapse has become the major cause of death following allo-HSCT. Hence, the prevention and treatment of relapse has come to the forefront and remains an unmet medical need. Despite >60 years of preclinical and clinical studies, the immunological requirements necessary to achieve GvT effects without promoting GvHD have not been fully established. Herein, we review learnings from preclinical modelling and clinical studies relating to the GvT effect, focusing on mechanisms of relapse and on immunomodulatory strategies that are being developed to overcome disease recurrence after both allo-HSCT and autologous HSCT. Emphasis is placed on discussing current knowledge and approaches predicated on the use of cell therapies, cytokines to augment immune responses and dual-purpose antibody therapies or other pharmacological agents that can control GvHD whilst simultaneously targeting cancer cells.
Collapse
|
18
|
van der Maas NG, Berghuis D, van der Burg M, Lankester AC. B Cell Reconstitution and Influencing Factors After Hematopoietic Stem Cell Transplantation in Children. Front Immunol 2019; 10:782. [PMID: 31031769 PMCID: PMC6473193 DOI: 10.3389/fimmu.2019.00782] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 03/25/2019] [Indexed: 12/20/2022] Open
Abstract
B cell reconstitution after hematopoietic stem cell transplantation (HSCT) is variable and influenced by different patient, donor, and treatment related factors. In this review we describe B cell reconstitution after pediatric allogeneic HST, including the kinetics of reconstitution of the different B cell subsets and the development of the B cell repertoire, and discuss the influencing factors. Observational studies show important roles for stem cell source, conditioning regimen, and graft vs. host disease in B cell reconstitution. In addition, B cell recovery can play an important role in post-transplant infections and vaccine responses to encapsulated bacteria, such as pneumococcus. A substantial number of patients experience impaired B cell function and/or dependency on Ig substitution after allogeneic HSCT. The underlying mechanisms are largely unresolved. The integrated aspects of B cell recovery after HSCT, especially BCR repertoire reconstitution, are awaiting further investigation using modern techniques in order to gain more insight into B cell reconstitution and to develop strategies to improve humoral immunity after allogeneic HSCT.
Collapse
Affiliation(s)
- Nicolaas G van der Maas
- Willem-Alexander Children's Hospital, Department of Pediatrics and Laboratory for Pediatric Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Dagmar Berghuis
- Willem-Alexander Children's Hospital, Department of Pediatrics and Laboratory for Pediatric Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Mirjam van der Burg
- Willem-Alexander Children's Hospital, Department of Pediatrics and Laboratory for Pediatric Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Arjan C Lankester
- Willem-Alexander Children's Hospital, Department of Pediatrics and Laboratory for Pediatric Immunology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
19
|
How I treat refractory chronic graft-versus-host disease. Blood 2019; 133:1191-1200. [PMID: 30674472 PMCID: PMC6418480 DOI: 10.1182/blood-2018-04-785899] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 01/20/2019] [Indexed: 02/07/2023] Open
Abstract
Approximately 35% to 50% of patients otherwise cured of hematologic malignancies after allogeneic hematopoietic stem cell transplantation will develop the pleomorphic autoimmune-like syndrome known as chronic graft-versus-host disease (cGVHD). Since in 2005, National Institutes of Health (NIH) consensus panels have proposed definitions and classifications of disease to standardize treatment trials. Recently, the first agent was approved by the US Food and Drug Administration for steroid-refractory cGVHD. Despite these advances, most individuals do not achieve durable resolution of disease activity with initial treatment. Moreover, standardized recommendations on how to best implement existing and novel immunomodulatory agents and taper salvage agents are often lacking. Given the potential life-threatening nature of cGVHD, we employ in our practice patient assessment templates at each clinic visit to elucidate known prognostic indicators and red flags. We find NIH scoring templates practical for ongoing assessments of these complex patient cases and determination of when changes in immunosuppressive therapy are warranted. Patients not eligible or suitable for clinical trials have systemic and organ-directed adjunctive treatments crafted in a multidisciplinary clinic. Herein, we review these treatment options and offer a management and monitoring scaffold for representative patients with cGVHD not responding to initial therapy.
Collapse
|
20
|
Li X, Gao Q, Feng Y, Zhang X. Developing role of B cells in the pathogenesis and treatment of chronic GVHD. Br J Haematol 2018; 184:323-336. [PMID: 30585319 PMCID: PMC6590173 DOI: 10.1111/bjh.15719] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chronic graft-versus-host disease (cGVHD) is a major complication affecting the long-term survival of patients after allogeneic haematopoietic stem cell transplantation. The mechanism of cGVHD is unclear, and while previous studies have primarily focused on T cells, the role of B cells in the pathogenesis of cGVHD has been less reported. However, current studies on cGVHD are increasingly focused on the important role of B cells. In this review, we will introduce the newest studies and examine the role of B cells in cGVHD in detail with respect to the following aspects: altered B cell subpopulations, aberrant B cell signalling pathways, autoantibodies and T-B cell interactions. Treatment strategies for the targeting of B cells during cGVHD will also be discussed.
Collapse
Affiliation(s)
- Xiaoping Li
- Department of Haematology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Qiangguo Gao
- Department of Cell Biology College of Basic Medicine, Third Military Medicine University, Chongqing, China
| | - Yimei Feng
- Department of Haematology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Xi Zhang
- Department of Haematology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
21
|
Radojcic V, Paz K, Chung J, Du J, Perkey ET, Flynn R, Ivcevic S, Zaiken M, Friedman A, Yan M, Pletneva MA, Sarantopoulos S, Siebel CW, Blazar BR, Maillard I. Notch signaling mediated by Delta-like ligands 1 and 4 controls the pathogenesis of chronic GVHD in mice. Blood 2018; 132:2188-2200. [PMID: 30181175 PMCID: PMC6238189 DOI: 10.1182/blood-2018-03-841155] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 08/17/2018] [Indexed: 02/07/2023] Open
Abstract
Chronic graft-versus-host disease (cGVHD) is a major complication of allogeneic hematopoietic cell transplantation (allo-HCT) and remains an area of unmet clinical need with few treatment options available. Notch blockade prevents acute GVHD in multiple mouse models, but the impact of Notch signaling on cGVHD remains unknown. Using genetic and antibody-mediated strategies of Notch inhibition, we investigated the role of Notch signaling in complementary mouse cGVHD models that mimic several aspects of human cGVHD in search of candidate therapeutics. In the B10.D2→BALB/c model of sclerodermatous cGVHD, Delta-like ligand 4 (Dll4)-driven Notch signaling was essential for disease development. Antibody-mediated Dll4 inhibition conferred maximum benefits when pursued early in a preventative fashion, with anti-Dll1 enhancing early protection. Notch-deficient alloantigen-specific T cells showed no early defects in proliferation or helper polarization in vivo but subsequently exhibited markedly decreased cytokine secretion and enhanced accumulation of FoxP3+ regulatory T cells. In the B6→B10.BR major histocompatibility complex-mismatched model with multi-organ system cGVHD and prominent bronchiolitis obliterans (BO), but not skin manifestations, absence of Notch signaling in T cells provided long-lasting disease protection that was replicated by systemic targeting of Dll1, Dll4, or both Notch ligands, even during established disease. Notch inhibition decreased target organ damage and germinal center formation. Moreover, decreased BO-cGVHD was observed upon inactivation of Notch1 and/or Notch2 in T cells. Systemic targeting of Notch2 alone was safe and conferred therapeutic benefits. Altogether, Notch ligands and receptors regulate key pathogenic steps in cGVHD and emerge as novel druggable targets to prevent or treat different forms of cGVHD.
Collapse
Affiliation(s)
- Vedran Radojcic
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
- Division of Hematology and Hematologic Malignancies, Department of Internal Medicine, University of Utah, Salt Lake City, UT
| | - Katelyn Paz
- Division of Blood and Marrow Transplant, Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | - Jooho Chung
- Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI
| | - Jing Du
- Division of Blood and Marrow Transplant, Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | - Eric T Perkey
- Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI
| | - Ryan Flynn
- Division of Blood and Marrow Transplant, Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | - Sanja Ivcevic
- Division of Hematology and Hematologic Malignancies, Department of Internal Medicine, University of Utah, Salt Lake City, UT
| | - Michael Zaiken
- Division of Blood and Marrow Transplant, Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | - Ann Friedman
- Life Sciences Institute, University of Michigan, Ann Arbor, MI
| | - Minhong Yan
- Department of Discovery Oncology, Genentech, South San Francisco, CA
| | | | - Stefanie Sarantopoulos
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke Cancer Institute, Duke University Medical Center, Durham, NC; and
| | | | - Bruce R Blazar
- Division of Blood and Marrow Transplant, Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | - Ivan Maillard
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
- Life Sciences Institute, University of Michigan, Ann Arbor, MI
- Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| |
Collapse
|
22
|
Mukai S, Ogawa Y, Saya H, Kawakami Y, Tsubota K. Therapeutic potential of tranilast for the treatment of chronic graft-versus-host disease in mice. PLoS One 2018; 13:e0203742. [PMID: 30307955 PMCID: PMC6181285 DOI: 10.1371/journal.pone.0203742] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 08/27/2018] [Indexed: 12/12/2022] Open
Abstract
Chronic graft-versus-host disease (cGVHD) is a marked complication of hematopoietic stem cell transplantation, and multiple organs can be affected by cGVHD-induced inflammation and fibrosis. In clinical settings, immunosuppressive agents have been the last resort to treat cGVHD. However, it has been only partially effective for cGVHD. Hence, efficacious treatment of cGVHD is eagerly awaited. Our previous work suggested that oxidative stress was elevated in cGVHD-disordered lacrimal glands and that epithelial-to-mesenchymal transition (EMT) was implicated in fibrosis caused by ocular cGVHD. In addition, our recent article demonstrated that thioredoxin interaction protein (TXNIP) and transcription factor nuclear factor kappa-light-chain-enhancer of activated B cells (NF-𝛋B) were associated with the development of cGVHD. After our search for effective drugs, we chose tranilast to combat systemic cGVHD. Tranilast is known to (1) act as an inhibitor of the inflammatory molecules TXNIP and NF-κB and (2) exert anti-fibrotic, anti-EMT and anti-oxidative effects. To investigate the effectiveness of tranilast for cGVHD, we used an MHC-compatible, multiple minor histocompatibility antigen-mismatched murine model of cGVHD. Tranilast or a solvent-vehicle were orally given to the allogeneic bone marrow transplantation (allo-BMT) recipients from the day before allo-BMT (Day-1) to Day 27 after allo-BMT. Their cGVHD-vulnerable organs were collected Day 28 after allo-BMT and analyzed by using various methods such as histology, immunohistochemistry and immunoblotting. As indicated by our results, tranilast alleviated cGVHD-elicited inflammation and fibrosis by suppressing the expression and/or activation of TXNIP and NF-κB and preventing EMT. Taken together, although this strategy may not be a complete cure for cGVHD, tranilast could be a promising medication to ameliorate cGVHD-triggered disabling symptoms.
Collapse
Affiliation(s)
- Shin Mukai
- Deaprtment of Ophthalmology, Keio University School of Medicine, Tokyo, Japan.,Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University, School of Medicine, Tokyo, Japan
| | - Yoko Ogawa
- Deaprtment of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Hideyuki Saya
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University, School of Medicine, Tokyo, Japan
| | - Yutaka Kawakami
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University, School of Medicine, Tokyo, Japan
| | - Kazuo Tsubota
- Deaprtment of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
23
|
Mukai S, Ogawa Y, Urano F, Kawakami Y, Tsubota K. Novel elucidation and treatment of pancreatic chronic graft-versus-host disease in mice. ROYAL SOCIETY OPEN SCIENCE 2018; 5:181067. [PMID: 30473850 PMCID: PMC6227968 DOI: 10.1098/rsos.181067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 09/20/2018] [Indexed: 06/09/2023]
Abstract
Chronic graft-versus-host disease (cGVHD) is a severe complication of allogeneic haematopoietic stem cell transplantation. There is a growing understanding of cGVHD, and several effective therapies for cGVHD have been reported. However, pancreatic cGVHD is a potentially untapped study field. Our thought-provoking study using a mouse model of cGVHD suggested that the pancreas could be impaired by cGVHD-induced inflammation and fibrosis and that endoplasmic reticulum (ER) stress was augmented in the pancreas affected by cGVHD. These findings urged us to treat pancreatic cGVHD through reduction of ER stress, and we used 4-phenylbutyric acid (PBA) as an ER stress reducer. A series of experiments has indicated that PBA can suppress cGVHD-elicited ER stress in the pancreas and accordingly alleviate pancreatic cGVHD. Furthermore, we focused on a correlation between epithelial to mesenchymal transition (EMT) and fibrosis in the cGVHD-affected pancreas, because EMT was conceivably implicated in various fibrosis-associated diseases. Our investigation has suggested that the expression of EMT markers was increased in the cGVHD-disordered pancreas and that it could be reduced by PBA. Taken together, we have provided a clue to elucidate the pathogenic process of pancreatic cGVHD and created a potentially effective treatment of this disease using the ER stress alleviator PBA.
Collapse
Affiliation(s)
- Shin Mukai
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Division of Cellular Signalling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Yoko Ogawa
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Fumihiko Urano
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Yutaka Kawakami
- Division of Cellular Signalling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
24
|
Phase 1 clinical trial evaluating abatacept in patients with steroid-refractory chronic graft-versus-host disease. Blood 2018; 131:2836-2845. [DOI: 10.1182/blood-2017-05-780239] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 03/07/2018] [Indexed: 12/11/2022] Open
Abstract
Key Points
Costimulatory blockade using abatacept represents a novel therapeutic approach for the treatment of cGVHD. Abatacept resulted in a clinical response in 44% of patients with both decreased prednisone use and T-cell PD-1 expression in responders.
Collapse
|
25
|
Ren HG, Adom D, Paczesny S. The search for drug-targetable diagnostic, prognostic and predictive biomarkers in chronic graft-versus-host disease. Expert Rev Clin Immunol 2018; 14:389-404. [PMID: 29629613 DOI: 10.1080/1744666x.2018.1463159] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Chronic graft-versus-host disease (cGVHD) continues to be the leading cause of late morbidity and mortality after allogeneic hematopoietic stem cell transplantation (allo-HSCT), which is an increasingly applied curative method for both benign and malignant hematologic disorders. Biomarker identification is crucial for the development of noninvasive and cost-effective cGVHD diagnostic, prognostic, and predictive test for use in clinic. Furthermore, biomarkers may help to gain a better insight on ongoing pathophysiological processes. The recent widespread application of omics technologies including genomics, transcriptomics, proteomics and cytomics provided opportunities to discover novel biomarkers. Areas covered: This review focuses on biomarkers identified through omics that play a critical role in target identification for drug development, and that were verified in at least two independent cohorts. It also summarizes the current status on omics tools used to identify these useful cGVHD targets. We briefly list the biomarkers identified and verified so far. We further address challenges associated to their exploitation and application in the management of cGVHD patients. Finally, insights on biomarkers that are drug targetable and represent potential therapeutic targets are discussed. Expert commentary: We focus on biomarkers that play an essential role in target identification.
Collapse
Affiliation(s)
- Hong-Gang Ren
- a Department of Pediatrics , Indiana University , Indianapolis , IN , USA.,b Department of Microbiology Immunology , Indiana University , Indianapolis , IN , USA.,c Melvin and Bren Simon Cancer Center , Indiana University , Indianapolis , IN , USA
| | - Djamilatou Adom
- a Department of Pediatrics , Indiana University , Indianapolis , IN , USA.,b Department of Microbiology Immunology , Indiana University , Indianapolis , IN , USA.,c Melvin and Bren Simon Cancer Center , Indiana University , Indianapolis , IN , USA
| | - Sophie Paczesny
- a Department of Pediatrics , Indiana University , Indianapolis , IN , USA.,b Department of Microbiology Immunology , Indiana University , Indianapolis , IN , USA.,c Melvin and Bren Simon Cancer Center , Indiana University , Indianapolis , IN , USA
| |
Collapse
|
26
|
Steroid Refractory Chronic Graft-Versus-Host Disease: Cost-Effectiveness Analysis. Biol Blood Marrow Transplant 2018; 24:1920-1927. [PMID: 29550629 DOI: 10.1016/j.bbmt.2018.03.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/07/2018] [Indexed: 12/22/2022]
Abstract
Given the increasing incidence of chronic graft-versus-host disease (cGVHD) and its rapidly escalating costs due to many lines of drug treatments, we aimed to perform a meta-analysis to assess the comparative effectiveness of various treatment options. Using these results, we then conducted a cost-effectiveness analysis for the frequently utilized agents in steroid-refractory cGVHD. We searched for studies examining tacrolimus, sirolimus, rituximab, ruxolitinib, hydroxychloroquine, imatinib, bortezomib, ibrutinib, extracorporeal photopheresis, pomalidomide, and methotrexate. Studies with a median follow-up period shorter than 6 months and enrolling fewer than 5 patients were excluded. Meta-analysis for overall and organ system-specific GVHD response (overall response [ORR], complete response [CR], and partial response [PR]) was conducted for each intervention. Cost per CR and cost per CR + PR were calculated as the quotient of the 6-month direct treatment cost by CR and CR + PR. Forty-one studies involving 1047 patients were included. CR rates ranged from 7% to 30% with rituximab and methotrexate, respectively, and ORR ranged from 30% to 85% with tacrolimus and ruxolitinib, respectively. Cost per CR ranged from US$1,187,657 with ruxolitinib to US$680 with methotrexate. Cost per ORR ranged from US$453 for methotrexate to US$242,236 for ibrutinib. The most cost-effective strategy was methotrexate for all of the organ systems. Pomalidomide was found to be the least cost-effective treatment for eye, gastrointestinal, fascia/joint, skin, and oral GVHD, and imatinib was found to be the least cost-effective treatment for liver and extracorporeal photopheresis for lung GVHD. We observed huge cost-effectiveness differences among available agents. Attention to economic issues when treating cGVHD is important to recommend how treatments should be sequenced, knowing that many patients will cycle through available agents.
Collapse
|
27
|
MacDonald KPA, Betts BC, Couriel D. Reprint of: Emerging Therapeutics for the Control of Chronic Graft-versus-Host Disease. Biol Blood Marrow Transplant 2018; 24:S7-S14. [PMID: 29425517 DOI: 10.1016/j.bbmt.2017.12.788] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 10/03/2017] [Indexed: 02/02/2023]
Affiliation(s)
- Kelli P A MacDonald
- Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
| | - Brian C Betts
- Department of Blood and Marrow Transplantation and Cellular Immunotherapy, Moffit Cancer Center, Tampa, Florida
| | - Daniel Couriel
- Department of Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
28
|
B-cell targeting in chronic graft-versus-host disease. Blood 2018; 131:1399-1405. [PMID: 29437591 DOI: 10.1182/blood-2017-11-784017] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 01/25/2018] [Indexed: 01/08/2023] Open
Abstract
Over the last decade, our understanding of the pathophysiology of chronic graft-versus-host disease (cGVHD) has improved considerably. In this spotlight, we discuss emerging insights into the pathophysiology of cGVHD with a focus on B cells. First, we summarize supporting evidence derived from mouse and human studies. Next, novel cGVHD therapy approaches that target B cells will be covered to provide treating physicians with an overview of the rationale behind the emerging armamentarium against cGVHD.
Collapse
|
29
|
Hill L, Alousi A, Kebriaei P, Mehta R, Rezvani K, Shpall E. New and emerging therapies for acute and chronic graft versus host disease. Ther Adv Hematol 2018; 9:21-46. [PMID: 29317998 PMCID: PMC5753923 DOI: 10.1177/2040620717741860] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/10/2017] [Indexed: 12/14/2022] Open
Abstract
Graft versus host disease (GVHD) remains a major cause of morbidity and mortality following allogeneic hematopoietic stem-cell transplantation (HSCT). Despite the use of prophylactic GVHD regimens, a significant proportion of transplant recipients will develop acute or chronic GVHD following HSCT. Corticosteroids are standard first-line therapy, but are only effective in roughly half of all cases with ~50% of patients going on to develop steroid-refractory disease, which increases the risk of nonrelapse mortality. While progress has been made with improvements in survival outcomes over time, corticosteroids are associated with significant toxicities, and many currently available salvage therapies are associated with increased immunosuppression, infectious complications, and potential loss of the graft versus leukemia (GVL) effect. Thus, there is an unmet need for development of newer treatment strategies for both acute and chronic GVHD to improve long-term post-transplant outcomes and quality of life for HSCT recipients. Here, we provide a concise review of major emerging therapies currently being studied in the treatment of acute and chronic GVHD.
Collapse
Affiliation(s)
- LaQuisa Hill
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
| | - Amin Alousi
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer, Houston, TX, USA
| | - Partow Kebriaei
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer, Houston, TX, USA
| | - Rohtesh Mehta
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer, Houston, TX, USA
| | - Katayoun Rezvani
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer, Houston, TX, USA
| | - Elizabeth Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 0423, Houston, TX 77030-4000, USA
| |
Collapse
|
30
|
Reddy P, Ferrara JL. Graft-Versus-Host Disease and Graft-Versus-Leukemia Responses. Hematology 2018. [DOI: 10.1016/b978-0-323-35762-3.00108-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
31
|
The Role of B Cell Targeting in Chronic Graft-Versus-Host Disease. Biomedicines 2017; 5:biomedicines5040061. [PMID: 29039818 PMCID: PMC5744085 DOI: 10.3390/biomedicines5040061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 09/20/2017] [Accepted: 10/09/2017] [Indexed: 11/17/2022] Open
Abstract
Chronic graft-versus-host disease (cGVHD) is a leading cause of late morbidity and mortality following allogeneic stem cell transplantation. Current therapies, including corticosteroids and calcineurin inhibitors, are only effective in roughly 50% of cases; therefore, new treatment strategies are under investigation. What was previously felt to be a T cell disease has more recently been shown to involve activation of both T and B cells, as well as a number of cytokines. With a better understanding of its pathophysiology have come more expansive preclinical and clinical trials, many focused on B cell signaling. This report briefly reviews our current understanding of cGVHD pathophysiology and reviews clinical and preclinical trials with B cell-targeted agents.
Collapse
|
32
|
Emerging Therapeutics for the Control of Chronic Graft-versus-Host Disease. Biol Blood Marrow Transplant 2017; 24:19-26. [PMID: 29032060 DOI: 10.1016/j.bbmt.2017.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 10/03/2017] [Indexed: 02/01/2023]
|
33
|
Lee YK, Kang M, Choi EY. TLR/MyD88-mediated Innate Immunity in Intestinal Graft-versus-Host Disease. Immune Netw 2017; 17:144-151. [PMID: 28680375 PMCID: PMC5484644 DOI: 10.4110/in.2017.17.3.144] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/07/2017] [Accepted: 04/13/2017] [Indexed: 12/13/2022] Open
Abstract
Graft-versus-host disease (GHVD) is a severe complication after allogeneic hematopoietic stem cell transplantation. The degree of inflammation in the gastrointestinal tract, a major GVHD target organ, correlates with the disease severity. Intestinal inflammation is initiated by epithelial damage caused by pre-conditioning irradiation. In combination with damages caused by donor-derived T cells, such damage disrupts the epithelial barrier and exposes innate immune cells to pathogenic and commensal intestinal bacteria, which release ligands for Toll-like receptors (TLRs). Dysbiosis of intestinal microbiota and signaling through the TLR/myeloid differentiation primary response gene 88 (MyD88) pathways contribute to the development of intestinal GVHD. Understanding the changes in the microbial flora and the roles of TLR signaling in intestinal GVHD will facilitate the development of preventative and therapeutic strategies.
Collapse
Affiliation(s)
- Young-Kwan Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Myungsoo Kang
- BioMembrane Plasticity Research Center (MPRC), Seoul National University College of Medicine, Seoul 03080, Korea
| | - Eun Young Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea.,BioMembrane Plasticity Research Center (MPRC), Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
34
|
Patriarca F, Giaccone L, Onida F, Castagna L, Sarina B, Montefusco V, Mussetti A, Mordini N, Maino E, Greco R, Peccatori J, Festuccia M, Zaja F, Volpetti S, Risitano A, Bassan R, Corradini P, Ciceri F, Fanin R, Baccarani M, Rambaldi A, Bonifazi F, Bruno B. New drugs and allogeneic hematopoietic stem cell transplantation for hematological malignancies: do they have a role in bridging, consolidating or conditioning transplantation treatment? Expert Opin Biol Ther 2017; 17:821-836. [PMID: 28506131 DOI: 10.1080/14712598.2017.1324567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Novel targeted therapies and monoclonal antibodies can be combined with allogeneic stem cell transplantation (allo-SCT) at different time-points: 1) before the transplant to reduce tumour burden, 2) as part of the conditioning in place of or in addition to conventional agents 3) after the transplant to allow long-term disease control. Areas covered: This review focuses on the current integration of new drugs with allo-SCT for the treatment of major hematological malignancies for which allo-SCT has been a widely-adopted therapy. Expert opinion: After having been used as single agent salvage treatments in relapsed patients after allo-SCT or in combination with donor lymphocyte infusions, many new drugs have also been safely employed before allo-SCT as a bridge to transplantation or after it as planned consolidation/maintenance. This era of new drugs has opened new important opportunities to 'smartly' combine 'targeted drugs and cell therapies' in new treatment paradigms that may lead to higher cure rates or longer disease control in patients with hematological malignancies.
Collapse
Affiliation(s)
- Francesca Patriarca
- a Hematology, DAME , University Hospital, University of Udine , Udine , Italy
| | - Luisa Giaccone
- b A.O.U. Città della Salute e della Scienza di Torino, Department of Oncology and Department of Molecular Biotechnology and Health Sciences , University of Torino , Torino , Italy
| | - Francesco Onida
- c Hematology, Maggiore Hospital , University of Milano, Milan , Italy
| | | | | | - Vittorio Montefusco
- e Hematology and Bone Marrow Unit , Fondazione IRCCS Istituto Nazionale dei Tumori , Milano , Italy
| | - Alberto Mussetti
- e Hematology and Bone Marrow Unit , Fondazione IRCCS Istituto Nazionale dei Tumori , Milano , Italy
| | - Nicola Mordini
- f Hematology , S. Croce e Carle Hospital , Cuneo , Italy
| | - Elena Maino
- g Hematology , Hospital of Mestre (Ve) , Mestre (Ve) , Italy
| | - Raffaella Greco
- h Hematology and Bone Marrow Transplantation Unit , IRCCS San Raffaele Scientific Institute , Milano , Italy
| | - Jacopo Peccatori
- h Hematology and Bone Marrow Transplantation Unit , IRCCS San Raffaele Scientific Institute , Milano , Italy
| | - Moreno Festuccia
- b A.O.U. Città della Salute e della Scienza di Torino, Department of Oncology and Department of Molecular Biotechnology and Health Sciences , University of Torino , Torino , Italy
| | - Francesco Zaja
- a Hematology, DAME , University Hospital, University of Udine , Udine , Italy
| | - Stefano Volpetti
- a Hematology, DAME , University Hospital, University of Udine , Udine , Italy
| | - Antonio Risitano
- i Division of Hematology , Federico II University of Naples , Naples , Italy
| | - Renato Bassan
- g Hematology , Hospital of Mestre (Ve) , Mestre (Ve) , Italy
| | - Paolo Corradini
- e Hematology and Bone Marrow Unit , Fondazione IRCCS Istituto Nazionale dei Tumori , Milano , Italy
| | | | - Renato Fanin
- a Hematology, DAME , University Hospital, University of Udine , Udine , Italy
| | - Michele Baccarani
- k Hematology , University-Hospital S. Orsola-Malpighi, University of Bologna , Bologna , Italy
| | - Alessandro Rambaldi
- l Hematology and Bone Marrow Transplant Unit, Azienda Ospedaliera Papa Giovanni XXIII, Bergamo , University of Milan , Milan , Italy
| | - Francesca Bonifazi
- k Hematology , University-Hospital S. Orsola-Malpighi, University of Bologna , Bologna , Italy
| | - Benedetto Bruno
- b A.O.U. Città della Salute e della Scienza di Torino, Department of Oncology and Department of Molecular Biotechnology and Health Sciences , University of Torino , Torino , Italy
| |
Collapse
|
35
|
Cocito F, Mangiacavalli S, Bernasconi P, Colombo AA, Caldera D, Cartia CS, Ganzetti M, Troletti D, Cazzola M, Corso A. Long-term control of extensive refractory chronic graft versus host disease in a multiple myeloma relapsing after allogeneic transplant. A case report. Leuk Lymphoma 2017; 58:2770-2771. [PMID: 28287281 DOI: 10.1080/10428194.2017.1300890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Federica Cocito
- a Division of Hematology , IRCCS Fondazione Policlinico San Matteo , Pavia , Italy
| | - Silvia Mangiacavalli
- a Division of Hematology , IRCCS Fondazione Policlinico San Matteo , Pavia , Italy
| | - Paolo Bernasconi
- a Division of Hematology , IRCCS Fondazione Policlinico San Matteo , Pavia , Italy
| | - Anna A Colombo
- a Division of Hematology , IRCCS Fondazione Policlinico San Matteo , Pavia , Italy
| | - Daniela Caldera
- a Division of Hematology , IRCCS Fondazione Policlinico San Matteo , Pavia , Italy
| | - Claudio S Cartia
- a Division of Hematology , IRCCS Fondazione Policlinico San Matteo , Pavia , Italy
| | - Maya Ganzetti
- a Division of Hematology , IRCCS Fondazione Policlinico San Matteo , Pavia , Italy
| | - Daniela Troletti
- a Division of Hematology , IRCCS Fondazione Policlinico San Matteo , Pavia , Italy
| | - Mario Cazzola
- a Division of Hematology , IRCCS Fondazione Policlinico San Matteo , Pavia , Italy
| | - Alessandro Corso
- a Division of Hematology , IRCCS Fondazione Policlinico San Matteo , Pavia , Italy
| |
Collapse
|
36
|
Cooke KR, Luznik L, Sarantopoulos S, Hakim FT, Jagasia M, Fowler DH, van den Brink MRM, Hansen JA, Parkman R, Miklos DB, Martin PJ, Paczesny S, Vogelsang G, Pavletic S, Ritz J, Schultz KR, Blazar BR. The Biology of Chronic Graft-versus-Host Disease: A Task Force Report from the National Institutes of Health Consensus Development Project on Criteria for Clinical Trials in Chronic Graft-versus-Host Disease. Biol Blood Marrow Transplant 2017; 23:211-234. [PMID: 27713092 PMCID: PMC6020045 DOI: 10.1016/j.bbmt.2016.09.023] [Citation(s) in RCA: 274] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 09/30/2016] [Indexed: 12/12/2022]
Abstract
Chronic graft-versus-host disease (GVHD) is the leading cause of late, nonrelapse mortality and disability in allogeneic hematopoietic cell transplantation recipients and a major obstacle to improving outcomes. The biology of chronic GVHD remains enigmatic, but understanding the underpinnings of the immunologic mechanisms responsible for the initiation and progression of disease is fundamental to developing effective prevention and treatment strategies. The goals of this task force review are as follows: This document is intended as a review of our understanding of chronic GVHD biology and therapies resulting from preclinical studies, and as a platform for developing innovative clinical strategies to prevent and treat chronic GVHD.
Collapse
Affiliation(s)
- Kenneth R Cooke
- Department of Oncology, Sidney Kimmel Cancer Center at Johns Hopkins Hospital, Baltimore, Maryland.
| | - Leo Luznik
- Department of Oncology, Sidney Kimmel Cancer Center at Johns Hopkins Hospital, Baltimore, Maryland
| | - Stefanie Sarantopoulos
- Division of Hematological Malignancies and Cellular Therapy, Department of Immunology and Duke Cancer Institute, Duke University, Durham, North Carolina
| | - Frances T Hakim
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Madan Jagasia
- Division of Hematology-Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Daniel H Fowler
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Marcel R M van den Brink
- Departments of Immunology and Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - John A Hansen
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Department of Medicine, University of Washington, Seattle, Washington
| | - Robertson Parkman
- Division of Pediatric Stem Cell Transplantation and Regenerative Medicine, Stanford University, Palo Alto, California
| | - David B Miklos
- Division of Blood and Marrow Transplantation, Stanford University, Palo Alto, California
| | - Paul J Martin
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Department of Medicine, University of Washington, Seattle, Washington
| | - Sophie Paczesny
- Departments of Pediatrics and Immunology, Wells Center for Pediatric Research, Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana
| | - Georgia Vogelsang
- Department of Oncology, Sidney Kimmel Cancer Center at Johns Hopkins Hospital, Baltimore, Maryland
| | - Steven Pavletic
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Jerome Ritz
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Kirk R Schultz
- Michael Cuccione Childhood Cancer Research Program, Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Bruce R Blazar
- Masonic Cancer Center and Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
37
|
Fowler KA, Jania CM, Tilley SL, Panoskaltsis-Mortari A, Baldwin AS, Serody JS, Coghill JM. Targeting the Canonical Nuclear Factor-κB Pathway with a High-Potency IKK2 Inhibitor Improves Outcomes in a Mouse Model of Idiopathic Pneumonia Syndrome. Biol Blood Marrow Transplant 2017; 23:569-580. [PMID: 28161607 DOI: 10.1016/j.bbmt.2017.01.083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/20/2017] [Indexed: 10/20/2022]
Abstract
Idiopathic pneumonia syndrome (IPS) is a noninfectious inflammatory disorder of the lungs that occurs most often after fully myeloablative allogeneic hematopoietic stem cell transplantation (HSCT). IPS can be severe and is associated with high 1-year mortality rates despite existing therapies. The canonical nuclear factor-(NF) κB signaling pathway has previously been linked to several inflammatory disorders of the lung, including asthma and lung allograft rejection. It has never been specifically targeted as a novel IPS treatment approach, however. Here, we report that the IκB kinase 2 (IKK2) antagonist BAY 65-5811 or "compound A," a highly potent and specific inhibitor of the NF-κB pathway, was able to improve median survival times and recipient oxygenation in a well-described mouse model of IPS. Compound A impaired the production of the proinflammatory chemokines CCL2 and CCL5 within the host lung after transplantation. This resulted in significantly lower numbers of donor lung infiltrating CD4+ and CD8+ T cells and reduced pulmonary inflammatory cytokine production after allograft. Compound A's beneficial effects appeared to be specific for limiting pulmonary injury, as the drug was unable to improve outcomes in a B6 into B6D2 haplotype-matched murine HSCT model in which recipient mice succumb to lethal acute graft-versus-host disease of the gastrointestinal tract. Collectively, our data suggest that the targeting of the canonical NF-κB pathway with a small molecule IKK2 antagonist may represent an effective and novel therapy for the specific management of acute lung injury that can occur after allogeneic HSCT.
Collapse
Affiliation(s)
- Kenneth A Fowler
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Corey M Jania
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Stephen L Tilley
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | | - Albert S Baldwin
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jonathan S Serody
- Lineberger Comprehensive Cancer Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - James M Coghill
- Lineberger Comprehensive Cancer Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
| |
Collapse
|
38
|
Pai CCS, Khuat LT, Chen M, Murphy WJ, Abedi M. Therapeutic Effects of a NEDD8-Activating Enzyme Inhibitor, Pevonedistat, on Sclerodermatous Graft-versus-Host Disease in Mice. Biol Blood Marrow Transplant 2017; 23:30-37. [PMID: 27815049 PMCID: PMC5469294 DOI: 10.1016/j.bbmt.2016.10.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 10/26/2016] [Indexed: 01/23/2023]
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is the sole treatment option for highly malignant hematologic disease; however, the major complication-graft-versus-host disease (GVHD)-still hinders its clinical application. In addition, chronic GVHD remains the major cause of long-term morbidity and mortality after allo-HSCT. Previously we showed that bortezomib, a proteasome inhibitor, can ameliorate the sclerodermatous GVHD response while maintaining graft-versus-tumor (GVT) effects. Here we report that pevonedistat (MLN4924), an inhibitor of the Nedd8-activating enzyme, which functions upstream of the proteasome in the ubiquitin-proteasome pathway, can also show similar protective effects. Recipient mice treated with pevonedistat demonstrated inhibitory effects on sclerodermatous GVHD pathogenesis. The beneficial effect of pevonedistat was observed to be temporally dependent. Whereas treatment given at the time of allo-HSCT administration or before the onset of symptoms worsened the scleroderma response, therapeutic administration starting at 20 days post-transplantation ameliorated the sclerodermatous GVHD. Flow cytometry analysis revealed differential effects on immune subsets, with inhibition of only antigen-presenting cells and not of donor T cells. Finally, pevonedistat preserved GVT effects in a sclerodermatous murine model of B cell lymphoma. Taken together, these data suggest that inhibition of neddylation with pevonedistat can serve as an alternative approach for the treatment of GVHD while maintaining GVT effects in a murine model of sclerodermatous GVHD.
Collapse
Affiliation(s)
- Chien-Chun Steven Pai
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, California
| | - Lam T Khuat
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, California
| | - Mingyi Chen
- Department of Pathology, School of Medicine, University of California, Davis, Sacramento, California
| | - William J Murphy
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, California; Department of Internal Medicine, School of Medicine, University of California, Davis, Sacramento, California.
| | - Mehrdad Abedi
- Department of Internal Medicine, School of Medicine, University of California, Davis, Sacramento, California
| |
Collapse
|
39
|
Im A, Hakim FT, Pavletic SZ. Novel targets in the treatment of chronic graft-versus-host disease. Leukemia 2016; 31:543-554. [PMID: 27899803 DOI: 10.1038/leu.2016.367] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/14/2016] [Accepted: 11/16/2016] [Indexed: 12/19/2022]
Abstract
Despite advances that have improved survival after allogeneic hematopoietic stem cell transplantation (HCT), chronic graft-versus-host disease (GVHD) remains a leading cause of late morbidity and mortality after transplant. Current treatment options show limited efficacy in steroid-refractory disease, and there exists a paucity of robust data to guide management decisions. Lack of United States Food and Drug Administration (FDA)- or European Medicines Agency (EMA)-approved agents in GVHD underscore the importance of developing novel therapies. Better understanding of the biology of chronic GVHD has provided novel targets for treatment, and structured guidelines in diagnosis and in clinical trial design have provided a common language and pathways for research in this area. These, combined with the surge of drug development in Oncology and Immunology, are factors that have contributed to the accelerating field of drug development and clinical research in chronic GVHD. In these exciting times, it is possible to foresee long awaited advances in the treatment of this devastating complication of HCT. This review will summarize the ongoing clinical development for novel therapies in chronic GVHD.
Collapse
Affiliation(s)
- A Im
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh Cancer Institute and UPMC Cancer Centers, Pittsburgh, PA, USA.,Experimental Transplantation and Immunology Branch, National Cancer Institute, Center for Cancer Research, National Institutes of Health, Bethesda, MD, USA
| | - F T Hakim
- Experimental Transplantation and Immunology Branch, National Cancer Institute, Center for Cancer Research, National Institutes of Health, Bethesda, MD, USA
| | - S Z Pavletic
- Experimental Transplantation and Immunology Branch, National Cancer Institute, Center for Cancer Research, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
40
|
Chronic graft-versus-host disease: biological insights from preclinical and clinical studies. Blood 2016; 129:13-21. [PMID: 27821504 DOI: 10.1182/blood-2016-06-686618] [Citation(s) in RCA: 195] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 07/06/2016] [Indexed: 12/15/2022] Open
Abstract
With the increasing use of mismatched, unrelated, and granulocyte colony-stimulating factor-mobilized peripheral blood stem cell donor grafts and successful treatment of older recipients, chronic graft-versus-host disease (cGVHD) has emerged as the major cause of nonrelapse mortality and morbidity. cGVHD is characterized by lichenoid changes and fibrosis that affects a multitude of tissues, compromising organ function. Beyond steroids, effective treatment options are limited. Thus, new strategies to both prevent and treat disease are urgently required. Over the last 5 years, our understanding of cGVHD pathogenesis and basic biology, born out of a combination of mouse models and correlative clinical studies, has radically improved. We now understand that cGVHD is initiated by naive T cells, differentiating predominantly within highly inflammatory T-helper 17/T-cytotoxic 17 and T-follicular helper paradigms with consequent thymic damage and impaired donor antigen presentation in the periphery. This leads to aberrant T- and B-cell activation and differentiation, which cooperate to generate antibody-secreting cells that cause the deposition of antibodies to polymorphic recipient antigens (ie, alloantibody) or nonpolymorphic antigens common to both recipient and donor (ie, autoantibody). It is now clear that alloantibody can, in concert with colony-stimulating factor 1 (CSF-1)-dependent donor macrophages, induce a transforming growth factor β-high environment locally within target tissue that results in scleroderma and bronchiolitis obliterans, diagnostic features of cGVHD. These findings have yielded a raft of potential new therapeutics, centered on naive T-cell depletion, interleukin-17/21 inhibition, kinase inhibition, regulatory T-cell restoration, and CSF-1 inhibition. This new understanding of cGVHD finally gives hope that effective therapies are imminent for this devastating transplant complication.
Collapse
|
41
|
Natarajan P, Liu J, Santhanakrishnan M, Gibb DR, Slater LM, Hendrickson JE. Bortezomib decreases the magnitude of a primary humoral immune response to transfused red blood cells in a murine model. Transfusion 2016; 57:82-92. [PMID: 27734515 DOI: 10.1111/trf.13864] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/11/2016] [Accepted: 08/19/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND Few therapeutic options currently exist to prevent or to mitigate transfusion-associated red blood cell (RBC) alloimmunization. We hypothesized that bortezomib, a proteasome inhibitor currently being utilized for HLA alloantibody and ADAMTS13 autoantibody reduction, may be beneficial in a transfusion setting. Herein, we utilized a reductionist murine model to test our hypothesis that bortezomib would decrease RBC alloimmune responses. STUDY DESIGN AND METHODS Wild-type mice were treated with bortezomib or saline and transfused with murine RBCs expressing the human KEL glycoprotein. Levels of anti-KEL immunoglobulins in transfusion recipients were measured by flow cytometry. The impact of bortezomib treatment on recipient plasma cells (PCs) and other immune cells was also assessed by flow cytometry and immunofluorescence. RESULTS After bortezomib treatment, mice had a 50% reduction in splenic white blood cells and a targeted reduction in marrow PCs. Mice treated with bortezomib before the transfusion of KEL RBCs became alloimmunized in three of three experiments, although their serum anti-KEL IgG levels were 2.6-fold lower than those in untreated mice. Once a primary antibody response was established, bortezomib treatment did not prevent an anamnestic response from occurring. CONCLUSION To the extent that these findings are generalizable to other RBC antigens and to humans, bortezomib monotherapy is unlikely to be of significant clinical benefit in a transfusion setting where complete prevention of alloimmunization is desirable. Given the impact on PCs, however, it remains plausible that bortezomib therapy may be beneficial for RBC alloimmunization prevention or mitigation if used in combination with other immunomodulatory therapies.
Collapse
Affiliation(s)
- Prabitha Natarajan
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Jingchun Liu
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut
| | | | - David R Gibb
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Lewis M Slater
- Hematology-Oncology Section, Medicine Health Care Group Long Beach Veterans Affairs, and Division of Hematology-Oncology and Department of Medicine, University of California, Irvine, California
| | - Jeanne E Hendrickson
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut.,Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
42
|
Singh PK, Fan H, Jiang X, Shi L, Nathan CF, Lin G. Immunoproteasome β5i-Selective Dipeptidomimetic Inhibitors. ChemMedChem 2016; 11:2127-2131. [PMID: 27561172 PMCID: PMC5760267 DOI: 10.1002/cmdc.201600384] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Indexed: 12/22/2022]
Abstract
N,C-capped dipeptides belong to a class of noncovalent proteasome inhibitors. Herein we report that the insertion of a β-amino acid into N,C-capped dipeptides markedly decreases their inhibitory potency against human constitutive proteasome β5c, while maintaining potent inhibitory activity against human immunoproteasome β5i, thereby achieving thousands-fold selectivity for β5i over β5c. Structure-activity relationship studies revealed that β5c does not tolerate the β-amino acid based dipeptidomimetics as does β5i. In vitro, one such compound was found to inhibit human T cell proliferation. Compounds of this class may have potential as therapeutics for autoimmune and inflammatory diseases with less mechanism-based cytotoxicity than agents that also inhibit the constitutive proteasome.
Collapse
Affiliation(s)
- Pradeep K Singh
- Department of Biochemistry, The Abby and Howard Milstein Synthetic Chemistry Core Facility, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
| | - Hao Fan
- Department of Microbiology & Immunology, Weill Cornell Medical College, 1300 York Avenue, Box 62, New York, NY, 10065, USA
| | - Xiuju Jiang
- Department of Microbiology & Immunology, Weill Cornell Medical College, 1300 York Avenue, Box 62, New York, NY, 10065, USA
| | - Lei Shi
- Department of Physiology and Biophysics, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
| | - Carl F Nathan
- Department of Microbiology & Immunology, Weill Cornell Medical College, 1300 York Avenue, Box 62, New York, NY, 10065, USA
| | - Gang Lin
- Department of Microbiology & Immunology, Weill Cornell Medical College, 1300 York Avenue, Box 62, New York, NY, 10065, USA.
| |
Collapse
|
43
|
Citrin R, Foster JB, Teachey DT. The role of proteasome inhibition in the treatment of malignant and non-malignant hematologic disorders. Expert Rev Hematol 2016; 9:873-89. [DOI: 10.1080/17474086.2016.1216311] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
44
|
Penna F, Bonetto A, Aversa Z, Minero VG, Rossi Fanelli F, Costelli P, Muscaritoli M. Effect of the specific proteasome inhibitor bortezomib on cancer-related muscle wasting. J Cachexia Sarcopenia Muscle 2016; 7:345-54. [PMID: 27239411 PMCID: PMC4864285 DOI: 10.1002/jcsm.12050] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 05/04/2015] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Muscle wasting, a prominent feature of cancer cachexia, is mainly caused by sustained protein hypercatabolism. The enhanced muscle protein degradation rates rely on the activity of different proteolytic systems, although the Adenosine triphosphate (ATP)-ubiquitin-proteasome-dependent pathway and autophagy have been shown to play a pivotal role. Bortezomib is a potent reversible and selective proteasome and NF-κB inhibitor approved for the clinical use, which has been shown to be effective in preventing muscle wasting in different catabolic conditions. The aim of the present study has been to investigate whether pharmacological inhibition of proteasome by bortezomib may prevent skeletal muscle wasting in experimental cancer cachexia. METHODS Cancer cachexia was induced in rats by intraperitoneal injection of Yoshida AH-130 ascites hepatoma cells and in mice by subcutaneous inoculation of C26 carcinoma cells. Animals were then further randomized to receive bortezomib. The AH-130 hosts were weighted and sacrificed under anaesthesia, on Days 3, 4, 5, and 7 after tumour inoculation, while C26-bearing mice were weighted and sacrificed under anaesthesia 12 days after tumour transplantation. NF-κB and proteasome activation, MuRF1 and atrogin-1 mRNA expression and beclin-1 protein levels were evaluated in the gastrocnemius of controls and AH-130 hosts. RESULTS Bortezomib administration in the AH-130 hosts, although able to reduce proteasome and NF-κB DNA-binding activity in the skeletal muscle on Day 7 after tumour transplantation, did not prevent body weight loss and muscle wasting. In addition, bortezomib exerted a transient toxicity, as evidenced by the reduced food intake and by the increase in NF-κB DNA-binding activity in the AH-130 hosts 3 days after tumour transplantation. Beclin-1 protein levels were increased by bortezomib treatment in Day 3 controls but were unchanged on both Days 3 and 7 in the AH-130 hosts, suggesting that an early compensatory induction of autophagy may exist in healthy but not in tumour-bearing animals. Regarding C26-bearing mice, bortezomib did not prevent as well body and muscle weight loss 12 days after tumour implantation. CONCLUSIONS The results obtained suggest that proteasome inhibition by bortezomib is not able to prevent muscle wasting in experimental cancer cachexia. Further studies are needed to address the issue whether a different dosage of bortezomib alone or in combination with other drugs modulating different molecular pathways may effectively prevent muscle wasting during cancer cachexia.
Collapse
Affiliation(s)
- Fabio Penna
- Department of Clinical and Biological SciencesUniversity of TurinTurinItaly
| | - Andrea Bonetto
- Department of SurgeryIndiana University School of Medicine, IUPUIIndianapolisINUSA
| | - Zaira Aversa
- Department of Clinical Medicine, SapienzaUniversity of RomeRomeItaly
| | - Valerio Giacomo Minero
- Center of Experimental Research and Medical Studies (CeRMS)Città della Salute e della ScienzaTurinItaly
- Department of Molecular Biotechnology and Health SciencesUniversity of TurinTurinItaly
| | | | - Paola Costelli
- Department of Clinical and Biological SciencesUniversity of TurinTurinItaly
| | | |
Collapse
|
45
|
Al-Homsi AS, Feng Y, Duffner U, Al Malki MM, Goodyke A, Cole K, Muilenburg M, Abdel-Mageed A. Bortezomib for the prevention and treatment of graft-versus-host disease after allogeneic hematopoietic stem cell transplantation. Exp Hematol 2016; 44:771-777. [PMID: 27224851 DOI: 10.1016/j.exphem.2016.05.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 05/06/2016] [Indexed: 01/13/2023]
Abstract
Allogeneic hematopoietic stem cell transplantation is the standard treatment for a variety of benign and malignant conditions. However, graft-versus-host disease (GvHD) continues to present a major barrier to the success and wide applicability of this procedure. Although current GvHD prevention and treatment regimens exclusively target T cells, bortezomib, a reversible proteasome inhibitor, possesses unique immune regulatory activities that span a wide variety of cellular processes of T and dendritic cells essential for the development of GvHD. Herein, we review the current understanding of the effects of bortezomib in vitro and in animal models and summarize the clinical data relevant to its use in the prevention and treatment of GvHD. We conclude with an outline of the remaining challenges and opportunities to optimize bortezomib's potential role in this setting.
Collapse
Affiliation(s)
- Ahmad Samer Al-Homsi
- Blood and Marrow Transplantation Program, Spectrum Health, Grand Rapids, MI, USA; Michigan State University College of Human Medicine, Grand Rapids, MI, USA.
| | - Yuxin Feng
- Blood and Marrow Transplantation Program, Spectrum Health, Grand Rapids, MI, USA
| | - Ulrich Duffner
- Blood and Marrow Transplantation Program, Spectrum Health, Grand Rapids, MI, USA; Michigan State University College of Human Medicine, Grand Rapids, MI, USA
| | - Monzr M Al Malki
- Department of Hematology and Hematopoietic Stem Cell Transplantation, City of Hope, Duarte, CA, USA
| | - Austin Goodyke
- Blood and Marrow Transplantation Program, Spectrum Health, Grand Rapids, MI, USA
| | - Kelli Cole
- Blood and Marrow Transplantation Program, Spectrum Health, Grand Rapids, MI, USA
| | - Marlee Muilenburg
- Blood and Marrow Transplantation Program, Spectrum Health, Grand Rapids, MI, USA
| | - Aly Abdel-Mageed
- Blood and Marrow Transplantation Program, Spectrum Health, Grand Rapids, MI, USA; Michigan State University College of Human Medicine, Grand Rapids, MI, USA
| |
Collapse
|
46
|
Gregson AL, Hoji A, Injean P, Poynter ST, Briones C, Palchevskiy V, Weigt SS, Shino MY, Derhovanessian A, Sayah D, Saggar R, Ross D, Ardehali A, Lynch JP, Belperio JA. Altered Exosomal RNA Profiles in Bronchoalveolar Lavage from Lung Transplants with Acute Rejection. Am J Respir Crit Care Med 2016. [PMID: 26308930 DOI: 10.1164/rccm.201503-0558oc].] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE The mechanism by which acute allograft rejection leads to chronic rejection remains poorly understood despite its common occurrence. Exosomes, membrane vesicles released from cells within the lung allograft, contain a diverse array of biomolecules that closely reflect the biologic state of the cell and tissue from which they are released. Exosome transcriptomes may provide a better understanding of the rejection process. Furthermore, biomarkers originating from this transcriptome could provide timely and sensitive detection of acute cellular rejection (AR), reducing the incidence of severe AR and chronic lung allograft dysfunction and improving outcomes. OBJECTIVES To provide an in-depth analysis of the bronchoalveolar lavage fluid exosomal shuttle RNA population after lung transplantation and evaluate for differential expression between acute AR and quiescence. METHODS Serial bronchoalveolar lavage specimens were ultracentrifuged to obtain the exosomal pellet for RNA extraction, on which RNA-Seq was performed. MEASUREMENTS AND MAIN RESULTS AR demonstrates an intense inflammatory environment, skewed toward both innate and adaptive immune responses. Novel, potential upstream regulators identified offer potential therapeutic targets. CONCLUSIONS Our findings validate bronchoalveolar lavage fluid exosomal shuttle RNA as a source for understanding the pathophysiology of AR and for biomarker discovery in lung transplantation.
Collapse
Affiliation(s)
- Aric L Gregson
- 1 Division of Infectious Diseases, Department of Medicine
| | - Aki Hoji
- 2 Department of Transplantation, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Patil Injean
- 3 Division of Pulmonary, Critical Care, Allergy, and Immunology, Department of Medicine, and
| | - Steven T Poynter
- 3 Division of Pulmonary, Critical Care, Allergy, and Immunology, Department of Medicine, and
| | - Claudia Briones
- 3 Division of Pulmonary, Critical Care, Allergy, and Immunology, Department of Medicine, and
| | - Vyacheslav Palchevskiy
- 3 Division of Pulmonary, Critical Care, Allergy, and Immunology, Department of Medicine, and
| | - S Sam Weigt
- 3 Division of Pulmonary, Critical Care, Allergy, and Immunology, Department of Medicine, and
| | - Michael Y Shino
- 3 Division of Pulmonary, Critical Care, Allergy, and Immunology, Department of Medicine, and
| | - Ariss Derhovanessian
- 3 Division of Pulmonary, Critical Care, Allergy, and Immunology, Department of Medicine, and
| | - David Sayah
- 3 Division of Pulmonary, Critical Care, Allergy, and Immunology, Department of Medicine, and
| | - Rajan Saggar
- 3 Division of Pulmonary, Critical Care, Allergy, and Immunology, Department of Medicine, and
| | - David Ross
- 3 Division of Pulmonary, Critical Care, Allergy, and Immunology, Department of Medicine, and
| | - Abbas Ardehali
- 4 Division of Cardiothoracic Surgery, Department of Surgery, University of California, Los Angeles, California; and
| | - Joseph P Lynch
- 3 Division of Pulmonary, Critical Care, Allergy, and Immunology, Department of Medicine, and
| | - John A Belperio
- 3 Division of Pulmonary, Critical Care, Allergy, and Immunology, Department of Medicine, and
| |
Collapse
|
47
|
Gregson AL, Hoji A, Injean P, Poynter ST, Briones C, Palchevskiy V, Weigt SS, Shino MY, Derhovanessian A, Sayah D, Saggar R, Ross D, Ardehali A, Lynch JP, Belperio JA. Altered Exosomal RNA Profiles in Bronchoalveolar Lavage from Lung Transplants with Acute Rejection. Am J Respir Crit Care Med 2016; 192:1490-503. [PMID: 26308930 DOI: 10.1164/rccm.201503-0558oc] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
RATIONALE The mechanism by which acute allograft rejection leads to chronic rejection remains poorly understood despite its common occurrence. Exosomes, membrane vesicles released from cells within the lung allograft, contain a diverse array of biomolecules that closely reflect the biologic state of the cell and tissue from which they are released. Exosome transcriptomes may provide a better understanding of the rejection process. Furthermore, biomarkers originating from this transcriptome could provide timely and sensitive detection of acute cellular rejection (AR), reducing the incidence of severe AR and chronic lung allograft dysfunction and improving outcomes. OBJECTIVES To provide an in-depth analysis of the bronchoalveolar lavage fluid exosomal shuttle RNA population after lung transplantation and evaluate for differential expression between acute AR and quiescence. METHODS Serial bronchoalveolar lavage specimens were ultracentrifuged to obtain the exosomal pellet for RNA extraction, on which RNA-Seq was performed. MEASUREMENTS AND MAIN RESULTS AR demonstrates an intense inflammatory environment, skewed toward both innate and adaptive immune responses. Novel, potential upstream regulators identified offer potential therapeutic targets. CONCLUSIONS Our findings validate bronchoalveolar lavage fluid exosomal shuttle RNA as a source for understanding the pathophysiology of AR and for biomarker discovery in lung transplantation.
Collapse
Affiliation(s)
- Aric L Gregson
- 1 Division of Infectious Diseases, Department of Medicine
| | - Aki Hoji
- 2 Department of Transplantation, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Patil Injean
- 3 Division of Pulmonary, Critical Care, Allergy, and Immunology, Department of Medicine, and
| | - Steven T Poynter
- 3 Division of Pulmonary, Critical Care, Allergy, and Immunology, Department of Medicine, and
| | - Claudia Briones
- 3 Division of Pulmonary, Critical Care, Allergy, and Immunology, Department of Medicine, and
| | - Vyacheslav Palchevskiy
- 3 Division of Pulmonary, Critical Care, Allergy, and Immunology, Department of Medicine, and
| | - S Sam Weigt
- 3 Division of Pulmonary, Critical Care, Allergy, and Immunology, Department of Medicine, and
| | - Michael Y Shino
- 3 Division of Pulmonary, Critical Care, Allergy, and Immunology, Department of Medicine, and
| | - Ariss Derhovanessian
- 3 Division of Pulmonary, Critical Care, Allergy, and Immunology, Department of Medicine, and
| | - David Sayah
- 3 Division of Pulmonary, Critical Care, Allergy, and Immunology, Department of Medicine, and
| | - Rajan Saggar
- 3 Division of Pulmonary, Critical Care, Allergy, and Immunology, Department of Medicine, and
| | - David Ross
- 3 Division of Pulmonary, Critical Care, Allergy, and Immunology, Department of Medicine, and
| | - Abbas Ardehali
- 4 Division of Cardiothoracic Surgery, Department of Surgery, University of California, Los Angeles, California; and
| | - Joseph P Lynch
- 3 Division of Pulmonary, Critical Care, Allergy, and Immunology, Department of Medicine, and
| | - John A Belperio
- 3 Division of Pulmonary, Critical Care, Allergy, and Immunology, Department of Medicine, and
| |
Collapse
|
48
|
Matsukuma KE, Wei D, Sun K, Ramsamooj R, Chen M. Diagnosis and differential diagnosis of hepatic graft versus host disease (GVHD). J Gastrointest Oncol 2016; 7:S21-31. [PMID: 27034810 DOI: 10.3978/j.issn.2078-6891.2015.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Graft versus host disease (GVHD) is a common complication following allogeneic hematopoietic cell transplantation (HCT) that typically manifests as injury to the skin, gastrointestinal mucosa, and liver. In some cases, hepatic GVHD may be histologically indistinguishable from other disorders such as infection and drug-induced liver injury (DILI). Additionally, clinical signs and symptoms are frequently confounded by the superimposed effects of pretransplant chemoradiotherapy, immunotherapy (IT) (targeted to the underlying malignancy), GVHD prophylaxis, and infection. Thus, careful attention to and correlation with clinical findings, laboratory values, and histologic features is essential for diagnosis. This review, aimed at the practicing pathologist, will discuss current clinical and histologic criteria for GVHD, the approach to diagnosis of hepatic GVHD, and features helpful for distinguishing it from other entities in the differential diagnosis.
Collapse
Affiliation(s)
- Karen E Matsukuma
- 1 Department of Pathology and Laboratory Medicine, University of California, Davis Medical Center, Sacramento, CA 95817, USA ; 2 Department of Hematology, Zhengzhou University People's Hospital, Zhengzhou 450000, China
| | - Dongguang Wei
- 1 Department of Pathology and Laboratory Medicine, University of California, Davis Medical Center, Sacramento, CA 95817, USA ; 2 Department of Hematology, Zhengzhou University People's Hospital, Zhengzhou 450000, China
| | - Kai Sun
- 1 Department of Pathology and Laboratory Medicine, University of California, Davis Medical Center, Sacramento, CA 95817, USA ; 2 Department of Hematology, Zhengzhou University People's Hospital, Zhengzhou 450000, China
| | - Rajendra Ramsamooj
- 1 Department of Pathology and Laboratory Medicine, University of California, Davis Medical Center, Sacramento, CA 95817, USA ; 2 Department of Hematology, Zhengzhou University People's Hospital, Zhengzhou 450000, China
| | - Mingyi Chen
- 1 Department of Pathology and Laboratory Medicine, University of California, Davis Medical Center, Sacramento, CA 95817, USA ; 2 Department of Hematology, Zhengzhou University People's Hospital, Zhengzhou 450000, China
| |
Collapse
|
49
|
Sanges S, Guerrier T, Launay D, Lefèvre G, Labalette M, Forestier A, Sobanski V, Corli J, Hauspie C, Jendoubi M, Yakoub-Agha I, Hatron PY, Hachulla E, Dubucquoi S. Role of B cells in the pathogenesis of systemic sclerosis. Rev Med Interne 2016; 38:113-124. [PMID: 27020403 DOI: 10.1016/j.revmed.2016.02.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 02/17/2016] [Accepted: 02/27/2016] [Indexed: 12/28/2022]
Abstract
Systemic sclerosis (SSc) is an orphan disease characterized by progressive fibrosis of the skin and internal organs. Aside from vasculopathy and fibrotic processes, its pathogenesis involves an aberrant activation of immune cells, among which B cells seem to play a significant role. Indeed, B cell homeostasis is disturbed during SSc: the memory subset is activated and displays an increased susceptibility to apoptosis, which is responsible for their decreased number. This chronic loss of B cells enhances bone marrow production of the naïve subset that accounts for their increased number in peripheral blood. This permanent activation state can be explained mainly by two mechanisms: a dysregulation of B cell receptor (BCR) signaling, and an overproduction of B cell survival signals, B cell activating factor (BAFF) and a proliferation-inducing ligand (APRIL). These disturbances of B cell homeostasis induce several functional anomalies that participate in the inflammatory and fibrotic events observed during SSc: autoantibody production (some being directly pathogenic); secretion of pro-inflammatory and pro-fibrotic cytokines (interleukin-6); direct cooperation with other SSc-involved cells [fibroblasts, through transforming growth factor-β (TGF-β) signaling, and T cells]. These data justify the evaluation of anti-B cell strategies as therapeutic options for SSc, such as B cell depletion or blockage of B cell survival signaling.
Collapse
Affiliation(s)
- S Sanges
- Université de Lille, U995, Lille Inflammation Research International Center (LIRIC), 59000 Lille, France; Inserm, U995, 59000 Lille, France; CHU de Lille, département de médecine interne et immunologie clinique, 59000 Lille, France; Centre national de référence maladies systémiques et auto-immunes rares (sclérodermie systémique), 59000 Lille, France; FHU Immune-Mediated Inflammatory Diseases and Targeted Therapies, 59000 Lille, France
| | - T Guerrier
- Université de Lille, U995, Lille Inflammation Research International Center (LIRIC), 59000 Lille, France; Inserm, U995, 59000 Lille, France; CHU de Lille, Centre de biologie-pathologie-génétique, institut d'Immunologie, 59000 Lille, France
| | - D Launay
- Université de Lille, U995, Lille Inflammation Research International Center (LIRIC), 59000 Lille, France; Inserm, U995, 59000 Lille, France; CHU de Lille, département de médecine interne et immunologie clinique, 59000 Lille, France; Centre national de référence maladies systémiques et auto-immunes rares (sclérodermie systémique), 59000 Lille, France; FHU Immune-Mediated Inflammatory Diseases and Targeted Therapies, 59000 Lille, France.
| | - G Lefèvre
- Université de Lille, U995, Lille Inflammation Research International Center (LIRIC), 59000 Lille, France; Inserm, U995, 59000 Lille, France; CHU de Lille, département de médecine interne et immunologie clinique, 59000 Lille, France; Centre national de référence maladies systémiques et auto-immunes rares (sclérodermie systémique), 59000 Lille, France; FHU Immune-Mediated Inflammatory Diseases and Targeted Therapies, 59000 Lille, France; CHU de Lille, Centre de biologie-pathologie-génétique, institut d'Immunologie, 59000 Lille, France
| | - M Labalette
- Université de Lille, U995, Lille Inflammation Research International Center (LIRIC), 59000 Lille, France; Inserm, U995, 59000 Lille, France; FHU Immune-Mediated Inflammatory Diseases and Targeted Therapies, 59000 Lille, France; CHU de Lille, Centre de biologie-pathologie-génétique, institut d'Immunologie, 59000 Lille, France
| | - A Forestier
- Université de Lille, U995, Lille Inflammation Research International Center (LIRIC), 59000 Lille, France; Inserm, U995, 59000 Lille, France; CHU de Lille, département de médecine interne et immunologie clinique, 59000 Lille, France; Centre national de référence maladies systémiques et auto-immunes rares (sclérodermie systémique), 59000 Lille, France; FHU Immune-Mediated Inflammatory Diseases and Targeted Therapies, 59000 Lille, France
| | - V Sobanski
- Université de Lille, U995, Lille Inflammation Research International Center (LIRIC), 59000 Lille, France; Inserm, U995, 59000 Lille, France; CHU de Lille, département de médecine interne et immunologie clinique, 59000 Lille, France; Centre national de référence maladies systémiques et auto-immunes rares (sclérodermie systémique), 59000 Lille, France; FHU Immune-Mediated Inflammatory Diseases and Targeted Therapies, 59000 Lille, France
| | - J Corli
- Université de Lille, U995, Lille Inflammation Research International Center (LIRIC), 59000 Lille, France; Inserm, U995, 59000 Lille, France; FHU Immune-Mediated Inflammatory Diseases and Targeted Therapies, 59000 Lille, France; CHU de Lille, département de rhumatologie, 59000 Lille, France
| | - C Hauspie
- Université de Lille, U995, Lille Inflammation Research International Center (LIRIC), 59000 Lille, France; Inserm, U995, 59000 Lille, France; CHU de Lille, Centre de biologie-pathologie-génétique, institut d'Immunologie, 59000 Lille, France
| | - M Jendoubi
- Université de Lille, U995, Lille Inflammation Research International Center (LIRIC), 59000 Lille, France; Inserm, U995, 59000 Lille, France
| | - I Yakoub-Agha
- Université de Lille, U995, Lille Inflammation Research International Center (LIRIC), 59000 Lille, France; Inserm, U995, 59000 Lille, France; FHU Immune-Mediated Inflammatory Diseases and Targeted Therapies, 59000 Lille, France; CHU de Lille, département des maladies du sang, 59000 Lille, France
| | - P-Y Hatron
- Université de Lille, U995, Lille Inflammation Research International Center (LIRIC), 59000 Lille, France; CHU de Lille, département de médecine interne et immunologie clinique, 59000 Lille, France; Centre national de référence maladies systémiques et auto-immunes rares (sclérodermie systémique), 59000 Lille, France; FHU Immune-Mediated Inflammatory Diseases and Targeted Therapies, 59000 Lille, France
| | - E Hachulla
- Université de Lille, U995, Lille Inflammation Research International Center (LIRIC), 59000 Lille, France; Inserm, U995, 59000 Lille, France; CHU de Lille, département de médecine interne et immunologie clinique, 59000 Lille, France; Centre national de référence maladies systémiques et auto-immunes rares (sclérodermie systémique), 59000 Lille, France; FHU Immune-Mediated Inflammatory Diseases and Targeted Therapies, 59000 Lille, France
| | - S Dubucquoi
- Université de Lille, U995, Lille Inflammation Research International Center (LIRIC), 59000 Lille, France; Inserm, U995, 59000 Lille, France; FHU Immune-Mediated Inflammatory Diseases and Targeted Therapies, 59000 Lille, France; CHU de Lille, Centre de biologie-pathologie-génétique, institut d'Immunologie, 59000 Lille, France
| |
Collapse
|
50
|
Villa NY, Rahman MM, McFadden G, Cogle CR. Therapeutics for Graft-versus-Host Disease: From Conventional Therapies to Novel Virotherapeutic Strategies. Viruses 2016; 8:85. [PMID: 27011200 PMCID: PMC4810275 DOI: 10.3390/v8030085] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 03/09/2016] [Accepted: 03/09/2016] [Indexed: 02/06/2023] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) has a curative potential for many hematologic malignancies and blood diseases. However, the success of allo-HSCT is limited by graft-versus-host disease (GVHD), an immunological syndrome that involves inflammation and tissue damage mediated by donor lymphocytes. Despite immune suppression, GVHD is highly incident even after allo-HSCT using human leukocyte antigen (HLA)-matched donors. Therefore, alternative and more effective therapies are needed to prevent or control GVHD while preserving the beneficial graft-versus-cancer (GVC) effects against residual disease. Among novel therapeutics for GVHD, oncolytic viruses such as myxoma virus (MYXV) are receiving increased attention due to their dual role in controlling GVHD while preserving or augmenting GVC. This review focuses on the molecular basis of GVHD, as well as state-of-the-art advances in developing novel therapies to prevent or control GVHD while minimizing impact on GVC. Recent literature regarding conventional and the emerging therapies are summarized, with special emphasis on virotherapy to prevent GVHD. Recent advances using preclinical models with oncolytic viruses such as MYXV to ameliorate the deleterious consequences of GVHD, while maintaining or improving the anti-cancer benefits of GVC will be reviewed.
Collapse
Affiliation(s)
- Nancy Y Villa
- Division of Hematology and Oncology, Department of Medicine, University of Florida, Gainesville, FL 32610, USA.
| | - Masmudur M Rahman
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA.
| | - Grant McFadden
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA.
| | - Christopher R Cogle
- Division of Hematology and Oncology, Department of Medicine, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|