1
|
Wu S, Tan Y, Li F, Han Y, Zhang S, Lin X. CD44: a cancer stem cell marker and therapeutic target in leukemia treatment. Front Immunol 2024; 15:1354992. [PMID: 38736891 PMCID: PMC11082360 DOI: 10.3389/fimmu.2024.1354992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/11/2024] [Indexed: 05/14/2024] Open
Abstract
CD44 is a ubiquitous leukocyte adhesion molecule involved in cell-cell interaction, cell adhesion, migration, homing and differentiation. CD44 can mediate the interaction between leukemic stem cells and the surrounding extracellular matrix, thereby inducing a cascade of signaling pathways to regulate their various behaviors. In this review, we focus on the impact of CD44s/CD44v as biomarkers in leukemia development and discuss the current research and prospects for CD44-related interventions in clinical application.
Collapse
Affiliation(s)
- Shuang Wu
- Laboratory Animal Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Institute of Hematology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yicheng Tan
- Laboratory Animal Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Institute of Hematology, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Wenzhou Key laboratory of Hematology, Wenzhou, Zhejiang, China
| | - Fanfan Li
- Institute of Hematology, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Wenzhou Key laboratory of Hematology, Wenzhou, Zhejiang, China
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yixiang Han
- Institute of Hematology, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Wenzhou Key laboratory of Hematology, Wenzhou, Zhejiang, China
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shenghui Zhang
- Laboratory Animal Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Institute of Hematology, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Wenzhou Key laboratory of Hematology, Wenzhou, Zhejiang, China
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaofei Lin
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
2
|
Chen Z, Wang Z, Liu D, Zhao X, Ning S, Liu X, Wang G, Zhang F, Luo F, Yao J, Tian X. Critical role of caveolin-1 in intestinal ischemia reperfusion by inhibiting protein kinase C βII. Free Radic Biol Med 2023; 194:62-70. [PMID: 36410585 DOI: 10.1016/j.freeradbiomed.2022.11.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/24/2022] [Accepted: 11/17/2022] [Indexed: 11/19/2022]
Abstract
Intestinal ischemia reperfusion (I/R) is a common clinical pathological process. We previously reported that pharmacological inhibition of protein kinase C (PKC) βII with a specific inhibitor attenuated gut I/R injury. However, the endogenous regulatory mechanism of PKCβII inactivation is still unclear. Here, we explored the critical role of caveolin-1 (Cav1) in protecting against intestinal I/R injury by regulating PKCβII inactivation. PKCβII translocated to caveolae and bound with Cav1 after intestinal I/R. Cav1 was highly expressed in the intestine of mice with I/R and IEC-6 cells stimulated with hypoxia/reoxygenation (H/R). Cav1-knockout (KO) mice suffered from worse intestinal injury after I/R than wild-type (WT) mice and showed extremely low survival due to exacerbated systemic inflammatory response syndrome (SIRS) and remote organ (lung and liver) injury. Cav1 deficiency resulted in excessive PKCβII activation and increased oxidative stress and apoptosis after intestinal I/R. Full-length Cav1 scaffolding domain peptide (CSP) suppressed excessive PKCβII activation and protected the gut against oxidative stress and apoptosis due to I/R injury. In summary, Cav1 could regulate PKCβII endogenous inactivation to alleviate intestinal I/R injury. This finding may represent a novel therapeutic strategy for the prevention and treatment of intestinal I/R injury.
Collapse
Affiliation(s)
- Zhao Chen
- Department of General Surgery, Second Affiliated Hospital, Dalian Medical University, 116023, Dalian, China
| | - Zhecheng Wang
- Department of Pharmacology, Dalian Medical University, 116044, Dalian, China
| | - Deshun Liu
- Department of General Surgery, Second Affiliated Hospital, Dalian Medical University, 116023, Dalian, China
| | - Xuzi Zhao
- Department of General Surgery, Second Affiliated Hospital, Dalian Medical University, 116023, Dalian, China
| | - Shili Ning
- Department of General Surgery, Second Affiliated Hospital, Dalian Medical University, 116023, Dalian, China
| | - Xingming Liu
- Department of General Surgery, Second Affiliated Hospital, Dalian Medical University, 116023, Dalian, China
| | - Guangzhi Wang
- Department of General Surgery, Second Affiliated Hospital, Dalian Medical University, 116023, Dalian, China
| | - Feng Zhang
- Department of General Surgery, Second Affiliated Hospital, Dalian Medical University, 116023, Dalian, China
| | - Fuwen Luo
- Department of General Surgery, Second Affiliated Hospital, Dalian Medical University, 116023, Dalian, China
| | - Jihong Yao
- Department of Pharmacology, Dalian Medical University, 116044, Dalian, China
| | - Xiaofeng Tian
- Department of General Surgery, Second Affiliated Hospital, Dalian Medical University, 116023, Dalian, China.
| |
Collapse
|
3
|
Hay J, Tarafdar A, Holroyd AK, Moka HA, Dunn KM, Alshayeb A, Lloyd BH, Cassels J, Malik N, Khan AF, Sou I, Lees J, Almuhanna HNB, Kalakonda N, Slupsky JR, Michie AM. PKCβ Facilitates Leukemogenesis in Chronic Lymphocytic Leukaemia by Promoting Constitutive BCR-Mediated Signalling. Cancers (Basel) 2022; 14:cancers14236006. [PMID: 36497487 PMCID: PMC9735720 DOI: 10.3390/cancers14236006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/22/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
B cell antigen receptor (BCR) signalling competence is critical for the pathogenesis of chronic lymphocytic leukaemia (CLL). Defining key proteins that facilitate these networks aid in the identification of targets for therapeutic exploitation. We previously demonstrated that reduced PKCα function in mouse hematopoietic stem/progenitor cells (HPSCs) resulted in PKCβII upregulation and generation of a poor-prognostic CLL-like disease. Here, prkcb knockdown in HSPCs leads to reduced survival of PKCα-KR-expressing CLL-like cells, concurrent with reduced expression of the leukemic markers CD5 and CD23. SP1 promotes elevated expression of prkcb in PKCα-KR expressing cells enabling leukemogenesis. Global gene analysis revealed an upregulation of genes associated with B cell activation in PKCα-KR expressing cells, coincident with upregulation of PKCβII: supported by activation of key signalling hubs proximal to the BCR and elevated proliferation. Ibrutinib (BTK inhibitor) or enzastaurin (PKCβII inhibitor) treatment of PKCα-KR expressing cells and primary CLL cells showed similar patterns of Akt/mTOR pathway inhibition, supporting the role for PKCβII in maintaining proliferative signals in our CLL mouse model. Ibrutinib or enzastaurin treatment also reduced PKCα-KR-CLL cell migration towards CXCL12. Overall, we demonstrate that PKCβ expression facilitates leukemogenesis and identify that BCR-mediated signalling is a key driver of CLL development in the PKCα-KR model.
Collapse
Affiliation(s)
- Jodie Hay
- School of Cancer Sciences, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
- Paul O’Gorman Leukaemia Research Centre, Gartnavel General Hospital, 21 Shelley Road, Glasgow G12 0ZD, UK
| | - Anuradha Tarafdar
- School of Cancer Sciences, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Ailsa K. Holroyd
- School of Cancer Sciences, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Hothri A. Moka
- School of Cancer Sciences, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Karen M. Dunn
- School of Cancer Sciences, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
- Paul O’Gorman Leukaemia Research Centre, Gartnavel General Hospital, 21 Shelley Road, Glasgow G12 0ZD, UK
| | - Alzahra Alshayeb
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7BE, UK
| | - Bryony H. Lloyd
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7BE, UK
| | - Jennifer Cassels
- School of Cancer Sciences, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
- Paul O’Gorman Leukaemia Research Centre, Gartnavel General Hospital, 21 Shelley Road, Glasgow G12 0ZD, UK
| | - Natasha Malik
- School of Cancer Sciences, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Ashfia F. Khan
- School of Cancer Sciences, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - IengFong Sou
- School of Cancer Sciences, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Jamie Lees
- School of Cancer Sciences, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
- Paul O’Gorman Leukaemia Research Centre, Gartnavel General Hospital, 21 Shelley Road, Glasgow G12 0ZD, UK
| | - Hassan N. B. Almuhanna
- School of Cancer Sciences, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
- Paul O’Gorman Leukaemia Research Centre, Gartnavel General Hospital, 21 Shelley Road, Glasgow G12 0ZD, UK
| | - Nagesh Kalakonda
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7BE, UK
| | - Joseph R. Slupsky
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7BE, UK
| | - Alison M. Michie
- School of Cancer Sciences, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
- Paul O’Gorman Leukaemia Research Centre, Gartnavel General Hospital, 21 Shelley Road, Glasgow G12 0ZD, UK
- Correspondence: ; Tel.: +44-(0)141-301-7885
| |
Collapse
|
4
|
Kawano T, Inokuchi J, Eto M, Murata M, Kang JH. Protein Kinase C (PKC) Isozymes as Diagnostic and Prognostic Biomarkers and Therapeutic Targets for Cancer. Cancers (Basel) 2022; 14:5425. [PMID: 36358843 PMCID: PMC9658272 DOI: 10.3390/cancers14215425] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/02/2022] [Accepted: 11/02/2022] [Indexed: 08/05/2023] Open
Abstract
Protein kinase C (PKC) is a large family of calcium- and phospholipid-dependent serine/threonine kinases that consists of at least 11 isozymes. Based on their structural characteristics and mode of activation, the PKC family is classified into three subfamilies: conventional or classic (cPKCs; α, βI, βII, and γ), novel or non-classic (nPKCs; δ, ε, η, and θ), and atypical (aPKCs; ζ, ι, and λ) (PKCλ is the mouse homolog of PKCι) PKC isozymes. PKC isozymes play important roles in proliferation, differentiation, survival, migration, invasion, apoptosis, and anticancer drug resistance in cancer cells. Several studies have shown a positive relationship between PKC isozymes and poor disease-free survival, poor survival following anticancer drug treatment, and increased recurrence. Furthermore, a higher level of PKC activation has been reported in cancer tissues compared to that in normal tissues. These data suggest that PKC isozymes represent potential diagnostic and prognostic biomarkers and therapeutic targets for cancer. This review summarizes the current knowledge and discusses the potential of PKC isozymes as biomarkers in the diagnosis, prognosis, and treatment of cancers.
Collapse
Affiliation(s)
- Takahito Kawano
- Center for Advanced Medical Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Junichi Inokuchi
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masatoshi Eto
- Center for Advanced Medical Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masaharu Murata
- Center for Advanced Medical Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Jeong-Hun Kang
- Division of Biopharmaceutics and Pharmacokinetics, National Cerebral and Cardiovascular Center Research Institute, 6-1 Shinmachi, Kishibe, Suita, Osaka 564-8565, Japan
| |
Collapse
|
5
|
De Falco F, Rompietti C, Sorcini D, Esposito A, Scialdone A, Baldoni S, Del Papa B, Adamo FM, Silva Barcelos EC, Dorillo E, Stella A, Di Ianni M, Screpanti I, Sportoletti P, Rosati E. GSK3β is a critical, druggable component of the network regulating the active NOTCH1 protein and cell viability in CLL. Cell Death Dis 2022; 13:755. [PMID: 36050315 PMCID: PMC9436923 DOI: 10.1038/s41419-022-05178-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 01/21/2023]
Abstract
NOTCH1 alterations have been associated with chronic lymphocytic leukemia (CLL), but the molecular mechanisms underlying NOTCH1 activation in CLL cells are not completely understood. Here, we show that GSK3β downregulates the constitutive levels of the active NOTCH1 intracellular domain (N1-ICD) in CLL cells. Indeed, GSK3β silencing by small interfering RNA increases N1-ICD levels, whereas expression of an active GSK3β mutant reduces them. Additionally, the GSK3β inhibitor SB216763 enhances N1-ICD stability at a concentration at which it also increases CLL cell viability. We also show that N1-ICD is physically associated with GSK3β in CLL cells. SB216763 reduces GSK3β/N1-ICD interactions and the levels of ubiquitinated N1-ICD, indicating a reduction in N1-ICD proteasomal degradation when GSK3β is less active. We then modulated the activity of two upstream regulators of GSK3β and examined the impact on N1-ICD levels and CLL cell viability. Specifically, we inhibited AKT that is a negative regulator of GSK3β and is constitutively active in CLL cells. Furthermore, we activated the protein phosphatase 2 A (PP2A) that is a positive regulator of GSK3β, and has an impaired activity in CLL. Results show that either AKT inhibition or PP2A activation reduce N1-ICD expression and CLL cell viability in vitro, through mechanisms mediated by GSK3β activity. Notably, for PP2A activation, we used the highly specific activator DT-061, that also reduces leukemic burden in peripheral blood, spleen and bone marrow in the Eµ-TCL1 adoptive transfer model of CLL, with a concomitant decrease in N1-ICD expression. Overall, we identify in GSK3β a key component of the network regulating N1-ICD stability in CLL, and in AKT and PP2A new druggable targets for disrupting NOTCH1 signaling with therapeutic potential.
Collapse
Affiliation(s)
- Filomena De Falco
- grid.9027.c0000 0004 1757 3630Department of Medicine and Surgery, Institute of Hematology, Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, Italy
| | - Chiara Rompietti
- grid.9027.c0000 0004 1757 3630Department of Medicine and Surgery, Institute of Hematology, Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, Italy
| | - Daniele Sorcini
- grid.9027.c0000 0004 1757 3630Department of Medicine and Surgery, Institute of Hematology, Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, Italy
| | - Angela Esposito
- grid.9027.c0000 0004 1757 3630Department of Medicine and Surgery, Institute of Hematology, Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, Italy
| | - Annarita Scialdone
- grid.9027.c0000 0004 1757 3630Department of Medicine and Surgery, Institute of Hematology, Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, Italy
| | - Stefano Baldoni
- grid.9027.c0000 0004 1757 3630Department of Medicine and Surgery, Institute of Hematology, Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, Italy ,grid.412451.70000 0001 2181 4941Department of Medicine and Sciences of Aging, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Beatrice Del Papa
- grid.9027.c0000 0004 1757 3630Department of Medicine and Surgery, Institute of Hematology, Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, Italy
| | - Francesco Maria Adamo
- grid.9027.c0000 0004 1757 3630Department of Medicine and Surgery, Institute of Hematology, Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, Italy
| | - Estevão Carlos Silva Barcelos
- grid.9027.c0000 0004 1757 3630Department of Medicine and Surgery, Institute of Hematology, Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, Italy
| | - Erica Dorillo
- grid.9027.c0000 0004 1757 3630Department of Medicine and Surgery, Institute of Hematology, Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, Italy
| | - Arianna Stella
- grid.9027.c0000 0004 1757 3630Department of Medicine and Surgery, Institute of Hematology, Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, Italy
| | - Mauro Di Ianni
- grid.412451.70000 0001 2181 4941Department of Medicine and Sciences of Aging, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy ,grid.461844.bDepartment of Oncology and Hematology, Ospedale Civile “Santo Spirito”, ASL Pescara, Pescara, Italy
| | - Isabella Screpanti
- grid.7841.aDepartment of Molecular Medicine, University of Rome “La Sapienza”, Rome, Italy
| | - Paolo Sportoletti
- grid.9027.c0000 0004 1757 3630Department of Medicine and Surgery, Institute of Hematology, Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, Italy
| | - Emanuela Rosati
- grid.9027.c0000 0004 1757 3630Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
6
|
Lin CC, Suen KM, Jeffrey PA, Wieteska L, Lidster JA, Bao P, Curd AP, Stainthorp A, Seiler C, Koss H, Miska E, Ahmed Z, Evans SD, Molina-París C, Ladbury JE. Receptor tyrosine kinases regulate signal transduction through a liquid-liquid phase separated state. Mol Cell 2022; 82:1089-1106.e12. [PMID: 35231400 PMCID: PMC8937303 DOI: 10.1016/j.molcel.2022.02.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/02/2021] [Accepted: 02/01/2022] [Indexed: 11/20/2022]
Abstract
The recruitment of signaling proteins into activated receptor tyrosine kinases (RTKs) to produce rapid, high-fidelity downstream response is exposed to the ambiguity of random diffusion to the target site. Liquid-liquid phase separation (LLPS) overcomes this by providing elevated, localized concentrations of the required proteins while impeding competitor ligands. Here, we show a subset of phosphorylation-dependent RTK-mediated LLPS states. We then investigate the formation of phase-separated droplets comprising a ternary complex including the RTK, (FGFR2); the phosphatase, SHP2; and the phospholipase, PLCγ1, which assembles in response to receptor phosphorylation. SHP2 and activated PLCγ1 interact through their tandem SH2 domains via a previously undescribed interface. The complex of FGFR2 and SHP2 combines kinase and phosphatase activities to control the phosphorylation state of the assembly while providing a scaffold for active PLCγ1 to facilitate access to its plasma membrane substrate. Thus, LLPS modulates RTK signaling, with potential consequences for therapeutic intervention.
Collapse
Affiliation(s)
- Chi-Chuan Lin
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK.
| | - Kin Man Suen
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK; Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | | | - Lukasz Wieteska
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Jessica A Lidster
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Peng Bao
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - Alistair P Curd
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Amy Stainthorp
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Caroline Seiler
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Hans Koss
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, UK; Francis Crick Institute, London NW1 1AT, UK
| | - Eric Miska
- Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Zamal Ahmed
- Department of Molecular and Cellular Oncology, University of Texas M D Anderson Cancer Center, Houston, TX 77030, USA
| | - Stephen D Evans
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | | | - John E Ladbury
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
7
|
Albert V, Piendl G, Yousseff D, Lammert H, Hummel M, Ortmann O, Jagla W, Gaumann A, Wege AK, Brockhoff G. Protein kinase C targeting of luminal (T-47D), luminal/HER2-positive (BT474), and triple negative (HCC1806) breast cancer cells in-vitro with AEB071 (Sotrastaurin) is efficient but mediated by subtype specific molecular effects. Arch Gynecol Obstet 2022; 306:1197-1210. [PMID: 35298675 PMCID: PMC9470618 DOI: 10.1007/s00404-022-06434-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/02/2022] [Indexed: 11/30/2022]
Abstract
Purpose Protein kinase C (PKC) plays a pivotal role in malignant cell proliferation, apoptosis, invasiveness and migration. However, its exploitation as therapeutic target in breast cancer has been merely explored. Here were evaluated the AEB071 (Sotrastaurin™) treatment efficiency of breast cancer cell lines derived from estrogen receptor positive (T-47D), estrogen/HER2 receptor positive (BT474), and triple negative (HCC1806) breast cancer cells under 2D (monolayer) and 3D (multicellular tumor spheroids) culture conditions. Additionally, spheroid cocultures of BC and N1 fibroblasts were analyzed. Methods We quantitatively assessed the proliferation capacity of breast cancer cells and fibroblasts as a function of AEB071 treatment using flow cytometry. The activities of PKC isoforms, substrates, and key molecules of the PKC signaling known to be involved in the regulation of tumor cell proliferation and cellular survival were additionally evaluated. Moreover, a multigene expression analysis (PanCancer Pathways assay) using the nanoString™ technology was applied. Results All breast cancer cell lines subjected to this study were sensitive to AEB071 treatment, whereby cell proliferation in 2D culture was considerably (BT474) or moderately (HCC1806) retarded in G0/G1 or in G2/M phase (T-47D) of the cell cycle. Regardless of the breast cancer subtype the efficiency of AEB071 treatment was significantly lower in the presence of N1 fibroblast cells. Subtype specific driver molecules, namely IL19, c-myb, and NGFR were mostly affected by the AEB071 treatment. Conclusion A combined targeting of PKC and a subtype specific driver molecule might complement specified breast cancer treatment.
Collapse
Affiliation(s)
- Veruschka Albert
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Gerhard Piendl
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | | | - Hedwig Lammert
- Institute of Pathology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Hummel
- Institute of Pathology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Olaf Ortmann
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | | | | | - Anja K Wege
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Gero Brockhoff
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany.
| |
Collapse
|
8
|
Fürstenau M, Eichhorst B. Novel Agents in Chronic Lymphocytic Leukemia: New Combination Therapies and Strategies to Overcome Resistance. Cancers (Basel) 2021; 13:1336. [PMID: 33809580 PMCID: PMC8002361 DOI: 10.3390/cancers13061336] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 12/13/2022] Open
Abstract
The approval of Bruton's tyrosine kinase (BTK) inhibitors such as ibrutinib and acalabrutinib and the Bcl-2 inhibitor venetoclax have revolutionized the treatment of chronic lymphocytic leukemia (CLL). While these novel agents alone or in combination induce long lasting and deep remissions in most patients with CLL, their use may be associated with the development of clinical resistance. In this review, we elucidate the genetic basis of acquired resistance to BTK and Bcl-2 inhibition and present evidence on resistance mechanisms that are not linked to single genomic alterations affecting these target proteins. Strategies to prevent resistance to novel agents are discussed in this review with a special focus on new combination therapies.
Collapse
Affiliation(s)
- Moritz Fürstenau
- German CLL Study Group, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Department I of Internal Medicine, University Hospital Cologne, University of Cologne, 50937 Cologne, Germany;
- Cancer Center Cologne Essen (CCCE)—Partner Site Cologne, University of Cologne, 50937 Cologne, Germany
| | - Barbara Eichhorst
- German CLL Study Group, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Department I of Internal Medicine, University Hospital Cologne, University of Cologne, 50937 Cologne, Germany;
- Cancer Center Cologne Essen (CCCE)—Partner Site Cologne, University of Cologne, 50937 Cologne, Germany
| |
Collapse
|
9
|
Ma D, Liu P, Wang P, Zhou Z, Fang Q, Wang J. PKC-β/Alox5 axis activation promotes Bcr-Abl-independent TKI-resistance in chronic myeloid leukemia. J Cell Physiol 2021; 236:6312-6327. [PMID: 33561320 DOI: 10.1002/jcp.30301] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/27/2020] [Accepted: 01/12/2021] [Indexed: 12/12/2022]
Abstract
Bcr-Abl independent resistance to tyrosine kinase inhibitor (TKI) is a crucial factor lead to relapse or acute leukemia transformation in chronic myeloid leukemia (CML). However, its mechanism is still unclear. Herein, we found that of nine common protein kinases C (PKCs), PKC-β overexpression was significantly related with TKI resistance. Blockage of its expression in CD34+ cells and CML cell lines increased sensitivity to imatinib. Then, eighty-four leukemia related genes were compared between TKI-resistant CML cell lines with PKC-β silenced or not. Gene Ontology term and Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that Arachidonate 5-lipoxygenase (Alox5) and its relative pathway mainly participated in the resistance induced by PKC-β overexpression. It's also observed that Alox5 was increased not only in bone marrow biopsy but also in CD34+ cells derived from IM-resistant CML patients. The signaling pathway exploration indicated that ERK1/2 pathway mediates Alox5 upregulation by PKC-β. Meanwhile, we also proved that Alox5 induces TKI-insensitivity in CML through inactivation of PTEN. In vivo experiment, PKC-β elective inhibitor LY333531 prolonged survival time in CML-PDX mice model. In conclusion, targeted on PKC-β overexpression might be a novel therapy mechanism to overcome TKI-resistance in CML.
Collapse
Affiliation(s)
- Dan Ma
- Department of Hematology, Key Laboratory of Hematological Disease Diagnostic & Treat Center of Guizhou Province, Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Guizhou Province Institute of Hematology, Guiyang, China
| | - Ping Liu
- Department of Hematology, Key Laboratory of Hematological Disease Diagnostic & Treat Center of Guizhou Province, Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Guizhou Province Institute of Hematology, Guiyang, China
| | - Ping Wang
- Department of Hematology, Key Laboratory of Hematological Disease Diagnostic & Treat Center of Guizhou Province, Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Guizhou Province Institute of Hematology, Guiyang, China
| | - Zhen Zhou
- Department of Pharmacy, Affiliated Baiyun Hospital of Guizhou Medical University, Guiyang, China
| | - Qin Fang
- Department of Pharmacy, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jishi Wang
- Department of Hematology, Key Laboratory of Hematological Disease Diagnostic & Treat Center of Guizhou Province, Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Guizhou Province Institute of Hematology, Guiyang, China
| |
Collapse
|
10
|
Takam Kamga P, Bazzoni R, Dal Collo G, Cassaro A, Tanasi I, Russignan A, Tecchio C, Krampera M. The Role of Notch and Wnt Signaling in MSC Communication in Normal and Leukemic Bone Marrow Niche. Front Cell Dev Biol 2021; 8:599276. [PMID: 33490067 PMCID: PMC7820188 DOI: 10.3389/fcell.2020.599276] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 12/02/2020] [Indexed: 12/11/2022] Open
Abstract
Notch and Wnt signaling are highly conserved intercellular communication pathways involved in developmental processes, such as hematopoiesis. Even though data from literature support a role for these two pathways in both physiological hematopoiesis and leukemia, there are still many controversies concerning the nature of their contribution. Early studies, strengthened by findings from T-cell acute lymphoblastic leukemia (T-ALL), have focused their investigation on the mutations in genes encoding for components of the pathways, with limited results except for B-cell chronic lymphocytic leukemia (CLL); in because in other leukemia the two pathways could be hyper-expressed without genetic abnormalities. As normal and malignant hematopoiesis require close and complex interactions between hematopoietic cells and specialized bone marrow (BM) niche cells, recent studies have focused on the role of Notch and Wnt signaling in the context of normal crosstalk between hematopoietic/leukemia cells and stromal components. Amongst the latter, mesenchymal stromal/stem cells (MSCs) play a pivotal role as multipotent non-hematopoietic cells capable of giving rise to most of the BM niche stromal cells, including fibroblasts, adipocytes, and osteocytes. Indeed, MSCs express and secrete a broad pattern of bioactive molecules, including Notch and Wnt molecules, that support all the phases of the hematopoiesis, including self-renewal, proliferation and differentiation. Herein, we provide an overview on recent advances on the contribution of MSC-derived Notch and Wnt signaling to hematopoiesis and leukemia development.
Collapse
Affiliation(s)
- Paul Takam Kamga
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
- EA4340-BCOH, Biomarker in Cancerology and Onco-Haematology, UVSQ, Université Paris Saclay, Boulogne-Billancourt, France
| | - Riccardo Bazzoni
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Giada Dal Collo
- Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Adriana Cassaro
- Hematology Unit, Department of Oncology, Niguarda Hospital, Milan, Italy
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Ilaria Tanasi
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Anna Russignan
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Cristina Tecchio
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Mauro Krampera
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| |
Collapse
|
11
|
Ondrisova L, Mraz M. Genetic and Non-Genetic Mechanisms of Resistance to BCR Signaling Inhibitors in B Cell Malignancies. Front Oncol 2020; 10:591577. [PMID: 33154951 PMCID: PMC7116322 DOI: 10.3389/fonc.2020.591577] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/24/2020] [Indexed: 12/17/2022] Open
Abstract
The approval of BTK and PI3K inhibitors (ibrutinib, idelalisib) represents a revolution in the therapy of B cell malignancies such as chronic lymphocytic leukemia (CLL), mantle-cell lymphoma (MCL), diffuse large B cell lymphoma (DLBCL), follicular lymphoma (FL), or Waldenström's macroglobulinemia (WM). However, these "BCR inhibitors" function by interfering with B cell pathophysiology in a more complex way than anticipated, and resistance develops through multiple mechanisms. In ibrutinib treated patients, the most commonly described resistance-mechanism is a mutation in BTK itself, which prevents the covalent binding of ibrutinib, or a mutation in PLCG2, which acts to bypass the dependency on BTK at the BCR signalosome. However, additional genetic aberrations leading to resistance are being described (such as mutations in the CARD11, CCND1, BIRC3, TRAF2, TRAF3, TNFAIP3, loss of chromosomal region 6q or 8p, a gain of Toll-like receptor (TLR)/MYD88 signaling or gain of 2p chromosomal region). Furthermore, relative resistance to BTK inhibitors can be caused by non-genetic adaptive mechanisms leading to compensatory pro-survival pathway activation. For instance, PI3K/mTOR/Akt, NFkB and MAPK activation, BCL2, MYC, and XPO1 upregulation or PTEN downregulation lead to B cell survival despite BTK inhibition. Resistance could also arise from activating microenvironmental pathways such as chemokine or integrin signaling via CXCR4 or VLA4 upregulation, respectively. Defining these compensatory pro-survival mechanisms can help to develop novel therapeutic combinations of BTK inhibitors with other inhibitors (such as BH3-mimetic venetoclax, XPO1 inhibitor selinexor, mTOR, or MEK inhibitors). The mechanisms of resistance to PI3K inhibitors remain relatively unclear, but some studies point to MAPK signaling upregulation via both genetic and non-genetic changes, which could be co-targeted therapeutically. Alternatively, drugs mimicking the BTK/PI3K inhibition effect can be used to prevent adhesion and/or malignant B cell migration (chemokine and integrin inhibitors) or to block the pro-proliferative T cell signals in the microenvironment (such as IL4/STAT signaling inhibitors). Here we review the genetic and non-genetic mechanisms of resistance and adaptation to the first generation of BTK and PI3K inhibitors (ibrutinib and idelalisib, respectively), and discuss possible combinatorial therapeutic strategies to overcome resistance or to increase clinical efficacy.
Collapse
Affiliation(s)
- Laura Ondrisova
- Molecular Medicine, CEITEC Masaryk University, Brno, Czechia
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Marek Mraz
- Molecular Medicine, CEITEC Masaryk University, Brno, Czechia
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czechia
| |
Collapse
|
12
|
Méndez-Ferrer S, Bonnet D, Steensma DP, Hasserjian RP, Ghobrial IM, Gribben JG, Andreeff M, Krause DS. Bone marrow niches in haematological malignancies. Nat Rev Cancer 2020; 20:285-298. [PMID: 32112045 PMCID: PMC9912977 DOI: 10.1038/s41568-020-0245-2] [Citation(s) in RCA: 281] [Impact Index Per Article: 56.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/03/2020] [Indexed: 02/06/2023]
Abstract
Haematological malignancies were previously thought to be driven solely by genetic or epigenetic lesions within haematopoietic cells. However, the niches that maintain and regulate daily production of blood and immune cells are now increasingly being recognized as having an important role in the pathogenesis and chemoresistance of haematological malignancies. Within haematopoietic cells, the accumulation of a small number of recurrent mutations initiates malignancy. Concomitantly, specific alterations of the niches, which support haematopoietic stem cells and their progeny, can act as predisposition events, facilitating mutant haematopoietic cell survival and expansion as well as contributing to malignancy progression and providing protection of malignant cells from chemotherapy, ultimately leading to relapse. In this Perspective, we summarize our current understanding of the composition and function of the specialized haematopoietic niches of the bone marrow during health and disease. We discuss disease mechanisms (rather than malignancy subtypes) to provide a comprehensive description of key niche-associated pathways that are shared across multiple haematological malignancies. These mechanisms include primary driver mutations in bone marrow niche cells, changes associated with increased hypoxia, angiogenesis and inflammation as well as metabolic reprogramming by stromal niche cells. Consequently, remodelling of bone marrow niches can facilitate immune evasion and activation of survival pathways favouring malignant haematopoietic cell maintenance, defence against excessive reactive oxygen species and protection from chemotherapy. Lastly, we suggest guidelines for the handling and biobanking of patient samples and analysis of the niche to ensure that basic research identifying therapeutic targets can be more efficiently translated to the clinic. The hope is that integrating knowledge of how bone marrow niches contribute to haematological disease predisposition, initiation, progression and response to therapy into future clinical practice will likely improve the treatment of these disorders.
Collapse
Affiliation(s)
- Simón Méndez-Ferrer
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, Cambridge, UK.
- National Health Service Blood and Transplant, Cambridge, UK.
- Department of Haematology, University of Cambridge, Cambridge, UK.
| | - Dominique Bonnet
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, London, UK
| | - David P Steensma
- Harvard Medical School, Boston, MA, USA
- The Center for Prevention of Progression of Blood Cancers, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Robert P Hasserjian
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Irene M Ghobrial
- Harvard Medical School, Boston, MA, USA
- The Center for Prevention of Progression of Blood Cancers, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - John G Gribben
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Michael Andreeff
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daniela S Krause
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Medicine, Frankfurt, Germany
- Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
13
|
Selective targeting of NAMPT by KPT-9274 in acute myeloid leukemia. Blood Adv 2020; 3:242-255. [PMID: 30692102 DOI: 10.1182/bloodadvances.2018024182] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 12/06/2018] [Indexed: 12/30/2022] Open
Abstract
Treatment options for acute myeloid leukemia (AML) remain extremely limited and associated with significant toxicity. Nicotinamide phosphoribosyltransferase (NAMPT) is involved in the generation of NAD+ and a potential therapeutic target in AML. We evaluated the effect of KPT-9274, a p21-activated kinase 4/NAMPT inhibitor that possesses a unique NAMPT-binding profile based on in silico modeling compared with earlier compounds pursued against this target. KPT-9274 elicited loss of mitochondrial respiration and glycolysis and induced apoptosis in AML subtypes independent of mutations and genomic abnormalities. These actions occurred mainly through the depletion of NAD+, whereas genetic knockdown of p21-activated kinase 4 did not induce cytotoxicity in AML cell lines or influence the cytotoxic effect of KPT-9274. KPT-9274 exposure reduced colony formation, increased blast differentiation, and diminished the frequency of leukemia-initiating cells from primary AML samples; KPT-9274 was minimally cytotoxic toward normal hematopoietic or immune cells. In addition, KPT-9274 improved overall survival in vivo in 2 different mouse models of AML and reduced tumor development in a patient-derived xenograft model of AML. Overall, KPT-9274 exhibited broad preclinical activity across a variety of AML subtypes and warrants further investigation as a potential therapeutic agent for AML.
Collapse
|
14
|
Park E, Chen J, Moore A, Mangolini M, Santoro A, Boyd JR, Schjerven H, Ecker V, Buchner M, Williamson JC, Lehner PJ, Gasparoli L, Williams O, Bloehdorn J, Stilgenbauer S, Leitges M, Egle A, Schmidt-Supprian M, Frietze S, Ringshausen I. Stromal cell protein kinase C-β inhibition enhances chemosensitivity in B cell malignancies and overcomes drug resistance. Sci Transl Med 2020; 12:eaax9340. [PMID: 31941829 PMCID: PMC7116365 DOI: 10.1126/scitranslmed.aax9340] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 11/15/2019] [Indexed: 12/15/2022]
Abstract
Overcoming drug resistance remains a key challenge to cure patients with acute and chronic B cell malignancies. Here, we describe a stromal cell-autonomous signaling pathway, which contributes to drug resistance of malignant B cells. We show that protein kinase C (PKC)-β-dependent signals from bone marrow-derived stromal cells markedly decrease the efficacy of cytotoxic therapies. Conversely, small-molecule PKC-β inhibitors antagonize prosurvival signals from stromal cells and sensitize tumor cells to targeted and nontargeted chemotherapy, resulting in enhanced cytotoxicity and prolonged survival in vivo. Mechanistically, stromal PKC-β controls the expression of adhesion and matrix proteins, required for activation of phosphoinositide 3-kinases (PI3Ks) and the extracellular signal-regulated kinase (ERK)-mediated stabilization of B cell lymphoma-extra large (BCL-XL) in tumor cells. Central to the stroma-mediated drug resistance is the PKC-β-dependent activation of transcription factor EB, regulating lysosome biogenesis and plasma membrane integrity. Stroma-directed therapies, enabled by direct inhibition of PKC-β, enhance the effectiveness of many antileukemic therapies.
Collapse
Affiliation(s)
- Eugene Park
- Wellcome Trust/MRC Cambridge Stem Cell Institute and Department of Haematology, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AH, UK
| | - Jingyu Chen
- Wellcome Trust/MRC Cambridge Stem Cell Institute and Department of Haematology, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AH, UK
| | - Andrew Moore
- Wellcome Trust/MRC Cambridge Stem Cell Institute and Department of Haematology, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AH, UK
| | - Maurizio Mangolini
- Wellcome Trust/MRC Cambridge Stem Cell Institute and Department of Haematology, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AH, UK
| | - Antonella Santoro
- Wellcome Trust/MRC Cambridge Stem Cell Institute and Department of Haematology, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AH, UK
| | - Joseph R Boyd
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont Larner College of Medicine, Burlington, VT 05405, USA
| | - Hilde Schjerven
- Department of Laboratory Medicine, University of California, San Francisco (UCSF), San Francisco, CA 94143, USA
- KG Jebsen Centre for B cell Malignancies, IMM, OUH, 0424 Oslo, Norway
| | - Veronika Ecker
- Institut für Klinische Chemie und Pathobiochemie, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
- TranslaTUM, Center for Translational Cancer Research, Technische Universität München, 81675 Munich, Germany
| | - Maike Buchner
- Institut für Klinische Chemie und Pathobiochemie, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
- TranslaTUM, Center for Translational Cancer Research, Technische Universität München, 81675 Munich, Germany
| | - James C Williamson
- Cambridge Institute for Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - Paul J Lehner
- Cambridge Institute for Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - Luca Gasparoli
- University College London (UCL) GOS-ICH, London WC1N 1EH, UK
| | - Owen Williams
- University College London (UCL) GOS-ICH, London WC1N 1EH, UK
| | - Johannes Bloehdorn
- Department of Internal Medicine III, University of Ulm, 89081 Ulm, Germany
| | | | - Michael Leitges
- Faculty of Medicine, Craig L. Dobbin Genetics Research Centre, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3V6, Canada
| | - Alexander Egle
- IIIrd Medical Department with Hematology, Medical Oncology, Hemostaseology, Infectious Diseases and Rheumatology, Oncologic Center, Paracelsus Medical University, Cancer Cluster Salzburg, 5020 Salzburg, Austria
- Salzburg Cancer Research Institute (SCRI) with Laboratory of Immunological and Molecular Cancer Research (LIMCR), 5020 Salzburg, Austria
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
| | - Marc Schmidt-Supprian
- German Cancer Consortium, DKFZ, 69120 Heidelberg, Germany
- Institute of Experimental Hematology, School of Medicine, Technical University Munich, 81675 Munich, Germany
| | - Seth Frietze
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA
| | - Ingo Ringshausen
- Wellcome Trust/MRC Cambridge Stem Cell Institute and Department of Haematology, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AH, UK.
| |
Collapse
|
15
|
Mangolini M, Götte F, Moore A, Ammon T, Oelsner M, Lutzny-Geier G, Klein-Hitpass L, Williamson JC, Lehner PJ, Dürig J, Möllmann M, Rásó-Barnett L, Hughes K, Santoro A, Méndez-Ferrer S, Oostendorp RAJ, Zimber-Strobl U, Peschel C, Hodson DJ, Schmidt-Supprian M, Ringshausen I. Notch2 controls non-autonomous Wnt-signalling in chronic lymphocytic leukaemia. Nat Commun 2018; 9:3839. [PMID: 30242258 PMCID: PMC6155045 DOI: 10.1038/s41467-018-06069-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 07/31/2018] [Indexed: 01/05/2023] Open
Abstract
The Wnt signalling pathway, one of the core de-regulated pathways in chronic lymphocytic leukaemia (CLL), is activated in only a subset of patients through somatic mutations. Here we describe alternative, microenvironment-dependent mechanisms of Wnt activation in malignant B cells. We show that tumour cells specifically induce Notch2 activity in mesenchymal stromal cells (MSCs) required for the transcription of the complement factor C1q. MSC-derived C1q in turn inhibits Gsk3-β mediated degradation of β-catenin in CLL cells. Additionally, stromal Notch2 activity regulates N-cadherin expression in CLL cells, which interacts with and further stabilises β-catenin. Together, these stroma Notch2-dependent mechanisms induce strong activation of canonical Wnt signalling in CLL cells. Pharmacological inhibition of the Wnt pathway impairs microenvironment-mediated survival of tumour cells. Similarly, inhibition of Notch signalling diminishes survival of stroma-protected CLL cells in vitro and disease engraftment in vivo. Notch2 activation in the microenvironment is a pre-requisite for the activation of canonical Wnt signalling in tumour cells.
Collapse
Affiliation(s)
- Maurizio Mangolini
- Wellcome Trust/ MRC Cambridge Stem Cell Institute & Department of Haematology, University of Cambridge, Cambridge, CB2 0AH, UK
| | - Frederik Götte
- Department of Hematology and Medical Oncology, Klinikum rechts der Isar der Technischen Universität München, Munich, 81675, Germany
| | - Andrew Moore
- Wellcome Trust/ MRC Cambridge Stem Cell Institute & Department of Haematology, University of Cambridge, Cambridge, CB2 0AH, UK
| | - Tim Ammon
- Department of Hematology and Medical Oncology, Klinikum rechts der Isar der Technischen Universität München, Munich, 81675, Germany
| | - Madlen Oelsner
- Department of Hematology and Medical Oncology, Klinikum rechts der Isar der Technischen Universität München, Munich, 81675, Germany
| | - Gloria Lutzny-Geier
- Department of Internal Medicine 5, Haematology and Oncology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, 91054, Germany
| | - Ludger Klein-Hitpass
- Institute of Cell Biology, Faculty of Medicine, University of Duisburg-Essen, Essen, 45122, Germany
| | - James C Williamson
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, CB2 0XY, UK
| | - Paul J Lehner
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, CB2 0XY, UK
| | - Jan Dürig
- Department of Hematology, University Hospital Essen,, University of Duisburg-Essen, Essen, 45122, Germany
| | - Michael Möllmann
- Department of Hematology, University Hospital Essen,, University of Duisburg-Essen, Essen, 45122, Germany
| | - Lívia Rásó-Barnett
- Haematopathology and Oncology Diagnostic Service (HODS), Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
| | - Katherine Hughes
- Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, UK
| | - Antonella Santoro
- Wellcome Trust/ MRC Cambridge Stem Cell Institute & Department of Haematology, University of Cambridge, Cambridge, CB2 0AH, UK
| | - Simón Méndez-Ferrer
- Wellcome Trust/ MRC Cambridge Stem Cell Institute & Department of Haematology, University of Cambridge, Cambridge, CB2 0AH, UK
- NHS Blood and Transplant, Cambridge, CB2 0PT, UK
| | - Robert A J Oostendorp
- Department of Hematology and Medical Oncology, Klinikum rechts der Isar der Technischen Universität München, Munich, 81675, Germany
| | | | - Christian Peschel
- Department of Hematology and Medical Oncology, Klinikum rechts der Isar der Technischen Universität München, Munich, 81675, Germany
- German Cancer Consortium, DKFZ, Heidelberg, 69120, Germany
| | - Daniel J Hodson
- Wellcome Trust/ MRC Cambridge Stem Cell Institute & Department of Haematology, University of Cambridge, Cambridge, CB2 0AH, UK
| | - Marc Schmidt-Supprian
- Department of Hematology and Medical Oncology, Klinikum rechts der Isar der Technischen Universität München, Munich, 81675, Germany
- German Cancer Consortium, DKFZ, Heidelberg, 69120, Germany
| | - Ingo Ringshausen
- Wellcome Trust/ MRC Cambridge Stem Cell Institute & Department of Haematology, University of Cambridge, Cambridge, CB2 0AH, UK.
| |
Collapse
|
16
|
Staal J, Beyaert R. Inflammation and NF-κB Signaling in Prostate Cancer: Mechanisms and Clinical Implications. Cells 2018; 7:E122. [PMID: 30158439 PMCID: PMC6162478 DOI: 10.3390/cells7090122] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/24/2018] [Accepted: 08/27/2018] [Indexed: 12/26/2022] Open
Abstract
Prostate cancer is a highly prevalent form of cancer that is usually slow-developing and benign. Due to its high prevalence, it is, however, still the second most common cause of death by cancer in men in the West. The higher prevalence of prostate cancer in the West might be due to elevated inflammation from metabolic syndrome or associated comorbidities. NF-κB activation and many other signals associated with inflammation are known to contribute to prostate cancer malignancy. Inflammatory signals have also been associated with the development of castration resistance and resistance against other androgen depletion strategies, which is a major therapeutic challenge. Here, we review the role of inflammation and its link with androgen signaling in prostate cancer. We further describe the role of NF-κB in prostate cancer cell survival and proliferation, major NF-κB signaling pathways in prostate cancer, and the crosstalk between NF-κB and androgen receptor signaling. Several NF-κB-induced risk factors in prostate cancer and their potential for therapeutic targeting in the clinic are described. A better understanding of the inflammatory mechanisms that control the development of prostate cancer and resistance to androgen-deprivation therapy will eventually lead to novel treatment options for patients.
Collapse
Affiliation(s)
- Jens Staal
- VIB-UGent Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, VIB, 9052 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Rudi Beyaert
- VIB-UGent Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, VIB, 9052 Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
17
|
Crassini K, Pyke T, Shen Y, Stevenson WS, Christopherson RI, Mulligan SP, Best OG. Inhibition of the Raf-1 kinase inhibitory protein (RKIP) by locostatin induces cell death and reduces the CXCR4-mediated migration of chronic lymphocytic leukemia cells. Leuk Lymphoma 2018; 59:2917-2928. [PMID: 29911936 DOI: 10.1080/10428194.2018.1455974] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The Raf-1 kinase inhibitory protein (RKIP) is an important regulatory element in multiple signaling pathways, including MAPK-ERK1/2. We investigated whether targeted disruption of RKIP is a therapeutic option for chronic lymphocytic leukemia (CLL). The RKIP inhibitor locostatin-induced apoptosis of CLL cells, irrespective of poor prognostic indications or treatment history. Locostatin down-regulated MAPK-ERK1/2 and AKT phosphorylation, decreased expression of the chemokine receptor CXCR4 (p = .04) and reduced the migratory capacity of CLL cells toward stroma-derived factor 1α (SDF-1α, p = .02). Immuno-blotting and immuno-precipitation showed that RKIP is constitutively phosphorylated and highly expressed in CLL cells and that the actions of locostatin may be mediated by binding of G-protein receptor kinase-2 (GRK2) to MEK1 and AKT. Collectively, our data suggest that inhibition of RKIP may be effective against CLL, reducing the survival and migratory capacity of the leukemic cells through down-regulation of MAPK-ERK1/2 and AKT-mediated signaling.
Collapse
Affiliation(s)
- Kyle Crassini
- a Northern Blood Research Centre , Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards , Sydney , Australia
| | - Tahni Pyke
- a Northern Blood Research Centre , Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards , Sydney , Australia
| | - Yandong Shen
- a Northern Blood Research Centre , Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards , Sydney , Australia.,b School of Life and Environmental Sciences , University of Sydney , Sydney , Australia
| | - William S Stevenson
- a Northern Blood Research Centre , Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards , Sydney , Australia
| | | | - Stephen P Mulligan
- a Northern Blood Research Centre , Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards , Sydney , Australia.,b School of Life and Environmental Sciences , University of Sydney , Sydney , Australia
| | - Oliver Giles Best
- a Northern Blood Research Centre , Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards , Sydney , Australia.,b School of Life and Environmental Sciences , University of Sydney , Sydney , Australia
| |
Collapse
|
18
|
Targeting the tumor promoting effects of adenosine in chronic lymphocytic leukemia. Crit Rev Oncol Hematol 2018; 126:24-31. [DOI: 10.1016/j.critrevonc.2018.03.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 02/27/2018] [Accepted: 03/25/2018] [Indexed: 12/14/2022] Open
|
19
|
Maďarová M, Mucha R, Hresko S, Makarová Z, Gdovinová Z, Szilasiová J, Vitková M, Guman T, Štecová N, Dobransky T. Identification of new phosphorylation sites of CD23 in B-cells of patients with chronic lymphocytic leukemia. Leuk Res 2018; 70:25-33. [PMID: 29763855 DOI: 10.1016/j.leukres.2018.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 02/28/2018] [Accepted: 05/07/2018] [Indexed: 12/21/2022]
Abstract
B-cell chronic lymphocytic leukemia (B-CLL) is the most common lymphoproliferative disorder in adults. Patients with B-CLL strongly express the CD23 - C type of lectin (low affinity IgE receptor, Fc epsilon RII), which is linked to B cell activation and proliferation. Phosphorylation in lymphocytes is tightly associated with regulation of protein activities, functional regulation and cell signaling, and may thus affect initiation and/or progression of the disease. Here we report changes in the phosphorylation of CD23 on threonine (pThr314) and two serine residues (pSer254, pSer265) in B lymphocytes of B-CLL patients, using a flow cytometry approach. The majority of tested patients with active forms of B-CLL presented a notable overexpression of CD23 along with pThr314, pSer254, and pSer265 CD23 phosphorylation positivity. Moreover, we have experimentally stimulated the CD23 phosphorylations in a subset of peripheral blood lymphocytes of healthy controls by phorbol-12-myristate-13-acetate treatment. This affects the activation of competent phosphorylation mediating kinases, resulting in the enhanced phosphorylation pattern. Together, these data confirm that CD23 protein is phosphorylated in B cells of B-CLL patients, report the identification of new CD23 phosphorylation sites, and suggest a possible role(s) of such phosphorylations in the activation of CD23 during the process of lymphocytic activation in B-CLL.
Collapse
Affiliation(s)
| | | | | | | | - Zuzana Gdovinová
- Department of Neurology, Faculty of Medicine Pavol Jozef Safarik University, L. Pasteur University Hospital Kosice, Trieda SNP 1, 04011 Kosice, Slovakia
| | - Jarmila Szilasiová
- Department of Neurology, Faculty of Medicine Pavol Jozef Safarik University, L. Pasteur University Hospital Kosice, Trieda SNP 1, 04011 Kosice, Slovakia
| | - Marianna Vitková
- Department of Neurology, Faculty of Medicine Pavol Jozef Safarik University, L. Pasteur University Hospital Kosice, Trieda SNP 1, 04011 Kosice, Slovakia
| | - Tomáš Guman
- Department of Hematology and Oncohematology, Faculty of Medicine, Pavol Jozef Safarik University, L. Pasteur University Hospital, Trieda SNP 1, 04011 Kosice, Slovakia
| | - Natalia Štecová
- Department of Hematology and Oncohematology, Faculty of Medicine, Pavol Jozef Safarik University, L. Pasteur University Hospital, Trieda SNP 1, 04011 Kosice, Slovakia
| | | |
Collapse
|
20
|
Chang G, Zheng J, Xiao W, Chang S, Wei Q, Wu H, Tao Y, Yang G, Xie B, Lan X, Wang Y, Yu D, Hu L, Xie Y, Bu W, Kong Y, Dai B, Hou J, Shi J. PKC inhibition of sotrastaurin has antitumor activity in diffuse large B-cell lymphoma via regulating the expression of MCT-1. Acta Biochim Biophys Sin (Shanghai) 2018. [PMID: 29534146 DOI: 10.1093/abbs/gmy021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
MCT-1 (multiple copies in T-cell lymphoma-1), a novel oncogene, was originally identified in T-cell lymphoma. A recent study has demonstrated that MCT-1 is highly expressed in 85% of diffuse large B-cell lymphomas (DLBCL). PKC (protein kinase C) plays an essential role in signal transduction for multiple biologically active substances for activating cellular functions and proliferation. In this study, we found that the mRNA and protein expression levels of MCT-1 were visibly decreased after knocking down PKC by siRNA in SUDHL-4 and OCI-LY8 DLBCL cell lines. A selective PKC inhibitor, sotrastaurin, effectively inhibited cell proliferation and induced cell apoptosis in a dose- and time-dependent manner. Meanwhile, we also observed that the cell cycle was arrested in the G1 phase in sotrastaurin-treated cells. In addition, MCT-1 was down-regulated in the sotrastaurin treatment group in vivo. Furthermore, we demonstrated that the PKC inhibitor sotrastaurin induced cell apoptosis and cell cycle arrest in DLBCL cells potentially through regulating the expression of MCT-1. Our data suggest that targeting PKC may be a potential therapeutic approach for lymphomas and related malignancies that exhibit high levels of MCT-1 protein.
Collapse
Affiliation(s)
- Gaomei Chang
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
- Tongji University Cancer Center, Tongji University, Shanghai 200072, China
| | - Jiayi Zheng
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Wenqin Xiao
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
- Tongji University Cancer Center, Tongji University, Shanghai 200072, China
| | - Shuaikang Chang
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
- Tongji University Cancer Center, Tongji University, Shanghai 200072, China
| | - Qing Wei
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Huiqun Wu
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
- Tongji University Cancer Center, Tongji University, Shanghai 200072, China
| | - Yi Tao
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
- Tongji University Cancer Center, Tongji University, Shanghai 200072, China
| | - Guang Yang
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
- Tongji University Cancer Center, Tongji University, Shanghai 200072, China
| | - Bingqian Xie
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
- Tongji University Cancer Center, Tongji University, Shanghai 200072, China
| | - Xiucai Lan
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
- Tongji University Cancer Center, Tongji University, Shanghai 200072, China
| | - Yingcong Wang
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
- Tongji University Cancer Center, Tongji University, Shanghai 200072, China
| | - Dandan Yu
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
- Tongji University Cancer Center, Tongji University, Shanghai 200072, China
| | - Liangning Hu
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
- Tongji University Cancer Center, Tongji University, Shanghai 200072, China
| | - Yongsheng Xie
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
- Tongji University Cancer Center, Tongji University, Shanghai 200072, China
| | - Wenxuan Bu
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
- Tongji University Cancer Center, Tongji University, Shanghai 200072, China
| | - Yuanyuan Kong
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
- Tongji University Cancer Center, Tongji University, Shanghai 200072, China
| | - Bojie Dai
- College of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Jun Hou
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
- Tongji University Cancer Center, Tongji University, Shanghai 200072, China
| | - Jumei Shi
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
- Tongji University Cancer Center, Tongji University, Shanghai 200072, China
| |
Collapse
|
21
|
Ayed AO, Parikh SA. Management of patients with chronic lymphocytic leukemia at high risk of relapse on ibrutinib therapy. Leuk Lymphoma 2017; 59:2287-2296. [PMID: 29115892 DOI: 10.1080/10428194.2017.1397665] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The past two decades have witnessed a paradigm shift in the management of patients with chronic lymphocytic leukemia (CLL), particularly with the introduction of targeted therapies to clinical practice. Ibrutinib is an irreversible inhibitor of Bruton's tyrosine kinase (BTK) and has shown significant efficacy and tolerability, even in heavily treated patients. Despite improvement in outcomes, patients do ultimately relapse. Those who develop disease progression on ibrutinib are a particularly high-risk population with poor outcomes. Identifying patients at higher risk of relapse while on therapy is needed for individualized clinical monitoring and timely subsequent management upon relapse. In this article, we discuss characteristics of CLL progression, risk factors for relapse on ibrutinib including clinical and molecular biomarkers, and a risk-adapted approach to identifying, monitoring, and managing CLL patients during ibrutinib therapy.
Collapse
Affiliation(s)
- Ayed O Ayed
- a Division of Hematology , Mayo Clinic , Rochester , MN , USA
| | - Sameer A Parikh
- a Division of Hematology , Mayo Clinic , Rochester , MN , USA
| |
Collapse
|
22
|
Abstract
The last several years have witnessed a paradigm shift in the management of patients with chronic lymphocytic leukemia (CLL). The course of this very heterogeneous disease, traditionally treated with chemotherapeutic agents usually in combination with rituximab, typically has been characterized by remissions and relapses, and survival times vary greatly, depending on intrinsic biological attributes of the leukemia. The developments of the last few years have been transformative, ushering in an era of novel, molecularly targeted therapies, made possible by extensive efforts to elucidate the biology of the disease that predated the new targeted drugs. Thus, successful therapeutic targeting of the B-cell receptor signaling pathway and of the Bcl-2 anti-apoptotic protein with small molecules has now made chemotherapy-free approaches possible, hopefully mitigating the risk of development of therapy-related myeloid neoplasms and making eventual cure of CLL with the use of optimal drug combinations a realistic goal. Most importantly, these therapies have demonstrated unprecedented efficacy in patients with deletion 17p/TP53 mutation, a subset that historically has been very difficult to treat. However, as we gain more experience with the newer agents, unique safety concerns and resistance mechanisms have emerged, as has the issue of cost, as these expensive drugs are currently administered indefinitely. Accordingly, novel laboratory-based strategies and clinical trial designs are being explored to address these issues. The availability of whole exome/genome sequencing has given us profound insights into the mutational landscape of CLL. In this article, we highlight some of the most impactful advances since this topic was last reviewed in this journal.
Collapse
Affiliation(s)
- Prithviraj Bose
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Varsha Gandhi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
23
|
Ruvolo PP. GSK-3 as a novel prognostic indicator in leukemia. Adv Biol Regul 2017; 65:26-35. [PMID: 28499784 DOI: 10.1016/j.jbior.2017.05.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 05/05/2017] [Accepted: 05/07/2017] [Indexed: 06/07/2023]
Abstract
While leukemias represent a diverse set of diseases with malignant cells derived from myeloid or lymphoid origin, a common feature is the dysregulation of signal transduction pathways that influence leukemogeneisis, promote drug resistance, and favor leukemia stem cells. Mutations in PI3K, PTEN, RAS, or other upstream regulators can activate the AKT kinase which has central roles in supporting cell proliferation and survival. A major target of AKT is Glycogen Synthase Kinase 3 (GSK3). GSK3 has two isoforms (alpha and beta) that were studied as regulators of metabolism but emerged as central players in cancer in the early 1990s. GSK3 is unique in that the isoforms are constitutively active. Active GSK3 promotes destruction of oncogenic proteins such as beta Catenin, c-MYC, and MCL-1 and thus has tumor suppressor properties. In AML, inactivation of GSK3 is associated with poor overall survival. Interestingly in some leukemias GSK3 targets a tumor suppressor and thus the kinases can act as tumor promoters in those instances. An example is GSK3 targeting p27Kip1 in AML with MLL translocation. This review will cover the role of GSK3 in various leukemias both as tumor suppressor and tumor promoter. We will also briefly cover current state of GSK3 inhibitors for leukemia therapy.
Collapse
Affiliation(s)
- Peter P Ruvolo
- Department of Leukemia, Unit 448, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, United States.
| |
Collapse
|
24
|
Simulated annealing molecular dynamics and ligand-receptor contacts analysis for pharmacophore modeling. Future Med Chem 2017; 9:1141-1159. [PMID: 28722471 DOI: 10.4155/fmc-2017-0061] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
AIM Ligand-based pharmacophore modeling requires long list of inhibitors, while pharmacophores based on single ligand-receptor crystallographic structure can be too restricted or promiscuous. METHODOLOGY This prompted us to combine simulated annealing molecular dynamics (SAMD) with ligand-receptor contacts analysis as means to construct pharmacophore model(s) from single ligand-receptor complex. Ligand-receptor contacts that survive numerous heating-cooling SAMD cycles are considered critical and are used to guide pharmacophore development. RESULTS This methodology was implemented to develop pharmacophores for acetylcholinesterase and protein kinase C-θ. The resulting models were validated by receiver-operating characteristic analysis and in vitro bioassay. Assay identified four new protein kinase C-θ inhibitors among captured hits, two of which exhibited nanomolar potencies. CONCLUSION The results illustrate the ability of the new method to extract valid pharmacophores from single ligand-protein complex.
Collapse
|
25
|
Zhang J, Wang Y, Duan Y, Fan D, Zhou Z, Huang J, Wei R, Shen L. PKCα promotes local advancement via its dual roles in nasopharyngeal carcinoma. Acta Otolaryngol 2017; 137:662-667. [PMID: 28084179 DOI: 10.1080/00016489.2016.1269195] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
CONCLUSION In patients with nasopharyngeal carcinoma (NPC), PKCα is linked to local advancement and plays dual roles in tumorigenesis. Moreover, positive PKCα is associated with 2-year overall survival of NPC. OBJECTIVE This study seeks to investigate the role of PKCα to identify different sub-types in NPC. METHODS PKCα expression levels were detected in a collection of NPC samples. CT and MRI scans of the corresponding patients were used to assess adjacent tissue invasion and lymph node metastasis. The correlation of tumour invasion and PKCα levels was evaluated by statistical analysis. The correlation between expression level of PKCα and 2-year overall survival was analysed by the Kaplan-Meier curves. Moreover, a multivariate Cox proportional hazard regression analysis was used to identify the independent prognostic factors for NPC. RESULTS PKCα is linked to the invasion of adjacent tissues, especially in the skull base. However, down-regulation of PKCα is a risk factor for regional lymph node metastasis. The 2-year overall survival of the PKCα negative group is better than that of the PKCα positive group (PKCα negative group 100%, PKCα positive group 88.5%, p = 0.034). Based on the multivariate Cox proportional hazard regression analysis, age was identified as a risk factor.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, PR China
| | - Ying Wang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, PR China
| | - Yumei Duan
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, PR China
| | - Dan Fan
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, PR China
| | - Zhijiao Zhou
- Department of Pathology, The Third Xiangya Hospital, Central South University, Changsha, PR China
| | - Jianghai Huang
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, PR China
| | - Rui Wei
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, PR China
| | - Liangfang Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, PR China
| |
Collapse
|
26
|
Isakov N. Protein kinase C (PKC) isoforms in cancer, tumor promotion and tumor suppression. Semin Cancer Biol 2017; 48:36-52. [PMID: 28571764 DOI: 10.1016/j.semcancer.2017.04.012] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/22/2017] [Accepted: 04/25/2017] [Indexed: 12/27/2022]
Abstract
The AGC family of serine/threonine kinases (PKA, PKG, PKC) includes more than 60 members that are critical regulators of numerous cellular functions, including cell cycle and differentiation, morphogenesis, and cell survival and death. Mutation and/or dysregulation of AGC kinases can lead to malignant cell transformation and contribute to the pathogenesis of many human diseases. Members of one subgroup of AGC kinases, the protein kinase C (PKC), have been singled out as critical players in carcinogenesis, following their identification as the intracellular receptors of phorbol esters, which exhibit tumor-promoting activities. This observation attracted the attention of researchers worldwide and led to intense investigations on the role of PKC in cell transformation and the potential use of PKC as therapeutic drug targets in cancer diseases. Studies demonstrated that many cancers had altered expression and/or mutation of specific PKC genes. However, the causal relationships between the changes in PKC gene expression and/or mutation and the direct cause of cancer remain elusive. Independent studies in normal cells demonstrated that activation of PKC is essential for the induction of cell activation and proliferation, differentiation, motility, and survival. Based on these observations and the general assumption that PKC isoforms play a positive role in cell transformation and/or cancer progression, many PKC inhibitors have entered clinical trials but the numerous attempts to target PKC in cancer has so far yielded only very limited success. More recent studies demonstrated that PKC function as tumor suppressors, and suggested that future clinical efforts should focus on restoring, rather than inhibiting, PKC activity. The present manuscript provides some historical perspectives on the tumor promoting function of PKC, reviewing some of the observations linking PKC to cancer progression, and discusses the role of PKC in the pathogenesis of cancer diseases and its potential usage as a therapeutic target.
Collapse
Affiliation(s)
- Noah Isakov
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences and the Cancer Research Center, Ben Gurion University of the Negev, P.O.B. 653, Beer Sheva 84105, Israel.
| |
Collapse
|
27
|
Kubuschok B, Trepel M. Learning from the failures of drug discovery in B-cell non-Hodgkin lymphomas and perspectives for the future: chronic lymphocytic leukemia and diffuse large B-cell lymphoma as two ends of a spectrum in drug development. Expert Opin Drug Discov 2017; 12:733-745. [PMID: 28494631 DOI: 10.1080/17460441.2017.1329293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
INTRODUCTION Despite substantial recent advances, there is still an unmet need for better therapies in B-cell non Hodgkin lymphomas (B-NHL), especially in relapsed or refractory disease. Many novel targeted drugs have been developed based on a better molecular understanding of B-NHL. Areas covered: This article focuses on chronic lymphocytic leukemia (CLL) as a representative for indolent lymphomas and paradigmatic for the tremendous progress in treating B-NHL on the one hand and diffuse large B-cell lymphoma (DLBCL) as a representative for aggressive lymphomas and paradigmatic for many unsolved problems in lymphoma treatment or the other hand. We highlight salient points in current therapies targeting genetic, epigenetic, immunological and microenvironmental alterations. Possible reasons for drug failure in clinical trials like tumor heterogeneity, clonal evolution and drug resistance mechanisms are discussed. Based thereon, some perspectives for further drug discovery are given. Expert opinion: In view of the pathogenetic complexity of lymphomas, therapies targeting exclusively a single alteration may fail because resistance mechanisms are present either initially or evolve during treatment. Therefore, future therapies in B-NHL may have to target the greatest possible number of genetic, immunological or epigenetic alterations still allowing tolerability and to monitor these alterations during therapy.
Collapse
Affiliation(s)
- Boris Kubuschok
- a Department of Internal Medicine II , Klinikum Augsburg , Augsburg , Germany.,b Department of Hematology and Oncology , University of Saarland Medical School , Homburg , Germany
| | - Martin Trepel
- a Department of Internal Medicine II , Klinikum Augsburg , Augsburg , Germany.,c Department of Oncology and Hematology , University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| |
Collapse
|
28
|
Zuidscherwoude M, Dunlock VME, van den Bogaart G, van Deventer SJ, van der Schaaf A, van Oostrum J, Goedhart J, In 't Hout J, Hämmerling GJ, Tanaka S, Nadler A, Schultz C, Wright MD, Adjobo-Hermans MJW, van Spriel AB. Tetraspanin microdomains control localized protein kinase C signaling in B cells. Sci Signal 2017; 10:eaag2755. [PMID: 28487417 DOI: 10.1126/scisignal.aag2755] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Activation of B cells by the binding of antigens to the B cell receptor (BCR) requires the protein kinase C (PKC) family member PKCβ. Because PKCs must translocate to the plasma membrane to become activated, we investigated the mechanisms regulating their spatial distribution in mouse and human B cells. Through live-cell imaging, we showed that BCR-stimulated production of the second messenger diacylglycerol (DAG) resulted in the translocation of PKCβ from the cytosol to plasma membrane regions containing the tetraspanin protein CD53. CD53 was specifically enriched at sites of BCR signaling, suggesting that BCR-dependent PKC signaling was initiated at these tetraspanin microdomains. Fluorescence lifetime imaging microscopy studies confirmed the molecular recruitment of PKC to CD53-containing microdomains, which required the amino terminus of CD53. Furthermore, we showed that Cd53-deficient B cells were defective in the phosphorylation of PKC substrates. Consistent with this finding, PKC recruitment to the plasma membrane was impaired in both mouse and human CD53-deficient B cells compared to that in their wild-type counterparts. These data suggest that CD53 promotes BCR-dependent PKC signaling by recruiting PKC to the plasma membrane so that it can phosphorylate its substrates and that tetraspanin-containing microdomains can act as signaling hotspots in the plasma membrane.
Collapse
Affiliation(s)
- Malou Zuidscherwoude
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands
| | - Vera-Marie E Dunlock
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands
| | - Geert van den Bogaart
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands
| | - Sjoerd J van Deventer
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands
| | - Alie van der Schaaf
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands
| | - Jenny van Oostrum
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands
| | - Joachim Goedhart
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, 1098 XH Amsterdam, Netherlands
| | - Joanna In 't Hout
- Department for Health Evidence, Radboud Institute for Health Sciences, Radboud University Medical Center, 6500 HB Nijmegen, Netherlands
| | - Günter J Hämmerling
- Department of Molecular Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Satoshi Tanaka
- Department of Pathology, Sapporo Medical University School of Medicine, 060-8556 Sapporo, Japan
| | - André Nadler
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Carsten Schultz
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Mark D Wright
- Department of Immunology, Monash University, Alfred Medical Research and Education Precinct, Melbourne, Victoria 3004, Australia
| | - Merel J W Adjobo-Hermans
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands
| | - Annemiek B van Spriel
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands.
| |
Collapse
|
29
|
van Eis MJ, Evenou J, Schuler W, Zenke G, Vangrevelinghe E, Wagner J, von Matt P. Indolyl-naphthyl-maleimides as potent and selective inhibitors of protein kinase C-α/β. Bioorg Med Chem Lett 2017; 27:781-786. [DOI: 10.1016/j.bmcl.2017.01.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/09/2017] [Accepted: 01/12/2017] [Indexed: 12/11/2022]
|
30
|
How I manage ibrutinib-refractory chronic lymphocytic leukemia. Blood 2017; 129:1270-1274. [PMID: 28096090 DOI: 10.1182/blood-2016-09-693598] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 01/12/2017] [Indexed: 01/01/2023] Open
Abstract
The introduction of the Bruton tyrosine kinase (BTK) inhibitor ibrutinib has dramatically changed the management of chronic lymphocytic leukemia (CLL). Although responses have been durable in the majority of patients, relapses do occur, especially in the high-risk patient population. Most relapses occur as the result of acquired mutations in BTK and PLCG2, which may facilitate success with alternative targeted therapies. As outcomes after ibrutinib relapse have been reported to be poor, specific strategies are needed for this patient population. Here, I discuss the diagnosis and management of ibrutinib-refractory CLL. The focus will be on common clinical scenarios that can be mistaken for relapse and how to accurately determine which patients are relapsing. Because there is no established standard of care, I discuss currently available options for standard therapy and existing clinical data. I also discuss new agents with the potential to be effective in patients refractory to ibrutinib. Finally, I discuss strategies for long-term disease control in this patient population.
Collapse
|
31
|
Abdul-Aziz AM, Shafat MS, Mehta TK, Di Palma F, Lawes MJ, Rushworth SA, Bowles KM. MIF-Induced Stromal PKCβ/IL8 Is Essential in Human Acute Myeloid Leukemia. Cancer Res 2016; 77:303-311. [PMID: 27872094 DOI: 10.1158/0008-5472.can-16-1095] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 09/22/2016] [Accepted: 10/21/2016] [Indexed: 11/16/2022]
Abstract
Acute myeloid leukemia (AML) cells exhibit a high level of spontaneous apoptosis when cultured in vitro but have a prolonged survival time in vivo, indicating that tissue microenvironment plays a critical role in promoting AML cell survival. In vitro studies have shown that bone marrow mesenchymal stromal cells (BM-MSC) protect AML blasts from spontaneous and chemotherapy-induced apoptosis. Here, we report a novel interaction between AML blasts and BM-MSCs, which benefits AML proliferation and survival. We initially examined the cytokine profile in cultured human AML compared with AML cultured with BM-MSCs and found that macrophage migration inhibitory factor (MIF) was highly expressed by primary AML, and that IL8 was increased in AML/BM-MSC cocultures. Recombinant MIF increased IL8 expression in BM-MSCs via its receptor CD74. Moreover, the MIF inhibitor ISO-1 inhibited AML-induced IL8 expression by BM-MSCs as well as BM-MSC-induced AML survival. Protein kinase C β (PKCβ) regulated MIF-induced IL8 in BM-MSCs. Finally, targeted IL8 shRNA inhibited BM-MSC-induced AML survival. These results describe a novel, bidirectional, prosurvival mechanism between AML blasts and BM-MSCs. Furthermore, they provide biologic rationale for therapeutic strategies in AML targeting the microenvironment, specifically MIF and IL8. Cancer Res; 77(2); 303-11. ©2016 AACR.
Collapse
Affiliation(s)
- Amina M Abdul-Aziz
- Department of Molecular Haematology, Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Manar S Shafat
- Department of Molecular Haematology, Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Tarang K Mehta
- The Genome Analysis Centre (TGAC), Colney, Norwich, United Kingdom
| | | | - Matthew J Lawes
- Department of Haematology, Norfolk and Norwich University Hospitals NHS Trust, Norwich, United Kingdom
| | - Stuart A Rushworth
- Department of Molecular Haematology, Norwich Medical School, University of East Anglia, Norwich, United Kingdom.
| | - Kristian M Bowles
- Department of Molecular Haematology, Norwich Medical School, University of East Anglia, Norwich, United Kingdom. .,Department of Haematology, Norfolk and Norwich University Hospitals NHS Trust, Norwich, United Kingdom
| |
Collapse
|
32
|
Bone marrow stroma-induced resistance of chronic lymphocytic leukemia cells to arsenic trioxide involves Mcl-1 upregulation and is overcome by inhibiting the PI3Kδ or PKCβ signaling pathways. Oncotarget 2016; 6:44832-48. [PMID: 26540567 PMCID: PMC4792595 DOI: 10.18632/oncotarget.6265] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 10/22/2015] [Indexed: 11/25/2022] Open
Abstract
CLL remains an incurable disease in spite of the many new compounds being studied. Arsenic trioxide (ATO) induces apoptosis in all CLL cell types and could constitute an efficient therapy. To further explore this, we have studied the influence of stromal cells, key components of the CLL microenvironment, on the response of CLL cells to ATO. Bone marrow stromal cells induced CLL cell resistance to 2 μM ATO and led to activation of Lyn, ERK, PI3K and PKC, as well as NF-κB and STAT3. Mcl-1, Bcl-xL, and Bfl-1 were also upregulated after the co-culture. Inhibition experiments indicated that PI3K and PKC were involved in the resistance to ATO induced by stroma. Moreover, idelalisib and sotrastaurin, specific inhibitors for PI3Kδ and PKCβ, respectively, inhibited Akt phosphorylation, NF-κB/STAT3 activation and Mcl-1 upregulation, and rendered cells sensitive to ATO. Mcl-1 was central to the mechanism of resistance to ATO, since: 1) Mcl-1 levels correlated with the CLL cell response to ATO, and 2) blocking Mcl-1 expression or function with specific siRNAs or inhibitors overcame the protecting effect of stroma. We have therefore identified the mechanism involved in the CLL cell resistance to ATO induced by bone marrow stroma and show that idelalisib or sotrastaurin block this mechanism and restore sensibility to ATO. Combination of ATO with these inhibitors may thus constitute an efficient treatment for CLL.
Collapse
|
33
|
Blachly JS, Byrd JC, Grever M. Cyclin-dependent kinase inhibitors for the treatment of chronic lymphocytic leukemia. Semin Oncol 2016; 43:265-73. [DOI: 10.1053/j.seminoncol.2016.02.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
34
|
Rauert-Wunderlich H, Rudelius M, Ott G, Rosenwald A. Targeting protein kinase C in mantle cell lymphoma. Br J Haematol 2016; 173:394-403. [PMID: 26914495 DOI: 10.1111/bjh.13973] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 12/21/2015] [Indexed: 12/18/2022]
Abstract
Although targeting the Bruton tyrosine kinase (BTK) with ibrutinib has changed lymphoma treatment, patients with mantle cell lymphoma (MCL) remain incurable. In this study, we characterized a broad range of MCL cell lines and primary MCL cells with respect to the response to the BTK inhibitor, ibrutinib, and compared it with the response to the protein kinase C (PKC) inhibitor, sotrastaurin. At clinically relevant concentrations, each drug induced potent cell death only in the REC-1 cell line, which was accompanied by robust inhibition of AKT and ERK1/ERK2 (ERK1/2, also termed MAPK3/MAPK1) phosphorylation. In sensitive REC-1 cells, the drug-mediated impaired phosphorylation was obvious on the levels of B-cell receptor-induced and basal phosphorylation. Similar results were obtained in primary MCL cells with ibrutinib and in a subset with sotrastaurin. The various drug-resistant MCL cell lines showed very distinct responses in terms of basal AKT and ERK1/2 phosphorylation. Interestingly, targeting PKC and BTK at the same time led to ibrutinib-mediated rescue of a weak sotrastaurin-induced apoptosis in MINO cells. Additional targeting of AKT sensitized MINO cells to inhibitor-mediated cytotoxicity. In summary, MCL cells are heterogeneous in their response to BTK or PKC inhibition, indicating the need for even more individualized targeted treatment approaches in subsets of MCL patients.
Collapse
Affiliation(s)
- Hilka Rauert-Wunderlich
- Institute of Pathology, University of Würzburg and Comprehensive Cancer Center (CCC) Mainfranken, Würzburg, Germany
| | - Martina Rudelius
- Institute of Pathology, University of Würzburg and Comprehensive Cancer Center (CCC) Mainfranken, Würzburg, Germany
| | - German Ott
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, Stuttgart, Germany.,Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
| | - Andreas Rosenwald
- Institute of Pathology, University of Würzburg and Comprehensive Cancer Center (CCC) Mainfranken, Würzburg, Germany
| |
Collapse
|
35
|
|
36
|
Crassini K, Mulligan SP, Best OG. Targeting chronic lymphocytic leukemia cells in the tumor microenviroment: A review of the in vitro and clinical trials to date. World J Clin Cases 2015; 3:694-704. [PMID: 26301230 PMCID: PMC4539409 DOI: 10.12998/wjcc.v3.i8.694] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 12/23/2014] [Accepted: 06/04/2015] [Indexed: 02/05/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is the most common leukemia in the western world. Despite significant advances in therapy over the last decade CLL remains incurable. Current front-line therapy often consists of chemoimmunotherapy-based regimens, most commonly the fludarabine, cyclophosphamide plus rituximab combination, but rates of relapse and refractory disease are high among these patients. Several key signaling pathways are now known to mediate the survival and proliferation of CLL cells in vivo, the most notable of which are the pathways mediated by the B-cell receptor (BCR) and cytokine receptors. A better understanding of the pathogenesis of the disease, the underlying biology of the CLL-cell and the roles of the tumour microenvironment has provided the rationale for trials of a range of novel, more targeted therapeutic agents. In particular, clinical trials of ibrutinib and idelalisib, which target the Brutons tyrosine kinase and the delta isoform of phosphoinositol-3 kinase components of the BCR signaling pathway respectively, have shown extremely promising results. Here we review the current literature on the key signaling pathways and interactions of CLL cells that mediate the survival and proliferation of the leukemic cells. For each we describe the results of the recent clinical trials and in vitro studies of novel therapeutic agents.
Collapse
|
37
|
Saba NS, Angelova M, Lobelle-Rich PA, Levy LS. Disruption of pre-B-cell receptor signaling jams the WNT/β-catenin pathway and induces cell death in B-cell acute lymphoblastic leukemia cell lines. Leuk Res 2015; 39:S0145-2126(15)30355-6. [PMID: 26298175 DOI: 10.1016/j.leukres.2015.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 08/04/2015] [Accepted: 08/06/2015] [Indexed: 11/28/2022]
Abstract
Targeting components of the B-cell receptor (BCR) pathway have dramatically improved clinical outcomes in a variety of B-cell malignancies. Despite the well-documented pathogenic role of BCR precursor (pre-BCR) pathway in B-cell acute lymphoblastic leukemia (B-ALL), there is limited available data of therapies that aim to disrupt this pathway. To investigate the role of protein kinase Cβ (PKCβ), a crucial mediator of BCR and pre-BCR signaling, in B-ALL survival, we studied the activity of the PKCβ selective inhibitor enzastaurin (ENZ) in seven B-ALL cell lines. Treatment with ENZ resulted in a dose- and time-dependent growth inhibition in all cell lines with a relatively higher efficacy in pro-B ALL with translocation t(4;11)(q21;q23). The mechanism of growth inhibition was by apoptotic induction and cell cycle arrest. A rapid reduction in phosphorylation of AKT and its downstream target glycogen synthase kinase 3β (GSK3β) were observed at 30min after treatment and remaining for 48h. The reduction in GSK3β phosphorylation was associated with a paradoxical accumulation of β-catenin, which was due to a transient loss of β-catenin phosphorylation at ser33-37. In addition, accumulation of β-catenin was associated with downregulation of c-Myc, upregulatiuon of c-Jun, and a subsequent protective effect on the tumor suppressor p73. Data in this paper were presented in part at 2012 American Society of Hematology Annual Meeting, abstract 1350.
Collapse
Affiliation(s)
- Nakhle S Saba
- Section of Hematology and Medical Oncology, Department of Medicine, Tulane University, New Orleans, LA 70112, USA.
| | - Magdalena Angelova
- Department of Microbiology and Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Patricia A Lobelle-Rich
- Section of Hematology and Medical Oncology, Department of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Laura S Levy
- Department of Microbiology and Immunology, Tulane University, New Orleans, LA 70112, USA
| |
Collapse
|
38
|
Woyach JA, Johnson AJ. Targeted therapies in CLL: mechanisms of resistance and strategies for management. Blood 2015; 126:471-7. [PMID: 26065659 PMCID: PMC4513250 DOI: 10.1182/blood-2015-03-585075] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 04/22/2015] [Indexed: 01/05/2023] Open
Abstract
The therapy of relapsed chronic lymphocytic leukemia (CLL) has changed dramatically in the past year with the regulatory approval of idelalisib and ibrutinib, with other therapeutic small molecules likely to become widely available in the next few years. Although durable remissions are being seen in many patients with these agents, it is becoming apparent that some patients with high genomic risk disease will relapse. Next-generation sequencing in patients as well as in vitro models is affording us the opportunity to understand the biology behind these relapses, which is the first step to designing rational therapies to prevent and treat targeted therapy-resistant CLL. These strategies are critical, as these relapses can be very difficult to manage, and a coordinated effort to put these patients on clinical trials will be required to efficiently determine the optimal therapies for these patients. In this review, we will describe mechanisms of resistance, both proven and hypothesized, for idelalisib, ibrutinib, and venetoclax, describe patterns of resistance that have been described with ibrutinib, and discuss potential strategies for management of disease resistant to these drugs as well as potential strategies to prevent resistance.
Collapse
Affiliation(s)
- Jennifer A Woyach
- Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, OH
| | - Amy J Johnson
- Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, OH
| |
Collapse
|
39
|
Abstract
The protein kinase C (PKC) family of serine/threonine protein kinases share structural homology, while exhibiting substantial functional diversity. PKC isoforms are ubiquitously expressed in tissues which makes it difficult to define roles for individual isoforms, with complexity compounded by the finding that PKC isoforms can co-operate with or antagonize other PKC family members. A number of studies suggest the involvement of PKC family members in regulating leukaemic cell survival and proliferation. Chronic lymphocytic leukaemia (CLL), the most common leukaemia in the Western world, exhibits dysregulated expression of PKC isoforms, with recent reports indicating that PKCβ and δ play a critical role in B-cell development, due to their ability to link the B-cell receptor (BCR) with downstream signalling pathways. Given the prognostic significance of the BCR in CLL, inhibition of these BCR/PKC-mediated signalling pathways is of therapeutic relevance. The present review discusses the emerging role of PKC isoforms in the pathophysiology of CLL and assesses approaches that have been undertaken to modulate PKC activity.
Collapse
|
40
|
Nakagawa R, Vukovic M, Tarafdar A, Cosimo E, Dunn K, McCaig AM, Holroyd A, McClanahan F, Ramsay AG, Gribben JG, Michie AM. Generation of a poor prognostic chronic lymphocytic leukemia-like disease model: PKCα subversion induces up-regulation of PKCβII expression in B lymphocytes. Haematologica 2015; 100:499-510. [PMID: 25616575 DOI: 10.3324/haematol.2014.112276] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Overwhelming evidence identifies the microenvironment as a critical factor in the development and progression of chronic lymphocytic leukemia, underlining the importance of developing suitable translational models to study the pathogenesis of the disease. We previously established that stable expression of kinase dead protein kinase C alpha in hematopoietic progenitor cells resulted in the development of a chronic lymphocytic leukemia-like disease in mice. Here we demonstrate that this chronic lymphocytic leukemia model resembles the more aggressive subset of chronic lymphocytic leukemia, expressing predominantly unmutated immunoglobulin heavy chain genes, with upregulated tyrosine kinase ZAP-70 expression and elevated ERK-MAPK-mTor signaling, resulting in enhanced proliferation and increased tumor load in lymphoid organs. Reduced function of PKCα leads to an up-regulation of PKCβII expression, which is also associated with a poor prognostic subset of human chronic lymphocytic leukemia samples. Treatment of chronic lymphocytic leukemia-like cells with the selective PKCβ inhibitor enzastaurin caused cell cycle arrest and apoptosis both in vitro and in vivo, and a reduction in the leukemic burden in vivo. These results demonstrate the importance of PKCβII in chronic lymphocytic leukemia-like disease progression and suggest a role for PKCα subversion in creating permissive conditions for leukemogenesis.
Collapse
Affiliation(s)
- Rinako Nakagawa
- Institute of Cancer Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow The Babraham Institute, Cambridge
| | - Milica Vukovic
- Institute of Cancer Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow MRC Centre for Regenerative Medicine, University of Edinburgh
| | - Anuradha Tarafdar
- Institute of Cancer Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow
| | - Emilio Cosimo
- Institute of Cancer Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow
| | - Karen Dunn
- Institute of Cancer Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow
| | - Alison M McCaig
- Institute of Cancer Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow
| | - Ailsa Holroyd
- Institute of Cancer Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow
| | - Fabienne McClanahan
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London
| | - Alan G Ramsay
- Department of Haemato-Oncology, King's College London, UK
| | - John G Gribben
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London
| | - Alison M Michie
- Institute of Cancer Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow
| |
Collapse
|
41
|
Woyach JA. Patterns of resistance to B cell-receptor pathway antagonists in chronic lymphocytic leukemia and strategies for management. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2015; 2015:355-360. [PMID: 26637743 DOI: 10.1182/asheducation-2015.1.355] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Small-molecule kinase inhibitors, especially the two Food and Drug Administration-approved agents idelalisib and ibrutinib, have changed the treatment landscape for patients with relapsed or refractory chronic lymphocytic leukemia (CLL). However, with these positive changes comes the new challenge of managing patients who relapse after these agents. The number of patients who have relapsed after taking idelalisib and ibrutinib is low, but as the drugs gain wider use and patients are treated for longer, this number is likely to grow. Because these patients can be challenging to manage effectively, coordinated efforts now to determine how and why patients relapse along with optimal treatment strategies are required to better serve our patients in the future. As well, identification of mechanisms of resistance is crucial to develop rational strategies for management. Current work has identified mechanisms of resistance to ibrutinib, and resistance to idelalisib is also under active investigation. In this review, we will discuss these mechanisms of resistance, as well as current and potential strategies for the management of kinase inhibitor-resistant CLL.
Collapse
MESH Headings
- Adenine/analogs & derivatives
- Antineoplastic Agents/therapeutic use
- Clinical Trials as Topic
- Drug Resistance, Neoplasm
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Mutation
- Neoplasm Recurrence, Local
- Piperidines
- Protein Kinase Inhibitors/therapeutic use
- Purines/therapeutic use
- Pyrazoles/therapeutic use
- Pyrimidines/therapeutic use
- Quinazolinones/therapeutic use
- Receptors, Antigen, B-Cell/antagonists & inhibitors
- Receptors, Antigen, B-Cell/metabolism
- Remission Induction
- Risk Factors
- Signal Transduction
Collapse
Affiliation(s)
- Jennifer A Woyach
- Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, OH
| |
Collapse
|