1
|
Costa IM, Effer B, Costa-Silva TA, Chen C, Ciccone MF, Pessoa A, dos Santos CO, Monteiro G. Cathepsin B Is Not an Intrinsic Factor Related to Asparaginase Resistance of the Acute Lymphoblastic Leukemia REH Cell Line. Int J Mol Sci 2023; 24:11215. [PMID: 37446393 PMCID: PMC10342508 DOI: 10.3390/ijms241311215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/23/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
L-Asparaginase (ASNase) is a biopharmaceutical used as an essential drug in the treatment of acute lymphoblastic leukemia (ALL). Yet, some cases of ALL are naturally resistant to ASNase treatment, which results in poor prognosis. The REH ALL cell line, used as a model for studying the most common subtype of ALL, is considered resistant to treatment with ASNase. Cathepsin B (CTSB) is one of the proteases involved in the regulation of in vivo ASNase serum half-life and it has also been associated with the progression and resistance to treatment of several solid tumors. Previous works have shown that, in vitro, ASNase is degraded when incubated with REH cell lysate, which is prevented by a specific CTSB inhibitor, suggesting a function of this protease in the ASNase resistance of REH cells. In this work, we utilized a combination of CRISPR/Cas9 gene targeting and enzymatic measurements to investigate the relevance of CTSB on ASNase treatment resistance in the ALL model cell line. We found that deletion of CTSB in REH ALL cells did not confer ASNase treatment sensitivity, thus suggesting that intrinsic expression of CTSB is not a mechanism that drives the resistant nature of these ALL cells to enzymes used as the first-line treatment against leukemia.
Collapse
Affiliation(s)
- Iris Munhoz Costa
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil; (I.M.C.); (B.E.); (T.A.C.-S.); (A.P.)
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724, USA; (C.C.); (M.F.C.); (C.O.d.S.)
| | - Brian Effer
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil; (I.M.C.); (B.E.); (T.A.C.-S.); (A.P.)
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724, USA; (C.C.); (M.F.C.); (C.O.d.S.)
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4780000, Chile
| | - Tales Alexandre Costa-Silva
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil; (I.M.C.); (B.E.); (T.A.C.-S.); (A.P.)
- Center for Natural and Human Sciences, Federal University of ABC, Santo André 14040-903, SP, Brazil
| | - Chen Chen
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724, USA; (C.C.); (M.F.C.); (C.O.d.S.)
| | - Michael F. Ciccone
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724, USA; (C.C.); (M.F.C.); (C.O.d.S.)
| | - Adalberto Pessoa
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil; (I.M.C.); (B.E.); (T.A.C.-S.); (A.P.)
| | - Camila O. dos Santos
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724, USA; (C.C.); (M.F.C.); (C.O.d.S.)
| | - Gisele Monteiro
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil; (I.M.C.); (B.E.); (T.A.C.-S.); (A.P.)
| |
Collapse
|
2
|
Lima GM, Atrazhev A, Sarkar S, Sojitra M, Reddy R, Torres-Obreque K, de Oliveira Rangel-Yagui C, Macauley MS, Monteiro G, Derda R. DNA-Encoded Multivalent Display of Chemically Modified Protein Tetramers on Phage: Synthesis and in Vivo Applications. ACS Chem Biol 2022; 17:3024-3035. [PMID: 34928124 DOI: 10.1021/acschembio.1c00835] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Phage display links the phenotype of displayed polypeptides with the DNA sequence in the phage genome and offers a universal method for the discovery of proteins with novel properties. However, the display of large multisubunit proteins on phages remains a challenge. A majority of protein display systems are based on monovalent phagemid constructs, but methods for the robust display of multiple copies of large proteins are scarce. Here, we describe a DNA-encoded display of a ∼ 200 kDa tetrameric l-asparaginase protein on M13 and fd phages produced by ligation of SpyCatcher-Asparaginase fusion (ScA) and PEGylated-ScA (PEG-ScA) to barcoded phage clones displaying SpyTag peptide. Starting from the SpyTag display on p3 or p8 coat proteins yielded constructs with five copies of ScA displayed on p3 (ScA-p3), ∼100 copies of ScA on p8 protein (ScA-p8) and ∼300 copies of PEG-ScA on p8 protein (PEG-ScA-p8). Display constructs of different valencies and chemical modifications on protein (e.g., PEGylation) can be injected into mice and analyzed by deep sequencing of the DNA barcodes associated with phage clones. In these multiplexed studies, we observed a density and protein-dependent clearance rate in vivo. Our observations link the absence of PEGylation and increase in density of the displayed protein with the increased rate of the endocytosis by cells in vivo. In conclusion, we demonstrate that a multivalent display of l-asparaginase on phages could be used to study the circulation life of this protein in vivo, and such an approach opens the possibility to use DNA sequencing to investigate multiplexed libraries of other multisubunit proteins in vivo.
Collapse
Affiliation(s)
- Guilherme M Lima
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, 05508 000, Brazil.,Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Alexey Atrazhev
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Susmita Sarkar
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Mirat Sojitra
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Revathi Reddy
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Karin Torres-Obreque
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, 05508 000, Brazil
| | - Carlota de Oliveira Rangel-Yagui
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, 05508 000, Brazil
| | - Matthew S Macauley
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada.,Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Gisele Monteiro
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, 05508 000, Brazil
| | - Ratmir Derda
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
3
|
Arora M, Pandey G, Chauhan SS. Cysteine Cathepsins and Their Prognostic and Therapeutic Relevance in Leukemia. ANNALS OF THE NATIONAL ACADEMY OF MEDICAL SCIENCES (INDIA) 2021. [DOI: 10.1055/s-0041-1726151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
AbstractCysteine cathepsins are lysosomal proteases that require Cys-His ion pair in their catalytic site for enzymatic activity. While their aberrant expression and oncogenic functions have been widely reported in solid tumors, recent findings suggest that these proteases also play an important role in the pathogenesis of hematological malignancies. In this review, we summarize the potential clinical implications of cysteine cathepsins as diagnostic and prognostic markers in leukemia, and present evidences which supports the utility of these proteases as potential therapeutic targets in hematological malignancies. We also highlight the available information on the expression patterns, regulation, and potential functions of cysteine cathepsins in normal hematopoiesis and hematological malignancies. In hematopoiesis, cysteine cathepsins play a variety of physiological roles including regulation of hematopoietic stem cell adhesion in the bone marrow, trafficking, and maturation. They are also involved in several functions of immune cells which include the selection of lymphocytes in the thymus, antigen processing, and presentation. However, the expression of cysteine cathepsins is dysregulated in hematological malignancies where they have been shown to play diverse functions. Interestingly, several pieces of evidence over the past few years have demonstrated overexpression of cathepsins in leukemia and their association with worst survival outcomes in patients. Strategies aimed at altering the expression, activity, and subcellular localization of these cathepsins are emerging as potential therapeutic modalaties in the management of hematological malignancies. Recent findings also suggest the involvement of these proteases in modulating the immune response in leukemia and lymphomas.
Collapse
Affiliation(s)
- Mohit Arora
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Garima Pandey
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Shyam S. Chauhan
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
4
|
Rodrigues MAD, Pimenta MV, Costa IM, Zenatti PP, Migita NA, Yunes JA, Rangel-Yagui CO, de Sá MM, Pessoa A, Costa-Silva TA, Toyama MH, Breyer CA, de Oliveira MA, Santiago VF, Palmisano G, Barbosa CMV, Hebeda CB, Farsky SHP, Monteiro G. Influence of lysosomal protease sensitivity in the immunogenicity of the antitumor biopharmaceutical asparaginase. Biochem Pharmacol 2020; 182:114230. [PMID: 32979352 DOI: 10.1016/j.bcp.2020.114230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/21/2020] [Accepted: 09/21/2020] [Indexed: 02/08/2023]
Abstract
L-asparaginase (ASNase) from Escherichia coli (EcAII) is used in the treatment of acute lymphoblastic leukaemia (ALL). EcAII activity in vivo has been described to be influenced by the human lysosomal proteases asparaginyl endopeptidase (AEP) and cathepsin B (CTSB); these hydrolases cleave and could expose epitopes associated with the immune response against EcAII. In this work, we show that ASNase resistance to CTSB and/or AEP influences the formation of anti-ASNase antibodies, one of the main causes of hypersensitivity reactions in patients. Error-prone polymerase chain reaction was used to produce variants of EcAII more resistant to proteolytic cleavage by AEP and CTSB. The variants with enzymatic activity and cytotoxicity levels equivalent to or better than EcAII WT were submitted to in vivo assays. Only one of the mutants presented increased serum half-life, so resistance to these proteases is not the only feature involved in EcAII stability in vivo. Our results showed alteration of the phenotypic profile of B cells isolated after animal treatment with different protease-resistant proteoforms. Furthermore, mice that were exposed to the protease-resistant proteoforms presented lower anti-asparaginase antibodies production in vivo. Our data suggest that modulating resistance to lysosomal proteases can result in less immunogenic protein drugs.
Collapse
Affiliation(s)
- Mariane A D Rodrigues
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Marcela V Pimenta
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Iris M Costa
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | | | - Natacha A Migita
- Centro Infantil Boldrini, Campinas, São Paulo, Brazil; Department of Medical Genetics, Faculty of Medical Sciences, State University of Campinas, Campinas, São Paulo, Brazil
| | - José A Yunes
- Centro Infantil Boldrini, Campinas, São Paulo, Brazil; Department of Medical Genetics, Faculty of Medical Sciences, State University of Campinas, Campinas, São Paulo, Brazil
| | - Carlota O Rangel-Yagui
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Matheus M de Sá
- Heart Institute (InCor), Medical School, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Adalberto Pessoa
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Tales A Costa-Silva
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Marcos H Toyama
- Biosciences Institute, UNESP - São Paulo State University, Coastal Campus, São Vicente, São Paulo, Brazil
| | - Carlos A Breyer
- Biosciences Institute, UNESP - São Paulo State University, Coastal Campus, São Vicente, São Paulo, Brazil
| | - Marcos A de Oliveira
- Biosciences Institute, UNESP - São Paulo State University, Coastal Campus, São Vicente, São Paulo, Brazil
| | - Veronica F Santiago
- Department of Parasitology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| | - Giuseppe Palmisano
- Department of Parasitology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| | - Christiano M V Barbosa
- Department of Clinical and Toxicological Analysis, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Cristina B Hebeda
- Department of Clinical and Toxicological Analysis, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Sandra H P Farsky
- Department of Clinical and Toxicological Analysis, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Gisele Monteiro
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, São Paulo, Brazil.
| |
Collapse
|
5
|
Hadad EH, Ahmadzadeh A, Abooali A, Saki Malehi A, Shokouhian M, Saki N. Prognostic role and therapeutic susceptibility of cathepsin in various types of solid tumor and leukemia: A systematic review. J Cell Physiol 2020; 235:7709-7730. [PMID: 32324258 DOI: 10.1002/jcp.29710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/31/2020] [Indexed: 12/18/2022]
Abstract
Cathepsins (CTSs) are multifunctional proteins that can play prominent roles in cancer progression and metastasis. In this systematic review, we compared the prognosis of CTS subtypes overexpression in leukemia and solid tumors, and investigated the effect of different factors on CTS prognosis. We systematically searched published articles indexed in PubMed, Scopus, Cochrane library, ISI Web of Science, and EmBase databases from February 2000 until January 2020. Among the selected leukemia and solid tumors studies, overexpression of CTS subtypes in newly diagnosed and treated patients were with poor prognosis in 43 studies (79.6%) and with good prognosis in 9 studies (16.6%). However, there were 2 studies (3.8%) with either good or poor prognosis, depending on conditions and caner stage and host cell. The relation between CTS and human leukocyte antigen (HLA) in leukemia and solid tumors was mentioned in 7 studies (13%). Overexpression of CTS subtypes in all new case patients had contributed to the induction of poor prognosis. It seems that CTS subtypes, based on the type of cancer and its stage, the type of host cells, and the probable relation with HLA, breed good or poor prognosis in patients with cancer. Therefore, monitoring the overexpression of CTS subtypes and determining the effect of each of these factors on CTS prognosis could be helpful in predicting cancer prognosis both in newly diagnosed or under treatment patients. They could also be useful in finding ways for improving the efficiency of contemporary therapeutic strategies in various types of leukemia and solid tumors.
Collapse
Affiliation(s)
- Elham Homaei Hadad
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ahmad Ahmadzadeh
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Abooali
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Amal Saki Malehi
- Department of Biostatistics and Epidemiology, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Shokouhian
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Najmaldin Saki
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
6
|
Lanvers-Kaminsky C, Niemann A, Eveslage M, Beck J, Köhnke T, Martin S, de Wit M, Spriewald B, Hauspurg H, Hoelzer D, Boos J, Gökbuget N. Asparaginase activities during intensified treatment with pegylated E. coli asparaginase in adults with newly-diagnosed acute lymphoblastic leukemia. Leuk Lymphoma 2019; 61:138-145. [DOI: 10.1080/10428194.2019.1658099] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Claudia Lanvers-Kaminsky
- Department of Pediatric Hematology and Oncology, University Children’s Hospital of Muenster, Muenster, Germany
| | - Andreas Niemann
- Department of Pediatric Hematology and Oncology, University Children’s Hospital of Muenster, Muenster, Germany
| | - Maria Eveslage
- Institute of Biostatistics and Clinical Research, University of Muenster, Muenster, Germany
| | - Joachim Beck
- Department of Medicine III, University Hospital, Mainz, Germany
| | - Thomas Köhnke
- Department of Medicine III, University Hospital Großhadern, München, Germany
| | - Sonja Martin
- Department of Hematology/Oncology, Robert Bosch Hospital, Stuttgart, Germany
| | - Maike de Wit
- Department of Internal Medicine, Hematology, Oncology and Palliative Medicine, Vivantes Klinikum Neukölln, Berlin, Germany
| | - Bernd Spriewald
- Department of Medicine 5, University Hospital, Erlangen, Germany
| | | | - Dieter Hoelzer
- Department of Medicine, University Hospital, Frankfurt A.M, Germany
| | - Joachim Boos
- Department of Pediatric Hematology and Oncology, University Children’s Hospital of Muenster, Muenster, Germany
| | - Nicola Gökbuget
- Department of Medicine, University Hospital, Frankfurt A.M, Germany
| |
Collapse
|
7
|
Michelozzi IM, Granata V, De Ponti G, Alberti G, Tomasoni C, Antolini L, Gambacorti-Passerini C, Gentner B, Dazzi F, Biondi A, Coliva T, Rizzari C, Pievani A, Serafini M. Acute myeloid leukaemia niche regulates response to L-asparaginase. Br J Haematol 2019; 186:420-430. [PMID: 31044436 DOI: 10.1111/bjh.15920] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 02/04/2019] [Indexed: 12/14/2022]
Abstract
Eradicating the malignant stem cell is the ultimate challenge in the treatment of leukaemia. Leukaemic stem cells (LSC) hijack the normal haemopoietic niche, where they are mainly protected from cytotoxic drugs. The anti-leukaemic effect of L-asparaginase (ASNase) has been extensively investigated in acute lymphoblastic leukaemia, but only partially in acute myeloid leukaemia (AML). We explored the susceptibility of AML-LSC to ASNase as well as the role of the two major cell types that constitute the bone marrow (BM) microenvironment, i.e., mesenchymal stromal cells (MSC) and monocytes/macrophages. Whilst ASNase was effective on both CD34+ CD38+ and CD34+ CD38- LSC fractions, MSC and monocytes/macrophages partially counteracted the effect of the drug. Indeed, the production of cathepsin B, a lysosomal cysteine protease, by BM monocytic cells and by AML cells classified as French-American-British M5 is related to the inactivation of ASNase. Our work demonstrates that, while MSC and monocytes/macrophages may provide a protective niche for AML cells, ASNase has a cytotoxic effect on AML blasts and, importantly, LSC subpopulations. Thus, these features should be considered in the design of future clinical studies aimed at testing ASNase efficacy in AML patients.
Collapse
Affiliation(s)
- Ilaria M Michelozzi
- M. Tettamanti Research Centre, Department of Paediatrics, University of Milano-Bicocca, Monza, Italy
| | - Valentina Granata
- M. Tettamanti Research Centre, Department of Paediatrics, University of Milano-Bicocca, Monza, Italy
| | - Giada De Ponti
- M. Tettamanti Research Centre, Department of Paediatrics, University of Milano-Bicocca, Monza, Italy
| | - Gaia Alberti
- M. Tettamanti Research Centre, Department of Paediatrics, University of Milano-Bicocca, Monza, Italy
| | - Chiara Tomasoni
- M. Tettamanti Research Centre, Department of Paediatrics, University of Milano-Bicocca, Monza, Italy
| | - Laura Antolini
- Centro di Biostatistica per L'epidemiologia Clinica, Department of Health Sciences, University of Milano-Bicocca, Monza, Italy
| | | | - Bernhard Gentner
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Dazzi
- Department of Haemato-Oncology, Rayne Institute, King's College London, London, UK
| | - Andrea Biondi
- M. Tettamanti Research Centre, Department of Paediatrics, University of Milano-Bicocca, Monza, Italy.,Department of Paediatrics, Paediatric Haematology-Oncology Unit, Fondazione MBBM/San Gerardo Hospital, Monza, Italy
| | - Tiziana Coliva
- Department of Paediatrics, Paediatric Haematology-Oncology Unit, Fondazione MBBM/San Gerardo Hospital, Monza, Italy
| | - Carmelo Rizzari
- Department of Paediatrics, Paediatric Haematology-Oncology Unit, Fondazione MBBM/San Gerardo Hospital, Monza, Italy
| | - Alice Pievani
- M. Tettamanti Research Centre, Department of Paediatrics, University of Milano-Bicocca, Monza, Italy
| | - Marta Serafini
- M. Tettamanti Research Centre, Department of Paediatrics, University of Milano-Bicocca, Monza, Italy
| |
Collapse
|
8
|
Walenciak J, Wyka K, Janczar S, Młynarski W, Zalewska-Szewczyk B. Dynamic changes in specific anti-L-asparaginase antibodies generation during acute lymphoblastic leukemia treatment. Pharmacol Rep 2019; 71:311-318. [PMID: 30826572 DOI: 10.1016/j.pharep.2018.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 11/26/2018] [Accepted: 11/27/2018] [Indexed: 10/27/2022]
Abstract
BACKGROUND L-asparaginase (L-asp) remains one of the key components of acute lymphoblastic leukemia therapy. Immune reactions to the drug are associated with its diminished activity. The aim of the study was to determine the level of IgM, IgG and IgE-class anti-L-asp antibodies during the induction and reinduction phases of acute lymphoblastic leukemia therapy and their influence on L-asp activity. METHODS The study group comprised 65 patients treated for acute lymphoblastic leukemia in one pediatric oncology center. L-asp antibodies were assessed using ELISA at the end of the induction and reinduction phases. L-asp activity was assessed prior to each drug administration by colorimetry. RESULTS At the end of the first exposure to L-asp antibodies were detected in 35 patients (54%). In the reinduction phase of the treatment anti-L-asp antibodies were found in 38/55 patients (69%). In the induction phase patients with inadequate L-asp activity had higher IgM concentrations (median 5.88 versus 2.81 μg/mL, p = 0.03). In the reinduction phase IgG and IgM levels correlated inversely with L-asp activity. Patients with L-asp allergy had higher levels of IgG (median 61.6 versus 18.36 μg/mL, p = 0.01), whereas higher IgE levels were noted in the group of patients with inadequate drug activity (median 0.91 versus 0.64 μg/mL, p = 0.03). CONCLUSIONS Subsequent exposure to L-asp in the treatment of acute lymphoblastic leukemia was associated with the increase of anti-L-asp antibodies in all studied classes. However, the changes observed in specific classes of antibodies were not distinctive for L-asp hypersensitivity or inactivation, suggesting that the mechanism is more complex.
Collapse
Affiliation(s)
- Justyna Walenciak
- Department of Pediatrics, Oncology, Hematology and Diabetology, Medical University of Lodz, Łódź, Poland
| | - Krystyna Wyka
- Laboratory of Immunopathology and Genetics, Medical University of Lodz, Łódź, Poland
| | - Szymon Janczar
- Department of Pediatrics, Oncology, Hematology and Diabetology, Medical University of Lodz, Łódź, Poland
| | - Wojciech Młynarski
- Department of Pediatrics, Oncology, Hematology and Diabetology, Medical University of Lodz, Łódź, Poland
| | - Beata Zalewska-Szewczyk
- Department of Pediatrics, Oncology, Hematology and Diabetology, Medical University of Lodz, Łódź, Poland.
| |
Collapse
|
9
|
Meneguetti GP, Santos JHPM, Obreque KMT, Barbosa CMV, Monteiro G, Farsky SHP, Marim de Oliveira A, Angeli CB, Palmisano G, Ventura SPM, Pessoa-Junior A, de Oliveira Rangel-Yagui C. Novel site-specific PEGylated L-asparaginase. PLoS One 2019; 14:e0211951. [PMID: 30753228 PMCID: PMC6372183 DOI: 10.1371/journal.pone.0211951] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 01/24/2019] [Indexed: 12/20/2022] Open
Abstract
L-asparaginase (ASNase) from Escherichia coli is currently used in some countries in its PEGylated form (ONCASPAR, pegaspargase) to treat acute lymphoblastic leukemia (ALL). PEGylation refers to the covalent attachment of poly(ethylene) glycol to the protein drug and it not only reduces the immune system activation but also decreases degradation by plasmatic proteases. However, pegaspargase is randomly PEGylated and, consequently, with a high degree of polydispersity in its final formulation. In this work we developed a site-specific N-terminus PEGylation protocol for ASNase. The monoPEG-ASNase was purified by anionic followed by size exclusion chromatography to a final purity of 99%. The highest yield of monoPEG-ASNase of 42% was obtained by the protein reaction with methoxy polyethylene glycol-carboxymethyl N-hydroxysuccinimidyl ester (10kDa) in 100 mM PBS at pH 7.5 and PEG:ASNase ratio of 25:1. The monoPEG-ASNase was found to maintain enzymatic stability for more days than ASNase, also was resistant to the plasma proteases like asparaginyl endopeptidase and cathepsin B. Additionally, monoPEG-ASNase was found to be potent against leukemic cell lines (MOLT-4 and REH) in vitro like polyPEG-ASNase. monoPEG-ASNase demonstrates its potential as a novel option for ALL treatment, being an inventive novelty that maintains the benefits of the current enzyme and solves challenges.
Collapse
Affiliation(s)
| | - João Henrique Picado Madalena Santos
- Department of Biochemical and Pharmaceutical Technology, University of São Paulo, São Paulo, Brazil
- CICECO–Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | | | | | - Gisele Monteiro
- Department of Biochemical and Pharmaceutical Technology, University of São Paulo, São Paulo, Brazil
| | | | | | - Claudia Blanes Angeli
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Giuseppe Palmisano
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Adalberto Pessoa-Junior
- Department of Biochemical and Pharmaceutical Technology, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
10
|
Lanvers-Kaminsky C. Asparaginase pharmacology: challenges still to be faced. Cancer Chemother Pharmacol 2017; 79:439-450. [DOI: 10.1007/s00280-016-3236-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 12/27/2016] [Indexed: 11/28/2022]
|
11
|
van der Meer LT, Terry SYA, van Ingen Schenau DS, Andree KC, Franssen GM, Roeleveld DM, Metselaar JM, Reinheckel T, Hoogerbrugge PM, Boerman OC, van Leeuwen FN. In Vivo Imaging of Antileukemic Drug Asparaginase Reveals a Rapid Macrophage-Mediated Clearance from the Bone Marrow. J Nucl Med 2016; 58:214-220. [PMID: 27493268 DOI: 10.2967/jnumed.116.177741] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 07/25/2016] [Indexed: 11/16/2022] Open
Abstract
The antileukemic drug asparaginase, a key component in the treatment of acute lymphoblastic leukemia, acts by depleting asparagine from the blood. However, little is known about its pharmacokinetics, and mechanisms of therapy resistance are poorly understood. Here, we explored the in vivo biodistribution of radiolabeled asparaginase, using a combination of imaging and biochemical techniques, and provide evidence for tissue-specific clearance mechanisms, which could reduce the effectiveness of the drug at these specific sites. METHODS In vivo localization of 111In-labeled Escherichia coli asparaginase was performed in C57BL/6 mice by both small-animal SPECT/CT and ex vivo biodistribution studies. Mice were treated with liposomal clodronate to investigate the effect of macrophage depletion on tracer localization and drug clearance in vivo. Moreover, macrophage cell line models RAW264.7 and THP-1, as well as knockout mice, were used to identify the cellular and molecular components controlling asparaginase pharmacokinetics. RESULTS In vivo imaging and biodistribution studies showed a rapid accumulation of asparaginase in macrophage-rich tissues such as the liver, spleen, and in particular bone marrow. Clodronate-mediated depletion of phagocytic cells markedly prolonged the serum half-life of asparaginase in vivo and decreased drug uptake in these macrophage-rich organs. Immunohistochemistry and in vitro binding assays confirmed the involvement of macrophagelike cells in the uptake of asparaginase. We identified the activity of the lysosomal protease cathepsin B in macrophages as a rate-limiting factor in degrading asparaginase both in vitro and in vivo. CONCLUSION We showed that asparaginase is rapidly cleared from the serum by liver-, spleen-, and bone marrow-resident phagocytic cells. As a consequence of this efficient uptake and protease-mediated degradation, particularly bone marrow-resident macrophages may provide a protective niche to leukemic cells.
Collapse
Affiliation(s)
- Laurens T van der Meer
- Laboratory of Pediatric Oncology, Department of Pediatrics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Samantha Y A Terry
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Division of Imaging Sciences and Biomedical Engineering, Department of Imaging Chemistry and Biology, King's College London, London, United Kingdom
| | - Dorette S van Ingen Schenau
- Laboratory of Pediatric Oncology, Department of Pediatrics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Kiki C Andree
- Laboratory of Pediatric Oncology, Department of Pediatrics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gerben M Franssen
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Debbie M Roeleveld
- Laboratory of Pediatric Oncology, Department of Pediatrics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.,Experimental Rheumatology, Radboud Insititute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Josbert M Metselaar
- Department of Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH-Aachen University, Aachen, Germany
| | - Thomas Reinheckel
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University, Freiburg, Germany.,German Cancer Consortium (DKTK), Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University, Freiburg, Germany; and
| | | | - Otto C Boerman
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frank N van Leeuwen
- Laboratory of Pediatric Oncology, Department of Pediatrics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|